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ABSTRACT

Longbrake ii is a 12 month program consisting of both study 
and

hardware phases. The objective of the study is to develop an

opimmreaCoding vocoder system by optimizing

optimum Linear Pedictive oi g used and by the evaluation of
adi o eal time algorithnms ui e T purpose of the hardware~the curren r .. i+cniques. The pu¢. .. +r evelOP-

additions op, test, and evaluate two xplu--t-r e.... effort is to develop 
et _

ment Models (EDM) of 
a speech compression 

system which incor-

porates the Atal and Markel 
approaches to adaptive linear

estimation.
STe ao shed in the final quarter is 

summarized, a

description of system performance 
over channels with bit errors

is included, and a proposed ADM 
hardware design is described.
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As a result of these efforts we have delivered hardware and

software capable of providing full duplex digital speech communi-

cation at bit rates of 2400, 3600, and 4800 bits per second. The

system can operate in either the Atal or Markel LPC modes and

includes all necessary provisions for interfacing with modems at

the 3 bit rates, for operating back to back, and for providing

an analog test capability.

Error detection and correction is included when operating

at 3600 and 4800 bits per second, and a software bit error

generator is provided to test the effects of individual (non-

burst) errors in the transmission system.

The delivered items also include a card reader for loading

programs, a teletype interface and a debug and test software

[package for control and monitoring of programs, a full set of
diagnostic software for hardware maintenance, and a FORTRAN

based assembler to facilitate future software developments.

Figures 1-1 and 1-2 are photographs of one of the EDM

signal processors delivered on this contract.

f
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Figure 1-2. Longbrake EDM Signal Processor-View 2
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SECTION 2

DISCUSSION OF THE THEORETICAL AND EXPERIMENTAL RESULTS

This report contains a description of the final version of
the LONGBRAKE system which was developed by Philco-Ford for the

Maryland Procurement Agency. The section contains descriptions

of the overall system, the voicing algorithm, encode and decode,

the error detection and correction system, the real-time operatingI

system, and the DDT package.

2.1 General Description Of The Final Longbrake System

Figure 1-1 is a block diagram of the final LONGBRAKE system

as implemented on the LONGBRAKE EDM hardware. The speech signal

is-band-pass filtered with a gradual roll-off below 200 Hz and

a sharp cutoff above 3200 Hz. It is then sampled at 6400 Hz.

ri The speech samples are stored both into a pitch analysis buffer

and a predictor analysis buffer at a 22.5 msec. frame rate.

Single time-constant digital pre-emphasis with a treble boost

above 700 Hz is applied to the data to be stored in the predictor

analysis buffer.

For pitch extraction the data is low-pass-filtered by a

cascade of 3 sample averaging filters, summing 5, 4, and 3 samples

respectively, before being fed into the Average Magnitude Distance

Function algorithm and the voicing detector. The voicing detector
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uses an energy measure with a number of adaptive energy thresholds,

zero crossing analysis, and the AMDF max-to-min ratio to make its

decisions. The pitch and voicing rules apply smoothing and iso-
L

lated error correction to the pitch and voicing values and, in the

process, introduce two frames of delay into the corrected pitch

values.

The predictive coding analysis uses either the Atal or Markel

algorithms with a tenth order predictor.

The Matrix loading window has a fixed length 3f 102 samnlen

which corresponds to 16 msec, but its starting point is varied to

f alloN successive analysis windows to be separated by the exact

L multiple of the current pitch period which puts it closest to the

beginning of the frame window. Since the range of possible phase
L

variations is 22.5-16.0=6.5 milliseconds it is not always possible
r

L to separate the analysis windows by an exact multiple of the pitch

period. In such cases the analysis window is placed as close as

possible to the desired value, without moving it outside of the

j 22.5 msec. frame window.

Matrix loading uses full scaling of the input data and double

precision accumulation of products. The Matrix values are block

[ scaled to maintain 16 significant bits in the largest matrix element.

The RMS measurement is derived as a by-product of the com-

putation of the main diagonal elements of the matrix, and theL
length of the RMS measurement window is always made equal to the

{ largest multiple of the current pitch period < 92.

The matrix solution algorithm is a form of Cholesky decompo-

sition with sophisticated block scaling to provide high accuracy

[2-3



some protection against burst errors.

The final process in the analyzer is the conversion of the

coded E.D.&C. output to a serial bit stream for transmission to

the digital interface or modem.

Figure 1-2 is a block diagram of the receiver.

In the receiver program the serial bit stream is converted

back to parallel, error detection and correction decoding is

applied to the data, and then the data is decoded by the PARAMETER

DECODING program.

The executive functions for the synthesis process are accom-

plished by PITSYN, the frame block to pitch block conversion and

interpolation program. This program interpolates pitch, RMS, and

reflection coefficients. Pitch and RMS are linearly interpolated,

but RMS has an additional delay in interpolation at the onset of

voiced sounds to increase the sharpness of the vocal attacks. The

reflection coefficients are interpolated linearly, once per frame,

at the frame mid point. Each particular pitch period is assigned

that set of coefficients to which it is the closest in the frame.

The PITSYN program also determines how many complete pitch periods

can fit into the current frame and transmits that information to

the control program which calls the synthesizer. Partial pitch

e iod are com leted at the beginning of the next frame.

The subroutine which converts reflection coefficients to pre-

dictor coefficients is always called twice per frame. Once for

the new set of reflection coefficients and once for the interpo-

lated set. Therefore if we include the value at the beginning

2-5



(but not preemphasized) sampled input speech. When the switch

is released, the systems will reintialize in the current mode.

A program is also provided for introducing bit errors into

the digital data stream. Various bit error rates can be obtained

by simply changing one threshold in the program.

Finally programs are provided for converting the encode and

decode functions from linear encoding to a form of log-area-ratio

coding.

2.3 Programs Developed During the Last Quarter

2.3.1 Encode and Decode

Transmission of the LPC parameters at low bit rates requires

that the parameters be encoded with great care. The coding system

that is included in the LONGBRAKE EDM's involves different kinds

of coding for the different parameters. The pitch period is encoded

quasi logarithmically. Forty-eight possible delay values are en-

coded; ranging from 16 to 124. The values 16, 17. ..... 31 are

encoded as 1 through 16. The values 32, 32. ..... 62 are encoded

as 17 through 32. Finally 64, 68. ..... , 124 are encoded as 33

through 48. The encoding is accomplished in the pitch extraction

routine itself, while decoding is done in PITSYN. Six bits are

used to transmit the 48 pitch period values.

Voicing is encoded directly with one bit.

RMS is logarithmically coded from 1024 to 5 and linearly coded

from 5 to 0. The logarithmic coding provides an increment of

1.748 db per step. The coding and decoding are accomplished by a

tree search and a table-look-up respectively. The same 32 value

coding table is used for both encode and decode resulting in a

2-9



centile points of the histograms and have used the following bit

allocations for the 2400 bps and the 3600/4800 bps systems. At

2400 we transmit only nine reflection coefficients. The number

of bits per coefficient is 64 4,3for coefficients 1

through 9 respectively. At 4800 and 3600 bps the number of bits

per coefficient is f,5,5544,4,or coefficients 1 through

10 respectively. At 2400 bps there is slight degradation audible

in the speech quality as compared to full precision transmission

of the parameters, but at 3600/4800 bps numerous A/B comparisons

have been made with no indication of degradation due to this

coding.

The second delivered option for coding the reflection coeffi-

cients is included as an overlay to the linear encode-decode

scheme. This option is-a slightly modified form of log-area-

ratio coding. In this scheme the magnitude of each reflection

coefficient can be considered to be transformed into a function

Y by the following relationship.

Y=(LOG((F+RC)/(F-RC))/LOG((F+MAX )/(F-MAX)))*NLEVEL (1)

The values of MAX and NLEVEL differ for the different reflection

coefficients and for the different coding rates and are tabulated

in Table 2-1. If the parameter F is set equal to 1.0 this method

is precisely log-area-ratio coding , since (l+RC)/(l-RC) is an

area ratio. Log-area-ratio- coding results in nearly linear

quantization for reflection coefficient magnitudes < 0.4 and pro-

vides increasingly accurate quantization for the RC's as they

approach unity in magnitude.

2-11



TABLE 2-1

MODIFIED LOG-AREA-RATIO CODING PARAMETERS

2400 BPS 3600 & 4800 BPS
I MAX NLEVEL MAX NLEVEL

1 31/32 32 31/32 32
2 30/32 16 31/32 32
3 30/32 16 - 30/32 16
4 30/32 16 30/32 16
5 30/32 16 30/32 16
6 25/32 8 30/32 16
7 25/32 8 25/32 8
8 25/32 8 25/32 8
9 16/32 4 25/32 8lO 0 0 2528

For RC's in the vicinity of 0.97, in fact, the quantization for

high values can become so precise that it exceeds the inherent

accuracy of the data. It is for this reason that we have intro-

duced the factor F into the coding relationship. The first two

reflections coefficients do attain magnitudes as high as 0.97.

If F is unity, 6 bit log-area-ratio coding provides quantization

precision for RC's near 0.97 that is equivalent to using 8 bit

linear quantization. We have found, however, that the inherent

accuracy of the RC's is such that there is no degradation from

using 7 bit linear quantization of each reflection coefficient.

By increasing F to 35/32 (1.09375) the quantization precision near

0.97 is reduced to a level that would be provided by using 7 bit

linear quantization over the entire range. In the process, the

precision for values near zero is increased from the linear

equivalent of about 4 bits to about 5 bits. Hence by using 6 bit

modified log area r,itio coding with F=35/32, over a range of +
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without degradation is 61. Hence the number of bits left over

for E.D. & C. is 20 at 3600 bps and 47 at 4800 bps.

At 3600 bps the 20 E.D. & C. bits are applied as shown in

Table 9- The voicing bit is protected by majority 2 out of 3

logic. The four most significant bits of pitch are protected by

a Hamming (8,4) code. The two most significant bits of the

parameters RMS, K1, K2, K3, K4, and K5 are all protected by

Hamming (8,4) or Hamming (7,4) codes.

The 4800 bps E.D. & C. scheme is summarized in Table 2-3.

Voicing is protected by majority 2 out of 3 logic and all of the

remaining parameters have their four most significant bits pro-

tected by Hamming (8,4) or (7,4) codes. Both Hamming codes are

capable of detecting and correcting one error in the 8 or 7 bit

code words. The Hamming (8,4) code is also capable of detecting,

but not correcting two bit errors. All parameters which are pro-

tected by a Hamming (8,4) code are arranged so that a two bit

error causes the value of that parameter which was used in the

previous frame to be repeated in the current frame.

In the process of converting the parallel code words to a

serial bit stream we have been careful to separate the bits of a

given code word by as much as possible within the frame to provide

some protection against burst errors.

The programs which implement the E.D. & C. algorithms have

been written to maximize modularity and clarity but the programs

which actually do the bit packing and calling of the Hamming coding

subroutines are relatively long and cumbersome, so that changing

the allocations can require a substantial amount of reprogramming.

2-14



Table 2-2

Allocation of E.D.&C Bits at 3600 bps

Number of Number of E.D.&C Bits E.D.8LC
Parameter Coding Bits Bits Protected Used Algorithm

Voicing 1 1 2 Majority 2 of 3

Pitch 6 4 4 Hamming (8,4)

RMS 5 2)
14 Hamming (8,4)

* K2 6 2)

Kl 6 4 4 Hamming (8,4)

K3 52
3 Hamming (7, 4)

* K4 52

K5 5 2)
3 Hamming (7,4)

K6 5 2J

K7 4 0

K8 4 0

K9 4 0

KIO 4 0

Total 2
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Table 2-3

Allocation of E.D.&C. Bits at 4800 bps

-Number of Number of E.D.&C Bits

* Parameter Coding Bits Bits Protected Used Algorithm

Voicing 1 1 2 Majority 2 of 3

Pitch 6 4 4 Hamming (8,4)

RMS 5 4 4

Ki 6 4 4

* K2 6 4 4

K3 5 4 4

K4 5 4 4

K5 5 4 4

K6 5 4 4

* K7 4 4 4

K8 4 4 3 Hamming (7,4)

K9 4 4 3

K10 4 4 3

Total 47-

2-16



2.3.3 Final Voicing

2.3.3.1 Computation of an Energy Reference Level

Philco-Ford has developed and implemented a voicing decision

for the Longbrake system which is based primarily on the measurement

and comparison of low frequency energy values computed on a frame-

by-frame basis. Due to the nature of speech excitation, voiced

sounds have a generally higher low-frequency energy content than

unvoiced sounds. This pattern can be greatly obscured, however,

by changes in the overall amplitude of the speech signal.

They key to an energy-based voicing decision is the choice

of an energy reference level (or levels) which will enable the

voicing decision to be independent of changes in overall speech

volume. The energy reference level associated with an earlier

Longbrake voicing decision was updated at two second intervals

and consisted of the maximum low frequency frame energy measured

during the preceeding two second intervals. The profile described

by this reference level was discontinuous and varied with the

phase relationship between the speech signal and the arbitrary two

second energy intervals. This arbitrary nature of the energy ref-

erence level led to a generally non-repeatable voicing decision.

Also, the rigid two-second "holding" period limited the adaptability

of the reference level to rapid inflections and weak trailing

voiced syllables.

A combination of experimentation and induction led to the

energy reference profile currently used in the Longbrake voicing

decision. The profile consists of linearly decaying peak detection

2-17



of frame-by-frame energy values. The time constant is such that

complete decay occurs in approximately five seconds. Two quan-

tities are stored by the machine language routine which computes

the energy reference level for each frame. The first is the

reference level associated with the previous frame and the second

is a step size. If the reference level is less than the current

energy measurement, the reference level is reset to this value,

otherwise it is unchanged. If the reference level has been re-

placed by the current energy measurement, the step size is reset

to the appropriate fraction of this quantity. If the reference

level has not been replaced, the step size remains unchanged, The

step size is finally subtracted from the energy reference level.

Thus, when the frame energy level rises above the reference level,

the reference level immediately follows upward to the peak. As

the energy decreases, the reference level decreases according to

7 the current step size which produces a five second decay. The

peak detection nature of this energy reference profile leads to a

repeatable voicing decision and the built-in decay allows the

voicing decision to follow falling inflection and low-volume voiced

syllables. If a silent period of sufficient duration occurs, the

reference level will completely decay, but will immediately respond

to the first utterances.

2.3.3.2 Description of Voicing Decision

The voicing decision is a logical flow routine using measured

properties of the speech waveform and a series of thresholds. Four

energy dependent variables are derived from the energy reference

2-18
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level described above. One of these establishes the level of a

dither signal, and the other three are used as thresholds for

energy comparisons.

A dither signal, proportional to the energy reference level,

is added to the lowpass filtered input signal as a zero crossing

count is performed. If the resulting zero crossing count exceeds

a fixed threshold, an unvoiced decision is made. Thus, the dither

signal forces the very low energy intervals, which are generally

associated with background noise, to be unvoiced. In addition,

high frequency strongly unvoiced sounds will be detected as unvoiced

simply because of their high zero crossing content. If the zero

crossing count threshold were lowered to the point where it could

properly detect all unvoiced sounds, it would improperly detect

many voiced sounds, therefore it is not used for discrimination of

f marginally voiced sounds.

The difficult marginal voicing decisions use only the lowpass

ffiltered energy computation and the maximum-to-minimum ratio of
V' the normalized AMDF function. (The dependency of the voicing

decision on the AMDF max.-to-min. ratio is, however, very weak, and

little performance would be lost by completely eliminating it as a

factor). High lowpass energies and high AMDF ratios both tend to

indicate a voiced decision. Two fixed AMDF ratio thresholds sepa-

rate the AMIF ratio measurements into three regions. Corresponding

to each of these regions is a different energy threshold expressed

as a fraction of the energy reference level. AMI)F ratio values in

the highest AMDF ratio region result in the lowest fractional

energy threshold. For each frame, the current AMDF ratio is

2-19
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detected to be in one of the three regions mentioned above. If the

lowpass energy then exceeds the fractional energy reference thres-

hold correspondingto that AMDF ratio region, a voiced decision is

made: otherwise the frame is labeled as unvoiced. Since the energy

thresholds are computed relative to the energy reference level, the

voicing decision is made independent of the overall speech amplitude.

2.3.4 Real Time Operating System

2.3.4.1 Description of Input-Output

Incoming data from the A/D coLverter is stored in two ad-Jacent

buffers each of which contains 145 locations. At a sampling rate

of 6400 Hz. and a frame time of 22.5 milliseconds, there are 144

samples per frame. While one of the input buffers is being analyzed,

the other is being filled with continuously clocked input speech

data.

Output speech data is stored in three adjacent buffers, each

containing 144 locations. These buffers are filled by the synthe-

sizer in pitch period blocks of samples while the output speechr
L is continuously clocked out to the D/A converter.

This system is self-contained and performs linked analyses

and syntheses. The real time operation is governed by the D/A

interrupt. This interrupt occurs every 144 sample times and

initiates a sequence of events. During the servicing of this inter-

rupt the A/D input buffers and the analyzer references to that

buffer are switched. Since the input buffers contain 145 locations,

there will be an unused location in each frame for the back-to-

back mode. The output buffers are also switched under this interrupt.

2-20



Finally a flag is set before leaving the interrupt service routine.

When the program is started it goes through an initialization

procedure, and into an idling "spin" loop awaiting the flag which

is set in the interrupt routine. When the flag is detected, it is

reset and an analysis is begun. The analyzed frame always contains

144 samples. Upon completion of an analysis, data is transferred

and a synthesis is performed. Syntheses are always targetted at

producing 144 samples per frame. Upon completion of synthesis,

the spin loop is again entered and the process repeats itself when

the interrupt flag is detected.

In the full-duplex transmit-receive system., two constantly

clocked bit streams transfer data from the local analyzer to the

remote synthesizer and from the remote analyzer to the local syn-

thesizer. e there are four timing sources versu

in the back-to-back system;and three interrunts govern the real-

time operation. The four timing sources consist of two internal

processor clocks and two modem clocks. The modems clock bits in

and out of specialized modem interface hardware. The three inter-

rupts are a transmit interrupt, a receive interrupt, nda D

irrupt indicates that the transmitter

interface buffer has been exhausted. Under this interrupt, this

buffer is refilled with analysis data. In addition, the input

buffers are switched and an analysis flag is set. Due to drift

between the processor and its transmitter clock, there maybe

either 143. 144, or 145 samples inputted between transmitter

2-21



interrupts. These departures from 144 are linked into the

analyzer which adjusts its frame size accordingly. A receive in-

terrupt indicates that the receiver interface buffer has been

filled. During the interrupt servicing routine, this buffer is

emptied into an area of memory reserved for synthesis data and

a synthesis flag is set. The number of D/A conversions since

the previous receiver interrupt is computed and this number is

the target number of samples per frame for the synthesizer (143,

144, or 145). The D/A interrupt occurs every 144 samples and

switches the output buffers.

The analysis, and synthesis flags are stored in a list in

their order of occurence. After an initialization procedure, the

program spins while checking for flags. When a flag is detected

it is deleted from the flag list and the appropriate analysis or

synthesis operation is performed. Upon the completion of this

operation, the spin loop is again entered. If a flag remains onL.
the list it will be immediately serviced. If not the program will

spin until a flag is set.

Until synchronization occurs between transmitter and receiver,

only transmit interrupts will be generated, and only analyses will

be performed. During this time, the D/A is squelched to silence.

Simulated transmit-receive operation can be performed by one

processor without a modem. This is done by moving a front panel

switch from Operate to the Test position. The bit stream is routed

directly from transmit buffer to receive buffer and is clocked by

a second processor clock.

A final real-time mode is the Analog Test mode selected by
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a processor front panel switch. While this switch is activated,

the program will transfer data from the input buffers directly to

the output buffers using only the D/A interrupt for buffer switch-

ing. When the switch is released, the program will restart. This

mode does not provide an ideal A/B comparison capability because

the analog test path introduces deemphasis into the signal with

no correspcnding preemphasis. Hence it does not provide an

accurate timbre match to the processed speech which has both

preemphasis and deemphasis.

2.3.5 Debug, Diagnosis, and Test Program

A software debug, diagnosis, and test program was written

for the EDM processor which, together with the TTY unit, greatly

facilitates the testing and debugging of programs on the Philco

. equipments. The program occupies approximately 1300 (octal)

locations and has been written to reside at.the upper end of

memory.

In essence, the DDT program is similar to that used on other

machines. It provides the ability to enter data or instructions

(in various formats) into memory or to examine the contents of

memory and print out those contents (again, in various formats).

The DDT program is essentially an I/O control program which

employs various command structures for its operation. The commands

used by the programmer to run DDT are expressions, formats, and

control. The DDT software makes use of sequences of parameters,

called expressions, which are evaluated algebraically or logically

and converted to internal values. These values are used either to
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address locations in the machine or to enter data into the machine.

The format commands enable the user to select the type out of the

machine to be printed in any one of five modes: unsigned octal

integer, unsigned decimal integer, unsigned base R integer, signed

decimal fraction, or two ASCII "Test" characters. Finally, the

-control commands provide the user the ability to clear memory, to

search memory (for a match or no match), to execute a program, and

to enter and remove breakpoints in a program.

-

r
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SECTION 3

LONGBRAKE EDM EQUIPMENT

3.1 Final Hardware Status

The hardware debugging of the two Longbrake EDM equipments

was completed during this reporting period. Most hardware prob-

F lems were associated with the main memory where many defective and

marginal integrated circuits were replaced. A unique problem was

exhibited during the early debugging of the second unit in that

approximately thirty missing, broken or shorted connections were

found in the Gardner Denver Wiring. The teletype interface was

F checked with a Model 33 ASR Teletype and was used extensively

with the DDT software in debugging the hardware and other software.

[ After initial debugging the entire diagnostic software package

verified proper operation of both equipments. The EDM units were

[ tested also asan operational LPC system. Full duplex operation

was checked at 2400 and 4800 BPS through external modems that pro-

vided external timing and exercised the data interface hardware.

LFull duplex operation at 3600 BPS was also checked with the units
directly interconnected while using an external timing input. All

documentation was updated and submitted with the units for final

QA inspection.

3.2 Modem and Timing Interface Circuitry

3.2.1 Functional Description

The data interface hardware operates in concert with the I/O
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functions of the EDM to reformat data between the parallel structure

of the processor and the conventional serial format used in data

transmission.equipment. Functionally the interface provides data

buffering and synchronization capability, processor interrupt

generation, and standard MIL-STD-188 interfaces for the external

data and timing signals. The interface circuitry is located on

four PW cards housed in the analog card cage of the EDM. All

signals and controls necessary for full-duplex operation are

brought out on rear connector J3. The interface circuitry pro-

vides for flexibility in the selection of data rates and coding

formats. No internal wiring modifications are required for

different rates or formats as the countdown from the external

timing input to the frame rate can be selected from either con-

trol switches mounted on one of the PW boards or remotely via

control lines or rear connector J3.

The hardware is proportioned between the Analyzer Output

Buffer, the Synthesizer Input Buffer 1 and 2, and the Analyzer/

Synthesizer Buffer Control. The following paragraphs describe

the operation of the analyzer output buffer, the synthesizer input

buffer and the synchronization circuits.

P3.2.2 Analyzer Output Buffer (Figure 3-1)

The analyzer output buffer, contained on the PW board of the

same name, provides the interface and storage for transferring data

* from the 16 bit parallel format of the machine to serial data for

output to an external device. The buffer accepts successive 16

bit words from the processor, assembles them into a serial frame

of data, and outputs the frame at a rate determined by the external
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clock.

The external timing signal is brought into a MIL-STD-188

receiver from the rear connector and a strapping option is

supplied to select output data to coincide with either edge of

the data clock as required by the external system. The data

output is provided to the rear connector from a MIL-STD-188 out-

put driver. Selection gates on the Analyzer/Synthesizer Control

card allow the simultaneous routing of data and clock from either

external or internal paths. A front panel Operate/Test switch

in the test position will select the internal timing mode which

in concert with the data selection gate and some software changes

allows the interface to be used in the back-to-back made.

The number of bits per frame is selected by the frame size

switches on the Analyzer/Synthesizer Control board. The frame

length can be set from 1 to 127 by converting the number of bits

per frame to a binary number then setting the switches corresponding

to a '1' to the ON position. Optionally, all switches can be set

to the OFF position and the frame length can be controlled remotely

through the rear connector by providing a ground for each input

line corresponding to a "1" in the desired binary number.

The data buffer is a 128 bit parallel-to-serial converter

divided into 8 segments of 16 bits each. Since both the frame

counter and the parallel-to-serial converter ag-clocked by the

same timing signal, the frame counter is effectively counting the

number of bits which have been shifted out in serial from the parallel-

to-serial converte"r. When a complete frame of data has been shifted

out, a frame counter output will initiate an interrupt of the pro-
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cessor, labeled TX INTSTRT, and will also reset on an 8 bit shift

counter that generates loading pulses for the data buffer. The

interrupt (level 4) causes the processor to execute an interrupt

routine which reloads the parallel-to-serial converter with a

new frame of data by executing successive COD instructions.

The first COD (connect output data) instruction to be

executed loads 16 bits of data into the output register of the

processor, then generates a data sent pulse (CH1 DSL in the block

diagram). The right most AND gate in the figure will be enabled

to allow the data sent pulse to be gated to the load control of

the right most 16 bit parallel-to-serial converter, causing 16

data bits from the output register to be loaded in parallel.

The trailing edge of the data sent pulse clocks the 8 bit shift

counter which enables the AND gate to the second parallel-to-

serial converter and disables the first AND gate. The next

COD to be executed therefore loads 16 bits into the second parallel-

to-serial converter. This process continues until a complete
ff frame of data has been loaded. For example, if the frame length

is set to 54 bits, then 4 COD instructions would have to be per-

formed to reload the data buffer. Actually, 4x16 or 64 bits of

data would be loaded with the last 10 bits being nonsense which

would not be shifted out before another reloading would occur.

The sync or-framing bit is the last bit of each frame. No hard-

ware is made for inserting this framing bit and thus this must be

De-n-pJed in the software control routine.

Since the parallel-to-serial converter is being continuously

shifted to produce a serial bit stream, the processor has one bit
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time to load a new frame of data into the parallel-to-serial con-

verter when depleted. At 4800 BPS data rate, this gives the pro-

cessor 208 microseconds to load a frame.

Assuming that a new frame of data has been properly loaded,

the first serial rate clock transition after the interrupt shifts

the first bit of the frame into a one bit buffer register which

connects through a MIL-STD-188 interface circuit to the rear

connector. When the last bit of the frame has been clocked into

the one bit buffer register,,the interrupt occurs and the loading

process is repeated.

2.3 Synthesizer Input Buffer (Figure 3-2)

The synthesizer input buffer stores serial data received from

an external device, in a serial-to-parallel converter then trans-

fers data to the processor in groups of 16 bits. The buffer is

loaded at a rate determined by the external receive timing and

unloaded by issuing successive CID instructions from the processor

to the control circuitry. The synthesizer input buffer is contained

on Synthesizer 1 and Synthesizer 2 PW boards.

The data and timing inputs are brought into MIL-STD-188

receivers from the rear connector and a strapping option is pro-

vided to select the proper clock phase for center-sampling the

input data into the buffer. Selection gates on the Analyzer/

*Synthesizer Control board allow the simultaneous selection of data

and clock from either the external or internal paths. When the

front panel Operate/Test switch is in the test mode, the analyzer

output buffer is internally connected to the synthesizer input

buffer and sample rate counter 2 (SRC2) is provided as a clock to
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both buffers. Sample rate counter 2 must thus be enatled by the

software via a COD instruction.

The serial rate clock is counted down to the framing rate by

the receiver frame counter which can accommodate frame lengths from

1 to 127 bits. The frame size selection is made by either switches

on the Analyzer/Synthesizer Control board or remotely via a rear

connector. These cotrtr sare common with the analyzer frame counter

and thus one setting controls both countpx-.

The data buffer is 128 bits long which can store eight 16 bit

words. qata is clocked into the buffer at the serial rate and

transferred out of the buffer and into the processor on the CH1

data bus in groups of 16 bits."'The serial data received is shifted

into the synthesizer input buffer and the number of data bits

accumulated is tallied by the receiver frame counter, which provides

and end of frame signal when a complete data frame has been assem-

bled. 'the end of frame signal triggers an interrupt (level 5)\to

the processor to load the data for the synthesizer program.,.The

interrupt causes the processor to execute a routine consisting of

successive CID instructions for loading data through the CHI bus.

_'The first CID instruction will load the last 16 bits in the buffer

into the processor in a parallel transfer. A CHI data received

(CHIDRL) signal will be provided by the processor and this will

cause a parallel transfer in the data buffer, shifting all data

by 16 bits. The register that contains the last 16 bits received

then contains the previous 16 bits.-Additional CID instructions

will be issued until all data within the frame is loaded into the

processor.
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The synthesizer buffer can thus shift data serially for load-

_ing or in 16 bit jumps in the reverse direction for unloading.

Referring to Figures 3-2 and 3-3, the REV REG MODE controls either

serial or parallel shifting of data in the buffer. The RX REG CLK

signal which serially shifts the buffer is a retimed pulse formed

near the timing transition that center-samples the input data.

When a frame of data is accumulated, the interrupt to the processor

(labeled REC INT START) sets the REV REG MODE to the parallel trans-

fer mode. Each CHI data received (CH1 DRL) will shift the buffer

16 bits so the words load to the processor in reverse order.:,Notice

that the first bit of the frame is in the last group transferred

to the processor. Care must be exercised when loading and unloading

data to the analyzer and synthesizer buffers to maintain the pro-

per order of data.KThe unloading process, as in the analyzer,

must be completed within one bit time following the interrupt. The

next timing transition will reset the RCV REG MODE for serial trans-

fer and the first bit of the new frame will be shifted into the

buffer.

3.2.4 Synchronization (Figure 3-3)

The synchronization circuits establish frame sync between

the synthesizer program within the processor and data received

from the remote analyzer. The frame intervals of the data from

the analyzer can be identified by the occurrence of a sync bit in

each frame. The sync bit is located in the final bit position of

the data frame and alternates in level between adjacent frames.

The synchronization circuits must locate the sync bit in the serial
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input data stream and then phase lock the receiver frame counter

so that the end-of-frame decode from the counter occurs coincident

with the reception of the sync bit.

The sync circuits have three modes of operation. The first

mode is to t and "lock on" to a possible sync bit position in

r the received data stream. The second mode is to Gi D the pre-

sence of the alternating pattern during subsequent frames and to

finally declare sync if verification is made. The third mode is

n the sync bit for loss of sync. If verification is not

made in the second mode or if a loss of sync is detected in the

third mode, the control returns to the first mode and the cycle

is repeated to re-establish correct synchronization.

QIThe sync circuits (Figure 3-3) contain an-exclusive-OR com-0

parator for comparing input data to a '1-0' memory which stores

the expected state of the alternating sync bit. he end-of-frame

decode from the frame counter acts as a strobe for sampling the

comparator once per frame to the sync counters.-ne counter counts

correct sync bit com'risons and the other talli5errors.Qn the

initial out-of-sync state, the search control flip-flops hold the

sync strobe continually enabled until a logic one input data is

received. The '1-0' memory is held to the logic one state and the

enabled sync strobe holds the frame counter in the reset state.

Each input logic zero will cause an incorrect comparison to the

'1-0' memory and the counter for correct comparisons will be reset.

As long as input data bits are logic zeros, the sync circuits will

remain in this "idle" state, 'hen the first logic one input is

received, the exclusive-OR comparator will indicate a correct
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comparison.-The search control f flops will reset, the counter for

correct comparisons will step one count, and the '1-0' memory will

toggle. Thie resetting of the search control flip-flops allow the

sync strobe to go inactive and the frame counter to stop. jThe
sync circuits are now in their second mode of operation and one

frame later, the frame counter will generate an end-of-frame signal

or sync strobe to check the status of the suspected sync bit. ZIf

a correct comparison occurs, the correct comparison counter will

step and the '1-0' and the memory will toggle. he frame counter

will continue to run to check the same bit position of the follow-

ing frame. If, however, the comparator indicated an incorrect

level for the suspected sync bit, the correct comparison counter

would be reset and the search control flip-flops would be set to

retur the sync circuits to the initial searching conditions.

Sync will be declared whenG consecutive correct comparisons

occur. At this time the sync status flip-flop is set to the~in-

snc" state and a is generated to the processor.

The sync status flip-flop appears on bit 8 of the input status

word and can be checked by the processor through a CIS (check in-

put status) instruction. The sync bit is the last bit received

in a frame so when the interrupt occurs, the processor can input

a complete frame of data from the synthesizer input buffer by

generating a series of CID instructions in an interrupt routine.

Once sync is declared, the sync circuits enter the t..r

of operation where the sync bit is monitored to detect a loss of

synchronism between the receiver frame counter and the input data

frames. Each time the sync strobe becomes active to check the com-
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parison of the sync bit to the '1-0' memory, either the correct

comparison counter will step or the counter for incorrect com-

parisons will be advanced. 'When the sync strobe becomes active

both counters are primed for counting on the next clock input.

However, if an incorrect comparison occurs between the input data

bit and the '1-0' memory, the load input to the "right" counter

will become enabled and this counter will be reset while the "wrong"

counter will step one count. If a correct comparison occurs, the

count enable input to the "wrong" counter will be inhibited while

the "right" counter is stepped one count. The in-sync condition

of the sync status flip-flop alters the correct comparison counter

such that the function of the counter becomes to reset the "wrong"

counter whenever two consecutive correct comparisons occur.Th

incorrect com n r eror counter will reset the sync status

fli -flop to the out-of-s nc state i ccumulated

without 2 consecutive correctc rison occurrin Simultaneous

with the resetting of the status flip-flop for an out-of-sync

condition, the search control flip-flops will be set to return

the sync circuits to the initial searching conditions. The inter-

rupts to the processor from the receiver circuits will be disabled

until synchronization is again established.

3.3 Teletype Interface Circuitry

3.3.1 Functional Description

The Longbrake processor contains a Teletype Controller card

which enables it to interface with a Model 33ASR. This Teletype

has a character format of 11 bits, consisting ofone start bit

(a space), 8 data bits which us the USASCII stangard - , and
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2 stop bits (marks). Each bit has a duration of 1/110 second.

The processor interfaces with the controller card on Input/

Output Channel 3, by means of 8 output data lines from the output

register in the processor, a data needed input signal to the pro-

cessor, a data sent output from the processor,18 input data lines

from the controller, a data available input to the processor and

a data received output from the processor. The controller inter-

faces with the ASR over a pair of wires to the ASR printer and a

pair from the keyboard through connector Jl on the rear of the

processor.

Any program written to interface with a Teletype through the

controller card must first sense the status of the controller

circuits before sending data to or receiving data from them. To

send a character, the processor must first sense the data needed

signal from the controller, using the CIS instruction. Only when

this signal is ON should the processor perform a COD instruction

to transfer 8 bits of data to the controller. To receive a

character, the processor must first sense the data available signal

from the controller, using the CIS instruction. When this signal

is ON the processor can then perform a CID instruction to move 8

bits of data into the processor.

Refer now to the Teletype controller block diagram for a

detailed discussion of the operation of the controller. The

printer control circuits is shown in Figure 3-4 with the keyboard

circuits shown in Figure 3-5.

3.3.2 Printer Control Circuits

When no character is being sent to the printer, the printer
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circuits are in their steady state or rest state, ON, and the one

bit buffer is held in the set state sending a constant MARK to the

printer.

The processor can now execute a connect otdvc n

* struction, which loads the output register in the processor with

data and also generates a data sent signal (CH3DSL in the block

diagram) which loads the parallel to serial converter, clears

the space flip-flop, and clears the data needed flip-flop.

Clearing the data needed flip-flop causes the counter reset

flip-flop to be set synchronously with a 9.9 KHz timing signal,

allowing the divide by 90 counter to generate the PTR TTY clock.

This clock shifts a 10 bit shift register consisting of the

8 bit parallel to serial converter, the space flip-flop, and the

one bit buffer register. Transitions of the PTR TTY clock continue

at a 110.011Hz rate until an entire 11 bit character has been

shifted out to the printer, at which time an end of character gate

becomes active and sets the data needed flip-flop which in turn

resets the counter reset flip-flop. The printer control circuits

are now back in their rest state and are ready to accept the next

character from the processor.

3.3.3 Keyboard Control Circuits

When the keyboard control circuits are in their rest state,

the data available flip-flop, the space flip-flop and the counter

reset flip-flop are all in the cleared state. When the operator

depresses a key, the first bit of the character, which is always

a space, causes the space flip-flop to be set. This enables the

counter reset flip-flop to be set synchronously with the 9.9 KHz
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timing signal. The divide by 90 counter begins generating the

KBD TTY clock which center samples the keyboard bits into the 10

bit serial to parallel converter.

Whenever the counter reset flip-flop is set, a transition

detector circuit presets the serial to parallel converter to all

marks, which enables the end of a character to be sensed by

simply looking for a space in the last stage and a mark in the

first state of the serial to parallel converter. When this

occurs the output of an end of character gate becomes active ard

resets the space flip-flop which then causes the keyboard circuits

to revert to the rest state. The output of this gate also sets a

data available flip-flop which indicates to the processor that 8

keyboard data bits can be transferred using a CID instruction.

When the CID instruction is executed, the processor generates

a data received signal (CH3DRL) which resets the data available

flip-flop, causing the data available signal to go to the OFF state.

The keyboard circuits can now accept the next character.
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SECTION 4

ADM DESIGN STUDY REPORT

In this section we will describe a low-cost, high-speed, pro-

grammnable processor which was conceived and is being developed at

Philco-Ford and which is the recommended approach for implemen-

tations of the LONGBRAKE advanced development models. We call

this machine the Programmable Array Processor (PAP). In the

following paragraphs we will attempt to show how this novel pro-

cessor architecture will provide the programmability of a general

purpose computer, the throughput and simplicity of a pipeline

processor, and the low cost and reliability required for operational

field equipment.

4.1 Consideration of Alternative Approaches

In addition to the programmable array processor which we are

* about to describe, a number of alternative approaches have been

considered. In this section we will comment briefly on the advan-

tages and disadvantages of the following four alternatives.

I. Parallel LSI Microprocessors
Ii. MSI/LSI Programmable Processors
III. Minicomputer with LSI Peripherals
IV. Custom Pipeline Processor

4.1.1 Parallel LSI Microprocessors

The first approach, that of using a number of microprocessors

in parallel, appears to be impractical because of the large number

of microprocessors required to approach the lower bound on the

4-1



arithmetic throughput required in the LONGBRAKE system.

The LONGBRAKE algorithm requires about 4000 multiplications

and additions per frame; about half in the transmitter and about

half in the receiver. The frame rate is 44.4 frames per second

and precision is 16 bits. This gives a computational rate of 177, 000

multiply and add combinations per second required for the arith-

metic-and-logic-unit.

As an example of how microprocessors would handle this through-

put, consider the presently available Intel 8008's which do an

algorithm multiply for 8 bit precision. Running the algorithm for

signed integers takes between 1000 and 1500 p-seconds.

Using an 8 bit machine to do 16 bit multiplication would in-

crease the running time by a factor of at least 4. This means that

16 bit multiplication using a single Intel 8008 would take between

4000 and 6000 p-seconds giving a throughput of 167 to 250 multi-

plications per second. This means that about 1000 Intel 8008's would

be needed to do nothing but the multiplications in the LONGBRAKE

algorithm.

Of course it is recognized that faster microprocessors are

being developed and may soon be available, but this example indi-

cates that they must be several hundred times faster than the

Intel 8008's before they will begin to be applicable to this

system. In the long run, however, increasing the speed of these

devices may be more than simply a matter of using faster techno-

logy, for at present the circuit speeds associated with the techno-

logy used in the fabrication of microprocessors is fairly high.

The reduced throughput comes about due to the inherent pin limi-
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tations when the entire processor is put on one chip. Most

microprocessors use a single bidirectional data-bus for getting

operands to and from the chip. This data -bus, forms a constriction

to operand flow and results in a low efficiency for the arithmetic-

and-logic circuits.

In addition to the low efficiency of microprocessors, the pro-

blems involved in programming a parallel system of arithmetic-and-

logic units was considered formidable. For these reasons, parallel

micro-processors are not recommended for the ADM implementation.

4.1.2 MSI/LSI Programmable Processors

The determining factor in the evaluation of this approach is

the concept of "programmable". An important distinction must be

considered here. The term programmable processor is quite often

used to describe a general-purpose machine which is designed to do

a large class of computations. The general purpose machine may

not be particularly effective for a smaller class of computations

within the class for which it was designed. The present voice

processor involves mainly on-line computations with little program

modification. It is necessary in this case to consider not the

fact that the machine is programmable, but rather that the machine

is general-purpose. The result of this is that the duty cycle of

the arithmetic-and-logic circuits for the general-purpose machine

is rather low for on-line computations.

An example of the low efficiency of a general purpose machine

for on-line computations may be seen by examing a section of coding

f or an arithmetic operation on two indexed operands over a range

of the index. The majority of the machine time is spent in fetch-
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ing instructions, fetching operands, doing address arithmetic,

incrementing index registers and testing for the end of the index

range: and very little of the time is spend doing the specified

arithmetic on the operands. Because of this low arithmetic-

and-logic efficiency, the general-purpose machine organization

can provide the kind of throughput required for speech processing

only by employing extremely fast logic circuits in the arithmetic

unit and the memory, and by employing a large and powerful instruc-

tions set.

In practice very fast logic is expensive, consumes high power,

and is difficult to implement with MSI and LSI. It also requires

very careful layout, debugging, and maintenance to cope with timing

problems due to excessive wire lengths and marginal components.

Large instruction sets furthermore tend to increase system com-

plexity and hence system expense, in terms of design, fabrication,

and maintenance. For these reasons we do not recommend this

approach for the LONGBRAKE ADM's.

4.1.3 Pipeline Processors

Approaches III and IV are considered to be similar, assuming

that the LSI peripherals of IV are organized as pipelines. It is

well known that the pipeline organization provides both a high

efficienty for the combinational logic circuits and a simple con-

trol section. However, the "custom" pipeline processor approach

implied in III and IV as defined here would probably require more

than a single combinational logic unit. For a low cost approach,

the required throughput of the LONGBRAKE algorithms can be easily

achieved by a single arithmetic-and-logic unit.
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4.1.4 The Recommended Approach - A Programmable Array Processor

The approach which is recommended for implementation of the

LONGBRAKE ADM's is similar to approach IV in the organization of

memory and processing section but uses a single arithmetic-and-

logic unit. Furthermore, it is recommended that the control

section incorporate a ROM for storing the program and that the

instruction set be chosen to make the machine effective for the

type of computations involved in the specific algorithms under

consideration and not for general-purpose computations.

The end result of these considerations was the selection of

a programmable array processor which is described in Section 4.2.

This processor is believed to have the gate efficiency of the pipe-

line processor (Approach IV) while still maintaining much of the

programmable features of Approach III. The instruction set has

been selected to give high efficiency for indexed array arithme-

tic at the expense of general computational capability. One might

say that, although the machine retains the concept of program-

mability, it has been tailored for high efficiency in specific

voice processing algorithms. As a result the programmable array

processor can easily achieve speech processing throughputs greater

than those of the fastest currently available general purpose

processors.

In addition to the extremely high gate efficiency for the

voice processing algorithms, there were several other advantages

of the programmable array processor that were considered. First.

the control section was relatively simple compared to the general-

purpose machine. Consequently, a high proportion of the total
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number of modules involved in the implementation would be in the

memory. Here arithmetic throughput is not a major factor in

selecting circuit types and LSI, and particularly C-MOS LSI circuits,

may be used to their best advantage. In fact, there are several

presently available "off-the-shelf" LSI chips which can be used for

the array memory.

A second advantage in the use of the programmable array pro-

cessor is that truncation, shortening, or otherwise modifying

computations to reduce running time is not necessary. In fact,

the programmable array processor functions best when a given in-

dexed array computation is done exactly and completely. This

should provide improved speech quality over present methods of

implementation.

A final advantage is that the machine accomplishes high-

speed processing while using memory and logic circuits which are

for the most part relatively slow. As a result the problems and

expense of layout, debugging and maintenance of very-high-speed

circuits are minimized.

4.2 Description of Recommended Hardware

4.2.1 Programmable Array processor Concept

The Programmable Array Processor is designed to be extremely

efficient for computations involving on-line, indexed, arithmetic

or logic operations. These are computations where the operation

and one or more of the operands are specified over a given index

range. An elementary example is the computation of the one

dimensional array of products, Pi where:
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pi = aib. (i = 1, 2, 3 ... I)

Actually the processor is designed to most efficiently handle

double indexed operations, such as the computation of the two dimen-

sional array of products, Pij, where:

p..= a b., (i = 1, 2, 3 ... I) (j = 1, 2, 3, ... J). (4-2)
ij i j

The instruction set is designed so that each of the above arrays

can be computed and loaded into memory with a signal instruction.

For programs involving indexed arithmetic operations, the amount of

program memory required is extremely small compared to that for the

more general-purpose machine.

A further example of the effective use of this processor is

the computation of an array of correlation coefficients, Ak, where:

N
A = aia (i- k) (4-3)

The operation of multiplication and accumulation over an

index can be accomplished with a single instruction so that one

instruction would generate the coefficient Ak of Equation (4-3).

The Programmable Array Processor configuration as presented

in this report is intended to run real-time programs and to operate

as communication terminal equipment rather than as a laboratory

tool. Consequently, the design departs significantly from that of

the conventional general-purpose computer. (The first departurelis

the use of separate operand and program memories: a onnosed to the

more conventional use of a single memory for hnh nprands and

instructions. Separating the memories precludes tradeoffs between

program and operand storage requirements. This is not a dis-

advantage in the intended application, since the required storage
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for both program and operands is fixed. Also, the use of separate

memories precludes the modification of the program during execution.

Again this is not a disadvantage for communication equipment since

the program must be stored in non-volatile memory and should not

be modifiable under any ordinary conditions.

Frh@ sr-ncL"ipart-r~ from the conventional computer design is

the use of a triple address instruction and the capability for

three simultanni mpmnrv accesses, This feature greatly increases

the duty cycle of the arithmetic unit and removes the constriction

of data flow imposed by a single memory bus.

Although the concept of a triple address machine is not new,

the concept is usually not implemented because of the inherent

multiplexing and demultiplexing problems in a triple access memory.

most conventional random-access memories are designed, for economic

reasons, to multiplex all memory locations onto a single bidirectional

bus. Furthermore, reading and writing of conventional random-access

memories cannot occur simultaneously.

This single memory bus, inherent in most random-access

machines, may be viewed as a constriction in operand flow to the

arithmetic unit. In general. three operands must be passed back

and forth by the bus for each combining operation. The result is

that the arithmetic unit operates on a relatively low duty cycle.

This sequential memory access problem is well known.

Measures are usually taken in the design of high-speed machines to

reduce the time lost in fetching operands. A common means of re-

ducing memory fetches is to provide a tempory register file which

acts as a second source of operands to the arithmetic unit. The
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array memory, with triple simultaneous access, may be viewed as a

further step towards making operands accessable to the arithmetic

unit and towards removing the constriction of a single memory bus.

FIGURES 4-1 and 4-2, in which heavy lines indicate memory data

paths, illustrate the differences in the arrangement of memory and

arithmetic units between the conventional processor and the Pro-

grammable Array Processor. FIGURE 4-1 shows the conventional

arrangement using a single random-access memory and FIGURE 4-2

shows the organization for the Programmable Array Processor. In

FIGURE 4-1 only one memory address can be applied to the memory at

any time and only one operand can be read from or written into

memory. For each combining operation, three memory accesses must

be performed sequentially. In FIGURE 4-2 the three memory addresses

are supplied simultaneously to the operand memory. Both source

operands immediately become available to the arithmetic-and-logic

unit; and the combination is loaded into the destination as soon

as the arithmetic operation is completed. Note that the constric-

tion to operand flow, imposed by a single memory data register, has

been removed. For indexed arithmetic or logic operations, one

memory operation occurs for one combining operation. Furthermore,

the machine of FIGURE 4-2 can be designed so that instruction

fetches overlap operand accessing for indexed complitations.

The third departure from the conventional processor is the

use of the array memory. The array memory contains a number of

circulating arrays each of which is addressable and each of which

is multiplexed onto two memory source buses feeding the arithmetic

unit. A third bus, the destination bus, is demultiplexed to each
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array. Since the number of arrays is only a small fraction of the

number of operands stored, the number of multiplexing and demulti-

plexing circuits does not become prohibitive. Furthermore, since

the input to an array is physically a different circuit from the

output, reading and writing can occur simultaneously. Three arrays

may be addressed simultaneously and any array may act as: the

first operand to be combined; the second operand to be combined;

or. the destination for the combination. In fact, an array can

act as both source and destination.

Since the arrays are circulating rather than random-access.

any array may be viewed as a sequential memory. In signal process-

ing applications this fact often becomes advantageous. If the

programmer loads the arrays in the order in which operands are to

be combined, address arithmetic is eliminated. Incrementing an

address is equivalent to shifting an array. Each time an array is

loaded, the address may be considered incremented.

Shifting of operands in one array relative to those in a

second is accomplished by simply applying one or more shift pulses

to the first array. This feature greatly simplifies generation of

correlation coefficients.

As described in Section 4.2.2.1, one memory location is random-

access rather than circulating. This permits transfer of arrays

from circulating memory to random-access memory. By moving selected

arrays to random access memory, operands can be reordered or any

other operation requiring random-access can be performed.

4.2.2 Programmable Array Processor Implementation

The paragraphs to follow describe a PAP device that can be
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built using off the shelf FIFO's and which will operate at a 1MHz

clock rate. This rate provides more than enough computational

power to handle the LONGBRAKE algorithms. However, it should be

stated that there is no fundamental reason why the clock rate could

not be raised to 2 MHz if 2 MHz shift register memory becomes avail-

able. Custom LSI shift register memories and the remainder of the

logic could indeed operate at the 2 MHz rate with very little

modification.

The hardware for the Programmable Array Processor is divided

into three major assemblies which are treated separately in the

following sections of this report. The three major assemblies are:

0 The operand memory:(7*. The program memory and control section:

and, The arithmetic-and-logic unit. Overall operation of the

processor is described using a timing diagram to illustrage the

execution of each class of instruction which the processor is in-

tended to run. The timing diagrams for the instruction execution

define the permissable delay through the various combinational

logic networks in the program memory and control sections, and also

gives the execution time for each class of instruction in terms of

the basic machine cycle. A state-diagram illustrates the total

number of machine states required and the amount of storage needed

in the control section.

The hardware is designed for an arithmetic throughput of 1

mHz, at 16-bit precision. The basic machine cycle time is 1 usec.

The machine as configured may also be implemented without custom

circuits.
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4.2.2.1 Operand Memory

The operand memory, shown in FIGURE 4-3 consists of: 16

addressable memory locations, labeled 0 through 15 multiplexing

circuits for multiplexing each memory location into the arithmetic-

and-logic unit; and, a destination bus for demultiplexing the out-

put of the arithmetic-and-logic unit into memory. Each memory

location can contain a sequential-access array, a random-access

array, and accumulator, or a single operand. Each random-access

array inherently occupies two addressable locations, one for the

address and one for the operands.

In order to be efficient, with respect to the number of memory

addresses used, the operand memory should consist primarily of

sequential access arrays.

In FIGURE 4-3 memory locations 4 through 15 are shown as

sequential access arrays implemented with FIFO's*. The address

of the operand read from a FIFO is not specified explicitly since

the operand appearing at the FIFO output is a function of the num-

ber of dump clocks applied to the FIFO. Addr-,ssing of the entries

within a FIFO array are under program control in the sense that

the instruction specifies whether or not a dump clock is applied

after an operand is read.

In the case of random access arrays the address must be

explicit. Each random-access array has an associated address

register. This address register may be loaded or incremented by

a constant via the program. Automatic incrementing by ONE is also

provided by making the address register also act as a binary counter.

*FIRST-IN, FIRST-OUT MEMORIES
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In FIGURE 4-3 memory locations 2 and 3 illustrate the implementation

of a random-access array.

Memory location 0 and 1 are single operand locations implemented

with storate registers. These locations are used like the arith-

metic registers in a conventional machine. Using locations 0 and 1

f or temporary storage, arithmetic operations can be performed where

the operation involves three locations in one random access array.

Any single-operand addressable memory location, such as

locations 0 and 1 of FIGURE 4-3 may be replaced by an accumulator

register. When the accumulator register is used as the destination

of an indexed arithmetic operation the results of that operation

are accumulated over the index range. This saves running time by

permitting the accumulation of a number of products to be accomp-

lished with an indexed multiply instruction using the accumulator

register as the destination.

In addition to the sixteen addressable memory locations, con-

sisting of the array memories and the single registers, the operand

memory contains multiplexing circuits for supplying the operands

from the addressed arrays to the arithmetic unit. The multiplexing

circuits are implemented with sixteen T2L circuits (TI number "1150"1

16-line to 1-line multiplexers). The memory address is decoded on

the chip so that only the 4-bit binary source address is supplied

to the multiplexer.

Since presently available FIFO's can only drive one T2 1, load,

and in order to minimize the number of chips required for multi-

plexing, one multiplexer is time-shared between the two source

registers'of the arithmetic unit. This is done by first loading
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source register-2. The two clock-pulses for loading the source

registers are shown in the second line of FIGURE 4-4 which contains

the timing diagrams for memory operation.

Operands are supplied to the operand memory from the destination

bus and must be loaded into the addressable memory location selected

by the program. This demultiplexing function is accomplished by

simply gating the clock pulse (04 of FIGURE 4-4) to the selected

destination. Typical equations for the clock decodes are given in

FIGURE 4-3.

In the case of the FIFO's, the array is sequenced by dumping

operands. If the FIFO were sequenced and not used as a destination

for new operands its content would go to zero. Consequently, pro-

vision is made for re-entering operands into the FIFO as they are

dumped, so that the array is not destroyed by reading. Each FIFO

has a selection gate associated with its data input so that it may

be loaded from the destination bus or from its own output. When a

FIFO is selected as a source, and operands are dumped, and that

FIFO is not a destination for arithmetic results; then those

operands dumped will be re-entered via the selection gates. The

selection gates for each FIFO require 4 TI type "157" T2 L chips.

The timing of the memory operations is illustrated in

FIGURE 4-4. Four basic system clocks are used, 01 through 04.

The first phase of a sequence, 01, loads the instruction register

and makes the first source address available to the memory multi-

plexer. The first pulse of 02 loads the source-2 register of the

arithmetic unit and simultaneously switches the source-l and

source-2 addresses in the instruction register. The second pulse
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of 02 transfers the contents of the source-2 register to the source-1

register in the arithmetic unit, and loads the source-2 register

from memory. Both the source-i and source-2 registers of the arith-

metic unit are thus loaded by 02.

The fourth phase 04 loads the addressed memory destination.

Following 04, the memory cycle repeats.

The propagation time allowed for the arithmetic-and-logic unit

is 750 nsec, and that for the FIFO is 825 nsec.

Although the four clock phases of FIGURE 4-4 have been defined

in terms of their operand memory functions, these same clock phases

are used to operate the program memory and control section and are

shown in FIGURE 4-6 on a smaller scale as the basic clock sequence

for execution of the five major instruction types. The fifth clock

phase of FIGURE 4-4 is used only by the arithmetic unit.

14.2.2.2 Program Memory and Control

The program memory and control section provides the means for

storing, fetching, and executing instructions. The execution of

instructions is the most complex operation and will be described

first using the instruction timing state diagram of FIGURE 4-5.

In order to count basic machine cycles, a 2.-bit instruction

timing register, referred to as IT, is used. The instruction

timing register has 4 states (ITI, IT2, IT3, and IT4) shown as

circles in the state diagram of FIGURE 4-5. Within each circle is

listed the primary operation which may occur in that state. Below

each circle is listed the primary operation with which the state

is associated. IT1 is used primarily for execution of non-indexed

4-19



4-2-



S- - --

-I C

" a

-= a - a--

C'.'n O ~ - a .. .... .. .-



instructions. IT2 is used primarily for indexed operations. IT3

is used for fetching indirect addresses, and, IT4 is used for

instructions for program modification following an arithmetic

operation.

In the case of instructions involving only one machine cycle,

many of the functions of IT2, IT3, and IT4 may be done in ITl.

The IT register always changes state on 01 (FIGURE 4-4).

The next IT state is determined by the 2,ODE, OPX, and.. P stand-

ing in the instruction register, and the content of the I, J,

counters. A secondary decode END, derived from the above infor-

mation and indicating the end of an execution, is shown in FIGURE

4-5. The decodes indicating the next state to which IT goes are

indicated by the arrows.

The instructions for the array processor have been divided into

five types based on the sequence of IT states involved in their

execution. These five types and their timing sequence for execution

are illustrated in FIGURE 4-6. A typical example of each type of

instruction is also given. A new instruction is loaded into the

instruction register on the generation of an END signal and a

01 clock. The END signal also sets IT to IT1 on 01. Therefore,

each instruction execution begins on 01 in IT1.

The irs instructiont is memory operation with operand

indexing only. A typical example is the ADD instruction with

indexing on one source and the destination. This type of instruc-

tion is executed in one machine cycle in IT1. The 02 clock loads

the arithmetic unit: the 03 clock increments the indexed source

and advances the program counter; the 04 clock loads and increments
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the destination; and, the next0l clock reads the next instruction.

The second insturction type is the control instruction. A

typical example is the SET instruction which simply specifies the

range of I and J. This instruction does not involve operand memory.

It is executed using 03 to load the I*J* registers from the

instruction register and to increment the program counter.

The third type of instruction is memory operation with

operation indexing. This type of instruction begins in IT1 where

the operation specified by the OPCODE is performed once as with

type 1. However, no END is generated in IT1; rather, the specified

index register is decremented and IT2 is set. The operation con-

tinues in IT2 until the specified index register reaches 1. At

this point an END is generated, IT1 is set, the index register

is reset and a new instruction is loaded into the instruction

register.

The fourth type of instruction is memory operation with

secondary program modification. An example of this type is a

single ADD without indexing but a PGX indication to loop if I 0.

After performing the memory operation in IT1, the instruction

timing is set to IT4. In IT4, the program counter is not incre-

mented but rather loaded from the address stack and I is decre-

mented. (It is assumed I was not ZERO.) In IT4, an END is gen-

erated, and the next IT state is ITl. Had I been ZERO in IT4,

the program counter would have been incremented and the most recent

entry in the address stack would have been deleted.

The fifth type of instruction involves indirect addressing.

This implies a double index on the OPCODE and at least one operand.
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In this cpse, the operation is performed in state IT1 and IT2 much

like the type-1 instruction. However, the result of the memory

fetch in IT1 is not used as an operand but is loaded into the

instruction register as an indirect address. At the same time,

the source of indirect addressing is dumped and J is decremented.

In IT2, the specified operation will be performed until I goes

to ZERO. At this time, IT3 will be set, the instruction register

will be reloaded and the pre-indexed indirect address will again

be loaded into the instruction register. The instruction timing

will again be set to IT2 and the operation performed until I

again goes to ZERO at which time IT3 will again be set. When in

IT2 and both I and J go to ZERO, an END is generated, the program

counter is incremented, ITl is set, I and J are reset, and a new

instruction is begun.

FIGURE 4-7 is a block diagram of the program memory and

control section. This section, exclusive of the ROM's which store

the program and the control decodes, is implemented with T2 L. The

registers are "D-Type" edge triggered registers with a load input.

The load input is used in place of clock gating in order to avoid

clock skew.

Two clock phases are used in the control section;01 and 03.

The 01clock sets the instruction register, IR, the instruction

timing register, IT, the i-index register I, and the j-index

register J. Decodes from these registers are used to generate

the load signals for the registers themselves as well as the

data for the IT registers, the load and data select signals for

the program counter PC and the address stack ST, and the load
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signal for the I*J* registers which hold the specified ranges of

i and j.

The 03 clock is used to control the program counter PC, the

I* and J* registers, and the address stack ST. The address stack

may be thought of as a LIF0 1 memory which is loaded from the pro-

gram counter and which stores the starting addresses of loops

marked by the program.

The arithmetic-and-logic operations required to execute the

Programmable Array Processor (PAP) instructions are performed on

an arithmetic and logic unit as shown in block diagram form in

FIGURE 4-8 Operands are first read from the oprand memory applied

to the arithmetic and logic unit, and the result written back into

the operand memory. The operations which the arithmetic and logic

unit is capable of performing are addition, subtraction, multipli-

cation, right shifts of from one to fifteen bits, left shifts of

from one to fifteen bits, and table lookup.

Since the arithmetic and logic unit generates a result in

750 nanoseconds, which is less than the operand memory cycle time

(1 microsecond), it does not add any additional delay to just

recirculating a FIFO memory upon itself. This simplifies the

writing of results into the specified locations in the operand

memory because the instruction register still contains the required

write address.

To minimize the amount of logic circuits required, the

arithmetic and logic unit was designed to perform its computations

in 4 steps; i.e., the 750 nanosecond total time is divided into 4

1Last-in, first out memory.
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equal periods and the same arithmetic circuits are used during

each period. This corresponds to a clock rate of approximately

5.4 mHz required for the arithmetic-and-logic unit. An 8-step

process was also considered, but was discarded because it was

found the excessively high clock rate resulted in propagation

delay problems.

All registers in the arithmetic-and-logic unit are clocked

by 05, which is shown in FIGURE 4-4, Also shown in this figure are

the times corresponding to the four steps of the arithmetic process,

called add times, and labeled AO, Al, A2, and A3.

During A3, the source-2 register (S2R), shown at the upper

left in the block diagram of FIGURE 4-8 does not recirculate upon

itself as it does during the other three add times but is connected

to the operand memory bus, which is the output from the operand

memory. The clock pulse occurring near the end of A3 clocks the

first operand into S2R. The clock pulse occurring at the beginning

of AO transfers the contents of S2R into the source-l register

(SlR) and simultaneously loads the second operand from the operand

bus into S2R. We now hav both source registers loaded with

operands from memory. During AO. Al, and A2, S2R recirculates

upon itself and SlR shifts to the right 4 bits each time a clock

pulse occurs. If a multiply problem is being performed then SlR

holds the multipliers and S2R holds the multiplicand. The following

paragraphs describe what occurs during the four steps of the arith-

metic process (AO, Al, A2 and A3) for each of the possible

operations performed.

The contents of register S2R are applied to the BI input
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of an 18-bit arithmetic logic unit (ALU) either directly or shifted

left one bit. Shifting left is performed by the set of 16 two

input selection gates shown in the block diagram of FIGURE 4-8.

The other input to the ALU, labeled Al, comes from another set

of selection gates whose output can be ZERO, the partial product

register (PPR), or the source-l register (SlR). The F1 output of

the ALU can be any of the following three functions of Al and B1

depending on the ALU controls:

F1 = Al + B1

F1 = Al - B1

F1 = Al

The F1 output of the first ALU is connected to the A2 input

of a second ALU with a wired in right shift of 2 bits. The B2

input to this ALU is another set of shift left gates connected to

S2R. The F2 output is fed to a partial product register with a

wired in right shift of 2 bits. Therefore, if both ALU's perform

the function F = A, then each time the PPR is clocked it will just

shift to the right by 4 bits.

Multiplication is performed by decoding the two least signifi-

cant bits (the 20 and 21 bits) of SlR into control signals for the

first ALU and into a shift enable (SHFTENA) signal for the shift

gates which feed its BI input. The 22 and 23 bits of SlR are like-

wise decoded into signals which control the second ALU and the

shift gates which feed its B2 input. All of this decoding is done

by the circuits labeled multiplier decodes in the block diagram.

The multiplication process starts in AO, at the beginning of

which both operands have been loaded, and continues until A3. Since
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SIR shifts to the right by 4 bits during each add time, by the

time A3 is reached all 16 bits of the multiplier have been used:

i.e., have been applied to the multiplier decodes and used to con-

trol addition or subtraction of the multiplicand (stored in S2R)

to the partial product.

As SIR shifts to the right, the least significant bits of

the product from the ALU's shift into the left so that when A3 is

reached, SIR contains the 12 least significant bits of the product.

Toward the end of A3, a full 32 bit product is available, but since

the operand memory stores 16 bit words, a set of selection gates

is provided to choose the most significant or least significant 16

bits. If a fractional multiplication is being performed then the

most significant 16 bits are chosen; for integer multiplication,

the least significant 16 bits are chosen under control of the

multiplier decodes.

The multiplier decodes receive a 4-bit operation code from

the instruction register which indicates which operation to peform.

If the operation is shifting, then a 4-bit shift code controls the

number of shifts in a manner to be described in the following

paragraphs.

To perform addition the 4-bit operation code is decoded and

control signals generated which route the contents of SIR through

the selection gates shown below PPR to the Al input of the first

ALU, and route the contents of S2R to the B1 input. The first

ALU is set to perform the function F1 = Al + B1 and the second

performs F2 = A2 during AO. During Al, A2, and A3, both ALU's

perform the function F = A, so that the sum generated during AO
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just circulates through the ALU's and the PPR with a shift right

of 4 bits each add time. The selection gates which route data onto

the destination bus are set to select the 16 least significant bits,

which for this case are not a product but a sum.

Subtraction is performed identically to addition, except that

F1 Al - Bl is done during add time AO.

Right shifts are performed using the two sets of shift left

gates and making use of the wired in shift right of 4 when PPR

recirculates through the ALU'S. To obtain a right shift of one

bit, during add time AO, the Al input to the first ALU, is clamped

to zero and F = A is performed by both ALU's. During the A2 and

A3, F = A is repeated by both ALU's. In effect, we are recirculating

all ZEROS. Then during add time A3, SHFTENB is activated, shifting

the contents of S2R one bit left before applying it to the B2 input

of the second ALU (its A2 input is ZERO at this time). Since

there is a wired in shift right of 2 between the output of the

second ALU and PPR, the net result is a shift right of one bit.

A right shift of 2 is obtained by repeating the process

described above for a right shift of 1, except not activating

SHFTENB during A3.

For a right shift of 3, SHFTENA is activated during A3,

shifting S2R one bit left and applying it to the B1 input of the

first ALU (the Al input is ZERO). The second ALU performs F2 - A2

during add time A3.

For right shift of 4, the process is identical to that for a

shift of 3, except that SHFTENA is not activated.
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Shifts of 5, 6, 7 and 8 are performed by always doing a con-

stant right shift of 4 during A3 (by just recirculating PPR

through the ALU's) and performing right shifts of 1, 2, 3, or 4

V during A2, depending upon whether total shifts right of 5, 6, 7,

or 8 are desired, respectively.

Shifts of 9, 10, 11 or 12 are performed by performing right

shifts of 4 during both A2 and A3 and right shifts of 1, 2, 3,

t or 4 during Al. depending on whether a total shift of 9, 10, 11,

or 12 is desired, respectively,

Left shifts are performed by first subtracting the number

of left shifts from 16, then performing this number of right

shifts and finally transferring the 16 least significant bits to

the operand memory (which is identical to shifting left by 16

before performing the transfer).

Table lookup is performed using a read only memory (ROM)

whose address input is taken from S2R. Whenever the 4-bit

operation code indicates table lookup, the selection gate which

drives the destination bus routes the output of the ROM onto

this bus.

* 4.3 Programming the Processor

The Programmable Array Processor (PAP) is tailored primarily

for efficient processing of arrays of numerical data, since this

constitutes the bulk of the operations in most signal processing

* applications. Initially, it was felt that this type of pro-

cessor, being designed specifically for signal processing appli-

cations, would not be as powerful and flexible as conventional

programmable processor for other types of processing. Further
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investigation, however, demonstrated that it is possible to con-

figure the PAP so that the same features which provide array pro-

cessing power, also provide considerable flexibility, speed, and

program efficiency for conventional programs.

From a programming point of view, the advantages of this

machine can be summarized as follows:

• Entire arrays can be processed by as few as one instruction.

The 3-address, 3-bus structure of the PAP makes each

instruction equivalent to 3 instructions on a conventional

computer.

The "Source:Source:Destination" concept provides complete

memory reference flexibility with a small program set.

Several unique and powerful signal processing instructions

are available in the instruction set.

Loops are fast and simple to program: because indexing,

testing, and jumping are automatic.

In the remainder of Section 4.3.1 we will describe these

advantages of the PAP in greater detail and will provide some

general examples to illustrate their significance.

4.3.1 Array Processing

It is easily seen how processing entire arrays with just

a few basic instructions can simplify the programming task and can

reduce the number of program steps in any algorithm to which it is

applicable. This kind of array processing is most efficient and

can be used whenever the following two conditions apply:

a) All elements to be processed in a particular array are

to be acted upon by the same operation or sequence of
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operations.

b) The elements of all involved arrays are to be processed

in numerical sequence according to either an I or J

index where the index increment has unity magnitude.

By including instructions such as MAC (multiply and accumu-

late), MACD (multiply and accumulate in double precision), and

AMDF, (accumulate the magnitude of differences) in the instruction

set, many of the time consuming processes of linear predictive

coding, filtering, and spectral analysis can be accomplished

with single instruction loops. When the array operation to be

performed cannot be described by a single instruction, there is

no change in the automatic nature of the array indexing system,

but the processing time for each array element increases in propor-

tion to the number of instructions required to perform each

repetition of the process.

4.3.2 Efficlency of 3-Address, 3-Bus Structure

The 3-Address, 3-Bus structure of the PAP makes most

instructions equivalent to 3 instructions on a standard computer

such as the CSP-30. This can be demonstrated by the following

simple example in which the contents of two memory locations,

Source One (Sl) and Source Two (S2), are multiplied by each other

and stored in a third location, Destination (D).

EXAMPLE: PAP CSP-30

MUL:Sl*S2 -X'D MMR:S1-3-A
MULMA:S2*A - A
MRM: A--D

This example illustrates the reductions in program length

and also shows one reason why the PAP is much faster than a
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more conventional machine. To perform this operation, the PAP reads

the instruction, reads the two source memory locations, performs

the operation and writes the result all in one memory cycle time.

The more conventional CSP-30 must perform 3 program memory reads,

2 data reads, and 1 data write in 6 consecutive memory reference

operations; thus, making it a fundamentally slower machine.

4.3.3 Memory Reference Flexibility Provided by Source-Source-

Destination Concept

Each instruction on the PAP includes two source memory

references and a destination memory reference. It is designed

this way to ac..omodate arithmetic instructions, all of which

involve two inputs and one output. By including the two input

(Source) addresses and the output (Destination)address in the

instruction, complete source-source-destination flexibility can

be achieved with a very simple instruction set. The significance

of this can be seen by comparing the PAP instruction set with

that of the CSP-30 which is a relatively powerful conventional

signal processing computer. Most of the arithmetic and logical

instructions on the CSP-30 have 10 different variations to pro-

vide some source-destination flexibility. The comparison is made

in the following example for the ADD instruction.

PAP CSP-30

ADD (Sl:S2:D) ADD AA, ADD AM, ADD AR,
ADD DA, ADD IA, ADD IR,
ADD LA, ADD MA, ADD MM,
ADD MR

The CSP-30 is a fast conventional computer partly because

of the source-source-destination flexibility that its large
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instruction set provides. Anyone experienced with programming the

CSP-30 knows, however, that there are a number of useful vari )ns

that have been omitted from its source-source-destination repertoire.

The PAP, on the other hand, provides all possible source-

source-destination combinations with a truly minimal instruction

set. This has obvious advantages to the programmer who does not

have to memorize the meanings of large number of confusing instruc-

tion mnemonics, and it also helps to explain why the control

hardware required in the PAP is so much simpler than that of the

CSP-?9. In this regard, the PAP is more like the very simple

and relatively inexpensive computers such as the Data General Nova

computers. The NOVA instruction set is also minimal with only one

version of each instruction. But the NOVA's provide almost no

source-source-destination flexibility in the basic instruction

since the sources are always two out of four possible accumulators

and the destinations can only be one of the two chosen source

* accumulators. To get the data out of and back into memory requires

two additional fetches and a store. This accounts, in part, for

the relatively low speed of these inexpensive machines.

1 
•

4.3.4 Special Features of the PAP Instruction Set

The PAP instruction set is listed in Appendix A. In addition

to all of the basic instructions that are normally included in

signal processing computers, there are several unique instructions

which have been included to increase the power of the machine for

speech processing, digital filtering, and spectral analysis.

These are the MAC, MACD, and AMDF instructions. MAC and MACD are

multiply and accumulate with single and double word outputs
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respectively. These instructions are included because multiplication,

and accumulation is the basic operating mode in convolution, cor-

relation and discrete Fourier transformation. These instructions

account for more than half of the operations in most LPC speech

processors and modems. By combining multiplication and accumulation

in a single instruction, each repetition can be performed in the

basic PAP instruction time of 1.0 microsecond (assuming a memory

cycle speed of l.MHZ).

By contrast, an indexed double word multiply and accumulate

on the CSP-30 requires nearly 3.0 microseconds even with a memory

cycle speed of 10 mHz. These instructions, and the automatic

indexing feature provided by the PAP, are probably the most signi-

ficant factors in increasing the throughput of this machine for

signal processing applications.

The third special instruction is the AMDF instruction, which

is the accumulation of the magnitudes of the. differences of $1

and 52. This operation is the basis for pitch estimation in the

system, and has to be repeated a very large number of times in

the process of computing one pitch number. By implementing these

operations in one instruction, a process which requires an average

of 2.1 microseconds on the CSP-30 can be accomplished in 1.0

* microseconds on the PAP.

4.3.5 Programming Loops on the PAP

Loops are fast and simple to program on the PAP because index-

ing, testing, and jumping are automatic.

Figure 4-9 illustrates the significance of the instruction
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OPCODE I OPX ADDRS Si I X ADDRS S2 1 X ADDRS D I X PGX(3) (D I (;) 0 0(Z)
X SIGNIFICANCE

00 - Do Not Increment Address
01 i Increment Address10 j Increment Address if i = o

11 ij Indirect Address, Pre-indexing with j, post-indexing with

PGX SIGNIFICANCE

000 NOP No Operation
001 LI Decrement I, Loop if I#0. Otherwise pop stack and proceed.
010 LJ Decrement J, Loop if J#0. Otherwise pop stack and proceed.
011 LIJ Decrement I, Decrement J if I=0, Loop if J#0. Otherwise

pop stack and proceed.
100 M Push the Contents of PC into the Stack.
101 MI Push the Contents of PC into the Stack and load I.
110 MJ Push the Contents of PC into the Stack and load J.
ill MIJ Push the Contents of PC into the Stack and load IJ.

OPX SIGNIFICANCE
00 S Run the Instruction once.

L 01 I Run the Instruction I times.
10 J Run the Instruction J times.V 11 IJ Run the Instruction IJ times.

Figure 4-9. Significance of Instruction Fields
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fields. The instruction format itself is shown at the very top

of the figure.

The first field, OPCODE, specifies the operation to be per-

formed such as ADD, MULTIPLY, ETC. The OPX field specifies the

number of times the operation is to be performed. This can be

either I times, J. times, or IJ times. The actual values of I

and J are specified by the SET instruction and remain in effect

during execution until respecified in the program.

Each of the three address fields has an index field, X,

which can be either I, J, or IJ. An I index means shift the array

each time the instruction is run, a J index on an address means

shift the array each time the instruction is run and the I

counter is ZERO. An IJ index on an address specifies indirect

addressing with preindexing by J and post-indexing by I.

The program indexing field, PGX, is used for controlling

multi-instruction loops. In this field, M, means mark the loop

and load the loop counter while L means decrement the counter[ and test for the end of the loop. An explanation of all possible
L.

entries in the PGX field is given in FIGURE 4-9.

I FIGURE 4-10 illustrates the use of the OPX and PGX fields

for various kinds of single and multi-instruction program loops.

The left-most columns indicate the instruction fields necessary

to form the loop. The right-hand column indicates the instruc-

tion indexing which might be used within a loop. Single instruc-

tion loops do not use the PGX field. With either type of loop,

up to two levels of looping can be provided with no requirement
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OPX PGX

-S

S

I
(10o)

S

S

1.3 .3 J
(J%:O)

S

S MI

S LI
(1=0)

S

S MIJ'1

S LIJ i.1

(J3=0)

S

S MJ

S MIii

S LI j

iU(1-0) 1

(J3-0)

CONDITIONAL LOOP

Figure 4-10O. Examples of possible Program Loops
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for additional program steps for incrementing, testing, and jumping.

Thus, highly repetitive operations can be performed with no time

lost in the loop for loop control. This means that for convolution,

correlation, or AMDF computations, the basic cycle time of 1.0

microseconds is precisely the time required for each repetition of

the operation.

* 4.3.6 A Typical PAP Program

Figure 4-11 is a flow chart for computing the correlation

coefficients which are used in the Markel version of the LONG-

* BRAKE analyzer. The coding for this program is given in Figure

4-12. The first step in the PAP program is to set the I and J

counters to 102 and 11, respectively. This controls the number

of times all I and J loops will be repeated until these numbers

are modified by another SET instruction.

The next step in the program is to copy the data in the

speech register, X, into a second register, Y. This is done by a

single move instruction, repeated I times with both X, the source,

and Y, the destination arrays indexed (shifted) on each repetition.

The combination of the SET and MOVE instructions require 103 micro-

seconds execution time.

The main loop of the program is controlled by two additional

instructions. The first is a MAC ( or MACD) instruction with X and

Y as the source registers and C the destination. This instruction

marks the beginning of a J loop and is repeated I times for each

repetition of the J loop. The X and Y arrays are indexed with each

repetition of this instruction and the C array is indexed each time

the I count goes to ZERO. This instruction is the one which performs
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102-j+l
; Cj XI XIiJ*l, J 1,2,...., 11

SX I=1

r" 1

1, 102 103 /.ec

102

Cj Xl Y
I=1

3=,1103 1 X 11l=133,,sec
L J=l1, 11

, SH IFT

A ZERO
I INTO Y

Figure 4-11. Example Computation of Correlation Coefficients
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r PCODE,
OPX SI,X S2,X D,X PGX

START: SET I 102

SET J 11

MOVE, I X,I Y,I

MACD, I XI YI C,J MJ

END: CLR, S YI LJ

FOR COMPARISON

NUMBER OF INSTRUCTIONS ON CSP-30 - 15
RUNNING TIME ON CSP-30O-' 3.4 MILLISECONDS

f.

FIGURE 4-12. Coding for Computation of Correlation Coefficients
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the bulk of the processing and for a conventional machine would

require 3 or more microseconds per repetition.

The final instruction is a CLR (or MOVE 0) instruction with

the Y array as the destination. The instruction is repeated only

once per repetition of the J loop and includes a shifting of the

Y array with each repetition. It is this instruction which intro-

duces the relative delay between the two sets of data. This

instruction also marks the end of the J loop by virtue of the LJ

command in the OPX field. As can be seen, decrementing J, testing

for J = 0, and jumping back to the beginning of the loop are all

included in this instruction and cost no additional time.

The total time required to perform the operations of the

- main loop is 1.133 milliseconds. To perform the same operations

on the CSP-30 with double word accumulation would require approxi-

mately 16 instructions and 3.4 milliseconds running time.

L4
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SECTION 5

PERFORMANCE EVALUATION TASK REPORT

5.1 Description of Tests

Tests were conducted with random bit errors for the 2400,

3600, and 4800 bit per second transmission systems using the Atal

V algorithms. Bit errors were introduced in a controlled manner by

programming a psuedo-random bit error generator to run on the EDM

speech processor as part of the operating system. The bit error

generator produced a different Gaussian psuedo-random variable for

each bit to be transmitted. By reversing the bit to be transmitted

each time the corresponding random number exceeded a pre-determined,

threshold, any desired bit error rate could be simulated. The

random numbers were essentially independent, which means that no

attempt was made to simulate burst errors.

Each of the three systems was evaluated at error rates of 10-

10-2 and 5 times average errors per bit. The 2400 bps

system had no error detection and correction and therefore provided

an indication of the effects of transmission errors on the basic

LONGBRAKE system. The 36C0 bps system transmitted 61 information

bits per frame protected by 20 E.D. & C bits. The E.D. & C. bits

v were allocated as explained in Section 2.3.2 and could only provide

limited protection of the most important parameters. The 4800 bps

system transmitted 61 information bits per frame protected 47 E.D.

& C. bits. At this bit rate the four most significant bits of all
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parameters were protected.

5.2 Test Results

The bit error tests have been run with several different sets

of input sentences and at several different times. The results

* have been recorded and at least two different test recordings have

been delivered to the COTR. The following is an attempt to describe

the qualitative results of the tests as performed on the final

r delivered system. All references to intelligibility are subjective

and are relative to the intelligibility of the same system with no

Vbit errors.

5.2.1 Test at 2400 Bits Per Second

At 2400 bps no degradation was observed at a 10- 4 bit error

rate.

At a 10- 3 bit error rate a slight increased warbling could be

heard in the formants with an occasional beep or tweeting sound

Uaudible at about 5 second average intervals. The intelligibility

at this error rate was not noticeably degraded.

L -- At a one percent bit error rate the intelligibility was reduced

Land there were numerous relatively low level beeping and tweeting
sounds in the background. There was also a moderate amount of dis-

tortion of the formants. Communication at this error rate would

not be difficult, however.

At a five percent bit error rate, the speech was barely intel-

ligible, there were numerous high level beeping and tweeting sounds

and the formants were severely distorted. Communication at this

error rate would be very difficult, but not impossible.
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5.2.2 Tests at 3600 Bits Per Second

At 3600 bps no degradation could be observed at a 10- 4 bit error

rate.

At a 10- 3 bit error rate very low level disturbances could

occasionally be heard at about 5 second average intervals.

At a one percent bit error rate there was no noticeable loss

of intelligibility but a constant low level background disturbance

could be detected.

At a five percent bit error rate the system had only fair

intelligibility. There were, however, constant annoying background

disturbances, and distortion and warbling in the formants. Communi-

cation at this error rate would not be difficult, however.

5.2.3 Tests at 4800 Bits Per Second

At 4800 bps no degradation could be heard at a 10- 4 bit error

rate.

A a 10- 3 bit error rate very low level disturbances could

occasionally be heard at about 5 second intervals.

At a one percent bit error rate there was no noticeable loss

L of intelligibility but there were slight audible disburbances or

distortions every few seconds.
L

At a five percent bit error rate, the system still had good

[ intelligibility, but there was constant, moderately annoying low

level distortion and warbling in the formants with an occasional

loud disturbance. Communication at this error rate would not be

difficult.
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APPENDIX A

PRELIMINARY PAP - INSTRUCTION SET

r

ARITHMETIC LOGICAL - TWO SOURCES

ADD Si TO S2, SID*

AND Sl WITH S2, SID

AMDF Si WITH S2, SID, DEST = IJSi - S21

FIOR S1 WITH 52, SID

MUL Si BY S2 (FRACTIONAL 1 WORD ROUNDED), SID
r

MULD Sl BY S2, SID, (FRACTIONAL 2 WORD - DEST IS DOUBLE
PREC. ARRAY)

F MAC MUL Si BY S2 AND ACCUM (FRACTIONAL 1 WORD ROUNDED), SID

MACD MUL S1 BY S2 AND ACCUM (FRACTIONAL 2 WORD - DEST IS
-- D.P. ARRAY), SID

SUB Si FROM S2, SID

*_XOR Si WITH S2, SID

*SID MEANS STORE IN DEST

CONTROL INSTRUCTION, PARTIAL LIST

LNoP
HALT

MMC MOVE Si TO CONTROL WORD

MCM MOVE CONTROL WORD TO DEST

LRSFF

RSIO

L
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APPENDIX A - CONT

SET MOVE LITERALS TO I AND J COUNTERS

ZERO CLEAR MEMORY ARRAY CONTENTS AND LENGTH TO ZERO

OPERATIONS ON A SINGLE SOURCE

ARS ARITH RIGHT SHIFT S1 BY NO OF BITS SPECIFIED IN 52, SID

CLR MOVE ZEROES TO DEST

COMP 1'S COMPLEMENT SI, SID

DARS DOUBLE ARITH RIGHT SHIFT Si AND S2 (Si IS HIGHER
ORDER WORD, S2 IS LOWER ORDER), SHIFT BY 1 BIT
ONLY, STORE IN D.P. DEST

LLS LOGICAL LEFT SHIFT S1 BY NO OF BITS SPECIFIED IN S2,
SID

DLRS DOUBLE LOGICAL RIGHT SHIFT S1 AND S2 (SI IS HIGHER

ORDER WORD), SHIFT OF 1 BIT ONLY, STORE IN D.P. DEST

NEG 2'S COMPLEMENT SI, SID

NLLS NORMALIZE LOGICAL LEFT SHIFT Sl, STORE RESULT IN
D.P. DEST, SHIFTED WORD IN HIGHER ORDER PART, SHIFT
COUNT IN LOWER ORDER PART

PROGRAM TRANSFER INSTRUCTIONS
JUMP TO LITERAL

CALL STORE P.C. IN STACK AND JUMP TO LITERAL

RETURN POP STACK TO P.C. AND PROCEED

SGT SKIP IF Sl GREATER THAN S2

SEQ SKIP IF Sl EQUAL S2

SNEQ SKIP IF Si NOT EQUAL S2

SGE SKIP IF Sl GREATER THAN OR EQUAL TO S2

SCT SKIP IF CONDITION TRUE CONDITIONS ARE OVFL, CARRY

SCF SKIP IV CONDITION FALSE AND I/O CONDITIONS
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