

UNCLASSIFIED
SUCUF4TY CLASSIFICATION OF THIS PAGE (Ma n. Eafmdjro

REPORT DOCUMENTATION PAGE mivou COPLTEG 0

1. REPORT NUMER 2a. GOVT ACagaSIo NO:2 RECIPINT'S CATALOG NMB~ER

4. TITLE (and Subtitle) S YEO 10R EIDfVRE

Development of a Voice Funnel System 1urt Nov 80 31 a8

Quarterly Technical Report No. 10 1__Nov._80__-_31__Jan_81
S. PERFORMING ORG. REPORT NUMBER

4816
7. AUTIHOR(. 41. CONTRACT ORt GRANT NUMSIRWO)

R. D. Rettberg MDA9O3-78-C-0356

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Bolt Beranek and Newiman Inc. AREA & WORK UNIT NUMBERS

10 Moulton Street ARPA Order No. 3653
Cambridge, MA 02238

ICONTROLLING OFFICE NAME AND ADDRESS IS. REPORT DATE

Defense Advanced Research Projects Agency March 1982
1400 Wilson Boulevard 13. NUMBER ?g PAGES

Arlington, VA 22209
Ir. MON5ITORIN G AGENCY NAMIE & AOORESS(Il dDiffaI frm C..,frlI0110M Offlee) IS. SECURITY CLASS. (of tis report)

154. OECLASSIFICATION/ DOWNGRADING
SCIEOULE

16. DISTRIBUTION STATEMENT (of this flhpwt)

Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered to Black 20. It different tIr., Report)

III. SUPPLEMENTARY NOTES

19. KEY WORDS (Conitrit on revo,.. old. lifneosom awd Identify by Nlock mnubor)

Voice Funnel, Digitized Speech, Packet Switching, Butterfly Switch,
Multiprocessor

21% ABSTRACT (Conlinim, an revrs side ff nocedawp mad ideritip by block numer.)

This Qta~te1yTecI~iareport covers work performed during the
period noted on the development of a high-speed interface, called
a Voice Funnel, between digitized speech streams and a packet-
switching communications network.

DO I jA 7 1473 EDITION Of I NOVS IS GU OSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (fte. Oda Entered)

UNCAS SIFtED

SCCUYTV CLA3SPICAMON Of T14SI PASS flbs. Doe. Einw

UNCLASSIFIED
OCCUmY CLAUUPICAI@ OP ?WIS PASt (W~m Date.m

Report No. 4816 Bolt Beranek and Newman Inc.

Table of Contents

2. BIO Module Architecture and Facilities 3
3. Asynchronous Channels. * 8
3.1 Asynchronous Receiver Operation 8
3.2 Asynchronous Transmitter Operation 11
3.3 Modem Interface Signals 12
3.4 Asychronous Channel Control Registers 13

3o4.2 Transmitter Holding Registero 16
3.4.3 Receiver Holding Register..... o 17
3.4.4 Input FIFO Oldest Data Entry.......oo..o......... 17
3.4.5 Mode Control Register A 18
3.4.6 Mode Control Register B...... .ll.......... o. 19
3.4.7 Command Register. . o. o 20
3.4.8 Interrupt Enable Mask Registers.....o 21
3o4.9 Device/Version Number..o..... o...... o. 22
3.4.10 ID/Interrupt Vector Registers.o.ilo.o........... 22
3.4.11 DMA Address Register,........... olo.o...oo... o 23
3.4.12 Character Block Counter. o............. o..24
3.4.13 Conditions for Normal Operation............. 24
4. Synchronous Channels..... 26
4.1 Interface Protocols o. 27
4.2 Bit-Oriented Protocol...... o............... 28
4.3 Channel Control Blocks............. o... 30
4.4 De-.ice Control Blocks........ o........... 34
4.5 Enabling the Channel o 40
4.6 Looping the Channelo..oo.o..........000 ... 41
4.7 Fatal Errors o. 41
4.8 The Reset Functiono..o......... oo o.. 43
4.9 Real Time Clock o..... 45
4.10 Transmitter.................. o........ 46
4.10.1 Channel Control Block~lg.......... 48
4.10.2 Packet Transmit Times o..... 49
4.10.3 Maintaining the Transmit Queueo.....oo..o.. 51
4.10.4 Initialization l.e0*06........... 52

4.11.1 Backup Buffers. .. i'l..,io.. 57
4.11.2 Counting Free Buffers 58
4.11.3 Signalling Packet Arrival 0900...... 000 60
4.11.4 Maintaining the Receiver Queue 60960006*962
4.11.5 Initialization..................... 64
4.12 Byte Ordering *.00*.669660 64
5. Appendix: Algorithms Used in the BIO.............. 66

i ~ ~ iliY i

Report No. 41816 Bolt Beranek and Newman Inc.

FIGURES

Device Control Block Physical Address 7
Asynchronous Control Registers.. 0 14
B it-Oriented Frame Format...... o *. o o 28
Channel Control Block Structure Definition......... ...o.. 32
Synchronous 1/0ODevice Control Block.... ooo........ o..... 35
Output of Three Buffers Into Two HDLC Frames 4
Input of Three HDLC frames into five buffers .. o.. o 55

Report No. 4816 Bolt Beranek and Newman Inc.

TABLES

Lhannel Control BlockStatus Flags....................... 32
Channel Control Block Fields. 33
Device Control Block Common Fields 36
DCB Transmitter and Debugging Fields 37
Device Control Block Receiver Fields 38
DCB Receiver Control Fields (continued) 39
Valid Settings for the Field cs..efable 40
Synchronous Channel Error Codes 42
Procedure for Resetting a Synchronous Channel 44

Report No. 4816 Bolt Beranek and Newman Inc.

1. Introduction

This Quarterly Technical Report, Number 10, describes

aspects of our work performed under Contract No. MDA903-78-C-0356

during the period from 1 November 1980 to 31 January 1981. This

is the tenth in a series of Quarterly Technical Reports on the

design of a packet speech concentrator, the Voice Funnel.

The hardware design of the Butterfly I/O module (the BIO)

was described previously in Quarterly Technical Report Number 7.

The BIO contains a microcoded bit-slice processor quite similar

to the PNC. Working in conjunction with the PNC, each BIO module

provides four low-speed asynchronous telecommunications channels

and four high-speed synchronous channels for use in the Butterfly

Multiprocessor. This report presents the architecture of the BIO

module, and defines the functions which control the asynchronous

and synchronous channels.

The BIO has been designed specifically to meet the needs of

the Voice Funnel application. It is expected that other I/O

modules will be designed as required to meet other needs in

further projects. The BIO is a compromise between the need in

the Voice Funnel for a number of high-speed synchronous

interfaces (to the PSAT and LEYNET), and for a number of standard

asynchronous interfaces (for system control and direct vocoder

connection).

-- -

Report No. 4i816 Bolt Beranek and Newman Inc.

We should note that we use the notational conventions of the

"C" programming language for distinguishing between decimal and

hexadecimal representations for numerical quantities. Thus we

will refer to the quantity "sixteen" as either "116"1 or "OxlO".

In addition, we are numbering bits with bit 0 on the right or

least significant position in accordance with the M4C68U00

documentation.

-2-

Report No. 4816 Bolt Beranek and Newman Inc.

2. BIO Module Architecture and Facilities

The BIO module has been designed to offload most of the I/O

processing, control, and high speed data transfer from the

Butterfly Processor Node. As shown in Figure 1, the BIO consists

of an interface to the Butterfly I/O bus (the BIOLINK), an 8 mhz

16-bit 2901 microprocessor with 1024 words of scratchpad memory,

four Signetics 2661-1 Enhanced Programmable Communications

Interfaces, four Signetics 2652 Multi-Protocol Communications

Controllers, and various support circuitry. The BIOLINK is

capable of supporting up to four BIO modules.

The BIO microprocessor responds to PNC commands, keeps

pointers and state information for each device in its scratchpad

memory, controls all data transfers, provides scratchpad FIFO

buffering for each device, requests DMA memory accesses from the

PNC, and uses the PNC to interrupt or post Events to the MC68000.

The BIO microcode provides many unusually sophisticated features

to the application program. These features have been chosen to

facilitate the Voice Funnel application, but are also expected to

be suitable for other telecommunication applications using line

protocols supported by the 2661 and 2652 devices. The principal

features of the BIO module are summarized in Table 1.

Every I/O channel is associated with a group of registers in

Subspace One. These registers hold flags and parameter values

that control the behavior of the I/O microcode and cause it to

- 3-

RePoi~t No. 4816 Bolt Beranek and Newman Inc.

0C M

C4 Ca

00
z L

'00

V--

U) Z)

N>

Ct-4

)INI14 0

-'O4-

CO V7'-

Report No. 4816 Bolt Beranek and Newman Inc.

Asynchronous Chne Fetue

- Data rates up to 19.2 kbps

- Interrupt vectors for up to three separate events

- Program controlled hardware echo of received characters

- 32-character FIFO for input characters

- DMA controller for output using either native mode or
PDP-11 style byte order

- Break detection and generation

- Complete set of line conditioning signals available for
modem control

- EIA RS-232-C compatible inputs and outputs

- Local or remote maintenance loop back mode

Synchrnou Chane Features

- Maximum data rate of 2 Mbps

- Automatic detection and generation of special bit-
oriented protocol FLAG, ABORT, and GA control sequences

- 6~4 character input and output FIFOs to improve latency

- DMA controller for both input and output

- Chained DMA control blocks to provide fast buffer swaps
without Processor Node intervention

- Guaranteed minimum time between transmitted messages

- Direct posting of operating system Events

- EIA RS-4122 compatible inputs and outputs

Table 1.* BIO Features

-5-

Report No. 4816 Bolt Beranek and Newman Inc.

initiate certain operations. We will refer to this group of

registers as the Device Control Block (DCB) of the channel. The

layout of the physical address of a DCB register is given in

Figure 2. With the exception of the subspace field, which is

always one, the high order eighteen bits of the DCB physical

address are currently ignored by the Processor Node hardware. As

with all entities that are addressed through Subspace One, a

Processor Node can only access Device Control Blocks that are

local to it. The high order bit of the "channel" field of the

DCB base address distinguishes between synchronous and

asynchronous channels. For synchronous channels, it is a zero.

For asynchronous channels, it is a one. The "protection" bit is

used only for asynchronous Device Control Blocks. It is used to

distinguish between fields that are accessible in kernel mode

only (protection bit 1 1) and those that are accessible in both

kernel and user mode.

-------------------------- ---- -------------------------------------

(8) 1(2)1 (8) 1(2)I(3)1(1)I (8)
--------------------------- --- *--------+-- ---- -----------------

I I
I I

- subspace - offset

-protection

- channel

- board

Figure 2 . Device Control Block Physical Address

-6-

Report No. 4816 Bolt Beranek and Newman Inc.

The PNC generates a hardware reset signal when power comes

up, when the MC68000 halts, when the PNC receives a reset message

from a remote Processor Node, and when the hardware reset switch

on the Butterfly clock card is cycled. In addition to resetting

the processor node hardware, this signal resets the hardware on

each module connected to the BIOLINK. This signal is the only

mechanism for resetting the asynchronous channels on the BIO.

Each synchronous channel also has a facility for resetting that

channel individually.

-7-

Report No. 4816 Bolt Beranek and Newman Inc.

3. Asynchronous Channels

The electrical signal level protocol supported by the RIO

asynchronous channels conforms to EIA standards RS-232-C and RS-

423. At the link protocol level, all the asynchronous channel

services are provided by the 2661 devices; the 2661 also provides

a synchronous mode, which we do not plan to use in the Voice

Funnel application. We review the asynchronous-mode operation of

this device to bring all the relevant information together in a

single report. For further information see the Signetics 2661-1

documentation. We also describe the associated features and

control facilities provided by the BIO microcode.

3.1 Asynchronous Receiver Operation

On each of the four asynchronous input channels, incoming

signals are level-converted from RS-232-C by 26LS32 receivers,

and fed to Signetics 2661-1 Enhanced Programmable Communications

Interface devices (EPCIs). These 28-pin MOS/LSI circuits perform

all the functions necessary for double buffered asynchronous

character assembly (and also transmission; see next section).

The receiver section of the EPCI samples the line at lb

times the nominal bit rate of the signal expected on that line.

Upon detection of a Mark-to-Space transition, the EPCI waits 8

clock pulses, then checks the line. This would be at the center

of a normal start bit. If the line has returned to Mark, the

-8-

. ,,Z. . ,.

Report No. 4816 Bolt Beranek and Newman Inc.

receiver assumes that there was noise on the line, and returns to

its idling state, ready to detect another Mark-to-Space

transition. If the line is at Space, the receiver assembles a

data character by sampling the line at 16 clock tick intervals

from the center of the start bit. The number of bits assembled

is determined by the character length information entered into a

2661 mode register. If parity checking has been enabled, the

receiver computes the parity of the character just received and

compares it with the parity bit received. One stop bit is

required, or a framing error is reported. Continuous Space is

detected as an all-O's character with framing error; only one

character is transferred as long as the condition persists.

Immediately following the receipt of the last bit, the data

is transferred into the Receive Data Holding Register, and three

status register bits are updated. The Receiver Ready (RxRDY) bit

is set to indicate that the receiver holding register is not

empty. If RxRDY was set at the time of the transfer, the Overrun

Error (OE) bit is set, thus indicating that the previous

character loaded into the receive holding register was not read

by the microprocessor. The Parity Error bit (PE) is set when the

parity sense differs from the parity bit.

At least once every 250 microseconds, the BIO microprocessor

examines the status register of each EPCI. If RxRDY is set, it

loads both the status and the receive holding register data into

a 32-word first-in, first-out (FIFO) buffer and clears the RxRDY

-9-

Report No. 4816 Bolt Beranek and Newman Inc.

bit. It further sets a FIFO Not Empty (FNE) bit in the EPCI

controller status register.

A level four interrupt request is issued to the MC68000 upon

loading the FIFO if the FIFO-Not-Empty Interrupt enable bit is

set. The BIO microprocessor takes care of serializing the

enabled FIFO-not-empty events by allowing only one interrupt to

be pending at a time and scanning from the last interrupting

channel.

The character length, parity sense, number of stop bits,

etc., that will be used by the EPCI to perform the above

operations are stored within each EPCI in a Mode Control

register. This 16-bit register is addressable on a read/write

basis by the MC68000.

Received characters may contain up to 43% distortion on any

one bit due to the sampling rate. However, the overall bit rate

must be accurate. Errors in bit rate are cumulative such that

when the receiver samples the first stop bit to see if it is a

Mark, the error accumulated by that time must not exceed 43% of a

bit time. Assuming the reception of eight data bits plus parity,

4.2% speed distortion would be permissible.

Speed distortion of any amount poses severe problems in the

auto-echo mode. However, if a terminal sends to the BIO at a

slightly slower rate than the BIO retransmits, the auto-echo

problem is solved. In computing speeds, one may assume the BIO

- 10 -

Report No. 4816 Bolt Beranek and Newman Inc.

receiver clock to be accurate within 0.05% except at 1800 and

2000 baud where the error is -0.24% and -0.31% respectively.

3.2 Asynchronous Transmitter Operation

For each of the four asynchronous output channels, signals

are generated by the output side of a Signetics 2661-1 EPCI,

inverted, and then converted to RS-232-C by 26LS30 transmitter

chips. The EPCIs perform all the functions necessary for double

buffered asynchronous character transmission. The transmitter

section of the EPCI holds the serial output line at a Marking

state when idle. When a character is to be transmitted, the EPCI

will generate a start bit (Space) within one-sixteenth of a bit

time. The start bit and all subsequent data bits are a full bit

time each. The start Space is followed by 5, 6, 7, or 8 data

bits, as determined by control bits in the Mode Control register.

The data bits are presented to the output least-significant bit

first. The parity bit, if parity generation is enabled, is

calculated by the transmitter and included after the last data

bit, but before the stop sequence (one or more Mark bits). It is

possible to send a break (continuous Space) by setting Command

Register bit 3.

There are two mechanisms by which the MC68000 can cause a

sequence of characters to be transmitted. Using the first, the

MC68000 would load each character into the transmitter holding

- 11i -

Report No. 41816 Bolt Beranek and Newman Inc.

register after determining Ceither by interrogating a status bit

or as a result of an interrupt resulting from the status bit

assertion) that the transmitter holding register is empty. Using

the second, the MC68000 would set up a block in its local memory

containing the sequence of characters, and give the BIO

microprocessor its starting location and size. At least once

each 250 microseconds the BIO microprocessor examints the status

register of each EPCI. If the Transmitter Hold Register Ready

CTxRDY) bit is set, it accesses the next byte from memory, loads

it into the transmitter holding register, and updates the address

pointer and byte counter. When the byte counter reaches zero, an

interrupt request on level four is issued to the MC68000 if an

interrupt enable bit is set. The BIO microprocessor takes care

of serializing various events which may cause interrupts. The

order of bytes in a word can be selected by a bit in Mode Control

Register B.

The transmitter timing is derived by the same clock division

logic as the receiver and is therefore accurate to 0.05% except

at the 1800 and 2000 baud rates.

3.3 Modem Interface Signals

In addition to its receiver and transmitter sections, each

EPCI provides two input and two output signals for controlling

modems. All signals (including receiver input and transmitter

- 12 -

Report No. 4816 Bolt Beranek and Newman Inc.

output) conform to the EIA RS-232-C and CCITT electrical

specifications.

The modem interface signals provided are: Data Carrier

Detect (DCD), Data Set Ready (DSR), Request to Send (RTS), and

Data Terminal Ready (DTR). A level four interrupt may be enabled

if any change occurs on the DCD or DSR lines from the modem.

3.4 Asychronous Channel Control Registers

The 17 control registers associated with each of the four

asynchronous channels are located at fixed addresses as described

in Section 2 and shown in Figure 3.

Offset Content Initially

000 Status Register Ox0100
002 [Tx Holding Register]
004 [Rx Holding Register]
006 [Input FIFO Oldest Entry]
008 Mode Control Register A OxFEBA
OOA Mode Control Register B 0
00C Command Register 0
OOE Interrupt Enable Mask A 0
010 Interrupt Enable Mask B 0
012 Interrupt Enable Mask C 0
OlE Device and Version Number OOvv ddv.v

100 Id/Vector For Mask A 0
102 Id/Vector For Mask B 0
104 Id/Vector For Mask C 0
106 High 8 Bits Of Block Address 0
108 Low 16 Bits Of Block Address 0
1OA Character Block Byte Counter 0

Figure 3 • Asynchronous Control Registers

-13-

Report No. 4816 Bolt Beranek and Newman Inc.

Each of these registers is described in detail in a section

below.

The term "offset" refers to the difference between the

address of the first register on a device block (i.e. the Status

Register) and the register in question. Thus the Character Block

Byte Counter register is located at offset OxlOA.

Individual 1/0 devices may be mapped into application

program address spaces, to allow them to be used with minimal

operating system intervention. The upper group of registers

(above offset OxlOO) contains privileged control information,

which must be set up by the operating system if system integrity

is to be maintained. All registers are read/write unless

otherwise specified. Writing a read-only bit has no effect on

the bit. Reading a write-only bit returns a zero. All interrupt

requests are at level 4. Thus, the MC68000ts interrupt priority

level must be three or less to enable an interrupt from the BIO

modules.

3.4.1 Status Register

This read-only register is divided into two bytes. The low

order byte is read directly from the 2661 status register; the

high order byte contains microprogram state information. Each of

the three Interrupt Mask Registers defined below allows the

application program to specify a set of bits in the status

- 14

Report No. 4816 Bolt Beranek and Newman Inc.

register; if any of these bits are set, the corresponding

interrupt will be requested by the interrupt polling microcode if

the interrupt polling microcode has been enabled.

Bit 0: Transmitter holding register empty (TxRDY)

TxRDY is clear when the transmit holding register has
been loaded and the data has not been transferred to
the transmit shift register. TxRDY is set when the
transmit holding register is ready to accept data.
It is set initially when the transmitter is enabled.
It is not set when the automatic echo or remote loop
back modes are programmed.

Bit 1: Receiver holding register has data (RxRDY)

RxRDY is set when a character has been assembled and
loaded into the receiver holding register. RxRDY is
cleared when the MC68000 or BIO microprocessor reads
the receiver holding register or when the receiver is
disabled.

Bit 2: Change in DSR/DCD or transmit shift register empty

This bit is set when the transmit shift register has
completed transmission of a character and no new
character has been loaded into the transmit holding
register, or when there has been a change of state in
either the DSR or DCD inputs (and either the receiver
or transmitter is enabled). This bit is cleared when
the status register is read. If the status register
is read twice and the bit is set while DSR and DCD
remain unchanged then both the transmit holding
register and shift register are empty. It can be
used either to wait for a character to be completely
transmitted, or, by disabling the transmitter while
enabling the receiver, to wait for a change in modem
state.

Bit 3: Parity Error (PE)

PE when set indicates a receiver parity error. PE is
cleared when the receiver is disabled and by the
reset error command.

Bit 4: Overrun Error (OE)

OE when set indicates that a previous character

- 15 -

Report No. 4816 Bolt Beranek and Newman Inc.

loaded into the receiver holding register was not
read before it was overwritten by a new character.
OE is cleared when the receiver is disabled and by
the reset error command.

Bit 5: Framing Error (FE)

FE when set indicates that the received character was
not framed by a stop bit. FE is cleared when the
receiver is disabled and by the reset error command.

Bit 6: Data Carrier Detect (DCD)

DCD is the Data Carrier Detect signal as sourced by
an attached modem.

Bit 7: Data Set Ready (DSR)

DSR is the Data Set Ready signal as sourced by an
attached modem.

Bit 8: Transmitter DMA Done (TDONE)

TDONE is set by microcode when the Character Block
Byte Counter (CBBC) register is zero. TDONE is
cleared when the CBBC is loaded with a non-zero
value. When set, TDONE indicates that another block
of characters may be transmitted via the DMA.

Bit 9: Input FIFO Not Empty (IFNE)

IFNE is set when input FIFO loading is enabled and a
word is loaded into the input FIFO. IFNE is clear
when no more words remain in the input FIFO.

Bits 10-15: Not used.

3.4.2 Transmitter Holding Register

Setting this write-only register loads a data character into

the EPCI's transmitter holding register (from bits 7-0). The

bits of the character are presented to the serial line low-order

bit (bit 0) first. Bits 15-8 are not used. Status Register bit

SRO must be set in order for this operation to succeed.

- 16 -

Report No. 4816 Bolt Beranek and Newman Inc.

This register should not be used if a DMA transfer is in

progress to this device.

3.4.3 Receiver Holding Register

Bits 7-0 of this read-only register come directly from the

EPCI; they are the last complete character assembled by the EPCI.

If the character length specified is less than 8 bits, the

character will appear right justified and the unused high order

bits will be zero. The first data bit received will be loaded

into RHRO, the second into RHR1 and so on. Bits 15-8 are always

zero.

This register is useful if the microcode receiver polling

feature has been disabled; see Mode Control Register B.

Otherwise reading this register will usually return a copy of the

last character placed into the FIFO, but occasionally may "steal"

a character from the 2661 before the microcode can place it in

the FIFO. In general, this register should not be used when the

receiver polling feature is enabled.

3.4.4 Input FIFO Oldest Data Entry

This 16-bit read-only register has the oldest entry in the

32-word input FIFO, or zero if the FIFO is empty. When the

MC68000 reads this register, the character is removed from the

- 17 -

Report No. 4816 Bolt Beranek and Newman Inc.

input FIFO. If after removal, no more entries remain in the

FIFO, the Input FIFO Not Empty bit is cleared. In order for

characters to appear in the input FIFO, the microcode receiver

polling feature must be enabled; see Mode Control Register B.

Bits 7-0: The character read from the EPCI's receiver holding
register when the BIO microprocessor detected that
the receiver holding register was not empty.

Bits 15-8: Bits read from bits 7-0 of the Status Register at the
time when the BIO microprocessor detected that the
receiver holding register was not empty. These
status bits allow the application program to detect
exactly at what point in a character stream unusual
events occurred.

3.4.5 Mode Control Register A

Mode Control Register A is used to set the EPCI's two 8-bit

Mode Registers. Reading this register returns a copy of the

information last written into the EPCI. See the Signetics

literature for further information.

Bits 1-0: Mode and baud rate factor (must be set to 10)

Bits 3-2: Character length (not including parity bit)

00 =5 bits 10 =7 bits
01 =6 bits 11 =8 bits

Bit 4~: Check parity and report parity errors on input; add a
parity bit on output.

Bit 5: * Even parity (if parity is enabled)

Bits 7-6: Stop bit length

01 =1 stop bit
10 = 1.5 stop bits
11 =2 stop bits

-18-

Report No. 4816 Bolt Beranek and Newman Inc.

Bits 11-8: Select baud rate settings for the 2661-1 (the 2661-2
and -3 diii'er, and are not used in the BIO)

0000 = 50 baud 1000 = 1050 baud
75 1200

110 1800
134.5 2000

0100 = 150 1100 = 2400
200 4800
300 9600
600 19200

Bits 15-12: Must be xx11; 1111 is recommended

3.4.6 Mode Control Register B

Mode Control Register B is used to control how the channel

is serviced by the BIO microprocessor. These bits do not affect

the EPCI directly. It is possible to use a channel on a

character-at-a-time basis without enabling data polling; it is

also possible to use a channel by testing its status periodically

from the application program, without enabling interrupt polling

in the BIO microprocessor.

Bit 0: Select PDP-11 style transmitter DMA addressing

If this bit is set, the transmitter sends the right-
hand (odd address) byte of each data word before
sending the leit-hand byte. This mode is useful if
word-oriented binary data must be sent to a DDP-11.

Bit 1: Enable data polling

Unless this bit is set, input characters will not be
placed in the input FIFO and output DMA transfers
will not occur. Unused channels should not be
enabled.

Bit 2: Enable interrupt polling

Unless this bit is set, no interrupts will be

- 19 -

Report No. 4816 Bolt Beranek and Newman Inc.

requested for this channel. Unused channels should
not be enabled.

3.4.7 Command Register

When written into, the low-order 8 bits of this register are

stored in the EPCI's Command Register. Reading this register

returns a copy of the value last written into it. This register

is initialized to zero, and must be set appropriately before the

channel will do anything interesting. See the Signetics

literature for further information.

Bit 0: Transmitter Enable (TxEN)

When TxEN is set, the EPCI can accept new characters
for transmission. If the transmitter is disabled
while a character is being sent, it will complete the
transmission of the character in the transmit shift
register prior to terminating operation. A character
in the transmitter holding register will be lost.

Bit 1: Data Terminal Ready (DTR)

Bit 2: Receiver Enable (RxEN)

RxEN enables the receiver portion of the EPCI.
Disabling the receiver terminates operation
immediately.

Bit 3: Force Break (FB)

Setting this bit causes the transmitter data line to
be set to Space after the current character has been
completely sent. Normal operation resumes when FB is
cleared.

Bit 4: Reset Error (RE)

Setting RE causes the error flags in the status
register to be cleared.

Bit 5: Request To Send (RTS)

- 20 -

FPport No. 4816 Bolt Beranek and Newman Inc.

Bits 7-6: Select operating mode

00 = Normal operation
01 = Automatic echo mode
10 = Local loop back
11 = Remote loop back

3.4.8 Interrupt Enable Mask Registers

These three 16-bit mask registers correspond to the three

ID/Vector Registers discussed below. They are used by the BIO

microprocessor to determine when to request interrupts. At least

once each 250 microseconds, for each mask register in turn, if

interrupt polling is enabled (see Mode Control Register B) and no

interrupt is already pending, the microprocessor logically ANDs

the mask register with the Status Register. If the result of the

AND is non-zero, a level 4 interrupt request is asserted, the

corresponding ID/Vector is loaded into the Interrupt Acknowledge

Data Register (IADR), and the corresponding mask register is

cleared.

It is important to note that once a mask register has

produced an interrupt, it is cleared and cannot create another

interrupt until the software has set it to something other than

zero. This is in contrast with machines where once an interrupt

is enabled, it remains enabled until explicitly disabled.

- 21 -

Report No. 4816 Bolt Beranek and Newman Inc.

3.4.9 Device/Version Number

This read-only register is provided to allow the MC68000 to

identify the type of device at this address, and to check the

version number of the associated microcode. The 2661 EPCI device

as described in this report has been assigned device number zero,

and the microcode which corresponds to this report is version

1.0. All modules (like the BIO) which connect to the PNC via the

BIOLINK will have Device/Version Number registers at offset OxIE.

Bits 15-8: Device number: 0 for asynchronous channels

Bits 7-4: PROM number

The BIO microcode is stored in PROM. Major changes
or unpatchable bug fixes may require new PROMs to be
programmed. At such times the PROM Number will be
incremented by one. The current PROM Number is 1.

Bits 3-0: Patch number

Sometimes PROMs can be patched by overwriting. In
such cases Lhe next available bit is set in this
field. The current Patch Number is 0.

3.4.10 ID/Interrupt Vector Registers

These three 16-bit registers correspond to the three

Interrupt Enable Mask Registers discussed above. They are loaded

into the IADR by the BIO microprocessor when the corresponding

mask register, ANDed with the status register, is non-zero. They

have two independent sections.

- 22 -

7'

Report No. 4816 Bolt Beranek and Newman Inc.

Bits 7-0: Interrupt Vector (IV)

These 8 bits of vector information are gated to the
MC68000's data lines during an interrupt acknowledge
sequence. The MC68000's new program counter is
fetched from memory at a location (in Segment 0)
equal to four times the value of the interrupt
vector.

Bits 15-8: Identification number (ID)

When the IADR is passed to the Processor Node
Controller (PNC) during a level 4 interrupt
acknowledge sequence, the PNC stores the IADR
contents into a special location (in Segment F8)
reserved for level 4 interrupt acknowledge data
words. The ID may be used by the interrupt service
routine to discriminate between different EPCI
channels or conditions. Thus a single interrupt
routine could handle several devices, and determine
which one needed service quickly, without testing all
of their status registers individually.

3.4.11 DMA Address Register

This 32-bit register contains the local physical address of

the next character to be transmitted. It is set up by the

MC68000, and incremented by the BIO microprocessor as characters

are transmitted. Since only the low word is incremented, blocks

cannot cross 64K-byte boundaries. This is not a problem under

Chrysalis, since individual objects never cross 64K boundaries.

If the channel is in PDP-11 style addressing mode, the low order

bit of this address register is complemented when characters are

fetched from memory.

- 23 -

Report No. 4816 Bolt Beranek and Newman Inc.

3.4.12 Character Block Counter

A DMA transmission is initiated by loading this counter with

the number of bytes in a character string to be transmitted. The

counter is decremented as each byte is read from memory and

loaded into the EPCI. Loading a non-zero value into the counter

causes Status Register Bit 8 (TDONE) to be cleared. When the

counter reaches zero, the DMA transfer is complete, and TDONE is

set. Loading the counter initiates transmission of the first

character within 250 microseconds.

3.4.13 Conditions for Normal Operation

The number of stop bits depends upon the setting of the Mode

Control register. The MC68000 may specify one, one and a half,

or two stop bits; eight bit characters, no parity, and 1.5 stop

bits are one reasonable choice. "Mode and Baud Rate Factor" must

be set to "Asynchronous 16X rate". Initializing a channel sets

the Mode Control Register to a default value of: "16X BKDET

async", 9600 baud, 1.5 stop bits, even parity enabled, 7-bit

characters, and "Asynchronous 16X rate". The meanings of these

bits are explained in Section 4.

The Command Register is set to zero during initialization,

i.e., "normal operation" (not auto-echo or looped), set RTS low,

"don't clear error flags", "don't force break", disable receiver,

set DTR low, disable transmitter. (See the next section for a

- 24 -

Report No. 4816 Bolt Beranek and Newman Inc.

discussion of the RTS, DTR, DCD, and DSR modem control signals).

The Command Register will have to be used to reenable the 2661;

transmitter enable and RTS must be set, and the CTS input must be

high, before anything will be transmitted. The receiver requires

the receiver enable bit to be set, and the DCD input to be high.

For internal loopback, transmitter enable, DTR, and RTS must all

be set.

2I5II
I- 25 -

Report No. 4816 Bolt Beranek and Newman Inc.

4. Synchronous Channels

The synchronous I/0 section of the BIO module meets the

strict latency requirements of high speed communications

interfaces by handling most of the required I/O processing,

control, and data transfer operations with the BIO

microprocessor. As a result, the application software only

handles complete packets, or batches of packets. This increases

overall performance, and decreases the complexity of the

application software.

The synchronous section of the BIO module is more

sophisticated than the asynchronous section and considerably

different from most I/O system architectures. To make things as

clear as possible in this report, we have chosen to describe this

synchronous I/O system from the point of view of the application

programmer, rather than giving a detailed description of the

hardware itself. We begin with a description of the line

protocols implemented by the system. We follow this with summary

descriptions of the two data structures that are fundamental to

the operation of the system, and conclude with a detailed

explanation of their use.

The synchronous I/O section of the BIO makes extensive use

of the Event Mechanism supported by the Butterfly Processor Node

Controller. Also, for the sake of clarity, the terms "buffer"

and "packet" are given the following definitions: A buffer is a

- 26 -

Report No. 4816 Bolt Beranek and Newman Inc.

single block of memory with a header and a data area. A packet

is a linked list of one or more buffers.

4.1 Interface Protocols

The signal level protocol implemented by the BIO synchronous

I/O channels conforms to EIA standard RS-422. The reader is

referred to the relevant EIA documentation for further

information.

Protocol processing at the link level on each channel is

done by a single LSI chip, the Signetics 2652 Multi-Protocol

Communications Controller (MPCC). Two different synchronous

signalling protocols are provided by this chip. The Voice Funnel

uses the Bit-Oriented Protocol (BOP) described below, which

conforms to the framing and message formatting conventions

prescribed HDLC. The chip also implements a Byte Control

Protocol (BCP). This may also be usable, but we have not

investigated running the devices in that mode, and changes to the

BIO might be required to do so.

Since these channels will be required to run at up to

2 Mbps, we have been careful to analyze and find ways to meet the

maximum service time (latency) constraints implied by the

communications protocol chips. The following section discusses

BOP and the low-level latency constraints. Later sections

discuss how the synchronous channels are controlled, and some

- 27 -

Report No. 4816 Bolt Beranek and Newman Inc.

techniques which solve some of the higher-level latency

constraints.

4.2 Bit-Oriented Protocol

Bit oriented messages are transmitted in frames. All

messages adhere to the standard frame format shown in Figure 4.

- Zero Insertion/Deletion & CRC Accumulation

FLAG ADDRESS INFORMATION FRAME CHECK FLAG

01111110 8-bit 1 or more 8-bit 16-bit CRC.CClTT 01111110
Characters Characters Inverted Remainder

Figure 4 . Bit-Oriented Frame Format

The Bit-Oriented Protocol (BOP) features:

- Independence of codes, line configuration, and
peripherals

- Positional significance used instead of control
characters or character counts

- Information transparency achieved through zero
insertion and deletion

- Error checking on a complete frame.

- 28 -

Report No. 14816 Bolt Beranek and Newman Inc.

A frame starts with an 8-bit FLAG sequence, 01111110,

followed by an ADDRESS sequence, an INFORMATION sequence, and a

FRAME CHECK sequence, and ends with another FLAG sequencc.

The BOP is designed for multipoint operation on one data

link (i.e., one source of information and one or more

destinations). When one station transmits, each station attached

to the data link continuously searches for a FLAG sequence and

then reads the ADDRESS sequence. The receiving station

recognizes its own address and then accepts the remainder of the

frame.

The INFORMATION field may vary in length including a

different length in sequential frames making up a complete

transmission. While the BOP allows the information field to be

any number of bits, the BIO hardware limits the information field

length to be any non-zero multiple of 8 bits.

Because there is no restriction on the bit patterns that may

appear between the end of the start FLAG and the beginning of the

end FLAG, the transmitted data stream may contain six or more

contiguous ones. This pattern could be interpreted as a FLAG,

and inadvertently terminate an incomplete frame. To circumvent

this, once the start FLAG has been completed, the transmitting

station starts counting the number of contiguous 11s; when five

1's occur, the transmitter automatically inserts a 0 following

the fifth 1. The receiver, too, counts the number of contiguous

- 29-

Report No. 4816 Bolt Beranek and Newman Inc.

113. When the number is five, it inspects the sixth bit; if the

sixth bit is 0 the receiving station drops the 0, resets its

counter, and continues receiving. But if the sixth bit is a 1,

the receiving station continues to receive, interpreting the

sequence as a FLAG.

The FRAME CHECK SEQUENCE (FCS) is included in all BOP frames

to detect errors which may occur during transmission. This field

is 16 bits long and immediately precedes the end-of-frame FLAG.

The contents of the FOS field, based on a cyclic redundancy

check, is an inverted remainder derived from a division of the

transmitted data by a generator polynomial. The dividend is

initially preset to 1 's, and the data stream that follows becomes

the dividend. The generator polynomial for CRC-CCITT is:

G(x) =X**16 + X**12 + X**5 + 1.

4.3 Channel Control Blocks

The synchronous I/0 system maps each packet on the

communication interface into one or more buffers in main memory

on a Butterfly processor node. Due to the speed of the interface

and the architecture of the I/0 system, the channel has only a

few microseconds to select a new buffer when the end of the

current buffer is reached. This is much faster than the

application software can respond, so it is impractical to

interrupt the MC68000 CPU on a per-buffer basis. In order to get

-30 -

Report No. 4816 Bolt Beranek and Newman Inc.

the MC68000 out of this critical path, each channel interprets a

linked list of Channel Control Blocks (CCBs). On input, a CCB

serves to identify an empty buffer that is ready to be filled by

the Receiver. On output, it serves to identify a buffer that is

filled with data and ready for output.

The C structure definition of a Channel Control Block is

shown in Figure 5. The functions of the various fields are

described in Table 3. Channel Control Blocks belong to the

standard set of objects defined by the operating system, and are

allocated from superiisor memory. For historical reasons, the

structure of a CCB differs somewhat from that of other Chrysalis

Objects. In particular, the spare, sequence number, and

protection fields common to other types of objects Pre missing

from the Channel Control Block. When constructing an Object

Handle, the second most significant byte of the "1ccb-.phys" field

of the CCB is used~ as the sequence number, since it is in the

same position~ as the sequence number field in other objects.

- 31 -

Report No. 4816 Bolt Beranek and Newman Inc.

struct ccb{
struct ccb *ccb-next;
char unsigned otype;
char bits oflags;
physaddr ccb-phys;
short unsigned ccb-nbytes;
short bits ccb-status;
long ccb-time;
short unsigned ccb-size;I

Figure 5 . Channel Control Block Structure Definition

Bit 2: Post transmitter event

Bit 8: Start of packet

Bit 9: End of packet

Bit 10: Packet terminated by abort

Bit 11: Packet terminated by Receiver overrun

Bits 14-12: Number of bits in the last byte (zero implies eight
bits)

Bit 15: Error in the CRC

Table 2. Channel Control Block Status Flags

- 32 -

Report No. 4816 Bolt Beranek and Newman Inc.

ccbnext: Used by the synchronous I/O microcode to follow
linked lists of Channel Control Blocks.

o_type: Used by the operating system to determine what
type of object this is.

o_flags: Used by the object management system.

ccb-phys: Gives the physical address of the first byte of
useful data in the buffer. Used by the
microcode to determine the starting address for
data transfers.

ccb-nbytes: Gives the number of data bytes currently in the
buffer. For incoming buffers, the microcode
fills in the correct value automatically. For
outgoing buffers, the microcode uses it to
determine how many bytes to transmit.

cob_status: The meanings of the bits in this field are
summarized in Table 2. On output, only the "Post
Transmitter Event" and "End of Packet" flags are
meaningful. On input, it is filled in by the
microcode when it loads the last byte into the
buffer.

cob_time: On input, this field is filled in by the
microcode. It gives the time at which the last
byte of data was inserted into the buffer. On
output, this field specifies the time at which
transmission of the buffer should start. This
time is given relative to the real time clock on
the I/O board.

ccb_size: Gives the total number of bytes allocated to the
buffer described by this CCB. On input, used by
the I/O microcode to decide when the current
buffer is full. Not used on output. This field
must contain an even number greater than two.

Table 3. Channel Control Block Fields

- 33 -

Report No. 4816 Bolt Beranek and Newman Inc.

4.4 Device Control Blocks

The C structure definition of the Device Control Block for a

synchronous channel is shown in Figure 6. The function of each

field is summarized in Tables 4 through 7. As one might expect,

not all of the available addresses in a DCB are used. Control

registers that are specific to the transmit side of the channel

begin at a byte offset of Ox1O from the base address. Control

Registers that are specific to the receive side of the channel

begin at a byte offset of Oxi04. The first five fields in a

Device Control Block are pertinent to both sides of the channel.

Writing into any of the undefined fields should be avoided, as

many of them are active, and changing their contents could have

undesirable side effects.

Note that the "scTxCurrent", "scRxCurrent", "scRxFreeQ"

and "scRxBufAdd" fields claim to hold pointers, but are only

sixteen bits wide. By definition, the Channel Control Blocks

that these fields point to must be in Segment F8. Since Segment

F8 always starts at the same physical location, and cannot be

larger than 64 kilobytes, the width of certain data paths on the

I/O board is reduced by treating these fields as offsets.

-34-

Report No. 4~816 Bolt Beranek and Newman Inc.

struct synch-.chan I' byte offset 1

short unsigned so-enable; I' OX00O0~
short unsigned sc...loop; I' 0x0021
long sc...time; /* OxOO4
long unsigned sc-err-ev; /* 0x008 ~
short unsigned sc-err-code; 1* OX00C
short unsigned sc-version; I, OxOOE ~

short unsigned sc-TxStop; I' Ox010 '
long unsigned scTxEvent; 1' 0x012 '
short soTxMindelay; I' 0x016 '
short unsigned scTxCurrent; I' 0X018V

short unsigned scGRrw;/ x1
short unsigned scGRadr; /* OX01C ~
short unsigned sc-unused [115]; /* Ox0lE

short unsigned soRxCurrent; /* Ox1OI41
short unsigned scRxFreeQ; I' 0x106 '
short scRxFreeCount; 1* 0x1081
short soRxFreeLimit; I' Ox1OA *
long unsigned scRxFreeEvent; I' OX10C *

short unsigned scRxBufCount; /* Ox110
short unsigned soRxBufLimit; 1* 0x112
short sc_RxBufLatency; /* 0x114V
long unsigned scRxBufEvent; /* 0x116V

long unsigned scRxUnused; /* OxilAV
short unsigned scRxBufAdd; I' OxilEV

Figure 6 .Synchronous 1/0 Device Control Block

-35-

Report No. 4816 Bolt Beranek and Newman Inc.

sc-enable: Setting and clearing bits in this field
independently enable and disable the microcode
that services the transmit and receive sides of
the channel.

scloop: Setting this field to a nonzero value puts the
channel into an internal loopback mode.

sc-time: A 32-bit real time clock shared by all of the
channels on the [/0 board. The value of this
clock is guaranteed by the operating system
software to be within within a few ticks of that
of the Processor Node, but not precisely the
same.

scerrev: The physical address of an Event Handle to post
when the channel encounters a fatal error
condition.

scerrcode: When the channel encounters a fatal error
condition, it puts an error code in this field to
indicate the nature of the condition. Writing to
this location causes the I/O microcode to reset
both the Transmit and Receive sides of the
associated channel.

sc-version The high byte of this field gives the type of
device associated with this Device Control Block,
and the low order byte gives the version number
of the microcode. As with the Processor Node
Controller microcode version number, the low
order nibble of the version number distinguishes
among patches to the microcode PROMs, and the
high order nibble distinguishes among more
significant changes. The device type of a
synchronous channel is one. The version number
of the microcode described in this document is
1.0.

Table 4. Device Control Block Common Fields

- 36 -

Report No. 4816 Bolt Beranek and Newman Inc.

sc_TxStop: Reading this field causes the Transmitter to
suspend operation at the end of the current
packet. Writing a one into this field causes the
Transmitter to resume operation. This field is
used to stop and restart the transmitter when a
new packet must be added to the Transmit queue.

sc_TxEvent: The physical address of an event handle to post
whenever the Transmitter processes a CCB that has
its "Post Transmitter Event" flag set.

scTxMindelay: The minimum number of 62.5 microsecond clock
ticks that the transmitter must wait between the
end of one packet and the beginning of another.
This field is used to keep the transmitter from
swamping longer latency devices.

scTxCurrent: A pointer to the Channel Control Block currently

being processed by the Transmitter.

scGRrw: See "scGRadr" below.

scGRadr: This field is used along with the "sc_GRrw" field
to observe and manipulate the internal state of
the synchronous I/O microcode for debugging
purposes. Writing an address into this field and
reading the "scGRrw" field reads the current
contents of the corresponding microcode register.
Writing an address into this field and writing
the "sc_-GRrw" field loads a value into the
corresponding microcode register. Anyone who
needs to use these fields should refer to the
source code listings for the I/O microcode.

Table 5. DCB Transmitter and Debugging Fields

- 37 -

Report No. 4816 Bolt Beranek and Newman Inc.

scunused: An array of locations not used by the application
software. These locations should not be written
to, as many of them are active, and changing
their contents could have undesirable side
effects.

scRxCurrent: A pointer to the Channel Control Block that is
currently being processed by the Receiver.

scRxFreeQ: The sixteen bit supervisor memory address of a
control block that gives access to a queue of
"auxiliary CCBs". This queue is used when there
are no empty buffers left on the Receiver queue.
A value of zero in this field indicates to the
microcode that there is no such queue available.

scRxFreeCount: This field is decremented each time the Receiver
finishes processing a buffer. Whenever the value
of this field falls below the value of the
"sc_RxFreeLimit" field, the "scRxFreeEvent" is
posted. For indivisibility reasons, writing the
value N into this field actually adds N to its
contents.

scRxFreeLimit: The "scRxFreeEvent" is posted whenever the value
of the "sc_-RxFreeCount" field falls below the
value of this field.

scRxFreeEvent: The physical address of an event handle to post
when the value of the "scRxFreeCount" field
falls below the value of the "scRxFreeLimit"
field.

Table 6. Device Control Block Receiver Fields

38

- 38 -

Report No. 4816 Bolt Beranek and Newman Inc.

sc_RxBufCount: This field is incremented each time the Receiver
finishes processing a buffer. Whenever the value
of this field gets to be equal to the value of
the "scRxBufLimit" field, the "sc_RxBufEvent" is
posted. For indivisibility reasons, reading this
register also sets it to zero.

scRxBufLimit: The "scRxBufEvent" is posted whenever the value
of the "scRxBufCount" field gets to be equal to

the value in this field.

scRxBufEvent: The physical address of an event handle to post
when the value of the "scvRxBufCount" field gets
to be equal to the value of the "scRxBufLimit"
field.

scRxBufLatency:The maximum time that the Receiver is allowed
between the end of a packet and the posting of
the "scRxBufEvent". This protects against the
case where the Receiver has processed a packet
that is not large enough to trigger the
"scRxBufEvent".

scRxUnused: Not used by application software

scRxBufAdd: Writing the low order sixteen bits of the
supervisor Memory address of a Channel Control
Block into this field will cause the microcode to
splice the CCB into the Receiver queue. This is
used to avoid race conditions when an application
program adds empty buffers to the Receiver queue.
For reasons of simplicity, the microcode splices
the new CCB into the queue directly behind the
CCB that is currently being processed. When this
field is read, it returns a nonzero value if the
microcode has not yet completed the last splicing
operation, and zero otherwise. The MC68000
should always check before writing to this field.

Table 7. DCB Receiver Control Fields (continued)

- 39 -

Report No. 4816 Bolt Beranek and Newman Inc.

4.5 Enabling the Channel

The "csenable" field of the Device Control Block controls

whether or not the microcode polls the communications protocol

chips. In order for data to be transfered between the protocol

chip and memory, these bits must be set. Table 8 gives the use

of these bits.

Bit 0: Unused

Bit 1: Enable Receiver microcode polling.

Bit 2: Enable Transmitter microcode polling.

Bits 15-3: Unused

Table 8. Valid Settings for the Field cs_enable

The purpose of this control register is to conserve the

bandwidth of the BIO micromachine. The BIO micromachine does not

have enough bandwidth to support all of the I/O devices if they

are operating at full speed. Therefore, if some lines are

unused, they should not be enabled.

Note that this field does not affect the communications

protocol chip in any way. In particular, the receive side of the

chip is ready to start filling the input ring buffer immediately

after reset, and will overrun if the receiver is not enabled soon

enough. When the transmitter enable bit is cleared, the

Transmitter microcode polling will stop transferring data from

- 40 -

Report No. 4816 Bolt Beranek and Newman Inc.

main memory only when it reaches the end of the current output

packet. Similarly, clearing the receiver enable bit will cause

the Receiver microcode to stop transferring data into main memory

when it reaches the end of the current input packet.

4.6 Looping the Channel

Writing a nonzero value into the "sc-loop" field connects

the transmit channel output to the receive channel input. An

external clock input to the transmit channel is still required,

but the receiver clock input is disabled when in this mode. The

loopback connection is internal to the communications protocol

chip, so it does not exercise the TTL drivers that bring the

signals off the chip, or the circuits that drive the I/O cables.

Since both of these are common failure points, external looping

of the channel at or beyond the drivers is recommended when

testing.

4.7 Fatal Errors

When the synchronous I/O hardware encounters a fatal error

condition, it puts an error code in the "sc_errcode" field,

posts an event, and shuts down both its transmitter and its

receiver. The meanings of the error codes are shown in Table 9.

To post the event, the I/O microcode retrieves an event handle

from the physical address specified in the "scerrev" field, and

- 41 -

Report No. 4816 Bolt Beranek and Newman Inc.

passes it to the Processor Node Controller. All of the events

posted by the Synchronous I/O system are posted in this way.

After posting the error event, the channel goes into a quiescent

state. It does not reset itself at this point, as that would

clear all information pertinent to the error condition.

Code Meaning

1 The Transmitter has encountered a CCB with a null
link pointer that was not at the end of a message.

2 Transmitter Underrun. This occurs when the I/O
micromachine is so heavily loaded that it cannot
transfer data from its ring buffer to the
communications protocol chip fast enough.

3 Because of the way that it tests for end conditions,
the Transmitter microcode cannot handle a packet if
the value of its "ccbnbytes" field of a CCB on is
greater than or equal to 32 kilobytes. It sets this
error code whenever that condition occurs.

4 The channel was unable to post the "scTxEvent".

5 The channel was unable to post the "sc_RxFreeEvent".

8 The channel was unable to post the "seRxBufEvent".

Table 9. Synchronous Channel Error Codes

As indicated in the table, it is a fatal error if any event

cannot be posted by the channel. This failure can be due to one

of two conditions: (1) invalid Event Handle, or (^) an attempt to

multiply post the handle of an event block that has its "illegal

to post multiply" flag set. If the posting of the error event

fails, the channel enters its quiescent state without taking any

further action.

42-

Report No. 4816 Bolt Beranek and Newman Inc.

4.8 The Reset Function

The hardware and microcode state variables associated with a

channel may be reset by writing to the "scerrcode" field of its

Device Control Block. As noted below, the Reset Function causes

the Transmitter and Receiver to lose all information about the

CCB lists that they are processing. These lists must be

reinitialized whenever this function is invoked.

The procedure for shutting a synchronous channel down is

summarized in Table 10. Since the operation of the synchronous

I/O section is rather complex, it is not surprising that the

procedure for shutting a channel down without undesired side

effects is also complicated. The first step in the procedure is

to turn off the microcode polling function that reads and writes

Channel Control Blocks. Since the guaranteed latency of the

polling function is 250 microseconds, the polling function will

see the transition of the enable flags and shut down within that

period.

- 43 -

Report No. 4816 Bolt Beranek and Newman Inc.

1. Clear the "scenable" field of the DCB.
2. Wait 250 microseconds.
3. Inhibit interrupts to the MC68000.
4. Write to the "scerrcode" field of the DCB.
5. Wait 100 microseconds.
6. Write to the "so_errcode" field of the DCB.
7. Wait 100 microseconds.
8. Enable interrupts to the MC68000.

Table 10. Procedure for Resetting a Synchronous Cetannel

The reset request may interrupt an ongoing DMA transfer

related to the channel in question. The reset function clears

the DMA word count, so this operation will terminate immediately

when control is returned to it, but a second reset operation is

necessary to clear the state variables that are affected when the

DMA routine makes its exit.

The waiting period after each of the reset operations serves

two purposes. First, the microcode will ignore the second

invocation of the reset function if it is made before the first

reset is complete. Second, the reset function ties up the entire

I/O micromachine (asynchronous and synchronous channels)

uninterruptibly for approximately 25 microseconds (150

microcycles). The waiting period gives the micromachine a chance

to catch up on other business before the MC68000 proceeds.

The need to inhibit interrupts to the MC68000 is also due to

the fact that the reset function ties up the micromachine for a

- 44 -

Report No. 4816 Bolt Beranek and Newman Inc.

relatively long time. If interrupts were not inhibited, the

MC68000 could enter an interrupt routine of its own just before

the execution of either one of reset functions. If this

interrupt routine sets up a DMA transfer to an Asynchronous I/O

channel, for instance, the Processor Node Controller could end up

making a request of its own to the same BIO module. The

combination of the long execution time of the reset function and

the potentially heavy processing load on the I/O micromachine on

completion could cause it to fail to respond to the PNC in time,

causing the PNC to signal a spurious bus error, or worse.

4.9 Real Time Clock

The "sctime" field provides exactly the same facility as the

real time clock register found in memory subspace zero of all

Butterfly Processor nodes. That is, it is a 32 bit read/write

register whose value is incremented once every 62.5 microseconds.

When specifying times relative to this clock, it is important to

remember that it counts modulo 32 bits. The range of times

relative to any specific value of this clock is therefore plus or

minus 2"'31 units, or half the 74+ hour range of the clock.

Any program with access to the Device Control for a

synchronous channel can reset the I/O board clock by simply

writing the "sc_time" register. When writing this register, it

is necessary to take the same precautions observed when setting

- 45 -

Report No. 4816 Bolt Beranek and Newman Inc.

the Processor Node Controller real time clock. Since the I/O

board real time clock is shared by all of the synchronous

channels on the BIO, setting the clock through any one of the

Device Control Blocks will change its value for all of the

synchronous channels on the BIO.

When a Butterfly processor is reset, all of the Processor

Node clocks are cleared, but none of the I/O board clocks are

cleared. This means that in general, the two sets of clocks will

not be synchronized. When the Chrysalis Operating System starts

up, it sets all of the 1/O board clocks under its control to be

as close as possible. In fact, they will often be exactly

synchronized, but it is impossible for the operating system

software to guarantee this.

4.10 Transmitter

The synchronous Transmitter is implemented as a pair of

microcode processes. One of these processes reads characters

from a 64 byte ring buffer, feeds them to the communication

protocol chip as it requests them, and takes care of start and

end of packet conditions. The other process reads characters

from main memory and puts them into the ring buffer. The

microcode moves down a linked list of Channel Control Blocks,

Using each one as a specification of what is to be done with a

particular block of memory. This linked list of CCBs is referred

-46

Report No. 4816 Bolt Beranek and Newman Inc.

to here and in other documents as the "Transmit Queue". The

detailed operation the Transmitter microcode is outlined in the

pseudo program at the end of this section. At the interface to

the application programs, it implements the following loop:

1. Follow the "cobnext" field of the current CCB to
find the next CCB in the Transmit Queue.

2. Post an error event if the value of the
"ccb-nbytes" field is greater than Ox7FFF or equal
to zero.

3. Starting at the address specified by the "ccbphys"
field of the CCB, read data into the Transmitter
ring buffer from main memory.

4. Keep reading data as fast as the ring buffer
allows, until the number of bytes read equals the
value of the "ccb_nbytes" field of the CCB.

This is illustrated graphically in Figure 7. Here, Buffer 2

is being processed, as indicated by the "scTxCurrent" pointer,

while Buffer 1 has been processed and is waiting to be recycled,

and Buffer 3 is w3iting to be processed. When the channel

reaches the end of the Transmit Queue it enters a quiescent

state, in which it simply marks time'.

There are some additional features of the Transmitter

microcode that complicate the basic loop shown above, and give it

some added flexibility. These include actions triggered by flags

in the "cob_status" field of a CCB, maintaining a minimum time

interval between packets, and a provision for specifying the

precise transmit time of oacket These are discussed in the

- 47 -

Report No. 4816 Bolt Beranek and Newman Inc.

SCTXCURRENT

CCB1Y CCBPY CCB3Y

CCLNBYTES

CCB..SIZE

BUFFER BUFFER BUFFER
2 3

I °__ I I
FRAME A FRAME B

INTERPACKET
INTERVAL

Figure 7 • Output of Three Buffers Into Two HDLC Frames

following subsections.

4.10.1 Channel Control Block Flags

The Transmitter pays attention to two flags in the

"ccb_status" field of a Channel Control Block. If the "Post

Transmitter Event" (OxOO04) flag is set, the microcode posts the

-48 -

Report No. 4816 Bolt Beranek and Newman Inc.

Event Handle found at the physical address stored in the

"scTxEvent" field of the Device Control Block. This serves to

notify the application program that one or more buffers have been

processed and are ready to be freed from the head of the Transmit

Queue. If the "end of packet" (0x0200) flag is set, the current

packet will be terminated after the last byte in the current

buffer has been transmitted. This involves telling the

communications protocol chip to send its CRC word and an HDLC

terminating flag, and setting up for the beginning of the next

packet.

4.10.2 Packet Transmit Times

The Transmitter will not start to transmit a new packet

until the value of the I/O board real time clock is greater than

or equal to the value in the "ccb-time" field in the last CCB of

the previous packet. This allows the application program to set

the precise time (within 62.5 microseconds) at which a packet

will be transmitted. This is useful in applications such as

satellite host stream processing in the Voice Funnel, where

message bursts happen at tightly constrained intervals. While

having the last CCB of a packet control the transmit time of the

following packet is not the most obvious choice, it turns out to

provide the simplest and most flexible user interface.

I
I

I- 49 -

Report No. 4816 Bolt Beranek and Newman Inc.

When specifying a packet transmission time in the "ccb_time"

field of a CCB, it is important to recall that the I/O board real

time clock and its counterpart on the processor node have the

same period, but not necessarily the same value. The value in

the "ccbtime" field should be specified relative to the I/O

board clock. If the precise transmit time is important, the

application code must ensure that packets on the Transmit queue

remain sorted with respect to transmit time. If the precise

transmit time is unimportant, the application code should store

the current value of the I/O board clock in the "ccb_time" field

of the last CCB in every packet, since there is no way to disable

this mechanism.

The minimum time interval between the end of one packet and

the beginning of the next is controlled by the "scTxMindelay"

field of the Device Control Block. The Transmitter will not

start to transmit a new packet until the number of clock ticks

that have elapsed since the end of the last packet is greater

than or equal to the value in the "scTxMindelay" -egister of the

Device Control Block. This keeps the I/O board from swamping

other devices with longer latencies without constraining the

Butterfly application software. The microcode treats this field

as a signed quantity, so the largest interpacket interval allowed

is 32,768 clock ticks, or 2.048 seconds. Specifying a negative

interval is equivalent to specifying a zero length interval.

- 50 -

Report No. 4816 Bolt Beranek and Newman Inc.

There are two minor subtleties worth noting here. First,

there is a difference between loading a packet into the

Transmitter ring buffer and transferring characters from the ring

buffer to the communications protocol chip. The former commences

as soon as the Channel Control Block is read, while initiation of

the latter is subject to the interpacket spacing and transmit

time parameters discussed above. Second, if the Transmitter's

ring buffer happens to be empty when a new packet is queued for

transmission, the firmware will not start transferring characters

to the communications protocol chip until the ring buffer is

full. This has the beneficial effect of minimizing the chance of

a transmitter underrun condition. It also has the slightly

undesirable effect of delaying the transmission of packets that

arrive under these conditions by approximately 32 to 50

microseconds.

4.10.3 Maintaining the Transmit Queue

Before it tries to splice a new packet into the Transmit

Queue, the MC68000 must stop the the Transmitter in order to

avoid a race condition with the microcode. It does this by

reading the "sc-..TxStop" field of the Device Control Block. When

this field is read, the microcode first returns the low order

sixteen bits of a pointer to the CCB that is currently being

processed by the Transmitter. The transmitter stops when it

finishes transmitting the last byte of the current packet. In

Report No. 4816 Bolt Beranek and Newman Inc.

the meantime, the MC68000 is free to change the contents of any

CCB on the transmit queue that follows the last CCB in the

current packet. It is also allowed to change the "ccb_next"

field of the last CCB in the current packet, but no other field

in that CCB. When it is done rearranging the Transmit queue, the

MC68000 restarts the channel by storing a value of one into the

"sc_TxStop" field.

When the transmitter is sending a multi-buffer packet, the

value returned when the "scTxStop" field is read will not

necessarily be pointing to the last CCB processed by the

microcode before it stops. Before any manipulations on the

Transmit Queue are performed it is necessary to find the end of

the current packet by starting with the the pointer returned from

the "sc_TxStop" field and following the transmit queue until a

CCB is found with its "end of packet" bit set.

Note that it is necessary to stop the transmitter only when

CCBs are added to the Transmit Queue "downstream" from the CCB

that is currently being processed. Processed CCBs can be removed

from the head of the Transmit Queue for recycling at any time

without stopping the Transmitter.

4.1C.4 Initialization

The Transmitter must have at least one Channel Control Block

on its queue at all times. Thus, in the limiting case, the

-52

Report No. 4816 Bolt Beranek and Newman Inc.

Transmit queue consists of a single CCB with a null "ccb_next"

field, pointed to by the "sc_TxCurrent" field of the Device

Control Block. As a result, reinitialization of the Transmitter

involves more than just invoking the reset function. After the

channel has been reset and before the Transmitter is enabled, the

MC68000 must store a pointer to a null terminated list of CCBs

into the "scTxCurrent" field of the Device Control Block. The

first CCB in the list is never processed. It can be recovered as

soon as the Transmitter goes on to process another CCB.

Note that the minimum number of buffers needed to keep a

Transmitter from blocking is two instead of one, since the last

CCB on the Transmit Queue is never freed.

4.11 Receiver

The basic structure of the synchronous Receiver is similar

to I. of the Transmitter. Like the Transmitter, it is

implemented as a pair of firmware processes. One process reads

characters from the communications protocol chip and puts them

into a 64 character ring buffer, while the other takes characters

from the buffer and reads them into main memory on the local

processor node. Also like the Transmitter, the microcode walks

down a linked list of Channel Control Blocks. It uses each CCB

first as a specification for a block of memory into which it is

allowed to transfer incoming data, and then as a place to record

- 53 -

Report No. 4816 Bolt Beranek and Newman Inc.

information about the data that it has transferred. This list of

CCBs is referred to here and in other documents as the "Receive

Queue". The detailed operation of the microcode is outlined in

the pseudo-C program shown at the end of this section. At the

user interface, it implements the following loop:

1. Follow the "ccbnext" field of the current CCB to
find the next CCB in the Receive Queue.

2. Start reading bytes from the Receiver ring buffer
into the main memory of the processor node starting
at the address specified by the "ccb.phys" field of
the CCB.

3. Keep reading bytes as fast as the ring buffer
allows, until the number of bytes read equals the
value of the "ccb_size" field of the CCB, or until
the packet must be terminated due to an end of
packet flag or an error condition.

4. Update the "ccbstatus", "ccbnbytes", and
"ccb_time" fields of the CCB.

The operation of the Receiver is shown graphically in Figure

8. Here, Buffers 1 and 2 each contain part of a single packet,

while buffer 3 contains an entire packet. Bytes from the current

packet are being transferred into buffer 4, as indicated by the

"scRxCurrent" pointer. If the Receiver gets to the end of

buffer 4 before the end of the packet, it will move on to buffer

5.

The firmware actually transfers 16 bits of information each

time it moves a character from the communications protocol chip.

The extra eight bits are the contents of a status register in the

protocol chip at the time that the character was read. This

-54-

Report No. 4816 Bolt Beranek and Newman Inc.

SC..RXCURRENT

CCal1 CCB 2 CC5 3 ; CCB 4 CCa 5

--

BUFFER BUFFER BUFFER BUFFER3 45

I ' t I h, ' -'
FRAME A FRAME B FRAME C

Figure 8 . Input of Three HDLC frames into five buffers

information is kept in the Receiver ring buffer along with the

incoming character, and is processed as the character is

transferred to the main memory of the processor node. If either

"End of Packet", "Abort", or "Receiver Overrun" is set in this

field, the current packet is terminated. We refer to an

\ occurrence of any of these conditions as an "end of packet

condition".

I
I- 55 -

Report No. 4816 Bolt Beranek and Newman Inc.

The microcode will move on to the next Channel Control Block

in the Receive Queue when the current buffer is full, or when an

end of packet condition occurs. Before it moves on, the

microcode updates the current CCB in the following ways:

ccb-nbytes: The number of data bytes actually copied into the
buffer is entered into this field.

ccb-status: The contents of the status register of the
communications protocol chip when the last byte
in the buffer was received is copied into the
high order byte of this field. The value of the
last byte in the buffer is copied into the low
order byte.

ccb-time: The value of the I/O board real time clock when
the last byte was copied into the buffer is
stored in this field. This may be a few clock
ticks later than the time at which the last byte
was actually received, since incoming characters
must percolate through the Receiver ring buffer.

In general, the "ccbstatus" field is only useful at the end

of a packet. In that case, the bits in this field are

interpreted as follows:

Bits 7-0: The value of the last byte in the packet.

Bit 8: This buffer contains the first byte of a packet.

Bit 9: This buffer contains the last byte of a packet.

Bit 10: This buffer contains the last byte of a packet that
was terminated by Abort Flag.

Bit 11: This buffer contains the last byte of a packet that
was terminated by a receiver overrun condition.

Bits 14-12: Since the line protocol is bit oriented, it is
possible to receive a packet that does not end on a

- 56 -

Report No. 4816 Bolt Beranek and Newman Inc.

byte Doundary. When this is the case, the three
bits in this field give the number of bits in the
incomplete byte at the end of the packet.

Bit 15: A CRC error was detected in the packet whose last
byte is in this buffer. This flag can be set only
if the end of packet flag is set.

As with the Transmitter, there are certain features that

complicate the basic Receiver loop and lighten the load on the

application program. These features have to do with the manner

in which the channel acquires empty buffers, and the mechanisms

used to inform the application program that new data has arrived.

These are discussed in the following subsections.

4.11.1 Backup Buffers

The "sc_RxFreeQ" field in the Device Control Block gives the

Receiver a backup source of free buffers in the event that the

Receive Queue runs out of buffers. This backup source, referred

to here and in other documents as the "PNC Queue", is maintained

by the application code using the indivisible Supervisor Memory

enqueue and dequeue operations available from the Processor Node

Controller (these are not the same as the Dual Queue operations

supported by the PNC). When the Receiver gets to the end of its

queue, it looks in the "scRxFreeQ" field for a pointer to a

parameter block in Supervisor Memory. It uses this parameter

block to invoke the PNC dequeue function. If the dequeue is

successful, the PNC will return a pointer to a Channel Control

- 57 -

Report No. 4816 Bolt Beranek and Newman Inc.

Block, and the Receiver can proceed. By zeroing the "sc_RxFreeQ"

field, the application program can indicate to the Receiver that

there is no PNC Queue available.

This function is intended to provide support for a buffer

allocation scheme similar to those used in the IMP program and

elsewhere. Since the PNC Queue can be shared among several

synchronous receivers, it is possible to allocate just enough

buffers to each receiver to ensure that lockup conditions will

never occur, then leave the remaining buffers on a PNC Queue to

take care of bursts when and where they occur. Further

discussion of this kind of buffer management strategy may be

found in (Rosen, E., "Issues in Buffer Management" Internet

Experiment note #182, May 1980.) which treats the subject of

buffer management in communications processors in more detail.

When the Receiver has exhausted all potential sources of

buffers, it simply stops transferring bytes from its ring buffer

to main memory. If the ring buffer fills up and new data

arrives, the chip will signal an overrun condition, which is

cleared as soon as the microcode starts reading characters again.

4.11.2 Counting Free Buffers

Under normal conditions in a well designed application, the

mechanisms described so far are sufficient to keep a Receive

channel functioning smoothly. However, there will always be

-58-

Report No. 4816 Bolt Beranek and Newman Inc.

circumstances when a channel will run short of buffers, at least

temporarily. The "scRxFreeCount", "sc_RxFreeLimit" and

"sc_RxFreeEvent" fields in the Device Control Block provide a

flexible, low-overhead mechanism for notifying the application

software when this occurs.

The basic rules are that the scRxFreecount register is

decremented each time a Channel Control Block is processed by the

Receiver, and the Event "scRxFreeEvent" is posted whenever the

value in the "scRxFreeCount" field drops below the value in the

"scRxFreeLimit" field. The intent is that the "sc_RxFreeCount"

field contain a count of the number of empty buffers available to

the Receiver, and that the "scRxFreeLimit" field indicate a

threshold below which the Receiver is considered to be abnormally

low on buffers. When the "scRxFreeEevent" is posted, the

application code may simply make a note of the fact that the

condition occurred, or it may attempt to take corrective action.

The phrase "abnormally low on buffers" is deliberately vague,

since the number of buffers available to a channel depends on the

size of its Receive Queue, the size of the PNC queue, if any, and

the number of Receivers sharing the PNC queue.

To make this work, the application code must increment the

"sc_RxFreeCount" field each time it adds an empty buffer to the

Receive Queue. It must also initialize the "scRxFreeCount" and

the "scRxFreeLimit" fields to appropriate values before it

starts up the Receiver. Since these fields do not influence the

- 59 -

Report No. 4816 Bolt Beranek and Newman Inc.

behavior of the Receiver in any way other than to cause it to

post an event under certain conditions, their absolute values are

not important. It is only necessary to set the difference

between the two. Since the microcode treats these fields as

unsigned sixteen bit integers when it is compares them, it is

possible to disable this mechanism by setting the

"scRxFreeLimit" field to zero.

In order to avoid race conditions between the microcode and

the application code, writing the value N to the "sc...RxFreeCount"

field actually increments it by that amount. This makes it

possible to increment the field reliably without stopping the

Receiver. Instead, it is necessary to stop the Receiver in order

to initialize the field.

41.11.3 Signalling Packet Arrival

As packets arrive, the Receiver must let the application

software know that there is new work to be done. The microcode

provides several facilities to help the application software keep

track of incoming packets with a minimum of effort.

The first and most basic facility is a buffer counter. Each

time the Receiver processes a CCB, it increments thej

"scRxBufCount" field of the Device Control Block. This lets the

Receiver maintain an accurate running count of the number of

buffers ready for processing without scanning the Receive Queue

-60-

Report No. 4816 Bolt Beranek and Newman Inc.

repeatedly or waking up every time a new buffer arrives. When

the application code reads the "sc_RxBufCount" field, the

microcode automatically zeros it. Combining the read and clear

into a single indivisible operation avoids race conditions with

the microcode. By periodically adding the contents of the

"scRxBufCount" field to an auxiliary variable, and decrementing

the auxiliary variable whenever a received buffer is processed,

the application software can maintain an accurate count of

buffers to be processed with relatively little effort.

The method by which the application software is actually

notified of the arrival of new data is similar to the method by

which it is told that the channel is low on buffers. Like the

"sc_-RxFreeLimit" field, the "scRxBufLimit" field determines a

threshold. When the value of the "sc_RxBufcount" field gets to

be equal to the value of the "scRxBufLimit" field, the

"scRxBufEvent" is posted. In the simplest case, the

"scRxBufLimit" field is set to one. Each time a new buffer

arrives, the application software receives the event, resets the

"sc_RxBufCount" field and processes a buffer. If it is more

convenient to process buffers in batches, the value of the

"scRxBufLimit" field can be set to a larger value.

Setting the "scRxBufLimit" field to a large value can

result in unacceptably long latency for isolated packets that

happen to be too short to trigger the "scRxBufEvent". The

"scRxBufLatency" field is used to solve this problem. This

- 61 -

Report No. 4816 Bolt Beranek and Newman Inc.

field sets the maximum number of clock ticks that may elapse

between the end of any packet and the posting of the

"sc_RxBufEvent".

For the purposes of this explanation, only the simplest

possible uses for these fields have been described. There are

less obvious ways to use them that might be more useful under

some circumstances. When both the "scRxBufLimit" and

"sc_RxBufLatency" fields are set to zero, for instance, the

"sc_RxBufEvent" will be posted once at the end of each incoming

packet, regardless of packet length. If the "scRxBufLimit"

field is set to one and the "scRxBufLatency" field is set to

zero, the "scRxBufEvent" will to posted once at the beginning of

each packet, so the application can get going on header

processing right away, and again at the end of each packet, so

the software can find out when it has a complete packet without

scanning the Receive Queue repeatedly.

4.11.4 Maintaining the Receiver Queue

When the MC68000 is splicing new CCBs into the Receive

Queue, it must avoid race conditions with the microcode. Unlike

the Transmitter, the Receiver cannot be stopped without raising

the possibility of an overrun condition. On the other hand, it

is not necessn-y to splice multi-buffer packets onto the Receive

Queue, or maintain any kind of ordering among CCBs on the queue.

- 62 -

Report No. 4816 Bolt Beranek and Newman Inc.

It is therefore easy for the microcode to support the splicing

operation. When an application program wishes to splice a CCB

into the Receive Queue, it simply writes the low order sixteen

bits of a pointer to the CCB into the "scRxBufAdd" field of the

Device Control Block. In order to keep this operation as simple

and efficient as possible, the microcode splices each new CCB

into the queue immediately behind the CCB that is currently being

processed.

The "scRxBufAdd" field is readable as well as writable. If

it is read while the microcode is in the process of splicing a

new buffer into the queue, a nonzero value will be returned.

Otherwise, this field contains a zero. If the MC68000 attempts

to load the "scRxBufAdd" field while the microcode is in the

process of splicing another CCB into the queue, a fatal error

condition can result. It is therefore important to check the

value in the "sc_RxBufAdd" field before storing a pointer to a

new CCB into it. This is not meant to imply that the microcode

splicing operation is slow. In all but a few cases, it should be

possible for the MC68000 to add CCBs to the Receive Queue as fast

as it can find them. In the cases where the MC68000 must wait,

the delay will be very short.

- 63 -

Report No. 4816 Bolt Beranek and Newman Inc.

4.11.5 Initialization

The Receiver must have at least one Channel Control Block on

its queue at all times. Thus, in the limiting case, the Receive

queue consists of a single CCB with a null "ccbnext" field,

pointed to by the "sc_RxCurrent" field of the Device Control

Block. As a result, reinitialization of the Receiver involves

more than just invoking the reset function. After the channel

has been reset and before the Receiver is enabled, the MC68000

must store a pointer to a null terminated list of CCBs into the

"scRxCurrent" field of the Device Control Block. The first CCB

in the list is never processed. It is can be recovered as soon

as the Receiver goes on to process another CCB.

Note that the minimum number of buffers needed to keep a

Receiver from blocking is two instead of one, since the last CCB

on the Receive Queue is never freed.

4.12 Byte Ordering

Although communication on the synchronous channels is byte

oriented, The Transmitter and Receiver both reference their

buffers one word at a time, starting at the word with the lowest

address. Each word is emptied (and filled) starting at the low

order bit. Note that this runs somewhat counter to the byte

addressing conventions of the Motorola MC68000 (which,

unfortunately, are not consistent with its bit ordering

- 64 -

Report No. 4816 Bolt Beranek and Newman Inc.

conventions). The single exception to this rule occurs when a

packet contains an odd number of bytes and begins at an even

address. In this case, the low order byte (the high order eight

bits) of the last word in the buffer will be used by the

transmitter and receiver as the source/destination for the last

byte of data. This makes it possible to transfer byte-oriented

messages between the Butterfly and other machines with the same

byte ordering conventions. For byte oriented transfers between

the Butterfly and machines with different addressing conventions

(e.g. a PDP-11), byte swapping is necessary.

The only situation encountered so far in the Voice Funnel

application where the byte ordering conventions run counter to

this scheme is the Lexnet protocol, where the formats of the

source and destination addresses follow the conventions of the

PDP-11 architecture. Since these headers are quite short, this

does not pose a problem. All of the other protocols used in the

Wideband Network, including the DOD standard protocols, are word

oriented, so byte ordering conventions are not a concern.

-65-

Report No. 4816 Bolt Beranek and Newman Inc.

5. Appendix: Algorithms Used in the BIO

This appendix contains details of the actual microcode

algorithms used in the BIO. Since these tables were extracted

from the comments in the actual microcode, they may be difficult

to follow, but in exchange, they describe the actual

implementation.

-66-

Report No. 4816 Bolt Beranek and Newman Inc.

Trnsmitt= Microcde St a te Vaibe

sofNb Number of bytes not yet loaded into the output fifo from
the data block in the Processor Node's local memory.

TxBOM Number of beginning of messages loaded into the output
fifo minus the number of messages started. TxBOM is
used by the output fifo unload process to determine when
to begin transmission of the oldest message.

TxBOM Output fifo contents

0 No unstarted messages
1 One message which has not been started
2 One entire message plus beginning

of second message

sOFrd Remaining number of real time clock intervals in
intermessage delay

soAh
soAl High & low 16-bits of physical address of next memory

location to access for loading the output fifo.

uOFs State of unloading the output fifo:

-1=> waiting for output fifo to be filled with data
from 68000 local memory

0=> data from output fifo currently being loaded into
the 2652's transmitter output register and waiting
for the end of message to be detected

1=> end c-f message delay has not been satisfied and
waiting for the advancement of the real time clock
to satisfy the intermessage delay

lOFs State of loading the output fifo:

-1=> output fifo is currently being loaded with data
from 68000 local memory

0=> one of the conditions necessary to begin loading
the output fifo with a new message is not
satisfied.

1=> the transmitter section is stopped

sTmode State of transmitter operation

-1=> running
0=> stop at end of current message (set by stop

command)
1=> continue transmission of messages (set by unstop

command)

- 67 -

Report No. 4816 Bolt Beranek and Newman Inc.

nsmier Mic o Pseudo- e Secification

if(lOFs=-1 & sofNb <= 0)
;Here last byte was transferred from current 68000 buffer to
;output fifo
if(current control block does not have ENDOF_MESSAGE bit set)

;Here next control block references a buffer containing more
;of the message
fetch pointer to next channel control block
if(pointer to next CCB is null)

execute fatal error post to 68000 [error 1]
close down transmitter channel
set smcBr=O
.END

else
;Here next CCB exists
fetch parameters in next CCB
make next CCB the current CCB
if(length is lers than one)

;Here seconaary data buffer is too short
execute fatal error post to 68000 [error 3]
END

enable data transfer from new 68000 buffer to output fifo
go to the iOFs=-1 code above [because the buffer may be very short'
.END

.END
else

;Terminate current message in buffer.
load message terminating entries into the output fifo
if(POST_MESSAGE bit is set)

post 68000 for successful transmission of message
.END

set lOFs=1 ;get a new buffer
go to "lOFs.l.new" below
.END

.END

- 68 -

• 1,.-- o

Report No. 4816 Bolt Beranek and Newman Inc.

Tran .tZ .r icrocoePseudo-aod Soecification (cont)

if(lOFs:O)
;Here a new message is to be loaded into the output fifo, if its
;time of transmission condition is satisfied
if(sTmode I= -1) ;ie, 68000 stop or continue

set lOFs:1
else if(transmission time of next CCB <= time of day)

if(sTmode = -1) ;retest non-interruptably
;Here the next message can begin being loaded into the output fifo
make next CCB the current CCB
increment TxBOM
load message start data into the output fifo
fetch parameters of current CCB
set lOFs=-1
if(start address is odd)

insert first data byte in fifo
decrement sofNb
ifC'.ength was 1 byte)
goto the lOFs=-1 code

.END
if(length was less than one)

;Here primary data buffer is too short
execute fatal error post to 68000 [error 3]

.END
;enable data transfer from new 68000 buffer to output fifo
;at this point the interrupt routine sofL takes over, and
;runs until the buffer is completely loaded or the fifo is full
go to the lOFs=-1 code above [because the buffer may be very short]
END

.END
.END

if(lOFs=1)
;Here we are stopped between messages
if(sTmode=1) ;68000 wants us to continue

lOFs.l.new: ;enter here from lOFs:-1 code
if(sTmode 1= 0) ;retest uninterruptably

set sTmode=-1
fetch pointer to next CCB from current CCB
if(pointer to next CCB is not null)

fetch transmission time of next CCB from current CCB
set iOFs=O

.END
.END

.END

- 69

Report No. 4816 Bolt Beranek and Newman Inc.

Transmitter Mjroc e jUdoQ-cod Specification (cont)

if(uOFs=1 and intermessage delay condition satisfied)
set uOFs=-1
.END

if(uOFs=-1)
if(TxBOM is greater than zero)

;Here transmission of a new message can begin (since sofL has run]
set uOFs=O
enable transfer of output fifo data to 2652
decrement TxBOM
.END

.END

if(uOFs=O)
;Here message data is being transferred from the output fifo to the 26r?

.END

- 70 -

Report No. 4816 Bolt Beranek and Newman Inc.

Rec eiv er Micrcod St at e Variables

sifNb Number of bytes not yet loaded from the input fifo into
the data block in the Processor Node's local memory,
minus two.

siAh
siAl High & low 16-bits of physical address of next memory

location to access for unloading the input fifo.

uIFs state of unloading the input fifo NOTE: the values
0,2,4,6 represent states 0,1,2,31
0: acquire an input buffer; when successful go to state

1 or 2.
1: Input fifo data is currently being loaded into 68000

local memory and the timer is running; we are
waiting for the timer to finish, or dma to complete.

2: Input fifo data is currently being loaded into 68000
local memory; we are waiting for last byte in block
to be transferred, or for EOM or error.

3: Entire buffer has been loaded into local memory;
process it, then go to state 0. Set timer if
buflimit is reached, or on first EOM or error.

- 71 -

Report No. 4816 Bolt Beranek and Newman Inc.

ReceiverMicr ocode - Specification

Sin(ch) /* ch is the channel number, handled by hardware ,/{
while (sIfreeB I: 0) { /* if there is a ccb to free, *1
sIfreeB->spblink CCB->spb-link; /* append rest of free list to it I/
CCB->spb-link = sIfreeB; /* make it first on the new list *I
sIfreeB = 0; /* prepare to take another ccb *I}

switch(uIFs) { /* dispatch on state */
case(3): /* sifU sets state=3 when a buffer is complete */

CCB->timestamp = timeofday;
CCB->status = status[sIFeA-1]; /, status of last byte *.
CCB->actuallen = (CCB->maxlen - 2) - sifNb;

if ((status & (REOM+RAB+ROR)) 1= 0) /* if end-of-message */
if (sItime == 0) /* and timer not set */

sItime = (time-of-day-1 + sIwait) I 1; /* time to do post*/
sIbufC += 1; /* inhibit microinterrupts */
if (sIbufC == sIbufL) /* bufcount == buflimit? */

sItime = (time-of-day-1) 1 1; /* do post(data) now */

uIFs = 0;
/* fall thru into case(O) */

case(O): /* case(3) sets state=O after processing buffer I/

buf = 0;
if (CCB->spblink != 0) /* if a buffer is ready */

buf = CCB->spb-link;
else if (slfreeQ I: 0) /* if there is a free queue */

buf = dequeue(sIfreeQ); /* attempt to get a free buffer */

if (buf I= 0) /* if we located a buffer */{
CCB->spb-link = buf; /* put it on the ccb chain */
CCB = buf;

uIFs :1 ; /* set state to 1/

siAhsiAl = CCB->databuffer;/* must be even /
sifNb = CCB->maxlen - 2; /* must also be even, and <= 2 */
enbIdma(; /* enable the dma microinterrupt */

sIfreeC -= 1; /* reduce free buffer count */
if (slfreeC < sIfreeL) /* if it gets too low */
post(slfeAh/l); /* post the freeevent */

if (sItime I: 0) /* if timer for post(data) is on */
goto Casel; /* Maybe all the buffers are full. */

break;

- 72 -

Report No. 4816 Bolt Beranek and Newman Inc.

case(l): /* case(O) sets state=1, before starting dma.
/* we have a timer set which will eventually

cause us to post(data) */
if (sItime == 0) /* timer isn't set, goto state 2 */{

uIFs = 2;
break;}

casel: /* state one enters here */
if (time_of_day >= sltime) /* if time is up £/f
post(sldeAh/l); /* post a dataevent */
sItime = 0;

break;

case(2): /* case 1 sets state=2 when sItime 0 *
/* nothing can happen until we get more data *
break;

7

~- 73 -

Report No. 4816 Bolt Beranek and Newman Inc.

DISTRIBUTION OF THIS REPORT

Defense Advanced Researh ren
Dr. Robert E. Kahn (2)
Dr. Vinton Cerf (1)

Defense Service -- Whingtn
Jane D. Hensley (1)

Defense Documentation Center
(12)

Dr. Danny Cohen (2)

1=I/Lincoln Lh
Dr. Clifford J. Weinstein (3)

LRI International
Earl Craighill (1)

ome Air D mn Center
Neil Marples - RBES (1)
Julian Gitlin - DCLD (1)

Defense Communications Agency
Gino Coviello (1)

BolU Beranek = Newman In.
Library
Library, Canoga Park Office
R. Bressler
R. Brooks
P. Carvey
G. Falk
J. Goodhue
E. Hahn
E. Harriman
F. Heart
M. Hoffman
M. Kraley
A. Lake
W. Mann
R. Rettberg
P. Santos
E. Starr
E. Wolf

- 74-

L , .. = L;_:-:in ..

