<table>
<thead>
<tr>
<th>REPORT DOCUMENTATION PAGE</th>
<th>READ INSTRUCTIONS BEFORE COMPLETING FORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. REPORT NUMBER</td>
<td>4. TITLE (and Subtitle)</td>
</tr>
<tr>
<td>17636.11-M</td>
<td>A Dominant-Data Matching Method for Digital Control Systems Modeling and Design</td>
</tr>
<tr>
<td>2. DECISION NUMBER</td>
<td>5. TYPE OF REPORT & PERIOD COVERED</td>
</tr>
<tr>
<td>AD-A 117 294</td>
<td>Reprint</td>
</tr>
<tr>
<td>3. RECIPIENT'S CATALOG NUMBER</td>
<td>6. PERFORMING ORG. REPORT NUMBER</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>7. AUTHOR(s)</td>
<td>8. CONTRACT OR GRANT NUMBER(s)</td>
</tr>
<tr>
<td>L. S. Shieh, Y. F. Chang, R. E. Yates</td>
<td>DAAG29 80 K 0077</td>
</tr>
<tr>
<td>10. PERFORMING ORGANIZATION NAME AND ADDRESS</td>
<td>12. REPORT DATE</td>
</tr>
<tr>
<td>University of Houston</td>
<td>Nov 81</td>
</tr>
<tr>
<td>Houston, TX 77004</td>
<td>13. NUMBER OF PAGES</td>
</tr>
<tr>
<td>11. CONTROLLING OFFICE NAME AND ADDRESS</td>
<td>7</td>
</tr>
<tr>
<td>U. S. Army Research Office</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 12211</td>
<td></td>
</tr>
<tr>
<td>Research Triangle Park, NC 27709</td>
<td></td>
</tr>
<tr>
<td>14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)</td>
<td>15. SECURITY CLASS. (of this report)</td>
</tr>
<tr>
<td></td>
<td>Unclassified</td>
</tr>
<tr>
<td>16. DISTRIBUTION STATEMENT (of this Report)</td>
<td>18a. DECLASSIFICATION/DOWNGRADING SCHEDULE</td>
</tr>
<tr>
<td>Submitted for announcement only.</td>
<td></td>
</tr>
<tr>
<td>17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)</td>
<td></td>
</tr>
<tr>
<td>18. SUPPLEMENTARY NOTES</td>
<td></td>
</tr>
<tr>
<td>19. KEY WORDS (Continue on reverse side if necessary and identify by block number)</td>
<td></td>
</tr>
<tr>
<td>20. ABSTRACT (Continue on reverse side if necessary and identify by block number)</td>
<td></td>
</tr>
</tbody>
</table>
A Dominant-Data Matching Method for Digital Control Systems Modeling and Design

L. S. SHIEH, Y. F. CHANG, AND R. E. YATES

Abstract—A dominant-data matching method is presented for obtaining a reduced-order pulse-transfer function from either a high-order continuous-data transfer function or a high-order pulse-transfer function, and for identifying the pulse-transfer function of a system from available experimental time and frequency response data. The method may also be applied to the digital control systems design problem with various sampling periods.

I. INTRODUCTION

Most practical industrial circuits and control systems are continuous-time systems for which analog filters and controllers are employed to improve performance. The recent availability of high-performance low-cost microprocessors and associated electronics has led to replacement of many continuous systems with system employing digital filters and controllers. Many techniques have been developed for digital control systems design [1]–[4]. Among them the ω-domain bilinear transformation is often applied to design industrial digital controllers. However, this method is graphical and involves “cut-and-try” procedures. Recently, Kuo [5] and others developed an optimal discrete-time data matching method for the redesign of a continuous-data system. Constant controllers instead of dynamic digital controllers are mainly employed in these designs. As a result, good performances of redesigned systems can be achieved if the frequency of the input signal is sufficiently lower than the sampling frequency. As an alternate to Kuo’s time-domain approach, Rattan and Yeh [6] have given an elegant frequency-domain method for the redesign of continuous-data systems. The method of weighted least squares complex-curve fitting due to Levy [7] and Sanathanan and Koerner [8] has been successfully extended in the z-domain to determine a dynamic digital controller. As a result of these efforts, better performance of redesigned systems can be achieved. In this correspondence, a computer-aided method is proposed for matching the dominant data of a high-order continuous-data system, or a discrete-data system, with the dominant response of a low-order digital system replacement. Also, methods are given for system identification and digital controller design of these systems.

II. DOMINANT-DATA MATCHING METHOD

The characteristics of a control system or a filter are often expressed by either a time-response curve, or a frequency-response curve or a set of poles and zeros in the complex plane, or both. The quantitative description of transient behavior is represented by its time-domain control specification [9] (for example, the percentage overshoot and the rise time) and by the frequency-domain control specifications (for example, the maximum value of the closed-loop frequency response and the bandwidth). These specifications which are defined for analog control systems [9] can be considered as specifications of digital control systems. This is because a digital control system can be viewed as a continuous-data system in the frequency domain when \(z = e^{j\omega T} \) where \(T \) is a sampling period.

Some empirical observations or rules of thumb due to Axelby [10] and Truxal [11] that link the specifications of the continuous-data systems in both the time and frequency domains can be found in [10], [11].

Recently Shieh et al. [12] have studied the relationships between the complex-domain specifications (the damping ratio and the undamped natural angular frequency) and the time-domain and frequency-domain specifications. Based on the results [12], the time and complex-domain control specifications can be converted into the equivalent frequency-domain specifications and vice versa. These control specifications are used as dominant data of a continuous or discrete-data control system.

Our new dominant-data matching method matches the dominant data of a continuous-data or a discrete-data system to those of the newly designed or modeled discrete-data system. The steps involved are as follows:

Step 1: Determine a set of dominant frequency-response data from the assigned or obtained time-domain and complex-domain specifications by using the rules and results in [10]–[12].

Step 2: Assume a fixed configuration digital system and controllers with unknown constants. Determine the open-loop and the overall pulse-transfer function of the system.

Step 3: Formulate a set of linear/nonlinear equations by matching the unknown constants of the pulse-transfer function and the assigned dominant data. Solve the equations by using the multidimensional Newton-Raphson method [13], available as a library computer program package (called the Z system) in many digital computers [14].

Step 4: Estimate initial value for the numerical solution of the Newton-Raphson method by constructing a crude pulse-transfer function which can be obtained by a complex-curve fitting method.

Step 5: Compare the results with the assigned specifications.
III. MODELING A REDUCED-ORDER PULSE-TRANSFER FUNCTION

We use a real stabilized pitch control system of a semiactive terminal homing missile [15] as an illustrative model to show that the characteristics of the transient-state response of a system can be estimated from the dominant frequency-response data and the applications of the proposed method to the identification and model reduction problems. A block diagram of the missile system is shown in Fig. 1. The closed-loop high-order transfer function is

\[
\frac{Y(s)}{R(s)} = \frac{G_c(s)G_o(s)}{1 + G_c(s)G_o(s)H_g(s)} = \frac{G_c(s)}{1 + G_c(s)} \triangleq T_c(s) \tag{1a}
\]

where

\[
G_c(s) = \text{stabilization filter}
\]

\[
G_c(s) = \frac{1.6 \left(\frac{s}{25} + 1 \right) \left(\frac{s}{125} + 1 \right)}{\left(\frac{s}{150} \right)^2 + \frac{0.6}{150} s + 1} \left(\frac{s}{200} \right)^2 + \frac{0.8}{200} s + 1
\]

\[G_o(s) = \text{transfer function of the actuator and aerodynamics of the missile system}
\]

\[
G_o(s) = \frac{324332.316(s + 0.1933)(s + 65)(s + 1500)}{s(s - 2.921)(s + 3.175)(s + 87.9 \pm 95.5)(s + 112.5)(s + 1385)} \tag{1c}
\]

\[H_g(s) = \text{transfer function of the gyro} = 1 \tag{1d}
\]

\[G_c(s) \triangleq G_c(s)G_o(s) = \text{unstable open-loop transfer function of the existing stabilized system.} \tag{1e}
\]

The Nyquist plots of \(G_c(s)\) and \(G_o(s)\) are shown in Fig. 2. The dominant data of \(G_c(s)\) are:

1) Real and imaginary parts of \(G_c(s)\) at \(s = j\omega = j0\) are

\[\text{Re} \left[G_c(0) \right] = -2.103817
\]

\[\text{Im} \left[G_c(0) \right] = \infty. \tag{2a}
\]
2) Gain margin G_{em} of this system $G_{c}(j\omega_{p})$ is

$$G_{em} = \frac{1}{G_{c}(j\omega_{p})} = \frac{1}{\text{Re} \left[G_{c}(j\omega_{p}) \right]} \approx -1.5$$

(2b)

where the phase-cross-over frequency ω_{c} is given by

$$\omega_{c} = 1.9 \text{ rad/s}, \text{ such that } LG_{c}(j\omega_{c}) = -180^\circ.$$

(2c)

The equivalent real and imaginary parts of $G_{c}(j\omega_{p})$ at $\omega_{p} = 1.9 \text{ rad/s}$ are

$$\text{Re} \left[G_{c}(j\omega_{p}) \right] = -1.507944$$

(2d)

$$\text{Im} \left[G_{c}(j\omega_{p}) \right] = -0.096490205.$$

(2e)

3) Phase margin ϕ_{em} of the system $G_{c}(j\omega)$ is

$$\phi_{em} = 180^\circ + LG_{c}(j\omega_{c}) \approx 5.7787^\circ$$

(2f)

where the gain-cross-over frequency ω_{c} is given by $\omega_{c} \approx 3.2 \text{ rad/s}$ so that

$$|G_{c}(j\omega_{c})| = 1.$$

(2g)

Equivalent real and imaginary parts of $G_{c}(j\omega_{c})$ are

$$\text{Re} \left[G_{c}(j\omega_{c}) \right] = -0.9939143$$

(2h)

$$\text{Im} \left[G_{c}(j\omega_{c}) \right] = -0.09547478.$$

(2i)

It is required to determine a reduced-order pulse-transfer function such that the characteristics of the identified discrete-data model agree as closely as possible with those of the high-order continuous-data system.

Let the required overall pulse-transfer function be

$$T_{r}(z) = \frac{G_{r}(z)}{1 + G_{c}(z)}$$

(3a)

$$G_{r}(u_{k}, v_{k}) = \frac{x_{0}u_{k}^{2} - x_{0}v_{k}^{2} + x_{1}u_{k} + x_{2}}{(u_{k} - 1)(u_{k}^{2} - v_{k}) + (2x_{0}u_{k}v_{k} + x_{1}u_{k}) + (u_{k} - 1)(2u_{k}v_{k} + y_{1}u_{k}) + \nu_{k}(u_{k}^{2} - v_{k}^{2} + y_{1}u_{k} + y_{2})} = R_{k} + jI_{k}$$

(6b)

where the open-loop pulse-transfer function $G_{r}(z)$ is

$$G_{r}(z) = \frac{x_{0}z^{2} + x_{1}z^{2} + x_{2}}{(z - 1)(y_{0}z^{2} + y_{1}z^{2} + \nu_{k}(y_{1}z^{2} + y_{2}))}$$

(3b)

$G_{r}(z)$ is assigned to be a type "1" system because $G_{c}(z)$ in (1e) is a type "1" system. To match the five dominant data in (2) we choose $q = 2, p = 2$, and $y_{0} = 1$. Thus $G_{r}(z)$ becomes

$$G_{r}(z) = \frac{x_{0}u_{k}^{2} - x_{0}v_{k}^{2} + x_{1}u_{k} + x_{2}}{(z - 1)(y_{0}z^{2} + y_{1}z^{2} + y_{2})}$$

(4)

where x_{1} and y_{1} in (4) are unknown constants to be determined. The goal is to determine the unknown constants x_{1} and y_{1} in $G_{r}(z)$ so that $G_{r}(z)$ as $z = e^{j\omega_{p}T}$ matches the dominant data in (2). The sampling period $T = 0.008 \text{ s}$ and $\omega_{p} = 250 \text{ rad/s}$ are chosen to be synchronized with the 125-Hz pulse-width modulated actuator [16]. Since $G_{c}(z)$ and $G_{r}(z)$ are type "1" systems and we need to match the dominant data of $G_{c}(z)$ as $\omega = 0$ in (2a) and the dominant data of $G_{r}(z)$ as $\omega = 0$ or $z = e^{j\omega_{p}T} = 1$ in (3b) or (4), the expression for $G_{r}(z)$ in (3b) is modified as follows:

Substituting $z = z^{*} + 1$ into (3b) yields

$$G_{r}(z^{*}) = \frac{x_{0}^{*} + x_{1}^{*}z^{*} + \cdots + x_{0}^{*}z^{*p}}{z^{*}(y_{0}^{*} + y_{1}^{*}z^{*} + \cdots + y_{0}^{*}z^{*p})}$$

(5a)

Equating the respective real and imaginary parts of

$$G_{r}(z^{*}) = \text{Re} \left[G_{r}(z^{*}) \right] = \text{Im} \left[G_{r}(z^{*}) \right] = 0$$

(5b)

and

$$\text{Re} \left[G_{r}(z^{*}) \right] = \text{Im} \left[G_{r}(z^{*}) \right] = \infty.$$

(5c)

Equations (5b) and (5c) imply that ϵ_{0} in (5b) is the asymptotic line of the type "11" systems at low frequencies.

In the frequency domain, (4) can be expressed in an alternative form as follows:

Let us define

$$z = e^{j\omega_{k}T} = \cos \omega_{k}T + j \sin \omega_{k}T u_{k} + j v_{k}$$

(6a)

and substituting $z = u_{k} + j v_{k}$ into (4), we have

$$f(x_{0}, x_{1}, y_{1}, y_{2}) = (x_{0}u_{k}^{2} - x_{0}v_{k}^{2} + x_{1}u_{k} + x_{2})$$

(6c)

where ω_{k} are specific frequencies and $R_{k} \oplus \text{Re} \left[G_{r}(u_{k}, v_{k}) \right]$, $I_{k} \oplus \text{Im} \left[G_{r}(u_{k}, v_{k}) \right]$. If R_{k} and I_{k} are the known or assigned values at frequencies ω_{k}, we can obtain two linear equations. First, we multiply both sides of (6b) by the common denominator, then we separate the real and imaginary parts and then equate the respective real and imaginary parts. Thus we have

$$f(x_{0}, x_{1}, x_{2}, y_{1}, y_{2}) = (x_{0}u_{k}^{2} - x_{0}v_{k}^{2} + x_{1}u_{k} + x_{2})$$

(6a)

where ω_{k} are specific frequencies and $R_{k} \oplus \text{Re} \left[G_{r}(u_{k}, v_{k}) \right]$, $I_{k} \oplus \text{Im} \left[G_{r}(u_{k}, v_{k}) \right]$. If R_{k} and I_{k} are the known or assigned values at frequencies ω_{k}, we can obtain two linear equations. First, we multiply both sides of (6b) by the common denominator, then we separate the real and imaginary parts and then equate the respective real and imaginary parts. Thus we have
The pulse-transfer function is formulated as a set of linear equations and four nonlinear equations:

\[f_{i+1}(x_i, y_i) = 0, \]

\[f(x_0, x_1, y_1, y_2) = (2x_0u_k + x_1u_k) - R_k(u_k - 1)(2u_k + y_1 + y_k) + u_k(u_k - u_k^2) + y_1u_k + y_k) - f_k(u_k - u_k^2) + y_1 + y_k - u_k(2u_k + y_1 + y_k)] = 0. \]

(6d)

Using the expressions in (5b), (6c), and (6d) and the assigned dominant data in (1), (2d), (2e), (2h), and (2i), we can formulate one nonlinear equation and four linear equations:

The Newton-Raphson method was applied as a library computer program for most digital computers [14] to solve these nonlinear equations. However, as is well known, the Newton-Raphson method will converge to a desired solution for a small range of starting values or initial solution estimates. To improve the convergence and to obtain the set of desired solutions, we offer the following method for initial estimates.

Since \(f_i(x_i, y_i) = 0 \) is nonlinear and \(f(x_i, y_i) = 0 \), we linearize \(f_i(x_i, y_i) = 0 \) by choosing a very low frequency. For example, if we choose \(\omega_k = 0.01 \) and \(\omega_{0.01} \), then \(R_k \approx R_{0.01} = -2.1, I_k = I_{0.01} = 0.173 \), or \(u_k = u_{0.01} \). Using these values as initial estimates for the solutions of \(f_i(x_i, y_i) = 0 \) and using the Newton-Raphson method we obtain the exact solution \(x_i \) and \(y_i \) at the second iteration with error tolerance of \(10^{-6} \). The desired open-loop pulse-transfer function is:

\[G(z) = 0.006792596z^2 - 0.012335992z + 0.0055453114 \]

\[z^3 - 2.9975412z^2 + 2.9964864z - 0.0079452 \]

(7)

A Nyquist plot of \(G(z) \) is shown in Fig. 2. The plot matches closely that of \(G(z) \) not only at the dominant frequencies, but also at others. The \(G(z) \) is seen to be a good reduced-order digital model of the original 11th-order unstable analog system \(G(z) \). This is the contribution of our new method because there are no known effective continuous-discrete model conversion and model reduction methods for unstable systems. The resulting closed-loop pulse-transfer function which is the reduced-order discrete-data model of the original high-order continuous data system is:

\[T_c(z) = \frac{G(z)}{1 + G(z)} \]

\[= \frac{0.006792596z^2 - 0.012335992z + 0.0055453114}{z^3 - 2.9975412z^2 + 2.9964864z - 0.0079452} \]

(8)

Since the assigned dominant data are the steady-state frequency response, it is interesting to compare responses of the 11th-order continuous function \(T_c(z) \) in (1a) and the 3rd-order discrete function \(T_c(z) \) in (8) shown in Fig. 3. Observe that the transient response and steady-state response of the reduced-order model \(T_c(z) \) are excellent matches of the original high-order system. This indicates that the dynamic characteristics of the system (for example, peak value time and overshoot) may not occur at the sampling time but also at the dominant frequencies, which may not occur at the sampling time. The results of the gain-cross-over frequency and the phase margin are not shown at the sampling time. The characteristics of the system are well known.

To determine the initial estimates \(x_i \) and \(y_i \), a general formulation of a set of linear equations can be constructed from the following complex-curve fitting method.

Consider the pulse-transfer function:

\[G(z) = \frac{x_0z^m + x_1z^{m-1} + \cdots + x_m}{z^n + y_nz^{n-1} + \cdots + y_n} \]

(9a)
where \(y_0^* = 1 \) and \(x_i^* \) and \(y_j^* \) are unknown constants to be determined. Substituting \(z^* = e^{j \omega_k T} = \cos \omega_k T + j \sin \omega_k T \) into (9a) gives
\[
G(e^{j \omega_k T}) = \frac{\sum_{n=0}^{m} x_i^* \cos (n-1) \omega_k T + j \sum_{n=0}^{m} y_j^* \sin (n-1) \omega_k T}{\sum_{n=0}^{m} y_j^* \cos (n-1) \omega_k T + j \sum_{n=0}^{m} y_j^* \sin (n-1) \omega_k T} = R(\omega_k) + jI(\omega_k) = R_k + jI_k
\]
where \(R_k \) and \(I_k \) are the real and imaginary parts of the transfer function at the experimental frequencies or the assigned frequencies \(\omega_k \). After multiplying both sides of (9b) by the common denominator and separating the real and imaginary parts, we equate the respective real and imaginary parts. This yields the following matrix equation:
\[
\begin{bmatrix}
\cos m\omega_1 T \cos (m-1)\omega_1 T & 1 & (-R_1 \cos \omega_1 T + I_1 \sin \omega_1 T) & \cdots & (-R_1 \cos \omega_1 T + I_1 \sin \omega_1 T) \\
\sin m\omega_1 T \sin (m-1)\omega_1 T & 0 & (-R_1 \sin \omega_1 T - I_1 \cos \omega_1 T) & \cdots & (-R_1 \sin \omega_1 T - I_1 \cos \omega_1 T) \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
\cos m\omega_1 T \cos (m-1)\omega_1 T & 1 & (-R_i \cos \omega_1 T + I_i \sin \omega_1 T) & \cdots & (-R_i \cos \omega_1 T + I_i \sin \omega_1 T) \\
\sin m\omega_1 T \sin (m-1)\omega_1 T & 0 & (-R_i \sin \omega_1 T - I_i \cos \omega_1 T) & \cdots & (-R_i \sin \omega_1 T - I_i \cos \omega_1 T)
\end{bmatrix}
\begin{bmatrix}
x_0^* \\
x_1^* \\
\vdots \\
x_m^* \\
y_0^* \\
y_1^* \\
\vdots \\
y_n^*
\end{bmatrix}
= \begin{bmatrix}
(R_0 \cos n\omega_0 T - I_0 \sin n\omega_0 T) \\
(R_0 \sin n\omega_0 T + I_0 \cos n\omega_0 T) \\
\vdots \\
(R_i \cos n\omega_0 T - I_i \sin n\omega_0 T) \\
(R_i \sin n\omega_0 T + I_i \cos n\omega_0 T)
\end{bmatrix}
\]
Substituting the selected \((n + m + 1)\) frequency-response data into (9c), we can solve for the required \((n + m + 1)\) unknown constants \(x_i^*\) and \(y_j^*\).

IV. DIGITAL CONTROL SYSTEM DESIGN

Consider the pitch control transfer function of the missile system of (1a). The unity-feedback system without the stabilization filter \(G_c(z)\) is unstable, and a rate gyro is not available for this example system. It is required to design a digital controller \(G_c(z)\) instead of an analog controller \(G_c(s)\) such that the designed system has the exact control specifications [9] of the original stabilized continuous-data system given in (2). Furthermore, the response \(G_c(\omega)\) at \(\omega = 140 \text{ md/s} \approx \omega_{140}\) is chosen as a dominant data constraint because the system has an inherent high frequency signal component at \(\omega_{140}\). This is a digital redesign problem. The structure of the digital control system is shown in Fig. 4. The closed-loop pulse-transfer function of the desired digital system becomes
\[
\frac{Y(z)}{R(z)} = \frac{G_c(z)G_e(z)G_0(z)}{1 + G_c(z)G_e(z)G_0(z)} \approx \frac{G_e(z)}{1 + G_e(z)}
\]
where
\[
G_c(z) = \frac{x_0 z^2 + x_1 z + x_2}{z^2 + y_1 z + y_2}
\]
and \(G_c(z)\) is the desired digital controller and is
\[
G_c(z) = \frac{y_0 z^2}{y^2 + y_1 z + y_2}
\]
where \(y_0, y_1, y_2\) are unknown constants to be determined. Because \(G_c(z)\) is a forward controller, the equations \(f(x_i, y_j) = 0\) can be formulated from the following:
\[
G_c(z) \bigg|_{z = e^{j \omega_k T}} = \frac{G_c(z) e^{j \omega_k T}}{G_n G_0(z) e^{j \omega_k T}}
\]
where \(\omega_k = 0, \omega_{1.9} = 1.9, \omega_{2.2} = 3.2, \) and \(\omega_{140} = 140\). Notice that \(G_c(z)\) for \(z = e^{j \omega_k T}\) is not equal to \(G_c(z)\) for \(z = \omega_k\) unless \(T = 0\). Using the dominant data of (2a), (2h), and (2l), the required response at \(\omega_{140}\), or \(Re [G_c(e^{j \omega_{140} T})] = 26.951 878\) and \(Im [G_c(e^{j \omega_{140} T})] = 19.196 865\), and the relationships expressed in (5b) and (12) yield a set of equations \(f(x_i, y_j) = 0\) for \(i = 1, 2, \ldots, 5\).

The set of linear and nonlinear equations can be solved using the Newton-Raphson method. The initial estimates
for the Newton–Raphson solution may be determined from (9c). Another linear equation \(f_1(x_i, y_i) = 0 \), instead of \(f_1(x_i, y_i) = 0 \) can be constructed to yield five linear equations with five unknown constants \((x_i^* \text{ and } y_i^*)\). \(G_c(jw) \) at \(\omega = 0.01 \) is used in this case. Substituting \(\text{Re} \left[G_c(e^{j\omega_0.01T_1}) \right] = 1.5961120 \) and \(\text{Im} \left[G_c(e^{j\omega_0.01T_1}) \right] = 6.409642 \) into (12) we get the linear equation. Using \(x_i^* \) and \(y_i^* \) obtained from (9c) and the Newton–Raphson method, we obtain the solution \(x_i \) and \(y_i \) of \(f(x_i, y_i) = 0 \) at the fifth iteration with the error tolerance of \(10^{-6} \). The required digital compensator is
\[
G_c(z) = \frac{11.869 083^2 - 13.492 372 + 3.058 4008}{z^2 - 0.750 552 99z + 0.646 992 37} = \frac{11.869 083^2 - 0.824 080 67z + 0.312 685 33}{z - 0.375 276 50 + \sqrt{0.711 449 17}(z - 0.375 276 50 - 0.711 449 17)}
\]

The Nyquist plot of \(G_{e1}(z) \) shown in Fig. 2. It closely matches the Nyquist plot of \(G_c(z) \). The unit-step responses of the existing stabilized continuous-data system \(T_e(z) \) in (14) and \(T_{e1}(z) \) in (10) are used for comparison in Fig. 3. The time-response of the newly designed sampled-data system is very close to the existing stabilized system. It is interesting to note that \(G_c(z) \) of (1b) is a fourth-order analog controller whereas the \(G_c(z) \) of (13) is a second-order digital controller.

In a large control system it is often difficult to select a minimum common sampling period among the various subsystems. For example, the missile inner loop stability system with sampling period \(T = 0.008 \) s is used with a terminal guidance system. The terminal guidance system is low pass. Therefore, a larger sampling period may be economically used in this system. If we assign a larger sampling period \(T_1 = 0.015 \) s for the outer guidance loop, and we desire a single sample period, we must raise the sampling period \(T = 0.008 \) s of the actuator and inner loop from \(T = 0.008 \) s to \(T_1 = 0.015 \) s. Notice that the new sampling frequency \(\omega_{s1} = 2\pi T_1 = 418.88 \) \(\approx 2\pi f_{140} = 280 \) rad/s. The modified open-loop pulse transfer function with \(T_1 = 0.015 \) s is
\[
G_nG_0*(z) \equiv Z \left[\frac{1 - e^{-sT_1}}{s} \right] G_0(t)
\]

Since a larger sampling period \(T_1 \) is used, we select a third-order digital controller \(G_n(z) \) rather than the second-order digital controller. \(G_c(z) \) of (13) is
\[
G_n(z) = -2x_1 z^3 + x_1 z^2 + x_2 z + x_3
\]
\[
z^2 + y_1 z^2 + y_2 z + y_3
\]

The \(x_i \) and \(y_i \) are seven unknown constants to be determined. \(G_c(jw) \) at \(\omega = 0 \) is \(\omega_{s1} \) \(\omega = 1.9 = \omega_{s1}, \omega = 3.2 = \omega_{s2} \), and \(\omega = 4.0 = \omega_{s4} \) shown in (2) are used as the dominant data to determine \(x_i \) and \(y_i \). Using the above design procedure, we can determine a set of equations \(f(x_i, y_i) = 0 \) \(i = 1, 2, \ldots, 7 \). These equations can be solved by using the Newton–Raphson method, with the set of initial estimates obtained from (9c). The data obtained from (12) at \(\omega = 0.01 \) is \(\omega_{s0.01}, \omega_{s1}, \omega_{s2} \), and \(\omega_{s4} \) are used in (9c) to determine the initial estimates \(x_i^* \) and \(y_i^* \). Using these values as initial values for the Newton–Raphson method, gives the desired constants \(x_i \) and \(y_i \) at the 17th iteration with error tolerance of \(10^{-6} \). The newly designed digital controller \(G_n(z) \) is
\[
G_n(z) = \frac{13.170 704 z^3 - 25.531 430 z^2 + 14.629 635 z - 2.268 545 1}{z^2 - 0.374 248 412 z - 0.327 570 472 - 0.297 947 56}
\]
The closed-loop pulse-transfer function is
\[
Y(z) = \frac{G_{e2}(z)}{1 + G_{e2}(z)}
\]

where
\[
G_{e2}(z) = G_n(z) G_0(z).
\]

The Nyquist plot of \(G_{e2}(z) \) shown in Fig. 2 matches very well that of \(G_c(z) \). The unit-step response for \(Y(z) \) in (17) is shown in Fig. 3. The time-response of \(T_{e2}(z) \) very closely matches that of the original system \(T_e(z) \). The resulting design is seen to be quite satisfactory.

V. CONCLUSION

A dominant-data matching method has been given for fitting the coefficients of a pulse-transfer function from available time and frequency response data or from assigned design goals expressed by a set of control specifications. When the dominant data are obtained from a high-order continuous-data as well as a discrete-data system, our new method has been used to determine a reduced-order discrete-data system. If the data are experimental time and frequency response data of a system to be identified, our method may be used to identify the pulse-transfer function. Also, the method has been used for redesigns of a continuous system using a digital filter with various sampling periods. The pulse-transfer function obtained by our new method has the exact dominant performance of the original or desired system. We feel that the flexibility and accuracy of our new method will have significant practical advantages for the design of digital control systems and for the implementation of a low-order digital controller by using low cost microprocessors.

REFERENCES
10 G. S. Axelby, "Practical methods of determining feedback control
11 J. G. Trusel, Control System Synthesis. New York: McGraw-
Hill, pp. 76-87, 1955.
12 L. S. Shieh, Y. J. Wei, H. Z. Chow, and R. E. Yates, "De-
termination of equivalent dominant poles and zeros using industrial
specifications," IEEE Trans IECI, vol.IECI-26, no. 3, pp. 125-
13 G. D. Byrne and C. A. Hall, Numerical Solution of Systems of
14 IBM S.370-360 Ref. Manual IMSL (The Int. Mathematical and
Statistical Library).
15 J. T. Bosley, "Digital realization of the T-6 missile analog
16 K. W. Plunkett, J. Meadows, W. Albanes, and J. Bosley, "Design
and analysis of a microprocessor-based digital autopilot for