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Design for a Program Visualization System 1

1. INTRODUCTION

This is the tinal report of a six-month study by Com-
puter Corporation of America (CCA) to determine the
feasibility of a Program Visualization (PV) system —a
system that uses computer graphics to create and
maintain computer software. Automated visualization
of computer programs offers the opportunity to
improve the productivity of the limited number of pro-
grammers who will be available to work on the
increasingly large and complex software systems of
the 1980s. The study focused on laying the ground-
work for the development of a tool that could be repli-
cated for use by programmers working on actual sys-
tems and applications.

The goal of Pv is to facilitate the understanding of
programs by people. To visualize means “to see or
form a mental image of.” A Pv system would aid pro-
grammers in forming clear, correct mental images of
the structure and function of programs. {t would aid
both the producers (writers) and the consumers
(readers) of programs. The primary objective is to
make it easier to express the mental images of the
producers and to communicate those mental images
to the consumers.

There is no hard and fast line dividing the writers of
programs from its readers. As a program evolves, it
passes through many representations and undergoes
many transformations from representation to represen-
tation. A written description in some representation is
read, visualized, and transformed into another
representation. The reader may be a different indivi-
dual than the writer, or he may be the same person
returning to the program at a later time. The transfor-
mation may be a refinement into another, perhaps
more detailed, language, or it may be another expres-
sion in the same language that attempts to correct an
error in the previous version.

A PV system would be used by programmers
charged with creating and maintaining large computer
programs. The system would allow these program-
mers to manipulate graphical representations of pro-
grams. Such a facility would enhance their ability to
understand how the programs work, and to change
them and combine them with other programs.

It would provide a framework in which software pro-
ductivity tools developed at different places could be
combined in a coherent manner, making them more
usable than they would be separately. These tools
includ? editors and illustrators. Editors must be
responsible for enforcing standards of style, con-
sistency, clarity, and legibility in both the form and the
content of the writings. llustrators must be responsi-
bie for producing pictures, diagrams, charts, and
movies that will further enhance the reader's
comprehension of the intentions of the writer. A PV

system could encourage (or even enforce) the use of
these tools as an integral part of a system develop-
ment effort. As such, it could provide a useful vehicle
for their experimentai evaluation.

1.1 Motivation

A program is a precise description of a process or
system. Programming is the activity of expressing
such descriptions. Machines execute these descrip-
tions; that is, they obey their constituent instructions or
commands to carry out a process or simulate a sys-
tem.

Some programs are so simple and unimportant that
they can be conceived, developed, used, and even
thrown away in a single sitting at an interactive com-
puter terminal. The art of “conversational program-
ming” has been developed to facilitate such expres-
sion.

However, the bulk of programs upon which society
relies are more complicated. They have been
developed and refined by many individuals working
over a period of many years. There is a growing body
of programs that are sufficiently large and complex
that they cannot be comprehended in their entirety by
any one person.

This situation presents serious problems for both the
creation and maintenance of programs. If the imple-
mentors of a large system are to ensure that it
operates according to the specified requirements, they
must be able to describe programs using techniques
that are more powerful than reading individual lines of
code.

The maintainers of a system have an even more
serious problem. With the increase in the complexity
of software projects —involving more programmers
and longer life-cycles —normal turnover of personnel
ensures that some of the original designers of a pro-
gram no longer will be available by the time it is
delivered to the user. Once the program is in use and
maintenance is required, it is likely that the people
called upon to do the maintenance will have had little
to do with the original implementation.

It is imperative that techniques be deveioped that
will allow such people to quickly understand the struc-
ture of a complex program and explore the interac-
tions between its components. There must be a
mechanism that preserves the original design goals
and impiementation concepts in a manner that makes
them available to the maintainer and ensures their
consistency with the program itseif. In the absence of
information like design goals, there must be a tool that
allows the maintainer to probe the actual code. Such
a tool would help the maintainer re-examine the origi-
nal requirements, decide how they should be changed,
locate the relevant code, and make the appropriate
changes without introducing any untoward interactions
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2 INTRODUCTION

with other parts of the system.
The techniques of Pv can be useful in all the stages
of a program’s life cycle:

1. Listing the requirements that the program
must satisfy.

2. Specifying the design of a software system, to
meet the requirements.

3. Carrying out the coding of the system, follow-
ing the plan of the design.

4. Debugging the code, to guarantee that it con-
forms to the design and fulfills the require-
ments.

5. Maintaining the system, to keep it functional
despite changes in the requirements and the
discovery of new bugs.

6. Helping the end-user use the program by
showing how it operates and how it arrives at
the results it presents.

The challenge of PV is to encompass these
disparate phases of the programming process within a
unified conceptual framework.

1.2 The Role of Graphics

Graphical representations have demonstrated their
usefulness in a variety of endeavors as a means of
ilustrating complex relationships among components
of a system. It would be inconceivable to build a shig,
airpiane, plant, factory, or piece of electronic equip-
ment without the use of diagrams. These illustrations
can capture essential features while suppressing
extraneous detail. Often, they can be understood more
readily than ordinary text.

While such illustrations find widespread use in com-
puter programming, they are almost always manually
generated. They have a tendency to become obsolete
as the software they describe is implemented and
changed. Also, the lack of tools for creating animated
images restricts the ability to illustrate an essentially
dynamic process such as a computer program.

Computer graphics offers the possibility of generat-
ing dynamic illustrations — illustrations of computer
programs while they are running. These illustrations
could be made to correspond to the most current ver-
sion of a program, allowing a programmer to observe
the actual operation of a system. By providing suit-
able tools for specifying the portions of a system to be
illustrated and the manner in which they should be
represented, interactions among various system com-
ponents could be observed. [f suitable design infor-
mation were stored in the system, it could be used in
the evaluation of running code to certify that a given

module is performing its intended function. Further-
more, the graphical representations of programs could
be used as @ means of interacting with a programming
environment. This would allow a programmer to mani-
pulate and combine programs by changing their
corresponding visualizations.

The idea of using computer generated images to
visualize programs was developed in the earliest days
of computer graphics [HAIBT], [STOCKHAM], and
{KNOWLTON]. However, only recently have the
requisite hardware and software advances been made
which would allow such techniques to become cost-
eftective for a broad range of applications.

A PV system could capitalize on recent progress in
the graphical representation of information and low-
cost color graphics. The system that is envisioned will
allow a person maintaining a complex software system
to access many graphical representations. These
include static descriptions such as module hierarchies
and requirements specifications, and dynamic illustra-
tions such as procedure activations and storage allo-
cations. It will be possible to display several different
representations of the same portion of a system (or the
same representation of several different portions)
simuitaneously, through the use of muitiple screens or
multiple viewports on one screen. The level of detait
presented in any given viewpoint can be varied to
cover any point along the range from the entire system
to discrete lines of code.

Special attention will be accorded to the means by
which the various representations are specified. The
envisioned system will avoid the necessity of modify-
ing the program under observation by providing an
external mechanism for sefecting program constructs
to be displayed and symbols to be employed in
displaying them. A system of default representations,
generated using knowledge about the particular pro-
gramming language, will provide the user with an ini-
tial visualization. External descriptions can then be
detined by the program author or maintainer to aug-
ment or replace these default representations.

The intention is to provide an environment for pro-
gram creation and maintenance that makes the advan-
tages of graphical representations available without
placing an excessive burdcin on the people responsi-
ble for implementing and maintaining the programs.
In this way, graphical program illustration can become
a generai-purpose tool applicable to a wide range of
real world problems,

1.3 Approach

This report describes an envisioned PV tool that wiil
aid the maintainers of large (10°*6 lines of code),
complex software systems. This tool is targeted pri-
marily for use with programs written in ADA [ADA], the
proposed standard DoD language. ADA is especially
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well suited to Pv because it provides high-ievel, user-
definable constructs which make much of the program
design explicit in the code itself. Many other, less
powerful languages require the use of comments or
external documentation to explain how many seem-
ingly unrelated programs and data structures fit
together to form a coherent set of objects and actions.

This report addresses two issues involved in build-
ing a Pv system:

1. The design of a visual language for describing
programs and combining them, together with
the processing, translation, and display rou-
tines necessary to create a visualization of a
program.

2. The design of a system that uses such a
visual language to examine and modify com-
puter programs.

The various implementations will serve to explore a
variety of techniques on a powerful, high-resolution,
display environment, with an eye towards identifying a
useful subset of techniques that could be imple-
mented on a low-cost terminal costing in 1985 what an
ordinary alphanumeric terminal costs today.

1.4 Outline of Report

Tre remainder of this report is organized into the
following sections:

e Section 2 consists of an examination of the
software process and suggestions for the type
of outputs a PV system might produce.

e Section 3 is a description of how a user might
interact with a Pv system in the course of
creating and maintaining a program.

e Section 4 is a presentation of a possible
implementation of a Pv system.

e Appendix A containg examples of some
current and contemplated visualization tech-
nigues that could be used for iliustrating pro-
grams and data structures.

e Appendix B contains the results of a survey of
prior research in the areas of program illustra-
tion and graphical tools for software develop-
ment.

o Appendix C is a list of references.

2. A CONCEPTUAL PRAMEWORK FOR
PROGRAM VISUALIZATION

A framework for Pv must categorize and classify
those aspects of computer systems that can be visual-
ized. The following is a first attempt at such a classifi-
cation:

System requirements diagrams
Program function diagrams

Program structure diagrams
Communication protocol diagrams
Composed and typeset program text
Program comments and commentaries
Diagrams of fiow of control

Diagrams of structured data

© ® N O O s Wy =

Diagrams of persistent data

Many of these visualizations can be either general
or specific. General visualizations portray a program
without referring to a specific activation. Specific
visualizations are keyed to the execution of a program
or some specific set of data. General visualizations
can be either static or dynamic. Static visualizations
portray a program at some instant of execution time or
portray those aspects of a program that are invariant
over some interval of time. Dynamic visualizations
evolve and unfold under the control of the executing
program.

For example, we can show an abstract representa-
tion of program data for ail time, at some instant of
time, or evolving through time. We can show how a
program is organized into modules, which modules
have activation records at a particular instant, or how
moduies are activated in the course of program execu-
tion.

These visualizations can be produced and used
either singly or in combinations. Flow of control may
be most meaningtul if portrayed in relationship to pro-
gram code or module structure. Input-output pairs
may be displayed in relationship to the underlying data
structures of individual piogram modules. Dynamic
displays may be superimposed on static or general
displays that provide the context within which the
displays are interpreted.

In the following subsections, we describe each of
the visualization classes in more detail. In the final
subsection, we present a conceptual breakdown of
visualizations into the separate aspects that must be
specitied.

i
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4 A CONCEPTUAL FRAMEWORK FOR PROGRAM VISUALIZATION

2.1 System Requirements Diagrams

A computer program always exists as part of some
larger system. Therefore, Pv tools must assist in por-
traying the function and structure of that system. The
tools should also aid in specifying the constraints
imposed by the system on the program.

One very powerful method of describing system
structure is the IDEF or SADT technique developed by
SofTech [ROSS]. An IDEF model is a graphical
representation of a system in terms of its subsystems
and the data and conirol tiow that link them together.
This method deals quite naturally with the hierarchic
nature ot most systems. It provides a methodology for
organizing the bookkeeping associated with large,
complex system descriptions. A systems analysis in
terms of an IDEF model can provide the foundation for
automating some of the subsystems. The role of a
program automating a subsystem can be understood
in the context of the system within which it is to func-
tion.

To compiete a requirements specification, the con-
straints on the program's design must be added.
These constraints include execution speed, program
size, user interface style, implementation vehicle, and
cost. Further investigation is needed to determine the
role of graphics in describing these specifications.

2.2 Program Function Diagrams

“What does the program do?” is usually the first
question we ask about a program. in many cases, a
program'’s function can be expressed as a mathemaii-
cal function—a mapping from program input to pro-
gram output. We can taik about the relationship of
program input to program output in two different ways.
We can attempt to characterize the general case; that
is, the relationship of any input to any output. Alter-
nately, we can simply enumerate a number of input-
output pairs that are in some sense typical of the gen-
eral case, and leave the rest to the inductive powers of
the reader.

A statement of the program'’s function in the general
case is a more powerful and useful description than an
enumeration of sample behaviors. Yet it is an abstrac-
tion that is conventionally explained in terms of prose
and mathematics rather than diagrams. It is very ditfi-
cult to construct diagrams that portray the general
case.

Sample behaviors, on the other hand, can be por-
trayed by pictures or diagrams of the output data pro-
duced from particular input data. One approach to the
visualization of program function is to provide a “case-
book" through which the user can browse. The user
can induce a model of what the program is supposed
to do by seeing what it actually does on a carsfully
selected set of sample inputs. The choice of these

sample inputs significantly atfects the utility of this
technique. In many cases, certain values or classes of
values are critical to understanding a function. For
exampie, in understanding a factorial function, impor-
tant values or classes are 0, 1, positive integers, nega-
tive integers, real numbers, and non-numerics.

2.3 Program Structure Diagrams

“How is the program organized?” is often the
second question that we ask about a program. in
many cases, a program’s structure can be expressed
in terms of a hierarchical collection of modules and
constituent modules.

Structure diagrams and function diagrams should be
used in tandem. At the top level, the task of the pro-
gram should be associated with a corresponding
structure definition. Each constituent module of the
structure definition should have associated with it a
function diagram portraying its task. This hierarchical
decomposition of coordinated function and structure
descriptions should be continued until the resuiting
modules are of an order of magnitude of one page of
code.

It appears that the HIPO (Hierarchy plus Input-
Process-Output) technique [STAY] consists of the coor-
dinated use of program function and structure descrip-
tions. It is necessary to investigate the HIPO metho-
dology further and perhaps to enhance its use of
diagrams and other visualization aids.

2.4 Communication Protocol Diagrams

Once it is known how a program is divided into its
component parts, it is useful to know how those parts
communicate. This is especially important when the
program consists of many processes running on one of
more processors. A visualization of the flow of data
among modules can be displayed as part of another
diagram. For instance, the program structure diagram
can be overlaid with lines showing the data paths
between modules. By using this technique dynami-
cally, the actual fiow of data can be monitored during
execution.

A practical example of this approach is the System
for Distributed Databases (3DD-1) [ROTHNIE &t al), a
distributed database system at Computer Corporation
of America (CCA). SDD-1 employs a color graphics ter-
minal to show, in real time, the data transferred
between sites on the ARPANET. The terminal monitor is
useful as both a gemonstration and debugging aid.

25 Composed and Typeset Program Text

The central activity in the visualization of programs
has aiways been reading program code. While alter-
native graphical techniques are proposed here, there
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will be cases where code must be examined. This
task can be made significantly easier than it is at
present.

Since the Middle Ages, typographers and printers
have developed tools and conventions for printing
documents that can be read and understood easily.
Since its inception, computer science has almost
totally ignored these tools and conventions, making
programs much harder to read than they need be.

Some relevant typographic tools that could be
applied to the publishing of programs are:

1. Typographic hierarchies for distinguishing a
program's constituent elements that belong to
various syntactic or semantic categories.
Typographic hierarchies are implemented by
the consistent and controlled use of a variety
of type fonts, type styles within a font (boid,
condensed, italic), and point sizes.

2. A rich symbol repertoire employing a wider
range of symbols and colors than is currently
used.'

3. Skillful composition and fayout of a program’s
constituent substructures. Layout conventions
include the use of indentation, horizontal para-
graphing, vertical paragraphing, pagination,
footnotes, marginal notes, and page headers.
The use of computer graphics also permits
applying dynamic techniques —such as
colored highlighting —over selected or active
portions of program text.

By speaking of typesetting and composition, we do
not mean that all documentation will be produced and
used on the medium of paper. On the contrary, pro-
grams will be written and read using powerful, interac-
tive graphics tools. These tools will be designed for
manipulating structured, and possibly dynamic, text
and pictograms. To enhance readability and
comprehensibility, these tools must provide text quality
that is far closer to the standard of today's printing
industry than to the standard of today's computer ter-
minal industry. High quality typesetting and printing
on paper, primarily on a demand basis, also will be
required to provide hard copy that is portable, malle-
able, and tangible.

2.6 Program Comments and Commentaties

Program comments, often known as internal docu-
mentation, are analogous to the critical annotations of
conventional literary expression. Program commen-
taries, often known as external documentation, are

1 Gutenberg had more than 300 symbols in his type case.

analogous to prefaces, introductions, postscripts, and
critical expository analyses. Both comments and com-
mentaries are an important part of conventional pro-
gramming discipline, yet they fall far short of attaining
their ultimate potential. How car: ihey be improved?

The greatest potential for improvement cannot be
brought about by a technological “tix." The obstacle is
the shortage of good writing skills among program-
mers and documentation specialists. The Commen-
tary on the UNIX Operating System [LIONS] is a clas-
sic example of the vaiue of well written system docu-
mentation.

A second significant problem area is documentation
completeness. This area can be addressed by
developing interactive computer systems to check that
program documentation meets specified documenta-
tion standards and to prompt the writer to fill in what
is missing.

A third problem is that documentation should be,
but is not, an ongoing process. Although maintenance
programmers sometimes will make slight enhance-
ments to documentation to record their “bug fixes,”
documentation is not viewed as a continuai process of
enhancing and clarifying the meaning of the program.
Logicaily, the original programmer is the person best
able to explain what he meant. in practice, however, it
is often someone else —who has discovered what is
going on despite the obfuscation of available
documentation —who is best able to explain it to oth-
ers. Technical mechanisms and administrative pro-
cedures should enable and encourage him to do so.

Finally, we should not be concerned only with who
adds what to the documentation at what time. We
should also be concerned with how comments and
commentaries may be related to the other visualization
mechanisms in the way that is most heipful cogni-
tively. This can be done with rew kinds of interactive,
multi-media, multi-sensory reading, browsing, and
visualization systems.

2.7 Diagrams of Flow of Control

“What happens when the program executes?” is
another guestion we ask about a program. We can
further refine this guestion in two different ways. We
can be interested in the order in which things happen
or in the effect of program execution upon the underly-
ing data. To address these concerns, diagrams of flow
of control and diagrams of structured data are needed.

At the top levels of description, diagrams of flow of
control may be dynamic structure diagrams. They will
illustrate which modules are activated and in what
order. They will illustrate how particular modules car-
rying out individual functions are linked together to
achieve higher-ievel functions.
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6 A CONCEPTUAL FRAMEWORK FOR PROGRAM VISUALIZATION

At a deeper level of description, we want to look
inside particular modules and see how the code exe-
cutes. We want to observe iterative loops, recursive
procedure calls, and conditional ana case selection
mechanisms. Flow charts, Nas.i-Shneiderman
Diagrams [NASS! and SHNEIDERMAN], and GREENPRINTS
[BELADY, CAVANAGH and EVANGEL!ISTI) are a beginning.
However, they portray only the static structure and the
potential flow of control rather than the actual flow of
control during program execution.

2.8 Diagrams of Structured Data

“"What happens when the program executes?" can
also be answered in terms of the database upon which
the program is computing. This database includes the
program input when execution is initiated and the pro-
gram output when it is terminated. The database also
includes the variables that are central to the program'’s
function, such as the data being sorted by a quicksort,
and the variables that are incidental to the program’s
function, such as the artifacts of a particular piece of
code or programming technique.

The visualization of structured data appears to be
one of the most tractable and powerful of the
approaches we have presented. Baecker's pilot film
on sorting algorithms [BAECKER] and the work of
Knowiton [KNOWLTONI, Hopgood (HOPGOOD], and oth-
ers have vividly demonstrated the power of this tech-
nique. The Spatial Data Management System (SDMS)
[HEROT et al.] developed at CCA has demonstrated the
feasibility of using graphics to access structured data.

The major difficulty in applying these methods
results from the size and complexity of the databases
of most interesting programs. It is for this reason that
we have spoken of “diagrams of structured data.” it is
only through structuring the complexity that we are
able to comprehend and master it. And we will not
always be able to do this dynamically, for we will need
to stop the program and look around, start it again,
stop it and back up, and often change our point of
view. We must be able to browse and explore both in
space and in time.

Displays of data are in some ways the most funda-
mental unit of Pv. One can argue that (1) program
function diagrams expressed as input-output pairs are
a special case of the display of program data, (2) pro-
gram structure diagrams will provide insight only down
to the level of module organization, and (3) fiow of
control is easily induced from observing changing
data.

29 Diagrams of Persistent Data

An important category of structured data is that
which remains in the computer system after the pro-

A s gt ¢ ¢ et b

gram has ceased execution, as in a database manage-
ment system. Since the amount of such data is often
several orders of magnitude larger than that contained
in the memory of the computer, different techniques
are required to visualize it. Furthermore, the user of a
PV system often will be much more interested in the
physical organization of persistent data if it resides on
some storage medium that is not perfectly random-
access, such as a disk. Fortunately, the database
community has developed a rich set of symbols that
can serve as a starting point in visualizing persistent
data.

2.10 Summary

We have developed a framework for PV in terms of
nine classes of methods for presenting information
about a program graphically and often dynamically.
These methods may be motivated and understood in
terms of the stages of a program’s life cycle presented
in Section 1.1. To assist in describing the require-
ments of a program, we have system requirements
diagrams. To assist in describing the design of a
software system, we have program function diagrams
and program structure diagrams (ideally, used
together). To assist in describing the code of a pro-
gram, we have composed and typeset program text,
program comments and commentaries, diagrams of
flow of control, and diagrams of structured data. To
assist in the debugging, maintenance, and use of a
system, all nine classes of diagrams can be empioyed.

Thus, a comprehensive and iniegrated approach to
PV promises to have great impact on the entire pro-
cess of software engineering. It will do so by contri-
buting to the cost-effective production and mainte-
nance of reliable software.

2.11 Specifying Program Visualizations

In this section, we describe mechanisms for specify-
ing or requesting the production of a specific program
visualization. Aithough these mechanisms may differ
somewhat from class to class, we shall present a con-
ceptual framework that we expect will be general
enough to apply to the nine types of visualizations
described above. In this description, the “visualizor” is
the person who creates or specifies the semi-
automatic production of a visualization.

A visualization can be defined by specifying six
separate aspects:

1. The subject. What aspect of the program’s
structure or behavior is to be visualized? The
visualizor's first task is to specify what he
wants to look at. He must:

.
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e Indicate whether he wants to see the
entire program or only a particular
moduie.

o Specify the level of abstraction at
which he wishes to view the subject
he has selected.

o Select the variables or data structures
he wants to make visible,

o Designate the control structures
whose flow he wants to observe.

. The symbolism. What graphic representa-

tions are to be used in the visualization? The
visualizor's second task is to specify how the
subject of the visualization is to be portrayed.
Is hierarchical module structure to be
represented by a tree or by nested regions?
Is program code to be represented literally or
by an abstraction such as Nassi-Shneiderman
diagrams or GREENPRINTS? Is a stack to be
represented by a vertical array of boxes, a sin-
gle colored box, or a dynamic bar?

. The composition. Where are the visualiza-

tions to appear in terms of the spatia! dimen-
sions of the display medium? The visualizot’s
third task is to specify where the subject is to
be portrayed. This is perhaps best
approached through two independent deci-
sions. The first involves choasing the location
for each subject in page coordinates on a sin-
gle, large display page. The second step
involves mapping various windows of the
display page onto various viewports on one or
more display surfaces.

. The event. When are visualization snapshots

or tframes to be created in terms of program
execution time? The visualizor's fourth task is
to specify when the subject is to be portrayed.
Should “snapshots” be taken at some instant,
during some interval, or throughout program
execution? Should the “camera” be running
only when some predicate is satisfied?
Should the camera turn on or off when some
predicate becomes satistied?

. The dynamics. How is screen time to relate

to program execution time? The visualizor's
tifth task, in the case of dynamic visualiza-
tions, is to specify how program execution
time is to be portrayed in screen time. This
may be done by establishing a mapping in
advance of running the program or by putting
the mapping under the visualizor's interactive
control.

6. The context. How is each new illustration to
be related to previous illusirations of the same
or of a different class? The visualizor's final
task is to relate each new visualization to the
context established by previous ones. This
may be done by saving previous ifiustrations
on a stack, juxtaposing or superimposing
severa! of them, or displaying dynamic infor-
mation on a static reference background.
Thus, we might display fiow of control as
arrows over a representation of program code
or moduie structure.

A PV system must provide a flexible mechanism for
specifying the manner in which a visualization is
displayed to the user. It must be possible to create
these specifications in a way that enhances rather
than disrupts the user’s understanding of the structure
of a compiex system. For example, transformations
from one level of detail to another or from one part of
a program to another must be done in a way that
makes clear how the new and old views are related.

3. USER INTERFACE

In this section, we describe a Pv system from the
user's viewpoint. The section is divided into separate
discussions of user requirements and interface design
issues.

3.1 Requirements

A Pv system must offer the programmer the ability
to increase his understanding of large programs. The
system must satisfy this goal whether or not the pro-
grams operate correctly and whether or not the user is
the author. Moreover, the system must not require a
signiticant increase in the effort required to create a
program ot its visualization. To do this, three subgoals
must be satisfied. The system must:

1. Employ a coherent visual language for pro-
gram illustration.

2. Be well integrated into the software develop-
ment process.

3. Provide usable visualizations with a minimum
of work.

3.1.1 The Visuai Language

The quality of the symbols used to represent pro-
gram concepts is critically importance to the success
of a Pv system. These symbols should be part of a
carefully designed visual language. The language

T T —————— e e e e .
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8 USER INTERFACE

should be both easy to learn and powerful enough to
describe most program constructs without requiring
arbitrary extension. The number of primitive symbols
must be small enough to be recalled easily and varied
enough to be distinguished easily.

These goals can be furthered through the use of the
enhanced visual richness ot an interactive, computer
graphics environment. For example, a small number ot
symbols can be given various shades of meaning
through variations in cofor, size, position, line weight,
background, and changes over time.

At the same time, careful attention must be paid to
pragmatic limitations of the user, such as:

o The number of parameters that can be differen-
tiated.

¢ The number of objects that can be remembered
in short and long term memory.

Also important are the limitations of the display
medium, such as:

o Its spatial and color resolution.

e The number of objects that can be displayed
ettectively.

o How frequently objects can be changed.

These user and media limitations can be dealt with
through the imposition of clear hierarchies. Such
hierarchies will aliow a large amount of information to
be managed with a comparatively small number of
objects.

All the above mentioned issues fall into the field of
graphical design. They underscore the importance of
drawing upon knowledge developed in that area. QOne
subject of special interest is in the design of symbol
systems. These range from specialized signs —such
as those developed by the Department of Transporta-
tion for public transport —to extended universal sym-
bol repertoires.

In these extended repertoires, a relatively small
number of symbols can be extended with a consistent
set of prefixes and suffixes to form an easily under-
stood language. Such a language will draw upon the
many symbols and display methodologies that already
have been developed for various levels of software
description. 1t will provide a framework within which
the user can move among difterent levels and types of
displays, while maintaining common symbols and
points of reference. For instance, objects present in
different displays will maintain as similar an appear-
ance as possible or wouid bear some identifying
characteristic. In addition, this visual language will
provide a mechanism for adding motion to symbols
that were praviously static.

3.1.2 Integration

There are two main reasons why a PV system should
be carefully integrated into the process of software
development. First, any improvements in the area of
intial requirements analysis or design will be reflected
by tewer problems further on in the development pro-
cess, when problems are more expensive to solve.
Since many of the problems of building and maintain-
ing large programs can be traced to errors or over-
sights in the initial areas, this is an important benefit.

A more important benefit is that much of the infor-
mation manipulated in the earfy stages of system
development would be of great assistance in the later
stages. |f this information were captured in machine-
readable form, it could be used to generate more
meaningful, graphical representations of a running pro-
gram. This situation is especially common when low-
level languages —such as assembier or Foriran —are
used. In such languages, the constructs used by the
designer may bear little surface resembiance to the
actual code that is written.

For example, program constructs such as linked
lists might be implemented as Fortran arrays. The pro-
grammer might explain the connection between the
two in a comment statement or in an external, hard
copy document. However, the production of a com-
puter generated picture showing the data structure as
a linked list will require some machine-readable indi-
cation that defines the mapping of the data to the pic-
ture. While this could be done by the person charged
with fixing bugs in the system, it would be far better
for the responsibility to be fixed with the original
designer ot implementor of the system.

Section 3222 shows how this goal of linking early
design data with actual coding can be achieved
through the use of an intelligent program editor. Such
an editor would provide macro facilities that
encourage the input of structured information. The
editor would offer program templates that provide the
repetitive sections of code used in describing common
constructs.

The input required by such a system will not be
seen as an unreasonable burden on the programmer.
This is because it replaces the need to create conven-
tional documentation, usually considered to be a bur-
densome task. If the input of the required documenta-
tion yieided some immediate benefits, such as check-
ing errors in the program and providing an easy means
of taking notes, the task of persuading programmers to
enter documentation might actually be eased. Infor-
mation like the resuits of error-checking also couid be
of use in designing accepiance demonsirations and
testing plans.
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An aiternative that may be attractive in some cir-
cumstances is to create a new job classification, pro-
gram illustrator. This person would assist in visualiz-
ing novel or complicated constructs.

3.1.3 Defaults

A bV system must be usable with very large pro-
grams. Some of these programs may be wrilten either
without the aid of the integrated tools described above
or with insufficient use ot those tools. Accordingly, the
system must have a way of generating reasonable
default visualizations without any additional informa-
tion.

The resulting displays often will be useful in and of
themselves. This is especially true with a language
such as ADA, which allows the use of high-level pro-
gram constructs. When a more elaborate display is
required, the defauit representation can serve as the
basis for specifying more elaborate visualizations.

Thus, the user need not create a visuaiization from
scratch. He can incrementaily modify one provided by
the system, selecting alternative symbols, portions of
programs, and dynamics. By starting with a default
visualization, such user input can be stated in terms of
the graphica!l representation instead of a procedural
language.

The default visualization mechanism will automati-
cally analyze programs. Variables will be selected tor
display on the basis of frequency of reference and
interdependencies of programs. For example, a vari-
able used for communication between two processes
could be displayed along with the high-leve! represen-
tation of those processes, with a line connecting the
variable to the two processes. This facility will aid the
user in forming hypotheses about the operation of the
program and in selecting more detailed displays.

A facility for creating new symbols from existing
primitives and/or composite symbols is required. This
facility should be sufficiently powerful to eliminate the
need for manipulating the graphics in the actual
implementation language in all but the most unusual
cases.

3.2 User Interface Design issues

The preceding subsections have set forth the
requirements that must be met by a Pv system. Here,
we show how such a system might appear to the user.
The design of the user interface must be further
developed as the research progresses.

3.2.1 Program Space

Creating and maintaining a large and complex pro-
gram requires an easy way for the programmer to
select among the various visualizations that can be

employed. Some mechanism must be provided to
manage the large set of modules and their various
visualizations. In this way, the user can alter which
portion is selected, how it is displayed, and at what
level of abstraction it is viewed.

The solution proposed here is to allow the user to
manage the visualizations by employing a space com-
posed of a hierarchy of two-dimensional surfaces. The
levels in this hierarchy will match the structure of the
program under investigation. As one descends the
spatial hierarchy, one views successively more
detailed representations; for instance, increasingly
fower-level modules. Within a branch of the hierarchy,
one can move on any surface to select the modules or
data structures to be displayed.

The visualizations at any position can be one of
three types:

1. Requirements diagrams
2. Function diagrams
3. Data diagrams

They can be either formatted—as diagrams and
typeset code—or unformatted ~as comments and
commentaries on the code. They can be either static
or dynamic. In addition, requirements and function
diagrams can include visualizations of control and
data flow.

3.2.2 User Controls

There are three classes of actions that a user may
perform:

1. Specifying views of a program
2. Entering information about a program
3. Interacting with a program

Since he may have to perform many of these activities
in parallel and since it is often useful to be able to
compare different parts of a program or different views
of the same part, the system provides the ability to
segment the one or more display screens into win-
dows.

32.2.1 View Specification

When the user first starts up the system, one win-
dow presents a default representation showing an
abstract view of the entire program. Any portion ot
this display may be selected for display at a more
detailed level2 This process may be repeated until the

2 The actusl mechanism (continuous or discreet zooming. meny
ssiection) and controis (joystick, touch-sensitive screen, tablet)
would be determined as part of 8 research program.
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actual code is displayed. For any particular location
and level ot detail, the user has a choice of viewing
any of the nine types of diagrams described in Section
2.

It is intended that the user will seldom need to
make direct reference to the actual source code lo
select visualizations of the program. Graphical
representations of all programs, processes, and data
are provided by the system. These can be manipu-
lated to control the level of detail that is displayed or
to provide alternative visualizations.

It the user needs an unusual display or wants to
dispiay some aspect of the program in a nonstandard
way, he has two options. He can select additional
graphical symbols to illustrate some part ot the pro-
gram. This will usually require entering more informa-
tion about what the program is supposed to do. As
such, it constitutes an addition to the general store of
knowledge about the program.

For example, the programmer may know that several
variables taken together describe one aspect of the
program and thus should always be displayed
together. This display might take the form of a prede-
fined graphical symbol, such as a rectangle, that has
its size and shape defined by the values of the vari-
ables.

A second option is available if there are no existing
graphical symbols adequate to express the concept in
question. A symbol creation program is provided
which allows the user to define interactively a new
symbal. To do this, the user combines graphical primi-
tives and existing symbols; e.g.. combining two rectan-
gle symbols to create a “nested rectangle.”

3.22.2 Entering information About a Program

Information about a program is entered into the sys-
tem at many points in a program's life cycle. In the
early stages of requirements analysis and design, the
user may input IDEF-like diagrams describing the role
the program is supposed to play and HIPO-type
diagrams describing the structure of the design. Later,
as the program is implemented, actua! lines of source
code are typed in or retrieved from a library. In the
debugging and maintenance phases, the program will
be modified. New insights will be gained (or old ones
rediscovered) that should be incorporated into the
repertoire of visualizations of the program.

At each of these stages, it would be useful to have a
tool that eliminates as much of the repetitive part of
the job as possible and that verifies the correctness of
the input as it is entered. Nowhere is this need more
apparent than in the entry of source code, if only
because of its sheer volume. The graphical
representation of programs offers the opportunity for a

new way of building software systems. Rather than
typing in lines ot code, the user can combine pictorial
representations of programs.

This section proposes a graphical program editor,
integrated with intelligent text editors developed else-
where, that would perform the following four services:

1. Providing tempilates of commonly used con-
structs

2. Interfacing to modular programming inventories
3. Checking consistency
4. Checking design rules

Templates provide the ability to input standard con-
structs with less effort and less opportunity for errors
than when typing them in by hand. By hitting the
appropriate function key and typing a few characters,
the user can cause the system to provide a formatted,
syntactic skeleton that contains the keywords,
matched parentheses, and other punctuation marks of
a given statement form. The template includes place-
holders at each position where additional code is
required. This approach was used in the Cornell Pro-
gram Synthesizer for PL/CS (TEITELBAUM].

Just as templates aid in “programming in the smalii,”
the use of modular programming inventories provide
the same advantages in “programming in the large.”
Such inventories provide the building biocks for per-
forming the kinds of manipulations required in any
large system. Data and control flow among modules
are indicated graphically. There is automatic verifica-
tion that formal parameters are of the appropriate type
and number.

Regardless of whether code is entered through tem-
plates or by hand, the editor checks for consistency
within the program in accordance with the rules of the
language. It ensures that variables are declared
exactly once, type conventions are obeyed, and state-
ments are in legal syntax. Violations of these con-
straints produce a warning message on the screen.

The design of the warning mechanism must be con-
sidered very carefully to ensure that it is done in a
manner that is least likely to be annoying but most
likely to be heeded. For example, undeclared vari-
ables can be accumulated in a window on the screen,
along with the system’s best guess as to how the vari-
able should be declared to agree with its context. At
any point, the user can type in declarations, causing
the variables to disappear from the window. Alter-
nately, he can move his cursor to the window and
specify the type there, implicitly declaring them. Or he
may decide that the system has guessed correctly and
therefore retain its decision.
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Design rule checking will operate in a similar
manner. The program will be checked against design
principles defined as part of the ADA development
etfort.

3223 Interacting with a Program

No debugger is complete without a method of
interacting with a program. In a Pv system, this
activity might make use of two or more windows on
the display screen. For programs designed to com-
municate with a terminal, one window simulates the
screen of such a terminal. Characters typed by the
user appear ther~ and output from the program is
directed there. Meanwhile, other windows can be
used to examine the operation of the system as
described above. Breakpoint locations can be indi-
cated by pointing to the corresponding location on a
program structure diagram or typeset listing.

Alternately, the programmer can use the same
displays to specify events or locations that demark
areas of interest. When these areas are active, the
program is slowed down to a visible speed. At other
times it runs at normal speed, unobserved but much
faster. Data structures internal to the program can be
modified by editing their visualization on the user's
screen.

4. IMPLEMENTATION APPROACH

In the design described in this report, the graphical
representation of programs and systems is produced
by a visualizer run-time executive process. The visual-
izer is used in place of the standard UNIX command
processor, or “shell.” The visualizer provides a
dynamic, graphical representation of the executing
program or system, in addition to all the shell's stan-
dard executive functions. It is described in more
detail in Section 4.1,

We have seen that there are various views of a
system — system requirements diagrams, program
function diagrams, program source code, data struc-
tures. These views can be selected interactively at
“visualization time” through interactive devices. Such
devices include touch-sensitive video monitor screens,
a data tablet, and joysticks. The internal graphical
definition of each view of a program is part of the
visualization description of the program.

A visualization description provides the rules for
producing the visualization of its associated program.
Particular emphasis is placed on graphical semantics:
what the various aspects of a program “mean” graphi-
cally. Basic visualization descriptions are automati-
cally generated by a visualization description compiler.

A visualization description compiler is an extension
to the standard C or ADA compiler. The visualization

description compiler compiles and links C or ADA
source code. it produces a visualizer-executable load
file and a separate visualization description file. Visu-
alization descriptions and the visualization description
compiler are discussed in Sections 42 and ¢2.1.

The visualization descriptions automatically pro-
duced by the visualization description compiler will
suffice in some applications. However, specialized
graphical representations of programs often will be
required. This is particularly true for program docu-
mentation. A highly interactive visualization descrip-
tion editor is provided for manual enhancement of
visualization descriptions.

The visualization description editor provides a
library of graphical representations for general pro-
gram constructs at various levels of abstraction.
These graphical representations are referred to as
templates. Templates are presented to the PV system
user as simple graphical primitives that can be used in
a program's visualization. Internaily, a tempiate is a
visualizer-executable set of instructions that results in
the production of the desired image. Templates are
included in a visualization description through simple,
graphical interaction with the visualization description
editor. The editor aiso provides the means to create
new templates. In Section 43, the visualization
description editor is discussed more fully.

4.1 The Visualizer

The run-time visualizer executive of the PV system
has three principal tasks:

1. Interact with the user to determine the
aspects of the program that are of interest.

2. Monitor the executing program to determine
its state.

3. Update and manage the graphics displays to
present the user-requested visualization.

In this section, we discuss the issues involved in these
tasks and suggest possible implementation strategies.

4.1.1 Interacting with the User

The visualizer is responsible for handling those user
interactions that specify which aspects of the program
under study are of interest. It is the visualizer's
responsibility to transform these user requests for visu-
alization into their internal representation. This
representation is in the form of predicates based on
program activities and data values —such things as
module activation, procedure invocation, and data
access. An initial selection of program aspects to
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visualize is provided at start-up time by the program’s
visusalization description.

4.1.2 Monitoring Executing Code

As stated in the previous section, the program
aspects of interest to the user are specified internally
by sets of predicates. These predicates determine the
conditions under which the user wants to be alerted to
activity in the program. The system provides a set of
default predicates that produce a display of all activity
at the chosen level of detail.

Predicates may be set to detect procedure invoca-
tions, variable references (read or write), and violations
of constraints on variables.3 When a predicate is satis-
fied, an associated graphical action is performed.
Hence, the visualizer must be able to detect when the
executing code has satistied a predicate. Ideally,
interaction between the visualizer and the executing
code would be kept to a minimum; this would keep
response times low and execution speed reasonably
high.

The implementation of the Pv system discussed
here would run on a DEC VAX-11/780 computer running
the UNIX operating system (KERNIGHAN and MCILROY].
For a number of reasons, such as portability, it is desir-
able to impiement the system in such a way that
minimal modifications to the operating system are
necessary. Fortunately, among the features of the
UNIX operating system is the ability of one process to
examine and modify the address space of another pro-
cess. Using this feature, a parent process may exam-
ine variables in a child process, set breakpoints in the
child’'s code, and suspend and resume its execution.

Given this capability, it is easy for a parent process
to catch procedure invocations in its chiidren. By set-
ting a breakpoint at the entry point of the procedure,
all invocations will be trapped. Examination of the
program stack will reveal who the caller was. Thus, a
predicate set to trigger on a particula: procedure’s
invocation of another procedure can be caught by set-
ting a breakpoint at the called procedure’s entry point.
When the breakpoint is hit, the graphical action is exe-
cuted it the calling process is the one specified in the
predicate.

In general, predicates triggered by reterence to a
particular variable or by violation of a variable's value
constraints are difficult to implement in an efficient
mannet. The execuling code must be single-stepped:
the visualizer must examine the variables after each
instruction has executed. More efficiency can be
achieved when predicates are set on variables local to
a procedure or statement block. In this way, the range

3 In inis section, the term “varisbie” indicates aggregate data
such as structures, arrays, strings, and lists.

of the single-stepped code can be reduced to the
scope of the current block.

Part ot PV research would involve investigating the
preanalysis of source code to make evaluation of vari-
able reference predicates more efficient. One tech-
nique to be investigated involves noting the locations
of machine instructions generated from source code
that refers to the variable of interest by its symbolic
name. Setting breakpoints at only the locations noted
may provide a significant savings in processing time.

4.1.3 Updating and Managing the Displays

The visualizer must maintain the program displays
in response to user visualization requests and changes
in the program's state. The visualizer examines the
visualization description to determine the graphical
appearance of what is to be displayed at any given
time. The visualization description describes the
graphical representation of a program and its salient
features, e.g. input requirements, output produced,
and key states during execution. The visualization
description contains display directions for each level
of detail that the user may wish to see. At the most
detailed ievel, source code is displayed.

The visualization description of a program is tree-
structured. At the top level, there may be a program
structure diagram. More detailed views of each of the
components in this diagram may exist in the hierarchy.
The user may “zoom in" on a particular component to
reveal a more detailed view (it it exists). Alternately,
the user may indicate his interest in a particular com-
ponent by touching its representation on the screen.
This would have the effect of selecting the next most
detailed view of that component.

The user may wish to create multiple windows in
which particular views of components can be fixed.
These windows would be updated as necessary while
the code was executing, but would remain in place
while the user manipulated other portions of the
screen.

Animation of the program visualization is controlled
by predicates that become true as program execution
proceeds. Fredicates are a natural way of directing
the system'’s attention to a particular portion of the
code. Predicates that are triggered by procedure invo-
cations could cause both the calling and cailed code
to be displayed.

Variable access and value constraint predicates
direct the visualizer's choice of what to display. Their
action is similar to that of procedure invocation predi-
cates. Each predicate has associated with it a graphi-
cal action. The visualizer can deduce what to show
based on this graphical action. The following exampie
describes how this might work.
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Assume the user selects a relatively abstract view of
a program for display, such as a program structure
diagram. Predicates have been set on a variable that
has no representation at that level of abstraction. The
user begins execution of the program. As the program
executes, the abstract view is updated; for instance, to
indicate which module is active. At some point, the
predicates set on this variable become true. If the
graphical action indicates that the representation of
that variable must be updated, then the visualizer must
switch to the appropriate view. The visualizer may try
to preserve the current view by moving it in a scaled
form to a window that is still displayed when the view
changes. Later, should the user wish to return to the
previous view, he need only touch the window contain-
ing that view.

4.13.1 Display Hardware Considerations

The choices of modes of interaction and display for-
mats described above ate based on implicit assump-
tions about the power and speed of the display sys-
tem. The maintenance of muiltiple windows on a sin-
gle screen requires that the display system contain a
fast, powerful processor that can perform the neces-
sary tasks itself. 11 would be possible to maintain mul-
tiple windows with a conventional frame buffer, but
this would greatly increase both the computational and
input/output loads on the host machine. There would
be a consequent increase in response time —a signifi-
cant factor in user acceptance of the system.

Several display systems are available that could
provide sufficient processing power for the Pv system.
They have the added advantage that they support
resolutions of up to 1024 by 1024 pixels. Such (rela-
tively) high resolution systems are necessary to
display large amounts of text and detailed diagrams.

The two most powerful display processors commer-
cially available are the lkonas RDS-3000 and the Ram-
tek RM 9400. A third system, the AED 512, lacks the
high resolution of the other two, but is relatively inex-
pensive. All three systems aiiow the user to download
the controlling microprocessors, giving him customized
graphics primitives.

The Ikonas system is the most general and most
powertul of the available systems. It can be config-
ured with multiple processors that can be pipelined.
Video format is readily switched, allowing it to produce
NTSC-compatible video for videotaping. Vector write
times are (claimed to be) 900 nanoseconds per pixel.

The Ramtek system contains one high-speed pro-
cessor that can be user-programmed. it does support
a large virtual picture size of 32K by 32K pixeis. Any
portion of this virtual picture can be mapped to the
screen picture. Pictures can be stored as display lists
that are executed; the results are stored in the frame
bufter. Changing the display list and re-executing it

allows fast modification of the picture. Pixel write
times are on the order of 1.12 microseconds. The out-
put video format cannot be reconfigured.

The AED system is a low-cost frame buffer system
containing a user-programmable microprocessor.
However, its 6502 microprocessor is relatively slow
and has limited storage for display lists. Resolution is
tixed at 512 by 512 pixels. Several of these in tandem
with a computer controtied, video, special effects box
could simulate muitiple windows, but at added
expense to the host machine.

One suggested course of action for a PV research
project is to select one of the fast displays for use in
evaluating the interaction techniques that would be
developed. Selected techniques could then be imple-
mented on the slower display. Every effort should be
made to maintain a high level of utility despite the
reduction in display capability. The hope is, however,
that display systems of high capability will decrease in
cost and become affordable for a wide range of appli-
cations.

4.2 Visualization Descriptions

Associated with each visualizer-executable program
load file is a visualization description. The visualiza-
tion description provides the visualizer with the data-
base necessary to produce graphical representations
of the program's execution. A visualization description
has four main components:

1. Picture semantics
Graphical representation schema
Program semantics

0N

Visualization predicate file

The picture semantics specify how the various
aspects of the program should be represented graphi-
cally at muitiple levels of abstracticn. For example, an
overview of a complex system might show process
symbols connected by lines to depict inter-process
communication channels. Inter-process communica-
tion might be shown as message packets moving
through channels.

Zooming in for a more detailed view of a single pro-
cess might show a hierarchical view of program
modules, with the active module highlighted. Zooming
to greater and greater detail will eventually resolve to
source code level representation of the program or
even into lower ievels, such as machine instructions,
micro-code, or hardware signais. Other views ot the
program will show data structures, fiow of control
diagrams, etc. The importance of picture semantics is
in specifying the graphical appearance of these pro-
gram representations.
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Picture semantics contain “picture descriptions.”
Picture descriptions associate parts of programs with
descriptions of the graphic symbolism used to
represent them. In Section 2, we discussed program
subjects and symbolism within a conceptual frame-
work for specifying program visualizations. In Section
422, there is a detailed explanation of picture descrip-
tions.

The spatial organization of graphical program
representations is specitied by the graphical
representation schema. The schema indicates which
view replaces the current view as the user zooms in or
out of a viewport. The schema also selects the
appropriately related default views for otherwise inac-
tive viewports. The graphical representation schema
specities the composition and context of the visualiza-
tion, discussed in Section 2.11.

Unexpected computation in a program should
attract the user’s attention. Program cemantics aliow
the visualizer to graphicalty ‘~. 3% normal and

abnormal operation of a .oty . the context of
this PV system, program gamw2’- -« dee” ribe "what the
program is supposed & &' - general terms of

expected data values, cuoe ir.-.. ur frequency, and
process idle time. Specii < =uoiiization directives are
made available to the & vz when an abnormal
program condition is s@tected. [he representation and
processing of these kinds of progsam semantics are
related to the maintenance of database integrity con-
straints. Common issues wre discussed in [BERNSTEIN,
BLAUSTEIN and CLARKE] and {(HAMMER and SARINJ.

Knowing what to show, rather than how to show it, is
the purpose of the visualization predicate file. The
predicate file selects which aspects of the program
will be displayed under what circumstances. The
predicate file is read from the visualization description
into the visualizer's address space when the program
associated with the visualization description is exe-
cuted.

The predicate file is continuously updated once it is
read by the visualizer and the user begins to interact
with the system. The initial form of the predicate file,
as stored in the visualization description, serves to
specify default views of the program when visualiza-
tion is first initiated. The internal form of the visualiza-
tion predicate file is a list of predicate-graphical action
pairs. When a predicate is satistied, the associated
action is performed by the visualizer. A discussion of
the efficient representation and processing of predi-
cate files can be found in (WONG and EDELBERGI.

4.2.1 The Visualization Description
Compileri.inker

A special visualization description compiler/linker is
used instead of the standard C or ADA fanguage pro-

cessors to prepare programs for visualization. The
visualization description compilerflinker produces a
visualizer-executable program load file and an associ-
ated visualization description file.

This automaticaily produced visualization descrip-
tion describes as much of the program as can be
sately inferred from scanning the program source
code. The automatically produced visuatization
description is sutficient for some applications, such as
watching lines of source code execute. However, the
visualization description often must be manually anno-
tated to include descriptions of complex or abstract
program  design concepts. The visualization
description/template editor described in Section 4.3 is
used to expand the visualization description in an
iniefactive fashion.

The visualization description compiler is actually a
system of four processes:

An extended C or ADA compiler
A visualization description generator
A binary linker

Eall

A visualization description linker

A schematic overview of the visualization description
compilation process is shown in Figure 4.1.

The extended C or ADA compiler produces relocat-
able binary object files very similar to those produced
by the standard compiler. The principal difference is
the addition of object code to enable access to the
process's address space by the visualizer run-time
executive. This code is simply the addition of the
“ptrace” system call, which aliows a parent process to
access the address space of its child process.

The visualization description generator automati-
cally creates a basic visualization description from
program source code. Conventional language pro-
cessing techniques are used to scan and parse the
program source. Visualization description production
rules are used to map the program into a visualization
description. A conservative approach to automatic
visualization description production is taken; namety,
only the program features that can be inferred from
the program source with a very high degree of cer-
tainty are described.

The linking process involves two tasks:

1. Combining binary object files into a visualizer
executable program load file.

2. Combining the partial visualization descrip-
tions associated with each binary object file
into & visualizer-interpretable, complete visual-
ization description.




B w—:g,‘?‘!’@&—’ﬂ

Design For a Program Visualization System

15

intelligent
program . text <= coor
source input torminal
- code program

visualization
description
visualization and
editor

p—
<>
visualization
description
complier
é
<> <4
‘ oxecutable
load

. tie

graphic
displays

Figure 4.1 Visualization Description Compilation Process
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16 IMPLEMENTATION APPROACH

These two tasks are carried out by separate
processes: the binary linker and the visualization
description linker. The binary linker performs the
functions of the standard UNIX linker. The visualiza-
tion description linker combines partial visualization
descriptions into a single, complete visualization
description file. This visualization description file is
then associated with the load file of the program it
describes.

422 Picture Descriptions

All graphical symbols used to visualize a program
are specified by the picture description component of
the picture semantics. A different picture description
is provided for each view of every program subject in
the program. In PV terminology, a program subject is
simply any “thing” or “aspect” to be visualized; for
example, a data structure or a program module.

A picture description is actually a program that can
be executed by the visualizer's picture generator.
The result of executing the picture description is the
production of the desired graphic image.

The architecture of the picture generator is optim-
ized fot the production of graphic images. In addition
to a standard register file and data paths, the picture
generator contains a picture workspace that is used
to construct graphic images and a picture stack that
allows subimages to be stored until they are combined
into a complete picture.

Picture generator instructions are oriented toward
the task of image production and make extensive use
of the picture stack. Representative instructions fol-
low. These instructions will be used in an example.

OF CODE ARGUMENTS
texplt template_name template_argument(s)
EXPLANATION

The tempilt instruction is similar to the subroutine call
of a conventional processor. Template_name is the
identifier of a setf-contained code segment that takes
its own arguments and produces an image. One
might think of template_name as the name of a “pic-
ture type"” procedure that executes primitive graphicai
instructions using vectors, pixels, etc.

OF CODE  ARGUNENTS
stack
EXPLANATION

The stack instruction puts the image in the picture
workspace on the picture stack and then clears the
picture workspace.

OP CODE ARGUMENTS
combine
EXPLANATION

The combine instruction combines the image in the
picture workspace with the image on top of the picture
stack. The combined image becomes the new con-
tents of the picture workspace. The top image is
removed from the picture stack.

OP CODbR ARGUNENTS
frame
EXPLANATION

The frame instruction encloses the image in the pic-
ture workspace within a frame.

OP CODE ARGUNENTS
halt status
EXPLANATION

The halt instruction haits execution of the picture gen-
erator. The contents of the picture workspace and the
value of status are available t» the visualizer execu-
tive.

Basic picture descriptions are automatically pro-
duced as part of the visualization description by the
visualization description compiler. The algorithms for
mapping C or ADA source code to picture descriptions
are related to conventional language transiation tech-
niques. The following is an augmented production
language specification for a portion of the visualization
description compiler that produces picture descrip-
tions for "structs” in the C programming language.
NOTE: Picture description code to be produced by a

rule’s semantic routine is indicated by the "-"
symbol.

<structure> ::s {<elements>} <name> ;
< templt struct_ivon <name>
combine
frame
halt OKX_status
<glements> ::s= <element> ;
+ stack
| <slements> <element>
< combine
stack
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As an example of picture description code genera-
tion, consides the following C language struct. This
struct contains meteorological data pertaining to a

city.
struct

char  cityname[32]

int aveprecip H
int avetemp H
int lowtemp H
int hightemp H
}

weatherdata H

The visualization description compiler defined by the
above production rules would generate the following
picture description code:

tempit string_icon cityname 32

stack

tempit integer_icon aveprecip

combine

stack

tempit integer_icon avetemp

combine

stack

templt integer_icon lowtemp

combine

. stack

. tempit integer_icon hightemp

. combine

. stack

tempit struct_icon weatherdata

© ® N OO A LN
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. combine

. frame

18. halt OK_status

The lines of code are numbered so that they can be
referenced in Figures 42 thwrough 4.18, which itiustrate

the operation of the picture generator in creating this
graphical representation.

-
- O
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<element> ::s <character> | <integer>
<character> ::s char <name> [<integer>) PICTURE PICTURE
< templt string_icon <name> <integer> WORKSPACE STACKS
<integex> ::e int <name>
+ templt integer_icon <name> ) CITYNAME

Figure 4.2 Picture Description Code —Line 1

CITYNAME

Figure 4.3 Picture Description Code —Line 2

CITYNAME

AVEPRECWP)

Figure 4.4 Picture Description Code —Line 3

CITYNAME
AVEPRECWP

Figure 4.5 Picture Description Code—Line 4

A

Figure 4.6 Picture Descriptior: Code—Line §

AVETEMP

Figure 4.7 Picture Description Code —Line 8
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18 IMPLEMENTATION APPROACH

CITYNAME

AVEPRECIP

AVETEMP

Figure 4.8 Picture Description Code—Line 7

CITYNAME

AVEPREG!PI

AVETEMP [

Figure 4.9 Picture Description Code —Line 8

CITYNAME

LOWTEMP AVEPRECWP

AVETEMP

Figure 4.10 Ficture Description Code —Line 9

CITYNAME

AVEPRECIWP

AVETEMP

LOWTEMP

Figure 4.11 Picture Description Code —Line 10

4.3 The Visualization Description/Template Editor

Image production by the visualizer is based on rules
embodied in the visualization description. A basic
visualization for a program can be automatically gen-
erated by the visualization description compiler. How-
ever, that basic description often must be manually
enhanced. The visualization descriptiontemplate edi-
tor is the facility for performing manual enhancement.

As discussed in Section 42, the picture semantics
section of the visualization description contains picture
descriptions. A picture description defines the graphic
appearance of one view of a program subject. (nter-
nally, picture descriptions are visualizer-executable
programs that result in the production of the desired
image. Picture descriptions instantiate and combine
templates. A template is a type of procedure that pro-
duces a simple graphic image. Templates may accept
arguments that determine their appearance.

The PV system user employs the visualization
description/template editor for two tasks:

1. Creating special purpose templates.

2. Enhancing visualization descriptions by
including templates in them.

These two tasks are performed through graphical
interactions with the editor.

Templates tell the visualizer two things. First, they
specity the appearance of a program subject duting
various stages in program execution. Second, they
specify those variables or control structures in the pro-
gram being visualized, upon which the template is
based (binding information).

To make it easy for a user to create tempiates, the
tempiate editor provides an extensive set of painting
commands for drawing templates. A set of commands
is provided for binding the template that is drawn to
variables in the program being visualized.

In addition, templates that the user creates can be
catalogued for later retrieval and used as building
blocks in the creation of new templates. This feature
allows the user to create a set of templates for com-
monly used data structures. These can then act as
template standards for the design of future templates.

It is important that the editor makes it easy to
create simple templates and provides the capability to
make any abitrary template, no matter how compiex.
The catalogue of building biock templates wli provide
a good foundation tor making new templs.es easily.
To further automate this activity, the erlor uses its
knowledge of how the building blocks bind to program
variables to help automate the process of binding tem-
plates to programs.




B T

Design For a Program Visualization System 19

For example, if a user wants to create a histogram

chart, the editor will present the user with a set of vari-

CITYNAME ous blank histogram layouts, from which the user will
choose one. Then varying styles of elements to be

AVEPRECIP placed on the chart will be presented. The user can
arrange these as he pleases to design the template.

AVETEMP Once the user has compieted the graphical design of
the template, he enters the binding mode. The editor

LOWTEMP uses its knowledge of the selected histogram ele-

ments to prompt the user for the variabies each ele-

- . - ) ment is to be bound to. The editor highlights the
Figure 4.12 Picture Description Code —Line 11 appropriate element at each step.

4.3.1 Animation

Most of the templates the user will want to design

HIGHTEMP CITVNAME will have some degree of animation associated with
them. Two different types of animation are provided.

AVEPRECIP The first type is the animation of a program variable

AVETEMP going through some specified range. The animation is

based on the value of the program variable. In this

type of animation, it is necessary for the template
LOWTEMP designer to provide information about the range of
acceptable values through which the template ele-
Figure 4.13 Picture Description Code ~Line 12 ments are to be viewed. Exception conditions also
can be created with their own views. A typical exam-
ple of this type of animation is the histogram chart. In
this type of template, the size of each element is

based upon the representative value of the program
CITYNAME variable bound to it.

Pl The second type of animation is not based on the
AVEPREC! range of a program variable, but on program states of
activity. Animation is based on predicates associated
AVETEMP with each template. The predicates are in terms of

program states, program events, and data vaiues.
LOWTEMP To provide an easy way to create and edit tempiate
HIGHTEMP animation, an animation creation and viewing facility is
designed into the editor. This facility lets a user mani-

pulate the template elements to create animation. For
) o ) example, the user can first create a background upon
Figure 4.14 Picture Description Code—Line 13 which the template activity will take place. The tem-
plate elements can then be moved independently
upon the background. Each change in the position of
one ot more of the template elements may be keyed

CITYNAME to a program state.
AVEPREGP( 432 Specifying Graphicat Layout

The visualization description/template editor lets the
user specify the initial graphical layout used by the
LOWTEMP visualizer. The user may also specify how the levels of
- detail are to be presented. In this way, the user con-

trols the program visualization specification issues of
HIGHTEMP composition and context discussed in Section 2.11.

AVETEMP

Figure 4.158 Picture Description Code —~Line 14
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20 IMPLEMENTATION APPROACH
The template editor also provides a mechanism for
rearranging its own command menu layout. This
! feature lets the user substitute pictures or icons for
WEATHERDATA ITYNAME commands usually represented by text.
AVEPRECIP 4.3.3 Template Code
AVETEMP Interactive graphical specification of animation as i
discussed in Section 4.3.1 cannot fully expioit the visu-
LOWTEMP alization potential of a Pv system. For exampie, sup-
pose a user wants to create a visualization of an algo- -
HIGHTEMP rithm for converting a bit map representation of an

image into a run-length encoded representation of the
image. The algorithm to compress images into a run-
Figure 4.16 Picture Description Code —Line 15 length encoded form generates only two major vari-
ables. it is the relationship between these variables
over time that is meaningtul. Ali animation capabilities
discussed so far, however, are based directly on the
simple magnitude of program variables, program

WEATHERDATA states, and program events. To visualize an algorithm
‘ in which complex relationships of program variables,
t ITYRAME states, and events are of principal interest, the user
must be able to write explicit procedures that transiate
AVEPRECP input variables into visualization directives. Template
code provides that facility.
AVETEMP The user should not be required to learn a new
LOWTEMP language to write procedures in template code.
Hence, the language used will be an extension of the
HIGHTEMP language upon which PV is based. The extensions will
be designed to provide an easy method of interfacing

with both the graphics of the template and the pro-
Figure 4.17 Picture Description Code —Line 16 gram being visualized. One extension wiil aliow the
user's template code to reference variables in the pro-
gram under study, through an extarnsi variable c¢:
struct. Other extensions will pruvide 2 convenient
method for controlling animstic.;.

WEATHERDATA

! ITYNAME
N | AVEPRECI

AVETEMP

', LOWTEMP

R

HIGHTEMP

Figure 4.18 Picture Description Code—Line 17
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EXAMPLE PROGRAM VISUALIZATIONS
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Program Visuallization Project

Graphic designers have an important role
in the Program Visualization Project.
They bring approaches and visualizations
to the project that programmers and
engineers do not. Part of the desianer's
task is to put him/her self in the
context of a user or client; this
facility makes the designer more
sensitive to the needs and sensibilitios
of the end user. Designers also have
experience in handling systems with meny
parameters relating to human functions;
coordinating and making sense out of
these various parameters are skills that
designers can contribute to the project.
This experience gives the designer
effective tocls for the use of rich
visual heirarchies, which contribute
enhanced semantic depth to the
visualizations without adding confusion.

This section of the proposal is an
attempt to show a few of the avenues
that can be explored in the quest for
wortlwhile program visualizations. This
set of directions is by no means
exhaustive or complete; it is only a
sampler of possibilities. Our concern at
this point is not so much with the
actual means of implementing these
methods and techniques with particular
hardware and software, but rather a
specification of needs. Others have
explored, classified and rated some of
the existing program visualation
techniques. A bibliography of somc of
these publications is included.

We have used existing C code for
concrete examples of these possible
techniques.
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Program Visualization Project
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Overall approach:

A multiscreen workstation with various
input devices: keyboard, joystick, knohs
and dials, a digitizing pad. Six or nine
screens allow for multiple displays and
relationships between displays. For
example, the middle screen could show
the current program module (function,
swroutine, etc.) being worked on, the
screen to the left the module that calls
it and the screen to the right the
modules it calls. The top row of screens
could show variable maps for each module
(working, calling or called) while the
bottom row shows status, command menus

"}
and other information (filenames,
history, main memory requirements, CPU
seconds used, etc.). Color could be used
to link the same names from screen to
screen. A similar approach has been
explored at Xerox Palo Alto Research
Center. The Smalltalk system of multiple
overlapping windows based on the idea of
sheets of paper on a desktop has been
described by Teitelman ([T1]. This
technique of multi-windows on one screen
has its advantages but could perhaps use
an overall organization to prevent the
"desk" from getting too cluttered.
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Program Visualization Project

As the programmer needed to shift
his/her attention up or down the working
module, a reverse video bar could
highlight the current line of code.
Another possibility for the use of the
reverse bar could be showing the line
currently being executed as the
programmer watches the program in the
process of execution. The joystick could
control the speed of execution so the
user could step through the program as
fast or slow as wanted.

prinef( “filename:” ) ; (Aot (oo ¥ -}
fname = getword() ; frame = getward() ;

g {Epiwg) lf (fpi=0)

closa( fp ) close( fp ) ;
tp = open( fname, 2 ) ; €p » open( fname, 2 ) ;
£ (epc) | £ (fpc2) |

printf{ "£ile s doesn't seem
to exist\n", fname ) ;
do__manu ;

printf( “file 33 doesn't sesm
to exist\n*, fname ) ;
do_ meny ;

char *fname, char *fname,
*getword (), *getword (),

struct point struct point
*rablet(), *tablet(),

int 1 ; int {;

struct node struct node
‘URP' Omp'
*grab(); vgrab();

char *malloc(); char *malloc();

peinef( "tumgz |

(fpte @)
close{ fp ) ;
fp = open( fname, 2 ) ;
it (fpc2){
printf( “flle ts doesn't seem
to exist\n", fname ) ;
do__menu ;

T —
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Program Visualization Project

If the programmer wants to shift to
another module the screen would scroll
or the modules could shift screens
left-to-right or right-to-left. If the
programmer got to the top level of code
the information appearing next on the
left screen would be a functional
specification for that code; if at the
bottom level, the next thing appearing
on the right would be assembly or
machine code. Continuing to the right,
circuit paths would appear, executing

the machine code.

main()

tead( fp, frame_couwnt, 2 ) ;
printf( “frame count:Sd\n",
frame count ) ;
film = ge@B( frame_count ) ;
if( count( £ilm ) t= frame count )
printf( “shortchanged In loadim
Eilmi\n* ) ;
frame_count = count{ film) ; }
for( frame = £ilm ;
frame != NULL ;
frame = frame -> ptr )
frame ~> id = malloc( TILE _SIZ!

*gatword() ,
struct point
wtablet(),
int i
; struct node
] *onp,
: *grab();
| char *malloc()s

" printf( "Cilename:® ) ;
tname = GNRNHIE()
{f (fpl=d)
close( fp ) ;
fp = open{ fname, 2 ) ;

frame != NULL ;
frame = frame ~> ptr )
expand( frame ) ;
close( fp ) ;
show( frame ) ;
do_menu ; }

Specs

These suggestions for types of
information to display are just one
possibility, however. The rest of th
report will discuss various methods
representing g#iptrol flow and data
structure anf$alues. These two area
will be treated separately, with the
intention that two or more of these
methods could be used simultaneously
the multiscreen display. These metho
use output capabilities that have no

‘#ain()

read( fp, frame_count, 2 ) ;
printf( "frame count:sd\n",
’ frama count ) ;
| £ilm = geil( Erame_ count ) ;
{f( cont( film ) iw frame count )
l printf({ "shortchanged In loadin
filmi\n" )
frase count = count{ film) ; }
! for( frome = film ;
froma 1= NULL ;
frome = frame -> ptr )
frame ~> id = malloc( TILE SIZ

char *malloc();

printf( “filename:® ) ;
fname = getword() ;
it (fpi=@)
close( £p )
fp = open( fname, 2 ) ;

functé4()

char *fname,
sgetword () ,

struct point
*tablet(),

int {3

struct node
‘o,
qrabi) s

char *malloe()s

prinef( "filename:® )

tname = GUNINDE()

it(tpled)
close{ fp ) ;

tp = open( thame, 2 ) ;

[ tunet9 ()

for( frame = tilm ;

Sinatry

could show variable maps for each
(working, calling or called) whil
bottom row shows status, command

and other Information (filenames,
history, main memory requirements
seconds used, etc.). Color could

to link the same names frow scree
screen. A similar approach has be
exploted at Xerox Palo Alto Reses
Center. The Smallrglih system of m
overlapping vindows based on the

sheets of papet on & desktop has

described by Teftelmsn (T11. This
technique of multi-windows on one
has its adventages but could perh
an overall organisstion to preven
“desk" from getting too cluttered
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Program Visualization Project

These suggestions for types of
information to display are just one
possibility, however. The rest of this
-report will discuss various methods of
.representing control flow and data
structure and values. These two areas
will be treated separately, with the
intention that two or more of these
'methods could be used simultaneously in
-the multiscreen display. These methods
use output capabilities that have not
been well used (or used at all) up to
this time. These capabilities include:

multicolors and grey levels
reverse video and blinking
size changes in typeface
bold and italic typefaces
different type fonts

For this report we have limited the
range of these tools for perceptual as
well as technical reasons. We will not
necessarily use all of the possible
variations of one tool, but show this
list as a menu of clear and available
variations,
3 colors plus black and white
6 grey levels including black
and white
reverse video with blinking
3 sizes of type
type styles: bold roman u/lc
medium roman u/lc
medium italic w/lc
a single typeface

A study has shown that the range of
color for letters is limited, but this
can be expanded by using color bars with
black or white letters on the bars.

6 powmt Tames Romen

7 point Times Roman

8 point Times Roman

9 point Times Roman

10 point Times Roman

11 point Times Roman
12 point Times Roman

14 point Times Roman

Times Roman

Times Roman ltalic
Times Roman Bold
Times Roman Bold Italic

Melior
Memphis
Optima
Palatino
Univers 55
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Visualizing C code, possibility 1 4. single spaces (1 character)
between all words and symbols
Prettyprinting standards:
5. open and close brackets in same
1. 4 character indents place each time, let the indent
show the structure
N 2. no more (and possibly less) .
than one statement per line 6. left justify variable names in
declarations and definitions
3. "if", "for" and "while"
conditions on their own lines,
with "if", "for", "while" and
"else" blocks on their own
lines

int fp =0 ;
u__use() {
char *fname,
*getword (),
struct point
*tablet(),

int i ;

struct node
*mp'
*grab();

char *malloc();

printf( "filename:" ) ;
fname = getword() ;
if (fp!=8)
close( fp ) ;
fp = open( fname, 2 ) ;
if (fp<2) {
printf( "file %s doesn't seem
to exist\n", fname ) ;
do_menu ;
return ; }
read( fp, frame count, 2 ) ;
printf( "frame count:sd\n",
- : frame count ) ;
P film = grab( frame count ) ;
! if( count( film ) != frame count ) |
printf( "shortchanged in loading
filmi\n" ) ;
frame_ count = count( film) ; }
for( frame = film ;
frame != NULL ;
frame = frame -> ptr )
frame ~> id = malloc( TILE _SIZF ) ;
- for( frame = film ;
! frame != NULL ;
frame = frame -> ptr )
Z expand( frame ) ;
close( fp ) ;
show( frame ) ;
do_menu ; }

~——— e e - man
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Program Visualization Project

These prettyprinting standards could be
used in a larger context. The major task
of this context would be to separate and
relate conments and code by putting each
in its own column, 40 characters wide.
The main title of the program could be
in a larger size of type while each
module (function) title is in a full
screen-width reverse video bar, shown by
the grey bar in the figure. Code and
comments are linked by rules across the
screen and have the same indentation

structure. Code is in roman with bold
keywords (if, else, while, for, int,
char, etc.). The comments could be
structured in different sizes to show
levels of various types:

historical
authority
formality
anecdotal

could show variable maps for each module
(working, calling or called) while the
hottom row shows status, command menus
and other Information (filenames,
history, main memory requirements, CPU
secornls used, etc.). Color could be used
to link the same names from screen to
screen. A similar awroagh has been

fname,

*getword (),

struct point
*tablet (),
int i;
$truet node
*tmp,
*grab();
char *malloc();

printf( "filename:" ) ;
fname = getword() ;
if (fpt=0)
close( fp ) ;
fp = open( fname, 2 ) ;
if (fp< 2) {
printf( “file %s doesn't seem
to exist\n", fname ) ;
do menu ;
rebum ; }
read( fp, frame count, 2 ) ;
printf( "frame count:td\n",
frame count ) ;

allocate 1linked list for film
explored at Xerox Palo Alto Research

Center. The Smalltalk system of multiple
overlapping windows based on the idea of
sheets of paper on a desktop has been
described by Teitelman (T1). This

FiIm = grab( Frame_ count ) ;
1£( count( £ilm ) 1= frame count ){
printf( "shortchanged In loadi
£ilmI\n" ) ;
frame count = count( film) ,”L

allocate memorv for Eilm

"for( frame = film ;
frame )= NULL ;
frame = frame -> ptr )
frame -> id = malloc(TILE SIZE);

technique of multi-windows on one acreen
han its advantages but could perhaps use

for( frame = fllm ;
frame 1= NULL ;
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L
Another variation on possibility 1 uses
color bars *o indicate type of commond,

for example:

etc.

Still another possibility could be to
use color to differentiate between

declarations and definitions, which look

similar at first glance.

his/her attention up or down the working
module, a reverse video bar could
highlight the current 1ine of code,
Another possibility for the use of the
reverse hbar could be showing the tine
currently being executed as the
programmer watches the program in the
process of execution. The joystick could

*fname,

e point
*tablet() ¢

Egmde

*mp'
*grab();
PR *malloc();

B "filename:" )
Eneme - [IENC) :
M (fpi=0)
close( fp) ;
fp = open{ fname, 2 )
W (fp<2) {
( "file %s doesn‘t seem
to exist\n", fname ) ;

retuam ; |}

( fp, frame count, 2 ) ;
( "frame count:$d\n",

frame count ) ;

prograsmer got to the top level of code
the information appearing next on the
left screen wnuld he & functional
sprelfication tor that code; 1 at the
bottom level, the next thing appearing

Eilm = grab( Erame__count ) ;
Bl count( film ) 1= frame _count ){
*shortchanged In loading;
filmi\n" ) ;
frame count = count( film) ; }

allocate memory Tor FTIm

Wl frame = £ilm ;
frame != NULL ;
frame = frame -> ptr )
frame ~> id = malloc(TILE SIZE);

on the right would be assenbly or

" fcame = film ;

machine code. Continuing to the right, '

frame |= NULL ;
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- Visualizing C code, possibility 2 1) Use a heavier rule weight to show

Modified Nassi-Schneidermann diagrams control structures; a 3-sided box for
loops and a Y-shape for decigions. The
N-S diagrams in their present form do loop signal could enclose ali -ommenris
not take advantage of the richness that are a part of the loop. In the case
possible in graphic symbols and signs. of the "for" loop, there is an
Some enhancements have been suggested in initialization which only happens once,
an article by Frei [F2]. One possible that is, not in the loop; but
~ avenue for exploration could involve conceptually and code-wise is an

keeping the basic form of a box made up integral part of the loop. The shape of
of smaller boxes for individual the top part of the decision symbo)
commands, but with the following could always stay the same, regardless
changes: of the shape of the box, so that it may

be clearly and quickly recognized.

' @it -0 i Stiag e delimets e
| u_use() { P R
j - .
'. . char *fm’ means of implementing these methods and
*getword (), cottiare, but Facher o o Fromtton e
struct point
*tablet(),
int {;
struct node
. ﬁunp'
o *grab();

char *malloc();

. printf( "filename:" ) ;

‘ fname = getword() ;

‘ ‘u(fp:so)

| close( fp ) ; Mol & mmabry

fp = open( fname, 2 ) ;

.if(fp<2){

‘printfﬁfile $s doesn't seem
to exist\n", fname ) ;

kA )
%
o
c

. -:wtt.ﬁ' e o

Define, describe and delineat :
‘ read( fp, frame_ count, 2 ) ; methods and techniques for visuelizing.

’ printf( "frame count:3d\n*,

frame count ) ;

-

rore tightly defined than others.

’$
Y

:
5
5

%

;-
o
g
h
i
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2) One problem with N-S diagrams is the
space limitation, especially for
comments. This could be easily taken
care of by considering each comment
space as a window with a scroll
underneath. Other .nethods could be
variations on the Smalltalk overlapping
windows or the SDMS page-turning
analogue [B2]. Some possible

levels of meaning in the comments have
been enumerated in the section on
possiblity 1.

I W I
film = grab( frame__count ) ;

The boxes that contain commands and
comments could an identifying symbol or
color. For example:

input/output

control keywords

declaration keywords

A grid could be established to determine
position and size of type and symbols.

Note: It might be possible to build a
compiler that compiled Modified N-S
diagrams into machine code, readinq the
diagram along with the verbal part of
the code.

allocate linked list for film

.if( count( film ) != frame__count ) {

‘printf( "shortchanged in loading
filmi\n" ) ;

ijane___cm.!x_\t = count{ film) ; }

for( ftrame = film ;

allocate memorv tor film

frame 1= NULL ;

frame -> id = malloc( TILE_SIZE ) ;

frame = frame ~> ptr )

for( frame = film ;

frame 1= NULL ;

expand( frame ) :

camputer programs. Jur concern at this
peint {3 not so much with the actua)

frame = frame -> ptr )

close( fp ) ;

‘ show( frame ) ;

. do_menu ; }

‘ retum ;
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Visualizing C code, possibility 3
Modified Flow Charts

Flow charts, like N-S diagrams, do not
take advantage of possible visual
richness and variety. If the visual
vocabulary is expanded to include
different line weights and types,
colors, symbols and even three
dimensions, flow charts could contain
more information with more relationships
between pieces of information. A few
suggestions of an expanded usual
vocabulary are listed here. Animation is
a pwerful tool; for example, the speed
of an event can sometimes be more
informative than its shape or color.

SYMBOL SETS WITH
CHANGING FEATURES

SIS

COLOR Test Fum Priowd in Colmn

DY
¥Yere

GRAY SCALE

WIDTH

BROKEN/SOLID ~
C®DO

\/ ‘\D s O
EMPTY/FILLED

NUMEROSITY

........................'....:{.

~
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Program Visualization Project

The SIMS concept [B2] of zooming in on
an object to get a closer look at
details could be applied to flowcharts.,
A user could get an overall view of a
program, then use a joystick to zoom in
on a particular node or cluster of nodes
and have details appear, keeping no more
than a certain amount of complexity on

! the screen at any one time. Automatic
graphic adjustment could be made to
convert symbolism from one conceptual
level to another as the user zooms in
and out.
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Program Visualization Progéct

One way of incorporating some of these
elements into modified flowcharts is by
using three instead of two dimensiopns,
creating a flow construction. Code in
some form would be on one face, comments
on another, module history on another
and other information on yet another
(size, run-time, etc.). Background color
of the node would indicate function,
level of nesting or grouping. The
programmer could turn the nodes and move
through the three-dimensional flow
construction. The construction could be
enhanced by positioning related pieces
of information around the node. The

node's “"gravity" and orientation would
determine spacing and placement of the
related information. Global information
could be farther away from the node than
local information. The arrows connecting
nodes contain information passed to
them. The user could literally “get a
new view" of his/her program that had
never been seen before. This could help
in determining new relationships and
connections between parts of the
program.

i
printf( *filename:" ) ; N::\;';ﬁ'\\\
fname » getword() ; ® ,Qtp
iIf(fpi=D)
closs( fp ) ; -
fp = open( frname, 2 ) ;
if (fpc2) {
- L]
reinctltle v gonmts | ferm| | f10c0
do__menu ;
return ; |
”n
}
¥
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Visualizing C code, possibility 4 animation. The methods of showing
Data representation, variable maps and complex data representations, arrays of
constructions structures for instance, should clearly
show that one piece of information is a

Programmers often need to see part of another. Information about a
relationships between values of variable that could be a part of the
variables. A variable map coupled with a  display includes:

N program display provides a complete name
picture of the relationship of the type
process of the program with the value

- structure and content of the data. The space occupied
standard method of showing data is with address

boxes labelled with a variable name.
This can be enhanced with lineweights
and styles, colors, grey values and

free_l11ist[0]

i —

free list {:0]

free_11at[1]
i

free_11st [20]
L

free_list [2]

free_l1st (21}
| ]

free_list [99]
—
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Each variable box could be considered as
a window, with more information about
the variable available by scrolling.
Care should be taken to assure that the
data representation (variable names an
diagrams) be as clear as the data
structure (the more abstract and general
description).

Watching the values of variables change
as a program runs is a valuable key to
understanding the function and structure
of the program, as well as providing a
power ful debugging tool. The variable
map could be animated, like a digital

speedometer or gauge. It might be
valuable, however, to include a
graphical display of the change in the
variable's value to compare expected
results with actual results. Fitter [Fl]
mentions redundancy as a tool, that is,
showing the same information in
different forms simultaneously. Showing
variable values alphanumerically and
graphically is one application of this
technique.

blow-ur

varisble 1
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Program Visualization Project

The final portion of this section
consists of some images that have
bearing on this problem of program
visualization. These images come from
many sources; we include them with notes
on their appropriate features.
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Typical data flow diagram
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Typical HIPO hierarchy chart
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A
Typical structure chart
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SR N
Scan line, seen usually as a variety of
grey values, shown as a monoline graph

onesanlmc

time (mmdl)
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—
Graph with time as one axis and space as
the other, with windows on events. This
is an attempt to image a very large
system; the universe [Kl].
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Nodes and clusters of nodes, information
grouping. Example of color being used to
organize a complex network.
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Information network abstracted and ;
simplified for clarity :
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8. PROGRAM DESCRIPTION TECHNIQUES

Graphical representations for design and
implementation have been known to be of
great value in engineering and many other
tields. But many fields have an advantage
over programming in that they have what
could be called a “natural” graphical
representation. By “natural” it is meant
that the items of interest already have a
two-dimensional layout. For example, the
formalism of schematic diagrams for
electrical circuits just maintains the topol-
ogy of electrical circuit connections
without creating something new. Program-
ming languages lack a “natural” graphical
representation [FRE), WELLER and WILLI-
AMS).

Many techniques have been devised for graphically
describing the structure of programs. They range in
power of expression from the conventional flowchart to
powerful graphical programming systems. They have
varying degrees of appropriateness for today's pro-
gramming style.

This appendix is a brief survey of some of the better
known technigues for graphical program description.
The salient features of each method are compared in
an attempt to derive a minimal set of useful con-
structs. The description techniques surveyed are:

e Flowcharts

o Nassi-Shneiderman Diagrams

e HIPO charts

o GREENPRINTS

® PYGMALION

e Mini-LOGO animation system

o Micro-PL/1 animation system

e SP/k visualization system

e Sorting animation system

e CDEBUG graphical program debugger

B.1 Flowcharts

One of the earliest attempts at representing pro-
grams graphically is the flowchart. Flowcharts consist
of a collection of simple and easy-to-understand sym-
bols that represent primitive operations found in all
programming languages. Figure B.1 shows the basic
symbols of a flowchart. Not shown are symbols
representing various storage media and input/output

70 Process

oA R T

Decision

Figure B.1 Flowchart Symbols

devices. Flow of control is indicated by lines connect-
ing the flowchart symbols. Arrowheads indicate the
direction of the flow.

As can be seen in Figure B.1, flowcharts lack sym-
bols for explicitly representing loops, "blocks” of code
as found in structured programming languages, and
other high-level concepts. These must be assembied
from the primitives found in the flowchart repertoire.

B.1.1 Analysis

Flowcharts are used to represent the flow of control
in a program, a purpose for which they are adequately
suited. Flowcharts were developed in the days of
machine language programming. As a result, many of
the constructs found in flowcharts are uniquely suited
to machine and assembly language programs, but are
inadequate for programming in “high-order languages.”
Thus, it is not always easy to express some program-
ming language constructs using the basic flowchart
symbols. For example, there are no symbols to
represent looping or case statements. These must be
constructed from collections of the basic symbois.

Because of their nature, flowcharts cannot enforce
modular design in proyiams. No restrictions are
placed on transfer of control. This can lead to
flowcharts that are nearly illegible due to a dense
forest of control lines.

Flowcharts of even relatively simple programs can
grow to unmanageable sizes. Since mos® . onstructs
in high-level languages require several Sytnbols for
their expression, flowcharts quickly become crowded.
Oft-page connectors allow the tlowchart to be
expanded to other sheets of paper, but resuit in a
diagram that is difficult to comprehend in its entirety.
Clever programmers have grown adept at filling every

SWEAOBE
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B-2 PROGRAM DESCRIPTION TECHNIQUES

available square inch of a flowchart sheet in an
attempt to avoid resorting to multiple sheets. These
attempts, while economical of space, are very difficuit
to understand

Flowcharts satished a need that existed before the
advent of high-level languages. Programs often were
written with convoluted control flows to economize on
precious resources. They are of interest from a histori-
cal perspective, but are lacking in the qualities neces-
sary to expiess the “modern” style of structured pro-
gramming.

B.2 Nassi-Shneiderman Diagrams

Nassi-Shneiderman diagrams (NSD) are an attempt
to model computations using a controi structure amen-
able to implementation in structured languages [NASSI
and SHNEIDERMAN]. They feature simply ordered  Figure B.2 Process Symbol
structures, each representing a complete thought. NSD
prevent unrestricted transters of control, a hallmark of
structured programming.

. There are four basic symbols that can be combined
to form structures. Structures are labeled and are rec- Boolean
3 tangular in shape. The basic symbols provide a basis
for representing most operations, but the repertoire
can be extended to improve the readability of
‘ diagrams that use the more advanced constructs
1 : found in many programming languages.

ELSE THEN

1. The process symbol (Figure B2)—a Clause Clause
rectangle —is used to represent assignment
and inputioutput statements as well as pro-
cedure calls and returns.

2. The decision symbol (Figure 83) represents
the IF-THEN-ELSE construct found in most ]
structured programming languages. The cen- Figure B.3 Decision Symbol
tral triangle contains a Boolean expression.
The left-hand and right-hand triangles contain
T or F to represent the possible outcomes of
evaluating the Boolean. The process symbois
contain the sequence of operations to be per-
formed depending on the value of the
Boolean.

DO Clause

3. The iteration symbol (Figure B4) represents

looping statements, such as FOR and WHILE.
1 The body of the iteration is a structure. The
form ot the iteration clearly shows the scope Body
of the iteration. iterations may be nested to
any level.

. i 4. The BEGIN-END symbol (Figure BS) represents
a block of code in the programming language.
The scope of local definitions can be clearly
seen with this construct. The body of the
BEGIN-END is a structure. Figure B.4 Iteration Symbol
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Body

END

Figure B.5 BEGIN-END Symbol

B.2.1 Analysis

NSD are created from a flowchart language that has
a control structure similar to that found in languages
used for structured programming. [ts creators claim
the following advantages over conventional flowcharts:

1. The scope of iteration is well-defined and visi-
bie.

2. The scope of F-THEN-ELSE clauses is well-
defined and visible; moreover, the conditions
on process boxes embedded within com-
pound conditionais can be seen easily from
the diagram.

3. The scope of local and giobal variables is
immediately obvious.

4. Arbitrary transters of control are impossible.

5. Complete thought structures can and should
fit on no more that one page (i.e., no off-page
connectors).

6. Recursion has a trivial representation.
INASSI and SHNEIDERMAN]

The use of NSD enforces the use of structured pro-
gramming techniques. The absence of a way to
represent GOTOs effectively precludes their use. Pro-
grammers accustomed to structured programming find
no difficulty with its absence. Programmers accus-
tomed to using GOTOs easily adapt to their absence;
the graphical representation of the program aids in the
process of adaptation.

As there are no oft-page connectors, the program-
mer is forced to modularize the code. Large sections
ot code cannot be legibly inscribed in the structure
described on a single sheet of paper. This forces pro-
grammers to write small, logically coherent modules.

The structure of Nassi-Shneiderman diagrams
instantly reveals the structure of the code they
represent. Blocks are clearly delimited. The range of
loops can be seen clearly. “Parallel” blocks of code
(as in the different branches of a conditional) can be
discerned easily.

B.2.2 Programming Support System

Researchers at the 1BM Research Division in San
Jose have developed a system that interactively helps
the programmer construct and execute NSD. Their
goal is to build a programming system that will
increase the quality of all phases of software produc-
tion by:

1. Establishing charting techniques to specify
programs in a way that clearly shows their
structure and logic.

2. Using an interactive graphics system to draw
and edit these charts.

3. Providing a preprocessor/compiler mechanism
to translate charts into executable code.

Providing seif-documentation as a by-product
of the program development process.

5. Providing better, interactive diagnostics and
program development aids than is currently
the case.

[FREI, WELLER and WILLIAMS)

They have added data definition constructs to the
symbol repertoire of the NSD as well as the ability to
embed PL/1 statements in the symbols. Their Pro-
gramming Support System (PSS) consists of these
extensions to NSD and the following tools:

1. NSD editor
. NSD interpreter

2

3. NSD preprocessor/compiler

4. Question-answering component
5

. Utility routines

The user of PSS utilizes the NSD editc. to create NSD
that contain data definitions and embedded PL/1
statements. Each NSD defines an executable module
that may call other NSD and support routines. An NSD
typically is no more than one display screenful in size.

The NSD editor allows the user to point to any por-
tion of an NSD and insert or delete symbols. When a
new NSD is created, it is empty; the user fills in the
structure with symbols from the NSD repertoire. PL/1
code, such as assignment statements and Boolean
expressions, are embedded in the symbols. The
system automatically adjusts the display when new
symbols are inserted or deleted.

i
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Once an NSD has been created, it may be compiled
into machine-executable form or interpreted. Partially
created NSD may be interpreted; when a portion of the
NSD is encountered that has not been specitied, the
user may complete the specification. When an NSD is
being interpreted, execution may be in a single-step
rnde. The user may also set breakpoints and exam-
..+ and change variables. In this mode, the PSS acts
as a powerful graphical debugger. Initial response to
the Programming Support System has been favorable.
The authors of PSS have found that specitying a pro-
gram as a two-dimensional structure exhibits the
meaning of a program more clearly and results in
better coding, improved programming productivity and
higher quality documentation thus reducing the time
and effort (cost) for production and maintenance of
software [FREI, WELLER and WILLIAMS].

The PSS system is not being actively developed at
this time. However, it has been integrated into another
system — TELL —for the design of hardware/software
systems. In that system, NSD are being used to
develop algorithms as a part of software design.

8.3 HIPO Charts

The HIPO (Hierarchy plus Input-Process-Output)
technique ([STAY], [HIPO}) is a top-down design metho-
dology for software systems. During the design phase
of a software project, HIPO charts are used to succes-
sively refine the design until the basic components
and their fun ions are elucidated.

The HIPO technique consists of two basic com-
ponents (shown in Figure B6). They are:

1. Hierarchy chart: shows how each function is
divided into subfunctions.

2. Input-Process-Output charts: express each
function in the hierarchy in terms of its input
and output.

When developing the HIPO charts for a software pro-
ject, it is essential that the hierarchy and input-
process-output charts be developed concurrently. This
creates a functional breakdown of the design.

The process of creating HIPO charts for a software
project consists of two simple steps that are iterated
until the design is completely specified. Those steps
are:

1. Describe the function as a series of steps, in
terms of their inputs and outputs.

2. Move to the next level of the hierarchy. If the
steps in the input-process-output chart are not
fully defined, create @ new level in the hierar-
chy in which each $tp % a box.

1.0

2.0 3.0 4.0

4.1 4.2

Input Process Output

1.
2, -5
3.

o

Figure B.6 HIPO Components

These steps are repeated until every function is fully
defined. The bottom-most boxes in the hierarchy will
probably contain structured English (pseudo-code)
statements that describe their function.

B.3.1 Analysis

A set of HIPO charts created in the manner
described above will contain a complete description of
the components and their interfaces that will consti-
tute the system being designed. Application of func-
tional design techniques [STAY] will further result in a
logical grouping of components into modules and
processes.

HIPO charts serve a dual purpose. They aid in creat-
ing a rational and fully specified design for a software
system that can be used by the implementors of the
system. They aiso serve as final programming docu-
mentation for use by the maintainers when the project
is complete.

HIPO charts provide a modular description of a
software system. Functions are decomposed into sub-
functions until basic primitives are defined. The inter-
faces to these functions are fully defined. HIPO charts
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can be thought of as maps of a software system; each
level of the hierarchy provides a more detailed view of
a part of the system.

HIPO charts do not descend to the level of code.
Instead, they specify the function of the code and its
interface to the outside world. From the program visu-
alization viewpoint, they are useful as guidelines to the
maintainer (debugger) for where to look in the code to
find a particutar functioh,

8.4 GREENPRINTS

GREENPRINTs [BELADY, CAVANAGH and EVANGELISTI]
are intended to be to a programmer what blueprints
are to an engineer. The GREENPRINT can convey to the
programmer the text of a program as well as its con-
trol flow. The name GREENPRINT derives from initial
implementations on CRTs with green phosphor.

GREENPRINTs consist of two types of objects: the
block and the box. Programs are represented by
means of objects connected and arranged over a
two-dimensional virtual grid.

There are two types of blocks in GREENPRINTS: deci-
sion and loop blocks (see Figure B.7).* Decision blocks
represent IF-THEN-ELSE and CASE statements. Loop
blocks represent DO, FOR, and WHILE statements.

There are two types of boxes in GREENPRINTS: gate
and processor boxes (see Figure B7). Gate boxes are
always embedded in either a decision block or a loop
block. Processor boxes stand alone.

The GREENPRINT representation of a program is a
tree where blocks and processor boxes are nodes with
entry at the top and exit on the bottom or on the right.
Gate boxes originate subtrees in the next column to
the right (see Figure B8).

A processor box can be thought of as containing a
collection of code that is executed sequentially. A
gate box contains a predicate that can control a deci-
sion block or a loop block. Source code may be
displayed to the right of each box in a GREENPRINT.
GREENPRINTs are configured so that there is only one
box in each row, and that box is the right-most object
in that row. This spatial arrangement allows the right
contour of a GREENPRINT to mifror the left contour of
the indented source code. Figure B9 shows an exam-
ple of an annotated GREENPRINT.

The decomposition of each block in a GREENPRINT
is found in the column immediately to the right of the
start of the block. Processor boxes are always in the
right-most column of a row and, hence, are not
obscured. Gate boxes, containing predicates, are
immediately apparent by the right angle extending
from them.

4 Note thet all figures in this section are duplicated from
IBELADY, CAVANAGH and EVANGELISTI).

BLOCKS WITHOUT GATES

Decision (D) Loop (L)
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BOXES
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] ]
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o mm—— + b + H

Figure B.7 GREENPRINT Example

B.4.1 Analysis

GREENPRINTS can be used in every phase of the
development/maintenance process of software. An
overview of the software system may be seen during
the design phase by suppressing detail. Ouring
development, programming logic may be displayed.
Program text can then be added to complete the
specification. The resulting GREENPRINTS may be used
by those maintaining the system.

GREENPRINTs were developed to serve two needs.
The first is to create graphical representations of exist-
ing programs for use by the programs’ maintainers. A
program was written which parses the source code
and creates the corresponding GREENPRINT represen-
tation.

The second need served by GREENPRINTS ig that of
a design tool. Program designers can start with
schematic diagrams that indicate basic flow of control.
As the design is refined, processor and gate boxes
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representing unspecified actions can be “filled in" with
program text. The result is an executable program.

GREENPRINTS graphically show the nesting of a pro-
gram and the decomposition of blocks into subcom-
ponents. They represent an attempt to graphicaily por-
tray the two-dimensional structure of structured pro-
grams in an intuitive way.

GREENPRINTS are being used internally within many
labs at the 1IBM Thomas J. Watson Research Center.
Their use is spreading to other labs as people become
aware of their existence. The authors of GREENPRINT
are exploring additional notations for representing con-
structs such as procedure calls and returns.

8.5 PYGMALION

PYGMALION [SMITH] is a two-dimensional visual pro-
gramming system developed by David Canfield Smith
at the Stanford Artiticial Intelligence Laboratory. It
differs from the other techniques described thus far
because the user writes programs using only graphical
constructs to represent operations and data. There is
no notion of embedded program text in graphical
representations of program control structures.

The user shows the system how to perform a com-
putation by explicitly going through the steps. The
machine may remember the sequence of steps that
the user executes and reproduce them at a later time.
In this respect, programming in PYGMALION is similar
to programming a hand-held calculator.

The PYGMALION user employs a computer graphics
display (raster or stroke), a pointing device, and a key-
board. The display shows a menu of predefined sys-
tem functions and a farge work area. The user mani-
pulates icons that represent data and primitive opera-
tions to create graphical depictions of the intended
operation and its operands. The user is free to create
icons that are meaningful to him. Every operation the
user performs has not only internal semantics, but also
visual semantics. Thus, every operation affects the
display.

Programming in PYGMALION consists of creating a
sequence of display frames, the last ot which contains
the desired result. While the sequence is being
created or replayed, the user may see the effect of
each operation on the data and program state. Smith
very emphatically states the distinction between PYG-
MALION and graphical programming languages:

| want to emphasize that PYGMALION is not a graphical
programming language in the traditional sense.
Graphical programming languages have all attempted
to tind two-dimensional ways to tell programs what to
do. This inherently involves the manipulation of formal
representation of data. PYGMALION has no representa-
tion for telling a program anything; PYGMALION is an
environment for doing computations. If the system

happens to remember what is done, then a program is
constructed as a side etfect. But the goal of the pro-
grammer is to do a computation once. This is helpful
tor understanding in any case; a good way 1o under-
stand a complicated algorithm in any language is to
work through it with representative values. Instead of
using the medium of paper or bilackboard, the
PYGMALION programmer uses the display screen
{SMITH, p. 701.

8.5.1 Analysis
The main innovations of the PYGMALION system are:

1. A dynamic representation for programs-—an
emphasis on doing rather than telling.

2. An iconic representation for parameters and
data structures requiring fewer translations
from mental representations.

3. A remembering” editor for icons.

4. Descriptions in terms of the concrete, which
PYGMALION turns into the abstract.

Of these innovations, perhaps the most significant is
the iconic representation of data and operations. By
allowing the user o create representations that are
meaningful to him and that require little effort to
translate from mental representations, PYGMALION
relieves the user from the distracting process of map-
ping mental constructs into programming constructs.
It is too often the case in programming that the forest
is lost for the trees. The programmer becomes so
involved with the myriad details of implementation that
he loses sight of the original intent.

PYGMALION is by no means a system for producing
production versions of programs. In fact, it would be
quite difficult to represent a large system in PYG-
MALION. its importance lies in its ability to allow a pro-
grammer to visualize algosithms that will be used in
the production version. PYGMALION allows the pro-
grammer to gain confidence in an algorithm by watch-
ing it in all stages of execution and under diverse cir-
cumstances.

8.6 The Mini-LOGO Animation System

The mini-LOGO animation system produces a
dynamic display of flow of control in the context of a
display of program text. The mini1 OGO animating
interpreter accepts a LOGO command, a set of LOGO
procedures, and a set of illustration specifications. It
produces an animation sequence that depicts the exe-
cution of the command and the called procedures. It
shows the execution of the initial command, followed
by the execution of every statement in every called
procedure in the order in which each is encountered.
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All procedure statements are displayed surrounded by
the code of that procedure.

The user specifies the subject by designating a
LOGO command to be illustrated. The system gives
the user no control over the composition, the events to
be visualized, or the context, for they are “hard-wired.”
The user can exercise minimal control over the sym-
bolism by specifying the visual transformations used
to map one program “state” into another program
state. The user has much control over the
dynamics —the speed with which these transforma-
tions take place.

The mini-LOGO system is highly specialized towards
the pedagogical display ot small, recursive LOGO pro-
cedures. It i1s of little long-term use. It does suggest
how hard it may be to develop cognitively meaningtul
displays that are effective for a wide variety of pro-
gramming concepts.

8.7 The Micro-PL/1 Animation System

The micro-PL/1 animation system produces a
dynamic display of program data. The micro-PLN
animating compiler-interpreter accepts a program in a
subset of PL/1, augmented with a set of pseudo-
comments that appear at the beginning of the program
text and at key locations within it. The pseudo-
comments control the production of an animation
sequence that shows how scircted variables evolve
over time.

The user specifies the subject by des.nating the
variables that are to appear in the illustrativns. Sym-
bolism is specified by selecting parameterized icons
from an image flibrary. Composition is specified by the
user in great detail through the use of the expression
writing tools of the host language. Events are dep-
icted whenever a Selected variable changes value or
whenever a pseudo-comment embedded in the code
is "executed.” The user has adequate control over
dynamics. All illustrations are independent; no context
is provided.

The micro-PL/1 system is useful pedagogically in
dealing with small micro-PL/1 programs. it has tivee
major conceptual weaknesses:

1. It produces illustrations of data only.

2. It forces the user to modify extensively the
program that is to be ifiustrated.

3. It forces him to work with great precision and
in great detail to produce even simple visuali-
zations.

8.8 The SPX Visualization System

The SP/X visualization system produces illustrations
that consist of neatly formatted, automatically

paragraphed program text interspersed with pictorial
representations, or snapshots, of the program’'s data.
The system consists of a preprocessor that reads an
SP/k program and an “illustration specification.” it
expands the program with statements and new vari-
ables to keep track of the program's execution and to
produce graphic output. Execution of the expanded
program then produces the text and the interspersed
snapshots. Each snapshot refiects the state of the
data during a particular execution of the immediately
preceding program code.

The user specifies the subject of the itlustration by
naming a flowgroup-execution, which is one iteration
of a particular ioop or one execution of a procedure.
He also names the variables that he wants to appear
in the snapshot. Symbolism is primarily determined by
the system, although the user can request particular
labeling of arrays and subsets of arrays. The system
determines the composition, selects the events
automatically, and controls the juxtaposition of
displayed text to displayed data. Because the imple-
mentation was done in a batch processing environ-
ment, there are no dynamics to control and no contex-
tual possibilities other than those already described.

Yarwood's thesis, within which this system was
developed, represents one of the most thoughttul
investigations in the area of program visualization car-
ried out to date. However, the concepts need fo be
extended {0 an interactive environment. Also, the
approach must be applied to a far greater subset of
modern language features than the fixed scalars and
single-dimensional vectors of the original impiementa-
tion.

B9 The Sorting Animation System

The sorting animation system produces a dynamic
display of data being generated by a fixed set of sort-
ing algorithms. The system consists of a set of pro-
grams that accepts a file of unsorted data and certain
run-time parameters. It then produces an animation
sequence that shows the data being sorted.

The user specifies the subject of the illustration by
providing the file of input data. The symbolism, the
composition, and the events are “hard-wired,” with the
exception of a few minor details such as the choice ot
color. The user has a great deal of fiexibility in the
specification of dynamics. The system provides no
capabilities for context.

This system consists of a small sat of highly spe-
cialized programs written to make a 30 minute teach-
ing film on & set of sorting aigorithms. 1t has taught us
a number of lessons about program visualization:

1. How effective symbolism depends upon the
size of the subject, the scale of its image
within the total composition, and the context
within which the image is displayed.
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2. How powerful and flexible the control over
dynamics needs to be to produce meaningful
animation sequences.

3. How much insight can be gained from simply
viewing the data it the illustrations are
designed carefully.

8.10 CDEBUG

The CDEBUG system produces a sequence of
snapshots of program data and a tiny amount of flow
of control in the context of a display of program text.
The system consists of a run-time debugging environ-
ment that accepts a C program in source language,
the object module produced by a suitably modified C
compiler, and a debugging script. Execution of the
program then produces a display of program text and
a set of snapshots. Each snapshot reflects the state of
the data during a particular execution of the immedi-
ately preceding program code.

The user specifies the subject of the illustration by
naming the variables he wants to appear in the
snapshot. Symbolism is determined by the system. It
consists of a linear display of the contents of reievant
machine locations expressed in a source language
notation. Composition is also determined by the sys-
tem. The user controls the events at which snapshots
are produced by setting breakpoints. There is no
capability for animation, so there are no dynamics.
The user has some control over context. He can
decide how much of the screen is to be allocated to
program text and how much is to be used for program
data, and he can review previous snapshots that have
been saved on a stack.

Crossey's debugging system provides a foundation
upon which one could base future experiments in pro-
gram visualization. Her system provides a rich set of
source language probes for interrogating the state of a

C program. It remains for us to turn the outpui of
these probes into meaningful visualizations.

B8.11 Summary

The program description techniques surveyed in this
document can be divided into two categories: those
that describe programs by flow of control, and those
that describe programs by flow of data. HIPO charts
fall into the latter category, while conventional
flowcharts, NSD, and GREENPRINTS fall into the former
category. PYGMALION fits neatly in neither category,
and cannot be considered a program description tech-
nique; it is a programming technique itself.

Of those techniques which describe the flow of con-
trol in programs, only NSD and GREENPRINTS present
an accurate view of the structure of the program.
Flowcharts do not reflect the structure of the program
they are intended to model; they lack the appropriate
constructs to do so.

The power of NSD and GREENPRINTS lie in their abil-
ity to graphically represent the structure of programs
in a compact and obvious manner. A person examin-
ing one of these diagrams can easily discern the
structure of the source code and quickly map the
graphical constructs back into the source code. This
is a crucial factor in the effectiveness of a program
description technique.

Both NSD and GREENPRINTS are easy to learn. In
fact, littie effort is required once the basic repertoire of
symbols is mastered. Also, they can be generated
automatically from existing program text. This is

important in the program visualization context; these
techniques are adaptable to existing software. Furth-
ermore, design systems can be built which use these
techniques to create new software that satisfies high
standards of program structure and documentation.
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