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mation of the Weibull parameters from experiments are simple. Many
techniques exist to determine the Weibull parameters from the series
of data obtained from experimental tests.

The Log-Log Method is developed for the three-parameter family
distribution of both the uniaxial constant stress field and pure bend-
ing field in a rectangular section bar. This provides for redefining
the dynamic weights assigned to data points iteratively to emphasize the
leading distribution data or to de-emphasize errant points. This
method is compared with those obtained from the Moment Generating Method
and the Newton-Raphson iteration method for the case of uniaxial constant
stress fields.

The Weibull distribution expressions have been developed for the
pure bending and torsion stress states for the fracture of hollow alumina
tubes. Such tests are relatively inexpensive and provide useful data
reliably but no closed-form solution exists for the probability formu-
lations. An iteration method based on the least-square minimization
of residual errors in the test results is used to determine the
Weibull parameters. _

A simple theory which bypasses the assumptions of independence
"under multiaxial stress states and defines all Weibull parameters as
data points about the fi = (1,1,1)¢§—vector in principal stress space
is developed. This allows an extrapolation of biaxially determined
data to the general three-dimensional stress state when an axis of
symmetry exists. In this case, from a table of experimentally deter-
mined Weibull parameters based on biaxial data, a single independent
variable determines the probability of failure of the material in an
arbitrary stress field.
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ABSTRACT

The use of ceramics in sclentific and industrial applications is
limited by theilr relatively poor mechanical properties, brittleness
and variability in strength. Design with brittle materials requires an
entirely new concept from that with ductile materials. One must think
in terms of probability rather than virtual certainty.

Statistical flaw theory based on the 'weakest-link' hypothesis
has been applied to problems of fracture and failure of brittle
materials under test loads. One such theory, the Weibull distribution,
which is probably the most widely applied, addresses the statistical
variation of strength and the size effect due to flaws, because in a
variety of conditions both its mathematical formulation and the esti-~
mation of the Weibull parameters from experiments are simple. Many
techniques exist to determine the Weibull parameters from the series
of data obtained from experimental tests.

The Log-Log Method is developed for the three-parameter family
distribution of both the uniaxial constant stress field and pure bend-
ing field in a rectangular section bar. This provides for redefining
the dynamic weights assigned to data points iteratively to emphasize the
leading distribution data or t¢ de-emphasize errant points. This
method is compared with those obtained from the Moment Generating Method
and the Newton-Raphson iteration method for the case of uniaxial constant
stress fields.

The Weibull distribution expressions have been developed for the

pure bending and torsion stress states for the fracture of hollow alumina




tubes. Such tests are relatively inexpensive and provide useful data
reliably but no closed-form solution exists for the probability formu-
lations. An iteration method based on the least-square minimization
of residual errors in the test results is used to determine the
Weibull parameters.

A simple theory which bypasses the assumptions of independence
under multiaxial stress states and defines all Weibull parameters as
data points about the n = (1,1,1)/§-vector in principal stress space
is developed. This allows an extrapolation of biaxially determined
data to the general three-dimensional stress state when an axis of
symmetry exists., In this case, from a table of experimentally deter-
mined Weibull parameters based on biaxial data, a single independent

variable determines the probability of failure of the material in an 1

arbitrary stress field.
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CHAPTER I

INTRODUCTION

Ceramics are inorganic non-metallic brittle materials which have

been used by mankind for centuries. In ancient times they were used

l primarily as materials for pottery and artwork because of their unique
properties of stability and aesthetic appeal. The survival of pottery

l over centuries illustrates one of the great advantages which ceramics

possess over most materials; their durability. On the other hand,

ceramics lacked uniformity and reproducibility. Until three decades

P

or so ago, users of ceramics procurred their material from one source

and one particular plant of a supplier in order to maintain uniformity.

L Ceramic producers were reluctant to change any detail of their pro~

cessing and manufacturing. The reason was that the cormplex material

P-l‘

systems being used were not sufficiently known at that time to allow

the effect of changes to be predicted or understood.

r

Today, because of the possibility of technological control of the
mechanical properties of ceramics and related materials they have

become issues of major importance. Now these materials are used in a

Pr-

number of scientific and industrial applications such as turbine blades,
! prosthetics, ceramic bearings, and the like [1]. The rapid growth in

— particular, of the electronics industry has demanded the development

of many specialized types of ceramic insulators. One of the important

reasons why ceramics £ind such wide application in a wide variety of

fields is that these materials exhibit a wide range of desirable

properties. For example, properties of individual ceramics include




o

resistance to heat, oxidation, corrosion, and abrasion; high elastic
modulus, high strength, and low density with applications to the
nuclear, optical, magnetic, electronic, and other industriés. Other
applications are much too long to list here in detail, but some
examples will serve to illustrate the great diversity and importance
of these materials. Special electrical properties form the basis for
applications as insulators, piezoelectric transducers, and an ever-
increasing family of semiconductor devices. In the past twenty years
a great many new types of ceramic insulators have been produced
which included alumina, magnesia, beryllia, zirconlia and so on. The
recent use of barium titanate, when placed between the plates of an
electrical capacitor allowed it to store several thousand times the
amount of charge that could be stored by the same capacitor if air
were used instead. This had lead to the production of a series of
related materials called ferroelectrics which have helped make
electronic equipment lighter and smaller. Magnetic ceramics include
cores for computer memories and permanent magnets for electric motors.
Special chemical and thermal properties are exploited in furnaces
and crucibles which are essential to the refining, alloying, and cast-
ing of metals. ‘Thermistor' is a special kind of ceramic whose
electrical resistivity varies with changing temperature and is used as
a temperture sensing and control element in automated manufacturing
processes. Thermoelectric properties are important in developing solar
cells supplying energy for satellites [2]. The high elastic moduli and
hardness of certain ceramics make them suitable for special applications

requiring mechanical stablity such as gyroscope mounts and wear




surfaces while the extremely low thermal expansion achievable is appro-
priate to telescope mirrors and to applications involving thermal shock.

The advent of the missile and the space age has produced exceptional
demands for materials which will stand extremee in temperature and in
other environmental conditions. Ceramic materials such as carbides and
graphites are being used in some rocket nozzles where temperatures in
excess of 5000°F are developed. The high speed of sound in certain
ceramics has led to their successful use in armor, and low damping
characteristic of many ceramics makes them useful as delay lines.

In our atomic age, as atomic energy becomes commercially competitive
with other sources of energy, more efficient nuclear reactors are being
produced requiring extreme operating temperatures and absolute mechanical
integrity for thousands of hours. The thermal stability of certain
nuclear ceramics has led to their adoption as fuel elements for power
reactors and in many cases, several functions must be present simultaneously.
Because of their extreme hardness, especlally at high temperatures, ceramics
are widely used for cutting and grinding tools in industry [2]. However,
their use as an abrasive has been limited by the fact that they generally
do not form sharp cutting edges as they wear away (friability). Many
different optical properties of ceramic products are of concern in
different applications. Perhaps the most important are those optical
glasses and crystals used as windows, lenses, prisms, filters or in other
ways requiring useful optical properties as the primary function of the
material.

In citing these burgeoning uses, however, one must face the historic

problem of brittleness and unpredictability in mechanical properties of




ceramics. These characteristics still remain dictating the need %o develop
more sophisticated mechanisms to promote general design with ceramics.
Further a polycrystalline ceramic is usually made up of one or more phases,
grains and pores of various sizes and distributions and impurities inside the
grains and in the grain boundaries. All of these, in addition to process-
ing methods, influence the properties of ceramics [3). For these reasonms,

it is not a straightforward task to formulate design procedures.

Another obstacle to the wider utilization of ceramics is that they
fail with 'glass-like' brittle fracture. They do not normally exhibit
appreciable plastic deformation and their impact resistance is low [4].
This is one of the important reasons that the application of ceramics in
an engineering sense is limited by these relatively poor mechanical
properties, and presently the only generally accepted way of coping with
this problem is by gross overdesign and limiting ceramics to areas where
structural functions have secondary consideration ([5].

If ones attention is focused cn the simplest case of the failure of
ceramics, then the effects of multiaxial stresses, temperature, strain
rate, and time dependency are neglected; and only 0, the uniaxial stress,
is considered. A group of properties —- fracture toughness, effective
surface energy and work of fracture -~ is also important. In some cases
these are related directly to strength. This group gives an indication of
whether a flaw will propagate or not. Defining vy is an effective surface
energy for the initiation of fracture from an inherent flaw of size c,

a statement of fracture toughness is:

(1-1)




where Y 1s a geometrical constant and E, Young's modulus. (ZEYi)k is
equal to the stress intensity factor., Also related to Yy is the work

of fracture Yg» defined as the energy required to generate a unit area

of fracture face. In general Y¢ > Y4 but when Y¢ 18 measured in a test
involving slow controlled crack growth (rather than a partly catastrophic
crack growth) Yy = vy [6].

From the engineering point of view, ductility 18 a valuable material
property not only because Juctile marerials can undergo a large plastic
deformation long before failure but also because ductility leads to
increased contact area where high stresses may occur near boundaries,
dissipating stress concentrations. Further, ductile materials such as
metal can be made and purchased in standard forms such as sheet, tube,
and rod etc., which can be deformed into the required shape and joined
to form structures., Brittle marerials must in general be used in the
shape in which they emerg. from the factory., 1In a more specific
engineering sense, brittle materials have the characteristic that they
are unable to disperse high local stresses which results in undesirable
consequences for design engineers. The very low ductility and strain
to failure accompanying brittle materials result in a fundamental
distinction between the mechanical strength characteristics of ductile
and brittle materials. Material property test results for nominally
identical steel specimens such as yield and ultimate strength will
seldom differ from specimen to specimen by more than 5%; and a minimum
value or the mean value alone is a satisfactory basis for design whereas
a particular 'static' strenpgth property test on brittle specimens may

show a variation of 100% or more [7), depending on the number and size




of the specimens. It has been reasonably established that this variability
is not a result of badly controlled specimen preparation or test pro-
cedure but it is an inherent characteristic of brittle materials which do
not exhibit plastic deformation under stress [8]. Thus, the average or
mean strength value is not an adequate basis for specification for engineer-
ing design; the varliability must be assessed and taken into account in
brittle materials. Designing with brittle materlals does not require
simply different numerical values for the properties of material but a
new concept is required to define the strength, and more important, the
designer must think in terms of probability rather than virtual certainty.
One such concept is known as the 'weakest-link' concept and it

assumes that fracture of the bulk specimen is determined by the local

strength cf its weakest volume element. The 'weakest-link' hypothesis
states that brittle materials fail when the stress intensity at any
one flaw in the material reaches the critical value for crack propa-~
gation. If flaws are uniformly distributed throughout the material
then the number of flaws present in a specimen is propcrtional to its
volume. This is one reason why large specimens are expected to be
weaker than smaller ones [9]. In addition to these variations, the
use of brittle materials in structural components introduces two more
difficulties to efficient, reliable structural design. They are (1)
variability in mechanical properties, including the infrequent but
real possibility of low values, particularly in large volumes of

material, and (2) the accurate definitiou of the important lower proba-




bility of fracture part of the probability distribution curve, which

is necessary if a reliable prediction of failure probability is to be
made for large volumes [10]. Since catastrophic failure is commonly

induced in the brittle materials, once the 'fracture' stress has been
reached, additiocnal and more information may be needed for the use of
such materials in an engineering sense.

The weakest-link concept has been widely used in developing
various statistical theories of strength which differ from each other
only in the way in which the use of the concept is justified, or in
the assumed form ¢f the distribution function of local strength. 1Its
application to a sclid volume was first proposed by Weibull {11] who,
arrived at a distribution function which, now is being widely useéd for
the statistical interpretation of a variety cf test data [12] . mThis
theory, applied to krittle materials, addresses the statistical varia-
tion of strength and the size effect due to flaws. By assuming that
only tension contributes to fracture (fibers in compression have a zero

probability of fracture) , Weijbull extended the theory to bending, and

to any uniaxial combination of bending and tension. Weibull also
extended his theory to failure for polyaxial stress states, although it
has been questioned by many authors [13,14]).

The effect of a biaxial stress field on the fracture behavior of
polycrystalline alumina ceramics was studied by Broutman and Cornish
[15]. The various stress states of tension-compression, tension-tension

and compression-compression were generated in the walls of thin-walled
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cylinders by the use of combinations of internal pressure, external
pressure, and axial loading. Their results for the two stress ratiocs
investigated in the tension~tension region indicate that the biaxial
tensile strength is less than the uniaxial. The results in the tension-
compression quadrant were obtained by a combination of axial compressive
loading and internal pressure to produce hoop tension. The experimental
results indicated that the tensile strength increased when compressive
stress existed in the direction normal to the tensile stress. Weibull's
theory did not fit the data well as large amounts of scatter were noted
in the results. Broutman, et. al. [16] showed that the experimental

data in the tension-compression quadrant followed the Coulomb-Mohr theory

g, O, )
— = = 1 1.2
<out> < cue ( )

where g, and g,are principal stresses and Out and Oue 2F€ ultimate

approximately;

tensile and conpressive strength. The modified maximum strain energy

theory
2

2

g, 9, 0, ) (02 )
-2v + = 1 1.3
< OUt) <°ut Oue, Oue (1-3)

where V is the poisson's ratio, appears to serve as an upper bound.
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CHAPTER II
WEAKEST-LINK STATISTICS AND WEIBULL THEORY

In this introductory presentation, the concept of 'weakest-link'
statistics for fracture [17] due to tensile stresses has been used to
develop this theory of probability. Consider a volume V of the
material which has the property that fracture of a sub-volume v will
cause catastrophic failure of the whole. V is assumed to be much
larger than v. For generality and simplicity elemental volumes vi
are assumed to be equal and cubic. Each of the elemental volumes will
fracture at certain stress O, characterstic of that element, and we
assume a statistical distribution of these¢ strengths.

The probability densitv function for the elemental volumes is
designated f(0). It can be defined in the following way: from an
extremely lacge nurmber of elemental volumes, the fraction will fail
between 0 and 0+dC is f(0)dC which is the same as the probability

that failure will occur between O and 0+dd. (iigure 2.1).

415(0)

o 0

o o o+do )

Figure 2.1, Probability Density Function, f£f(0)
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The probability that failure will occur before stress 0 is

reached is:
(o]

g(o) = [f(c)do

o

(2.1)

The probability that failure will occur before an infinite
stress is reached is certain, that is, a procbability of 1. This means
that the function must be normalized such that:

x

/f(O) = g(°°) - 9(0) =1 (2.2)
o
thus the probability that the elemental volumes will survive a

stress O is:
1~ g(o) (2.3)

In the weakest link model, Figure 2.2 the volume V is imagined
composed of a large number N of elemental volumes v, then the number
of elements is N = V/v. It is now assumed that the failure of one
element causes the failure of the whole. The probability of failure
of the whole in the stress range O to 0 + d0 due to failure of one
element is the probability of failure of that element £(0)do,

N~1

multiplied by the probability that N-1 elements survive {1 - g(oﬂ.

Thus, probability of this occurrence is the product of the

probabilities:

£(0)do {1 - g(o)}N‘l (244)
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Figure 2.2. The Weakest-Link Model
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On the other hand two breaks might occur simultaneously with the

probability:

I

N-2
£(ofdo’{1 - g(o)} (2.5)

i - but such simultaneous events are very rare and can be neglected. Thus
] the probability density function for the volume V consisting of N

elements is proportional to:

SRl e

E P(o) = £(0) {1 - g(o)}“’l (2.6)
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The elements that fail could be any one of the N elements, thus:

N-1
P(0) = N£(9) {1 - g(o)} (2+7)

N
For large N and small g, the Poisson approximation is good. (1L ~-g) =

e g which can be seen from the Taylor expansions of the left and

right sides:

2 3
N(N-1 N(N-1) (N~2)
(1-g) = 1-ng + & _ g _ el )

N +
2 3 ------- (2.8)

also for large N, (N-1)= N to make:

N-1 -Ng
P(0) = NE(G) (1-g) = Nf(0) e (2:9)

Again normalization predicts certain failure for an infinite stress,

giving:

oc

/ P(og)do = 1 (2.10)

[
Now the probability of failure function for the volume V comprised

of N elements can be written from eq. 2.9. It has the general shape

4 (o]
F(g) = /P(U)do = N/e'"gf(c)do (2.11)

o o

given by that of Figure 2.3

PR
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Q
Q
Q

, Figure 2.3. cumulative Distribution Function, F(0)

Equation 2.9 gives the normalized probability density function
and equation 2.11lis the basic failure probability for weakest link

statistics.

If we consider the experimental strengths obtained from a series

of specimens, we will find that there is a definite relationship

between the probability that a specimen will fracture and the stress

k L to which it is subjected. This relationship is often called the
distribution f nction of the strength. Every specimen has a unique

-~ distribution function. 1In other wards, the distritation function
is dependent upon the size and design of the spe i+ 1. Many different
functions have been assumed for g, the failure probability for the

1 elements. The one that is simple mathematically, agrees with a wide

. variety of experimental data, covering not only material strengths

but many other statistical data [12] and which appears physically




N N

reasonable when the use of it in the above statistics is examined,

is the Weibull distribucion.

g-o. \® h
u
glo) = ( - ) 0, * 0,>0 =0,
glo) = 1 p 0 =0+ 0,
g(@) = 0 o <0, (2.12)
y,

Notice that when 0O < Ou' there is no probability of failure.
This is the 3-paramcter distribution. Some researchers assume o, = 0
because this leads to helpful simplifications in the application of
Weibull statistics to experinents [18]. & typical distribution curve
of strength [19] for g, = 0 is shown in the Figure 2.4, This lower
bound g, on the strength of the element is also the lower bound for
the large volume, Gu must be found for the particular material and
for the failure mode being considered, by experiment. Because the
greatest value a probability of failure function can have for the

element is 1, 60- Ou)/oo)m can not represent this function beyond a

certain value of 0©0. That value is found from the equation:

o -0, -
glo )= |—] =1 (2.13)

b

This will occur when 0O O,*+ 0, therefore we have put g{g) =1

max u
for © = 0u+ g, - Thus 0 = ou+ J, is the greatest strength the
elemental volumes could have if the Weibull statistics were valid
over the range 0, <% 020, + Oy * However it is only the lower tail

of g that is effective in ‘'weakest-link' statistics, and it is

o e e

P
i
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Figure 2.4. A Weibull Distribution of Tensile Strengths
(Source: Hudson, J.A. and Fairhurst, Charles,
"Tensile Strength, Weibull's Theory and A
General Statistical Approach to Rock Failure.")

reascnable that another simple power function could be fitted to
the data in this limited region. Using Eg. 2.1l and 2.12 now the
probakility of failure for the volume V comprised of N elements

can be written as:

i g -0 '
F(C) =1 - exv -N (___\1_;* (2.14)

Since volume V is proportional to number of elements, N, Eg.(17) can

be written as:

m,

:—V g -0y )
\Tm(——g—— ' (2.15)

F(0) = 1 - exp

15

—
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A simple example can show how only the lower tail of the
distribution function, g, is important. Consider a sample of
100*100*100 elements. Thus N = 106. A typical value for the exponent
mis 5. Let us calculate the probability that failure for a volume
in the lower 1/10 of the strength range of each element, stressed
uniaxially and uniformly. Inserting O = o, * 1/10(0,) into Eq. 2.14
the probability of failure function, using V/vy;=10° is:

1l - exp }- 10° (%a) (

F(o)
(2.16)

"

0.999954

Thus the probability of failure is almost 1 even though the
threshold stress was exceeded only by 00/10. Consequently the shape

of f(0) and g{0) beyond g + 06/10 1s of little interest.
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WEIBULL'S THEORY

Weibull's statistical theory is based on the 'weakest-link'
concept. The fact the term ‘weakest-link' is used because the same
statistics apply to a chain whose strength is described as the strength
of its weakest link. In other sense, if N seemingly identical
specimens are broken in identically the same way, it is quite possible
that no two would fracture at the same load. 1Instead, they can show
a variability of 100% or more; however, the greater portion most
probably would fracture within a narrow range of loads, which leads
one to believe that the strength of a material might lend itself to
statistical treatment. To relate the model of a chain to that of a
tension specimen one must imagine a multitude of fibers, each acting
like a chain, it can be shown that the probability that a model
specimen of this type will fracture at a certain locad is a function
of its volume [20].

As has been pointed out above, a specimen may be considered to
be made up of many fibers. Each of these fibers can be considered as
having its own probability of withstanding a load, but the probability
for the entire specimen will be the result of considering the individual
probabilities of all the fibers. Giving an example of bending
specimen, one~half of the fibers in the test volume will be in tension,
and the remaining fibers will be in compression. Weibull's theory
¢ssumes that fibers in compression have a zero probability of failure.
As a result, these compressed fibers do not contribute to the

probability for the entire specimen. Therefore, an entire half of the

specimen is neglected in Weibull's consideration of the probability




of a specimen's withstanding a bending load. But in considering the
probability of a specimen's withstanding a load, every fiber must be
considered.

Using this concept the Weibull distribution function for
predicting the probability of failure is expressed as:

- m
[1 7 ou) v g . <0
-e - —_] <g+0
xp] P u o, 9%
g,

@] un

F(Gc) =

0 0=<J0

(2.17)

V is the volume of the material under a uniaxial stress 0. Generally

0 may be a function of the volume, in which case F will be a

function of the external lcading parameters.

The above Weibull distribution function describes the behavior of

many simple and important load carrying elemernts. For a tension
member under a constant stress state, the above distribution function

can also be expressed as follows:

m
F(o) = 1 - expf-c(o - o) } (2.18)
1
where ¢ = -:——— n
Vian (9,)
and:

Vg = Gage volume of the material

Vyn= Ynit volume of material
0 = Applied uniform tensile stress

F = Probability of failure

0 = Threshold stress below which there is zero probability

of fracture

18
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m = Distribution constant or Weibull modulus
¢ = Constant
O,= A free parameter needed to fit the function to the data

ou, m, and Go (or c) are material constants.

Parameters 0, m, and 0, are material constants in the true
sense and will not change with volume provided the Weibull function
is truly applicable to the material under consideration, and if the
materials used for small test specimens and for the structural
components are trxuly identical. However, G, or ¢ is merely a
normalizing factor and is not otherwise related to any physical
property of the material. The value of m is a measure of the strength
variability or scatter and it helps in determining whether the material
contains flaws of highly variable severity or similar geometry ({21].

Estimation of Weibull parameters from experimental data is a
very important ster in the determination of material characteristics.
A large number of methods are in use to obtain Weibull parameters.
Heavens and Murgatroyd [éé] in their work used the methods of
linearization, direct curve fitting, and maximum likehood. The prcblem
is complicated by the fact that no method can be proved to be best
under all circumstances. One can, for example, estimate the mean of a
normal distribution by taking the arithmatic average or by finding the
most frequently occuring value of the data. Davies [23] has suggested
another method for the estimation of Weibull parameters. This method
equates the mean variance and higher moments of the distribution of

those of cobserved data. Another technique for finding these parameters

is based on the moment generating method and on rank-order theory [24,25].




20

These results differ from those obtained by iteration methods whereby the
sums of squares of deviations are minimized as is the case of standard
least-square techniques. A detailed explanation of such methods have
been given in Appendices A and B, These methods can involve large
truncation errors and can be significantly less precise than comparison
with cumulative totals (Histogram Method for the Solution of Weibull
Parameters) of experimental data (Appendix O©). Further, although the
least-square analysis method tends to emphasize deviation in the
experimental curve ordinates, incorporation of appropriate weights can
counter this effect while preserving the method's basic simplicity.
Another problem with these techniques is that an assumption is
generally required for multiaxial stress states necessitated by the
uniaxial stress state under which data is taken. Many persons assume
statistical independence in the actions of principal direction stresses,
i.e., the probability of failure of an element is equal to the product
of probabilities of failure due to each principal stress [26, 27]. Under
three principal direction stresses the prebability of failure is given
by:

F(o) = [F(o ;)] [F(o)] [F(oy)] (2.19)

In another theory, Batdorf and Cross ([28] and Batdorf [29, 30]
assumed flaws Lo be penny-shaped and neglected the shear on the crack
plane. Fracture of a crack was assumed to depend only on the components
of stress state normal to the crack plane. Freudenthal [21] and

Margetson [14]) extended Weibull's uniaxial theory for stress assuming

e
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that cracks obey the assumptions of independence and shear insensi-
tivity. Evans [31] developed a theory for statistical analysis of
fracture under multiaxial states of stresses based on a critical
coplaner strain-energy release-rate fracture criterion.

Because a satisfactory and general treatment is not available in
the literature particularly for the three-parameter family, an analy-
tical method based on the same least-square method using an iterative
programming scheme is developed. The objective 1s to find those
values of Weibull parameters which make the theoretical curve fit the
experimental data best for the Weibull's materials subjected to
various states of stress. The methodology thus developed is illustrated
by applying it to two sets of man-made data (Chapters 1II and IV). Addi-
tional properties of Weibull statistical distribution are given in

Appendix D, including a Goodness-of-Fit analysis test that supplements

topical material of this Chapter.




[~ CHAPTER III

= DEVELOPMENT OF SIMPLE TEST ANALYSIS CASES

Weibull's classical statistical theory includes two basic criteria

of failure; size and normal tensile stress. Within the validity of

I these postulates it is capable of describing failure for any type of

stress distribution, uniform or non-uriform, uniaxial or polyaxial.

l Failure in an isotropic and homogenous material is more fully described

by the three-parameter family than by the two-parameter family. No
special allcwance 1is made for nonuniformity of stress distribution other
than that implied in the integration procedure, Eg. 3,1 . Daniel and

weil [32, 33] used standard specimen shapes to generate Weibull statistics

for some typical cases of bending loading conditions. The three-para-~

met. -~ family is developed here - first for uniaxial case.

Uniaxial Constant Stress Fields and the Determination of Weibull

Parameters
~ The Weibull distribution for a uniaxial stress field in a homo-
genous isotropic material at a given uniform stress,0 is given by:
L_
- m
C = 0y\ av
l-exp -~ ( 0 <0=<<0 + O
a v u u (o]
v o un
~ F(o) =
0
o<o, (3.1)
S
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where: ¥,;, = Unit Volume

Oyr Ogr m = Weibull paramters which are associated with the

material and are independent of siz¢ . H

For uniaxial constant stress, 0 is a principal stress, independent of

the volume so that :

m
v, g -0
Flg) = 1-exp|-_2 (-————Ji>
Vun o (3.2)
substituting c = 1
- 7 i~ 3 In
Vun (oo)
F(0) = 1 - exp{-clo - 0y)l}v, (3.3)

The first solution procecdure (the Log-Log method) is based on
linear regression method which converts the exponential type Weibull
distribution function into a straight line relationship by taking the log

of the distribution function twice, thus:

1
indn [ ~————— ) = 2n(c) + m &n(o-0y) .
(1—1‘(0)) e . - (3.4

This 1s now a linear relationship allowing a linear least-square

analysis to be invoked for :

Y = A 4+ Bx
where A = £n(c)
and B = m (3.5)
If X; = X (03) = 2n (05 - 0y)
and Yy = ¥ (o) = lnin('—l"—') (3.6)
1l - F(Gi) *
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i=1, 2, 3..., n, where n is the number of data points. Then A, B
are constants, which must be determined, using the least-square crite-

rion. The well known solution that minimizes the residual is:

(wy Xiz) (Ewi Yi) (Zwi Xi) (Zwi XiY3)

A =
D

B - (Zwl Yl xl) (Ewl) - (Zdl Xl) (le Yi)
D

(3.7)
where:
= "y T ; 2y g sy 2

D = (Lwi) (Zwy x°) (Lw; X;)

wi = Arbitrary weights assicned to data points

All surmations are L =1, 2, ..., , Do

In case equal weights are desired, the quantity Zwi is replaced by n.
The obvious difficulty with this analvsis is that A and B are dependent
on J0,. To determine the best 0, value, an iterative programming
scheme, computer program, UNIAX.FOR, was develoged which recomputes
the residual sum of squares and chooses Ou minimdizing this
function. Once cu is known, m is determined as the slope of the
straight line expression and c¢ is found as exp(A) in Eq. 3.5,

A slight modification this scheme can be used to redefine the weights
iteratively to emulate any curve-fitting power law. This would

allow the simplicity of the least-square solution to be invoked

while the weights are dynamically altered to (1) emphasize the leading
distribution data or (2) de-emphasize errant points. Standard

least-square techniques have the disadvantage of emphasizing any point

away from the curve by squaring that deviation.
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Comparison Methods

As discussed earlier, other techniques exist to determine the
Weibull parameters from the series of cata obtained from the
experimental tests. As an example, the results from the Moment
Generating Method (Appendix A) and the Newton-Raphson iteration
(Least-square) method are compared with those obtained from the Log-
Log Method.

Table 3.1 demonstrates that while a surprising discrepancy can
exist in the values of the Weibull parameters (c, m, 0y)» the overall
probabilities can appear very close -- at least in the mid-range. In
the lower range, however, the probabilities can differ greatly.
Unfortunately, this range is of major interest in dealing with
materials where the test elemental volume is small in comparison to the
volume of the structure being modeled. (All weighcs were assumed unity

for this example.)

Pure Bending Field in a Rectangular Section Bar

In the application of brittle non-metallic materials, tests
utilizing bending stress distributions to failure on small, rectangular
cross-section bars are common and generally less expensive than uniaxial
tension tests —- particularly, in the case of three and four point load-
ing systems. In the latter case, the central portion of the bar is
subjected to a constant bending moment. Applying the Weibull expression
[32, 18, 34}, where the stress distribution is variable and must be
integrated over the volume in bending, the probability of failure in the

pure bending section of a uniform prismatic beam, simply-sur »rted and

loaded as in Figure 3.1 is:




v

o] RANK Fl{c) = F (U} F(o) F(o)

k.s.i i * M.%.Method N~R Method L.L.Method
1+l

7.55 1 0.0625 0.0279 0.0362 0.0618
8.55 2 0.1250 0.0%92 0.0653 0.0970
10.91 3 C.1875 v 0.1979 0.1813 0.2258
11.60 4 C.2504 C.255% 0.2433 0.2757
12.44 5 0.3125 7.3338 £0.3208 0.3429
13.50 6 0.375% 0.4414 0.4284 0.4353
13.¢€5 7 .4275 C.4570 0.4444 0.4489
14.00 8 0.5000 0.4937 0.4823 0.4808
14.75 9 0.5525 0.571¢ 0.5643 0.5497
14.83 10 ¢.6250 0.5798 0.5730 0.5571
15.96 11 0.6875 0.6302 0.6921 0.6583
16.41 12 0.7500 C.72304 0.7359 0.6966
16.60 13 0.8125 0.7465 0.7535 0.7122
20.00 14 0.875U 0.940¢ 0.9575 0.9190
21.30 15 0.9325 0.9755 0.9866 0.9631

WEIBULI. PARAMETEFS

c {in,2m-3 k.s.i.-m) 0.CC07072 7.00002329 0.00003219

m (dimensionless) 3.0 4,03 3.76

Oy (k.s.i.) 4.13 1.35 0.026

co (k.s.i.) 5.61 14.11 15.67

RESIDUES (dimensionless) 0.028309 0.026618 0.038729

Table 3.1.

A Comparison of Mcthods of Deiermining Weibull Parameters
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m
o] g -0
\' u b u
F{(0,) =1 -exp|-{ — 1 -—
b 2{m+1) %, Oy
(3.8)
where V = bLh
bt P
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Figure 3.l. Prismatic Beam under 4-Point Loading and Distribution
of Extreme Filier Stress
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Both support and loading points are symmetrically positioned about

the beam center. The risk of rupture in the outer portion 3f the
specimen has been neglected in Eq.(3.8) but it is easily included.
Fig. 3.1 depicts this case with its gage volume equal to the pure
bending segment. The distribution of tepsile stresses in central
portion of the test volume subjected to uniform bending is:

20y
h h

g _ 2 g =

(3.9)

for k="x="(L=-k)

where Ob’ the extreme fiber stress at bo<tom, for a 4-point loading

is given as:

gy, = égé- ; P = Fracture load (3.10)
bh
This distribution follows the same form of the case of a constant
uniaxial stress field and is solved by the same technique as with the
uniaxial constant stress f{ield except that different constsats

result when the log-log is taken in Eq. 3.8 instead of Eq. 212. The

programming scheme is given in BENDIN.FOR, Appendix D, thus:

Lnin ~__£____ ) = fn(v/2) - &n(m+l) + (m+1) &n(o; - g,)
1 - F(og)
- in{di) - m 2n(g,) (3.11)
In this case;
A = n(v/2) - n(m+l) - m n(o,)
(3.12)

B = (m+l)

with Ou and m estimated, Og is calculated from the Eq. (3.12)-
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Pure Bending for a Circular Cross-Se~tion Rod or Tube

This case is similar to the one discussed earlier, except that
the shap. of the cross-section is circular . Davies [35] in his
work observed that any minor defects incurred during manufacture
along the sharp edges of beam specimens of rectangular cross-section
that could influence significantly the probability of failure. Beam
specimens of circular cross-section have no sharp edges and are
therefore an attractive alterrative geormetry.

Unfortunately the use of a sigpler geometry specimen leads to the
complicaticn that no closed-form solution exists for the probability
formulation in bending.

The stress distribution for the case of 4-pcint loading of a rod

is:

My 2PLy
g = —— = - ; Yoo x<<(L-k)
I % Ro"
or for a tube:
My 2Fky
= - = T i k=Tx="(L-k) (3.13)
I T(ro"~Ri*)

where P is the fracture lcad.
For the failure probability expressicn the integration is
conducted over the gage volume, vg, which is in pure bending. Starting

from the integral form for the risk of rupture, Bn, Figure 3.2

m

My
T " %) ax ay az
Bu = : - (3.14)
Oo Vun
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Figure 3.2. 4-Point loading for a Circular Cross-Section
Tube in Pure Bending

The limits of integration for x in Eq. 3.14 are 0 and (L-2k); thus:

m

My
Bn = (kzk)cﬂ (_i—- - Uu) dz dy (3.15)
\
A
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1
where ¢ =
m

Vun (95}
The probability of failure is:
FM) = 1 - exp(-Bn)
The limits of integration for z and y in Eq. (3.15) will be different in
different cases. These cases are considered as below.
(1) Rod (Ri=0)

(a) 0« ¥ip< RO

Y¢p is the.positive value of y for which

g = Gu, thus:
OuI
yth = "

Parts of the cross-section fcor which Y<Viy make no contribution
to Bn. For a fixed y such that Y2V the limits of integration for

z are obviously;
- V(Roz- yz) and +-V(Roz— yz)

Therefore,

+ (Rol- y 2)
In
My
(L—?.k)cf f —_ - ou) dz dy (3.16)
-V (Ro?-

integration of Eq. (3.16) with respect to =z gives:
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Bn = 2(L-2k)c (“_! - ou> Ro? - y? dy (3.17)

(b) Ro<y,y + In this case, obviously

Bn = 0
(2) Tube (Riz*0): Three cases occur;

(a) Ri>yt.n?O ; The expressicn for Bn becomes:

Ro

Ri m
My - My
Bn = (I-2k)c¢ J/r — - Cqy dz dy + J/ﬁ —E—-- Gu dz dy
Yth

Ri
(3.18)
For the first integral, the limits of integration for z, for fixed y,

will be from
2 2 2 2
- y(Ro - y ) to - J(Ri -y)
and then frem

T

+/(Ri- v ). to +y(Ro’- y2)

Por the second integral, the limits of integration for z, for fixed y,

will be from

—\/(Foz- yz) to +vV(rRo - yz)




Performing the integration gives:
Rt m
My —
Bn = 2{L~2k)c / (—I—-0u> (/Roz-yz _,/Rj_Z_YZ) dy
Yth
RO
My m
+ —;— - 0u> Y Ro’-~ y? ay (3.19)
Ri
(b) Riy,, <Ro
Following the procedure used above gives:
R0 m
M
Bn = 2(L-2k)c ‘/r ( iy - g, ) Y Ro?- y? ay (3.20)
Ytnh

This expression is identical to that in the case of a rod, Eq. (3.17).
In fact the case of a rod is obtained from this one by setting Ri = 0.

(c) Ro<cy, i Here obviously

Bn =0 (3.21)
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CHAPTER IV

DESIGN OF THE BENDING EXPERIMENT

A major objective of this contract was to design tests and test
specimens that provided a large amount of information on fractive
strength of brittle materials at low cost. As such, tests
such as the unlaxial tension test were abandoned due to the need of
specially fabricated specimens and equipment where small strain to
failure ratios in ceramics are an important design consideration

[36].

A four-point test fixture and tube specimen geometry were

selected because:

1) A simple circular specimen geometry (solid or tubular)
could be used without excess concern of stress
concentrations of polygonal section specimens.

2) The geometry was an inexpensive one to emulate with
virtually all potential specimen materials. In many cases,
tubes are 'off-the-shelf' items.

3) Either smooth or rough surfaces could be tested.

4) Without great difficulty, necked down specimens 1f needed
could be designed to fit the same test equipment. The

need for such designs would be apparent 1f the frequency
of failures at the load points is high.

5) Four-point loading was selected over three-point loading
because it provided a large volume in the test region
subjected to a known stress field.

Figure 41 demonstrates the geometry used for the four-point load

test. The fixture components are:
A, Base
i

3 B. Specimen resting on ground rollers

C. Copper pads to reduce stress concentrations at bearing points
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D. 1.25" - diameter alignment rods for stablizing upper load frame

E. Upper pivot arm with load roller and specimen grooved
rollers

F. Top guide block above which load is applied

Figure 4.2 is an assembled view with specimen in place. Figures
4.3 and 4.4 depict the dimensions and material details of the loading
frame system as finally employed. A load is applied at the top center
of the top guide block through a Tinius Olsen universal testing machine.

This machine is accurately calibrated for load although the rate of load

can only be approximated, Within the machine, the fixture of Figure 4.2
is placed; loading rates were approximately 40 pounds per second.

During the design and building of the testing apparatus, there was
a question as to what type of alignment mechanism should be used to
1 locate the outer (lower) and the inner (upper) specimen support points so
that no sliding frictional constraint would be imposed during deflection.
Stanley [18] did account for such an effect as it applied to a two-para-
meter Weibull test when the coefficient of static friction between the

specimen material and fixture were known. In this apparatus, the use of

'formed' pads on rollers (one on the top and one on the bottom) would

k rollers, made friction of minimal concern. Ideally, the use of two
E eliminate all non-self equilibrating frictional forces -- Figure 4.5.







37

wauyoadg INOYITM MOTA POTqUESSY — DINIXTJ pusg Iufod-y BuyuBITVY JT9§ ‘g% eandyg

83983U0)

Z9TTOH
uauydads

13zfTenby peoq -

STeTTTd 3Udmu3FTy ———— -

e - . PUTYOEK SuT3say]
TESI2ATU[ WOXJ JUFOJ PrOT




38

2INIXTJ] puag JO Suypmpiq TRUOTSUBWIQ ‘44 2an8yg

e —_—

Q

l—.*_lr1(w|v L. I — ..MOOoH OU
_ _ §9d0ue1a10]1 BdAoqv
IBTTO) punoxs :VH ’1\‘ ¥

AN
\ j:@.m KW‘..MI u8°C n,.! __

mvom @ﬁﬂO.Hmv :mellll\ T O .r ' O

[ ,

®) @)




e ——

T e oo

e 6 L
Specimen
//’ /
Detail Detail
—— . Pad —t—

Roller __ . s

\— Knife Edge
Figure 4.5. Pads and Roller Constraints

39




40

Oof further concern was to determine a specimen contact design geometry
so that no binding or specimen preload would be inadvertently imposed.
The problem was to determine whether the apparent contraction due to
bending at the lower points of support would offset the apparent elonga-
tion due to changes in slope at those same points. An approximation to

this problem would be to determine whether A moves closer to or away from

B. This would determine whether the geometry of Figure 4.6a or 4.6b !
would be appropriate for the base of a testing fixture for the specimen

of Figure 4.3.

B L+ 7 __B

y///// . . 7,

(2) (b)
Figure 4.6. Possible Test Support Geometrics

->
To determine whether distance AB lengthens or shortens, first the

contraction of the neutral axis must be found; it is given by:

L L
AL =f(ds - dx)=f ( 1+(y')2 - 1)dx. (4.1)
o o
for small slopes /y~/<<1, and /1+(y')z =1+ li(y')2 (4.2)
L
AL = gf (y7) 2dx (4.3)
o

Thus, for a slender beam a contraction of any given span due to bending

would always occur. However, the change in slope of a beam under load




tends to place the lower points of the beam in like curvature as

indicated below in Figure 4.7.

— neutral axis
—

——

Oa Gb
Ymax Ymax
S
¥ (a) y (b)

Figure 4.7. Bending Causing Outward Movement of Beam Lower Surface

Thus, the expansion or elongation between a and b is:

L
Yoax 1y (®) = yi(a)]- %j (y°) ax (4.4)
[}

at the bottom of the beam [Ymax] or at the total offset, Ro, wherever
contact occurs.

In the case of a hollow rod in pure bending for its mid-length L, we

have: L )3
2 L
%_]’(y’) dx = ::Ezlz (4.58)
and °
Ypax V' (8) + ¥ ()] = R22°L (4.5b)
and one must check for' oMol MOzLa >0 (4.6)
c - , < .

EI  24:°1
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For the center span of a bar specimen in four-point loading, there
is no need to perform a calculation to determine the geometry of the load-
ing support as both the effect of slope and shortening of the neutral
axis dictate that the Figure 4.6a is appropriate for the overall shortening.
Four-point loading, the above equation is an approximation to the
change in distance between C and D of Figure 4.8 below provided 2 —+ ¢

in length.

Figure 4.8. Bending Geometry and Notation

Thus, if i + 2 then from 4.5 and 4.6:

.f._‘mL S - ._l_- _M_O_i];’ = d
EI ° ~ 24 g1Z
.7
Here y 1s the distance from neutral axis to point of support and
P(1-L)
= stant =
Mo Cons 4 (4.8)

The exact solution is obtained by substitution of the moment distri-

bution along the entire beam into (4.4) and integrating. In this case:
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1 P 2 ~ 2 ~ ~ -~
El y (x) = 7 [cw>” - <etw>” - <x-w> - (r-m) (m+m))

- ~ 2 (x-xo)z if xeO
wvhere m = £/2, m = 2/2 and <x - x,> =¢§ if xax, (4.9)

Substitution of EIy"(x) derived from (4.9) and integration of each of

the resulting expressions leads to:

2
L[ B} (5] o +eomm - 328
AL = 55-l4EI) [32m 80m m +80mm m ] (4.10)

for the beam in 4-point loading.
The slopes at the outer supports are given by:

(= =—L 2—-"2
vy’ (-m) 2EL (m m“)

and (4.11)

- P 2 ~2
y (m) ZEI (m m“)

Thus, if the specimen is supported at an offset of R from the neutral
axis, Figure 4.4a and b , then the restraining geometry Figure 4a should
be used 1f X >0, otherwise 4b should be used where:

2

_ 2P 2 .2 1 P 5 3.2 b LS 4.12
X = T (m” - @ )R, 0 %ET (32m 80 mm + 80mm 32m) ( )

Thus, the specimen loading design is chosen with attention to
several important details. By the use of bearings at the load points, the
effect of friction is minimized and proper definition of the loading frame
geometry (Figure 4.4a and b) eliminates a chance of superposition of

compression in the test. Finally, there is a complicated stress field in
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vicinity of the four loading areas. Machined surfaces on the test fixture

at such points and soft copper pads reduced this problem, particularly, near

the two inner contact points adjoining the gage length.




EXPERIMENTAL DETAILS

Specimens and Material

All specimens used in the experimental work were tubes of circular
cross-section made of 99.8% Aluminum Oxide, A£203, (998 Alumina, McDannel
Refractory Procelain Company, Beaver Falls, Pennsylvania, 15010) or of
mullite (MV33) from the same source. The test schematic appears below
in Figure 4.9. The tube geometrics fcr both materials are similar with
nominal values listed below Figure 4.9, and with eccentricities and

standard deviations given in Table 4.1.

Testing Procedures

The general procedure followed was ASTM Standards for rods, 1977,

Part 17, pages 104-11.

F Lo2k e L-2K
1

Bending Bar
\/ Q) Ri

e s e s e e . e b m—— g em - et et e — _— e Oy —

ne
SPECIMEN Ro
7£;;r 77;:>7
L
e Kk ey Kk —ed

Figure 4.9. Testing Procedure for Bending Specimen

Observations:

Referring to Figure 4.9, general dimensions are in inches:
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Ro = .4999 (Alumina)
Ri = ,3091 (Alumina)

V8 = .6789 (Alumina) (under temnsion)
RO = .5132 (Mullite)

Ri = .3661 (Mullite)

Vg = .5689 (Mullite) (under tension)

998 Alumina Mullite (MV33)
Mean and SD of Maximum
oD 1.0010+ .0021 1.0290+ .0065
Mean and SD of Direction
+ to Max. 0D Direction .9985+ .0027 1.0236+ .0082
Mean and SD of Minimum
ID .6156 + .0203 .7276 + .0087
- Mean and SD of Direction
+ to Min. ID Direction .6209+ .0234 .7367+ .0074 ;

Table 4.1. Specimen Means and Standard Deviations in Inches
for Inner and Outer Diameters

N = 50 (Alumina) N = 50 mullite
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Analysis of Test Results:

The technique used in the computer program HOLLOW.FOR and DIN.FOR,
is an iteration method where the values of Weibull parameters, ¢, m, and
o, are found by the minimization of residual errors in the experiment-
ally determined fracture probabilities compared to Eq. 4.10 through 4.12,
the probability of fracture F(0) is calculated by repeated applications
of Simpson's rule {37] to the integrals until a truncation error condi-
tion is satisfied. Residual error as calculated by the least-square

method is below:
- 2
Res(c,m,qy) = wy{F(0) - F(0)} (4.13)
where F(G) = —%I [Mean Rank Method fry the experimental fracture loads].
n

This process perturbs values of ¢, m, and ¢, until the Eq, 4.13 is

u

minimized. This gives the final values of Weibull parameters for Alumina.

m

2-Parameter Family 3-Parameter Family

¢ = 0.403E-27 in.2™ %1bs.”® ¢ = 0.403E-27 in.?™ *1bs.”
.391E-46 M2M73 7T .391E-46 M?m3% N0

m = 6.20 (dimensionless) m = 6.20 (dimensionless)

o, =0.0p.s.i./MPa o, = 0.0 p.s.i./MPa

g = 26,212 p.s.1i. 00 = 26,212 p.s.1i.

°©  180.73 MPa 180.73 MPa

Res = 0.02434 Res = 3.02434

Table 4.2:Weibull Parameters for Alumina 598
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The experimental results are given in Table 4.3. This table depicts
* failure probability estimates via the two- and three-parameter Weibull @
, distributions in comparison to the mean rank experimental results. Table 4.4
i depicts those specimens that failed abnormally and were not used for data

collection. The residual is minimized with the two parameter family, thus,
3 Table 4.2 entries are identical. Another illustration is given where the
Weibull parameters of Table 4.2 are assumed for a ome cubic inch specimen |
under uniaxial stress states. Thus, a one cubic inch specimen exhibits a

50% chance of fracture if stressed uniaxially and uniformly to 24.6 ksi.

" Specimen Fracture Moment Rank F(M) Fracture Probability at
Des?gnation Load M Failure Moment, M 3
F(M) !
Px PK/2 % 1 i/r1 |
: (1bs. ) (1b-in)
| 2-Parameter| 3-Parameter
1010 1818 1 0.04762 0.024402 0.024402
{ iiO 1210 2178 2 0.09524 0.074186 0.074186
A22 1365 2457 3 0.14286 0.15019 0.15019
A23 1395 2511 4 0.19047 0.16992 0.16992 |
A5 1475 2655 5 0.23809 0.23168 0.23168 )
f . A4 1510 2718 6 0.28571 0.26273 0.26273 i
A9 1610 2898 7 0.33333 0. 36467 0. 36467
Al7 1620 2916 8 0. 38095 0.37585 0.37585
A21 1730 3114 9 0. 42857 0.50773 0.50773
Al8 1745 3141 10 0.47619 0.52655 0.52655
All 1750 3150 11 0.52380 0.53284 0.53284
Al 1785 3213 12 0.57143 0.57705 0.57705
i Al6 1865 3357 13 0.61905 0.67674 0.67674
Al4 1875 3375 14 0. 66666 0.68881 0.68881
A25 1885 3393 15 0.71428 0.70076 - 0.70076
A6 1905 3429 16 0.76190 0.72420 0.72420
Al12 1915 3447 17 0.80952 0.7358 0.7358
A3 2005 3609 18 0.85714 0.8294% 0.82948
- Al5 2140 3852 19 0.90476 0.929235 0.929235
| AL9 2250 4050 20 0.95238 | 0.97311 0.97311

Table 4.3 Experimental Results for 4~Point Bending Test for
A Circular Cross-Section Tube of Alumina 998

* English system used since equipment is calibrated in pounds.
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Specimen Fracture
Why Rejected
Designation Load (1bs.)
A7 1770 Failed out of gage length
A8 1690 Testing Machine Failed Then
Pulsed Causing Shock
Al3 1640 Failed Under Support
A20 1440 Failed Under Support
A24 1595 Failed Under Support
Table 4.4. Experimental Results For Rejected Alumina 998 Bend Test Specimens

Figure 4.10 demonstrates that the Alumina fracture curve is a relatively
broad one typical of experiments in which care is taken in the experimental
design. Frequently attempts to load brittle specimens in pure tensipn
result in an even broader appsrent curve than the one of Figure 4.10 because
there are inherent small misalignments in the experimental equipment. These
aberrations produce stresses that reconfigure material exhibiting plasticity.
Brittle materals are subjected to stresses which only degrade by fracture

at a higher level than mean or macroscopic value sensed by the recording

equipment.

uniformity of the experimental design and specimen strangth predictability.

For this material and test, a value of 6.2 is higher than tvpical.

The Weibull modulus is a recognized measure of the combined
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The ~3sults of the mullite bend tests are given in Table 4.5 with

b Table 4.6 representing the 22 specimens used to determine the para-

t meters of Table 4.5, Table 4.7 18 a list of rejected specimens of

‘ which only two occurred.

The mean load at failure of the mullite at 843 pounds is signifi-
! cantly below the corresponding load of alumina at 1,702 pounds. It

should be noted that even though the mullite is about one-half the

strength of alumina, the dispersion to strength ratio of both materials

is about the same.

As with alumina, the mullite tests were used to generate Weibull

parameter sets to produce the values below:

2-Parameter Family 3-Parameter Family
2m—-3 -m
c = ,725E-20 in. 1bs. ¢ = ,725E-20 in.?M"31ps M
2m—-3_ -~ - -
(.6874E-34M & N ) (.6874E-34M" N "

m = 4.90 m = 4.90
Ou = 0.0 p.s.i./MPa Oy = 0.0 p.s.i./M Pa
0o = 12,887 p.s.i. 0o = 12,887 p.s.i.

(88.856 M Pa ) (88.856 M Pa )
Res = 0544 Res = 0544

Table 4.5: Weibull Parameters for Mullite (MV33)
Once again the two parameter Weibull distribution was found to minimize

the results as well as any three-parameter distribution.
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—

Specimen Fracture Moment Rank F(M) Fracture Probability
esignation Load Failure Moment, M
F(M)
p¥ PK/2 * i i/n+l )
(1bs. ) (1b-in)
2-Parameter 3-Parameter
M23 530 954 1 0.0526 0.0742 0.0742
M24 550 990 2 0.1053 0.0882 0.0742
M5 595 1071 3 0.1579 0.1270 0.0742
M19 710 1278 4 0.2105 0.2764 0.0742
Ml 740 1332 5 0.2632 0.3272 0.0742
M1 770 1386 6 0.3158 0.3824 0.0742
M10 800 1440 7 0. 3684 0.4407 0.0742
M9 810 1458 3 0.4211 0.4608 0.0742
Ml4 825 1485 9 C.4737 0.4912 0.0742
M7 830 1494 10 # x| 0.5263 0.5014 0.0742
M22 830 1494 10 * ¥} 0.5263 0.5014 0.0742
M8 850 1530 11 0.5789 0.5426 0.0742
MR 860 1548 12 * ¥} 0.6316 0.5632 0.0742
M4 860 1548 12 ¥ ¥ 0.6316 0.5632 0.0742
M8 860 1548 12 ¥ ¥| 0.6316 0.5632 0.0742
M13 875 1575 13 0.6842 0.5940 0.0742
M16 970 1746 14 0.7368 0.7756 0.0742
M1l 1000 1800 15 * ¥ 0.7894 0.8236 0.0742
M12 1000 1800 15 ¥ ¥ | 0.7894 0.8236 0.0742
M7 1050 1890 16 0.8421 0.8896 0.0742
M6 1100 1980 17 0.8947 0.9372 0.0742
M3 1130 2034 18 0.9474 0.9575 0.9575

* English system used since equipment is calibrated in pounds.

*% Multiple entries treated with proportionately higher weights.

Table 4.6: Experimental Results for 4-Point Bending Test for a
Circular Cross-Section Tube of Mullite MV33
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Specimen Maximum

Designation Load Remarks

Ml4 840 Fractured out of gage length
M20 1050 Fractured out of gage length

Table 4.7: Experimental Results for Rejected Mullite MV33
Bend Test Specimens
The graph for the Mullite parameters corresponding to Figure 4.10
for Alumina appear as Figure 4.11. -The significatly lower strength

of mullite can easily be demonstrated between the two materials when

Figures 4.10 and 4.11 are compared.
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Examination of Fractured Specimens

Some alumina specimens, Figure 4.12, failed through a single crack
wholly within the gage length while no mullite tubes failed wholly in a
single crack pattern,

The least complex crack surface of a mullite specimen was compound
where 1/2 inch wide sector was separated, Figure 4.13, even then,
failure was wholly within the gage length.

The mullite failed in every case with more splintering and cnip-
ping than the alumina. Thus, all mullite specimens were taped for
safety and retrieval of splinters. While Mullite fractures were more
complex, the alumina specimens exhibited the most uapredictable
failure geometries; they ranged from the simple fracture of Figure 4.12
to fractures where a variety of compound shapes occurred designated by
multiple tension compount fracture (Figure 4.14), multiple compression
compound fracture (Figure 4.15), and two section fracture with a
compression axial split (Figure 4.16). In no cases, however, did
noticeable spalling or chipping of other than material powder occur.

On the other hand, the mullite samples all exhibited a smaller
variety of fracture patterns with apparent single fracture initiation
locations on the tension side with eminating ray-like cracks toward
the compression side similar to Figure 4.15 in the alumina tests.

These mullite figures are listed in increasing order of complexity,
Figures 4.17, 4,18, and 4.19,

In Figures 4.13 and 4.18, there is clear evidence of mullite spall-

ing in the compression regions. Of course, strain energy densities

were highest on the upper and lower regions of the specimens,
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While it cannot be seen clearly, many of the alumina specimens
have crack bifurcations in reglons where there is an abrupt change in
crack path. For example, in Figures 4.14 and 4.16 where the 'major'
crack path has propagated extensively, the crack has not opened through-
out the material. In strong light specimens 4.l14 and 4.16 reveal these
bifurication points and hidden cracks near the neutral axis plane again
where the visible cracks abruptly change direction. No such phenomenon
was detected in any of the mullite specimens although they were more

opaque.
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Figure 4.12. Alumina Specimen £2 After Fracture

‘

Firure 4.13: Mullite Specimen M23 After Fracture

i
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Figure 4.17.-

Two~Section Fracture with
Srlit in Alumina Specimen

2 Compression Axial
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Mullite Bend Specimen MI19 Multirle Fracture
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Figure 4.18. Mullite Bend Specimen M1 Multiple Fracture

Figure 4.19: Mullite Bend Specimen M20 Multiple Fracture
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CONCLUSION

While it was originally expected that a three-parameter Weibull
family would be required to describe adequately the probability of
fracture in both Alumina and Mullite, it was found that the 2~parameter
family produced the same minimum residual stm of squares. As a result,
the parameter family was disregarded in favor of the simpler distribu-
tion for all bending tests.

The mean failure load of the Alumina tubes was 1702 lbs in four-point
loading vs 843 1lbs for Mullite. That is equivalent to a stress level eof
170 MPa (24.6 ksi) for Alumina and 83.4 MPa (12.1 ksi) for Mullite in
a one (1) cu, in. specimen of uniform stress at a 50% chance of failure,

While it is appropriate to employ specimens designed to bg operated
on precision aligned axial tensil testing equipment, the use of these )
machines and costly specimens have no advantages over properly designed
four-point loading tests. Few specimens demonstrated cracks or crushing
near the points of supports.

While the mathematics required in the minimization of residuals for a
least square method solution is not closed-form in the case of rods or
tubes, the tusfing simplicity compensates for the minor problem. It is,
however, true that the computer model producing the Weibull paramenters
could be made to operate more efficiently and automatically.

In order that various hypotheses can be tested in dealing with
failure from multiaxial stress states, several stress tensor ratios

must be employed. The subsequent or follower contract report

N0OQ19~79-PR-RL218, will address parallel work in torsionm.
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APPENDIX A

RELIABILITY PREDICTIONS BASED ON TEST SPECIMENS

In the circumstances, when 1t is not practical to investigate the
integrity of a component through tests on small models, the reliability
predictions can be based on data obtained from test specimens. This
method requires the development of an approach, where a combined-fracture
stress theory is needed to relate the behavior of a unit volume under
a complicated stress state to the behavior of the test specimen under a
controlled stress state. Development of such an approach is far from
complete; however, based on a series model, Barnett et.al. (26) proposed
a simple theory which is often used to predict behavior of a volume
subject to a general stress field.

1f Gl, 02, and o, are principal stresses acting on a uniformly

stressed unit volume Vun , the reliability of the volume is:
1-F@© =[1-r0op) [1-rF0p][1-rw,)] (A.1)

where;

1 - F(0) = reliability of the volume

F(0) = The fracture probability of a unit volume under a pure

tensile stress O

Eq. (1.1) can be used for any uniformly stressed basic unit for
which F(0) has been established, including, for example, infinitesimal
volumes. It is however an assumption of independence of effect due to
the stress tensor components actions.

The simplest way to determine the reliability-strength trade-off

is to test full-scale prototypes, where neither a stress nor strength
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analysis is required, but the drawback is expense. The testing of
scale models costs less and still avoids the need for stress analysis.
However this technique requires a knowledge of strength-volume relation-
shiip. Since neither of these approaches provides much basic information
about the material being tested, therefore subsequent designs with the
same material must be developed from scratch.

The most sophisticated approach - the statistical theory of which
is explained above - requires not only data from test specimen
reqhires a detailed stress analysis. Small, relatively inexpensive
specimens are tested to determine the reliability characteristics of
small volumes which further leads to predict prototype behavior. The
entire analysis reqguires six steps.

1. Obtain the tensile~strength distribution FV (0) using a

9
tension specimen with gage volume V_.

g

2. Perform a complete stress analysis of the component.

3. Divide the component into n convenient volumes, Vx’vz"""'vn‘
Each volume shceuld be sufficiently small so that it contains
approximately a coustant stress state,

4. Determine the 'worst' stress condition in each volume Vj and
assume that the corrosponding principal stresses 0,, O,, and O,
act uniformly throughout the volume.

5. Determine the reliability of each volume (l-Fv)j by first

finding the reliability of the gage volume under the principal

stresses through the application of Eq. (1.1);

[1—Fvg(o,,c,,c,)] = [l-Fvg(ol)] [l-Fvg(Oz)] [1—Fvg(o,)]

(A.z)




—-— @ —

Then scale gage-volume reliability to find (l—Fv) by using

the Eq. (1.3)‘.

V./V (A.3)
“F. ). = (1- > g
(1-F )y = (1-Fy )

g
6. Use Eq. (1.4) which is based on weakest-link hypothesis, to
establish the reliability of the entire structure, (1-F(0)

from the reliability of the volumes Vj'

i1

1-F(g) = (l—Fl)(l—Fz).......(l—Fn) = (l-Fj) (A.4)

j=1

1-F(0) =

()
L e =]

1~
1( Fv)j (&4 .5)

* Eq. (1.3) is based on the extreme value statistics, which furnish

with an important necessary condition for a series material that

does not require the specific form of the distribution function nor

a knowledge of the combined-stress theory appropriate for the
material. Specifically, when the loading and geometry of two different
size components are similar, their distribution function F(0) must
scale according to the following relationship when the material obeys

the series model.

V2 /Y,
1-F,(0,) =1~F,(0,)

where F, is the fracture probability of the ith structure, V; is the
volume of the ith structure.
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Newton-Raphson Iteration Method for Matrix Equations of

Weibull Parameters

The residue equation is:

2
n

- n
R(c,m,0,) = ifl wy [Fi - gl - exp{-c(o - oy) }}] (B.1)

R = Residue as function ¢, m, and O
where u

Fi- Data Points

Simplification of Eq. (2.1) takes the form of:

i U -2uj =,
2 - . . + :
R 2 I wi { Fje + e Fy (3.2)
where F; = (1 - F,)
| c(Oi - ou)m
Minimization of residue R, requires that partial derivatiwes
vf Eq. (2.9) with respect to ¢, m, and Cu be zero.
GR n -ui -zui m
—~ =2 I w,{ Fe -e }(o.-o)
éc i=1 1 % 1 3 u (303)
SR n = =-uj -2uj m
6m = 2 iEl Wi { Fie - e % C E'n(oi ou) (Gi cu) (3.4)
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Again, a Newton-Raphson solution of ¢, m, and 0, requires that

the partial derivatives of Eqs. (B.3), (B.4), and (B.5) with respect

to c, m, and 0, should be satisfied.

matrix expressed in a symbolic form.

- - e
R,C R,cc R,cm
\
\
\
\
\
Rm | =- N r,mm
‘?'a% \
A \
>, \
' \
R,0,
= - L

The following is the desired

R,CU

Sc

Sm

8o

- (B.6)

PRSP U PSR L T JOP Y
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where in condensed form

= - m
uy c(oi Ou)
=~ -y -2u. Su
R,,. =2 L wi{ Fe  -e 1 % =
J 6VJ
. -ol: Su;
ES] vy 2\11 1
R,.,. =27z w-{ F.e - e }
"Vivk 13 §v58v,
-2ui = -uj; , Su; Su
z vy z 2e . F.e . E;i 3 >
3 Y%

(B.7)

vy = one of {e, m, o}, j=1,2, 3.

Solution of this matrix gives the corrections c, m, and g, to
initial guesses of ¢, m, and 0,,. Refined values of Weibull parameters
are obtained by adding these correction values to the initial guesses
and repeating until the values converge (computer program NEWTON.FOR) .
4 Unfortunately, this method is highly unstable and frequently
only converges if the initial values are within * 5% of the correct
values. The problem, therefore, is to produce very accurate initial

1 guesses easily or abandon this technique as a less useful one. One

mechanism albeit not entirely successful of selecting initial values
is listed below;

Initial Prediction and Stepping Method

In this method a set of three points OA, UB' and OC is chosen

for the analysis of Weibull parameters. We let




) (B.8)

Selection of Three Data Points

Figure B.l.

This leads to a technically simple approximation for ¢, m, and Oy

l Expressing the Weibull distribution for point Op ¢ Wwe obtain

oo

m

F,o=1-exp{-clo, - o) } (®.9)

M

and similar expressions for points Ops and 0.

Taking &n %n we have:

Zn ¢ + m In(o, - 0y) = K, (.10)

similarly for points UB' and UC we have:

fnc+nm ln(cB - ou) = Ky (B.11)

fnec4+nm ln(oc - 0,) = Kc (B.12)

——

PoT ey
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where
K, = inin and similarly for Kz and KC.
1~ FA
Simplification of Egs. (2.10), (2.11), and (2.12) gives:
g, - 0
A u
min | — =K, - Kg (B.13)
O'B—Ou
I K (B.14)
n ————— = - °
gc - 9, " e
by eliminating m we obtain:
Oy - O o, -0
F(Og) =Y & | —2 |+ tn | =—Z B.15)
Oy - Op Oy - Op
where
Ky - K
Kp - K

Thus the problem is reduced to finding 0, of Eq. (B.15). The
Newton-Raphson iteration method for the solution of parameter O, requires;
F(0y)

g, = - =
- %u F'(0y,) (B.16)

where

o“n = New value of %4 after each iteration
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0,, = Preceding value of 0, used for reiteration

u,

F'(0,) = First derivative of F(o,)

Expansion of Eq. (2.16)takes the form of:

Ouy = % Ty - %
Y &n + &n
% - % Ou -~ 95
Oy = Oy - ——
° 1 v| 2B Oy . 9c = Op
S - % Ou, - %y, - 9c

B.177

solution of the above expression gives the value of Oy by iteration.
Once 0, is determined, the values of ¢ and m can be found from Egs.
(B.10) and (B.13.

Unfortunately, it can be shown that solution of Eq. (B.17) can
lead to 0, which generates complex ¢ and m even for 0 = Car GB' or Og, if
real probabilities are generated. When real c and m are found, it is
still often that the Newton-Raphson process does not converge, further
improvement in solution technique is needed. The iterative technique

is included as a computer program in Appendix E, program 5, NEWTON.FOR.
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o, = Preceding value of 0, used for reiteration
(o]
F'(0,) =First derivative of F(0,)
Expansion of Eq. (2.16)takes the form of:
% ~ % % = %
Y &n + 4n
Guo - OB Guo - UB
g =0 -
u - -
Yn o 1 v O, ~ Og . 9. - O
B.177 |
!
solution of the above expression gives the value of O, by iteration.
Once Oy is deterrnined, the values of ¢ and m can be found from Egs.
(B.10) and (B.13.
Unfortunately, it can be shown that solution of Eq. (B.17) can
lead to 0, which generates complex ¢ and m even for 0 = 0p, Og, Or Oc, if

real probabilities are generated. When real ¢ and m are found, it is
still often that the Newton-Raphson process does not converge, further
improvement in solution technique is needed. The iterative technique

is included as a computer program in Appendix E, program 5, NEWTON.FOR.
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APPENDIX C

The Histogram Method for the Solution of Weibull Parameters

Three-parameter Weibull distribution is expressed as:

m
F(0) = 1 - exp{-clo - o) } .1

The function F(0) can be determined in several ways. In the mean
rank method n tests are conducted and the cata is ordered by increasing
fracture stress. This yields a sequence of numbers for g, <.....< 0;< 0, -
The estimation of cumulative distribution function, F(83, is then given

by

—

; also F(0;) = Fj (C.2)

F(o3) = Tl
A more sophisticated statistical treatment [38] known as the Median

Rank method uses the estimator

~ i- .03
Fi = (C.3)
n + .04

This formula is an approximation to Median Rank values from the
imcomplete Beta function.

Other techniques exist which also seek to convert a set of data,
i.e., a number of specimens with a number of fraction values to a
probability of fracture table. Basically this involves the integration

of a histogram, Figure C.l,or frequency distribution P(g), to obtain the

Al decnmhle . et Sk A o m oA
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probability of failure curve.

No. of Faillures

!
p(0)
Q
vl
=1
-
ol
o
Ly
i
[¢)
ol
Histogram ps|
g
B
1
__1 )
Oi Gi-H . (o] Uo
Stress Level Stress level

Figure C.l. Probability Distribution

Thus P(in the range 0; to 0i+1)

. (oi + oi+1> The Number of failures in the range 0j to Oj+)

A 2 n

And once P(0) is known,

o] o)
F(o) = /. P(0) do = /' P(0) do (C.4)

-
0O

Numerous techniques exist to convert this histogram information to a
probability of failure curve, it is assumed then that F(35 will be
known for a variety of data points, 0 so that a table may be devised
for 0 versus F. Thus, it is required that values of the distribution
constants be determined for the F(0) curve.

A typical example below, Table C-1, shows how to obtain a




failure probability curve from the discrete element (histogram)

approach.
Stress Rank Probability of Failure F(0)
o4 i F(ci) vs ci

10.02 1 0 0 0 = 0 < 10.02
12.30 2 1/12 0.083 17.02<<0 < 12.30
14.76 3 2/12 0.166 12.30 <0 <« 14.76
15.30 4 3/12 0.250 14.76 < 0 <15.30
16.24 5 4/12 0.333 15.30< ¢ <16.24
16.94 ) 5/12 0.416 16.24 < 0 <16.94
17.20 7 6/12 0.500 l6.94 <0 <«17.20
17.82 8 7/12 0.583 17.20 <0 <17.82
18.40 9 8/12" 0.666 17.82 <0 <18.40
19.60 10 9/12 0.750 18.40 << 0 < 12.60
20.15 11 10/12 0.833 19.60 <0 <20.15
22.40 12 11/12 0.916 20.15 =0 <« 22.40

Table C-1. Stress Level vs Probability .- Failure

The histogram and the cumulative distribution function of the data

presented in Table C-1 is displayed as follows:

11

No. of Failures

Figure C2.

Histogram ]

—

6 8

10 12 14 16 18 20 22

Stress level, ©

Cumulative Frequency Distribution of Table C.l data

80




81

1.000 |

0.833 }
m
F(0) = 1 - exp{-c(o-0,) }

T

0.666

0.500

0.333

Probability of Failure

0.166

1

0 2 4 6 8 10 12 14 16 18 20 22

Stress level, ©

Figure C3. Probability of Failure for the data of Table C-1.

According to least-square analysis the residue equation expressing

the sum of the square of differences between data and predictive

.equat.ion must be minimized. The residue equation with weights where

the cumulative integrated distribution is assumed,Eqg.(C.4) is given

by:
22.40
Res(c,m,G,) = /;(0) {F(E) - F(o)}2 do (C.5)

10.02

where ;(C) = weight per unit stress.

Expansion of BEg. (3.5) takes the form:

12,30

Res(c,m,0,) = /;(0) {1l_z' F(0)}? do +
10,02




14.76 22.40

/;wﬂé-ﬂmﬁdow~~~+ / Wm%&ywnzw
12.30 20.15

(C.6)
or in summation form:

n-1 - 2
Res(c,m,0,) = iilw(ci) {F(Oi) - F(oi)} do  (C.7

where w(0) is assumed constart in each rangeAexpressed in Table C-1.
The solution of Eg. (C.7) determines the values of three Weibull

parameters c, m, and Ou' However this methed is very cumbersome and

sometimes the predictive equation for F(0) is not of closed form as

is the case of 4-point bending hollow tube.
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APPENDIX D

Statistical Properties of Weibull Distribution

The three-parameter Weibull distribution in its cumulative form

is given as

n
o-~-0
F(O) = 1 - exp -(———!) (D.1)
o

For the case O'u = 0, the Eq. (4.1) takes the form of two-parameter

Weibull distribution given as:

o \R
F(o) =1 - exp - (—c-) (D.2)
o

In this case the fracture can take place at any positive value of
the fracture stress.

Since the three-parameter distribution can always be converted
to the two-parameter distribution by a simple linear transformation,
the two-parameter Weibull distribution is used to illustrate the
properties of the Weibull distribution.

The probability density function (p.d.f.) is obtained by differ-

entiating the Eq. (D.2).

m
m (o a

P(C) = — [— -(— (D.3)
% <o >exp <°o>

(o]

taking scale parameter, o°= 1, the Eq. (4.3) can be written as:

m=1 m
pPl{o) = m{0) exp(~(0)) (n.4)

A graphical plot of the Eq. (D.4) for different values of

shape parameter, m, to show the various forms of the probability
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density function has been shown in Figure D-1.

The scale parameter Oo is used to locate the Weibull distribution
along the 0 axis. Assuming ¢ = co into the cumulative distribution
function, Eq. (D.2), it can be easily shown that for any Weibull
distribution the probability of failure prior to oo is equal to 63.2%

and independence of the shape parameter, m.

g \I
1 exp < )
c

(o]

F(c=o°)

m
1 - exp(-1)

0.632
From the above fact it is quite clear that the scale parameter,
Go will always divide the area under the p.d.f. into 63.2% for all

values of m,

P(a)
Probability Density Function

- O

Figure D.l. The Weibull Distribution for Different Values of m
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A Boodness-of-Fit Test for the Weibull Distribution

When dealing with Weibull subjected experimental data one often
faces a question as to whether the data fits the two-parameter or
three-parameter Weibull distribution. The simplest technique one can
think of, is to transfer the two-parameter Weibull distribution into
a linear relationship by taking the log twice and plotting the data
on a graph paper. If the resulting shape of Weibull plot is a straight
line then one can easily decide that the data follows & two-parameter
Weibull distribution. Failure to get a straight line plot, and
especially when the plot curves downwards at the lower end, gives
the indication that the experimental data follow a three-parameter
Weibull distribution. 1In this case the value of the threshold stress
0, must be calculated ta get a straight line plot.

Mann et.al. [39] developed a goodness-of-fit test especially for
the Weibull distribution which is expected to be more powerful than
any of the general goodness-of-fit tests.

The null hypothesis in this case i; that the experimental data
is two-parameter Weibull distribution. If the null hypothesis is
rejected, then other distributions including the three-parameter
Weibull distribution, should be gonsidered. The mathematics of the
goodness-of-fit test is quite simple and is given as follows:

Let G,+03¢.-0....,0, represents the first r ordered failure
stresses resulting from placing n specimen on test and truncating the

test at the time of rtP failure (r=n).




" g

Defining EK; as EXj = Ln(o;) for i=1,2,.....,x., the test

statistics is given as:

1l
r; (BX; 4y = EKy)
i=(x/2)+1 "
S =
rEl [ (Exii'l - Exi) } (D.S)
i=l Mg

where (r/2) denotes the greatest integer r/2; for example, if r =9,
then (r/2) = 4. The value for M;'s are found in [38], along with the

critical value for S.

N

ORI - P~ P
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UNIAX.FOR

C THIS PROGRAM IS FOR THE UNIAXIAL CONSTANT STRESS FIELDS
C PROGRAM WEIBUL THREE PARAMETERS
C* THE PARAMETERS ARE C, M, AND SIGU
C THIS PROGRAM COMPUTES ALL PARAMETERS BY
C LINEAR REGRESSION METHOD. FOR NOTATION SIGU=SIGO
C THIS PROGRAM HAS BEEN EXECUTED ON DEC-1060 SYSTEM
DIMENSION X(20),F(2¢),w(20),EK(20),P(20),WN(20),w(20)
WRITE(5,10)
10 FORMAT(1X,°ENTER DATA FILE NO.°)
READ(5,*) ND
READ(ND,*)} N
C ND=NUMBER OF DATA FILE
C N=NUMBER OF WEIBUL POINT PAIRS
C W=ARBITRARY WEIGHTS
X=FRACTURE STRESS VALUES
READ{ND,*) ((X(1),F(1),Ww(1)),I=1,N)
Do 1 I=1,N
1 WRITE(5,20) (I,X(1),F(1),Ww(1I))
20 FORMAT(1X,°X{I),F(1),w(I) FORI=®,12,3(1X,E12.6))
DO 2 I=1,N
EX(I)=ALOG(ALOG(1./(1.-F(I))))
2 CONTINUE
NN=5
JK=0
INT=10
RESOD=],E+30
BEG=-,99%X(1)
EMD=,99*X(1)

98 H={EMD-BEG)/FLOAT(INT)
DO 95 I=0,INT
SIK=BEG+FLOAT(I)*H
DO 96 1I=1,N

96 P{IT)=ALOG(X(1I)-SIK)

CALL LIN(W,WN,P,EK,N,SIK,A,B,RES)
IF(RES.GT.RESD) GO TD 95
RESO=RES
SIGU=SIK
AC=A
BG=B
J=1
95 CONTINUE
WRITE(5,80) AG,BG,RESO,SIGU,SIGO
C REDIFINE EMD AND BEG AND CONTINUE
IF (JK.GT.NN) GO T0 97
JK=JK+1
IF (J.EQ.0) J=1
IF (J.EQ.INT) J=INT-1
EMD=BEG+FLOAT(J+1)*H
BEG=EMD-2.*H

RESO”RES
SICO=SIGU
GO TO 98
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80 FORMAT(2X,°AG=°,E12.6,7X,°BG=° ,E12.6/,2X,°RESO=",E12.6,
1 5X,°SIGU=°,El2.6,5X,°51¢0=°,E12.6)
C EC,ESIGO, AND EM ARE THREE WEIBULL PARAMETERS
97 EC=EXP(AG)
ESIGO=SICU
EM=BG
VoL=1
C* VOL SHOULD BE CHANGED AS PER PROBLEM
VOLUN=]
SIGO=(1./(VOLUN*EC) )**(1/EM)
WRITE(5,100)EC,EM,SIGU, SIGD
100 FORMAT(/,20X,°WEIBUL PARAMETERS ARE®,//,2X,
1 °EC=°,El2.6,5X,°EM=°,F8,2,5X,°SIGU=" ,E12.6,5X,°SIG0=",E12,5,/)
C CALCULATED PROBABILITIES ARE LISTED AS BELOW
DO 130 II=1,N
130 P(II)=ALOG(X(II)-SIGU)
CALL LIN(W,WM,P,EK,N,SIGU,A,B,RES)
DO 108 I=1,N
PCAL=1,-EXP(~(VOL/VOLUN)*{(X(I)~ESICO)/SIGO)**EM)
108 WRITE(5,110) PCAL,F(1),Ww(1)
110 FORMAT(1X,°PCAL,F(1),W(1)=",E12.6,2(1X,E12.5))
STOP
END
C SUBROUTINE LIN CALCULATES VALUES OF CONSTANTS A AND B
SUBROUTINE LIN(W,WN,P,EX,N,SIGU,A,B,RES)
DIMENSTION W(20),P(20),EK(20),WN(20)
c=0.
D=0 [ ]
E=0.
c=0,
H=0.
DO &4 I=1,N
c=C+(W(1))
D=D+{W(1)*P(1))
E=E+(W(T)*P(1)*P(1))
G=C+(W(I)*EK(1))
H=H+(W(I)*EK(T)*P(1))
4 CONTINUE
DEN=E*C-D*D
A=((E*G~D*H)/(DEN))
B={({C*H~D*G) /(DEN))
C THE CONSTANTS A AND B ARE KNOWN
C NOW FIND RESIDUE
SUMM=0,
DO 5 I=l,N
WN(I)=(A+B*P(1))-EK(1)
5 SUMM=SUMM+W( L) *WN(L)*WN(T)
RES=5UMM

RETURN
END
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- EX UNIAX,FOR

FORTRAN: UNIAX

MAIN,

LIN

LINK: Loading

[LNKXCT UNIAX Execution

ENTER DATA FILE NO,
36

]

a1

X(1),E{1),Ww{1) FORI= 1 ,755000E+Q1 ,625000E-01 .1CO0OGCE+GL
: X(I),F{1),Ww(1) FORI= 2 ,8550G0E+0l ,125000E+00 .100000E+QL
J X{1),F(1),w(I) FORI= 3 ,109100E+02 ,137500E+00 ,100DQ0E+D!
: X(1),#(1),W(1) FORI= & ,11A00CE+02 .2500005+00 . .100000E+01
{ X(I),F(I),w{1) FORI= 5 ,124400E+02 ,312500E+00 .100000E+01
b X(1),7(1),w(i) FARI= 6 ,13530GE+02 ,375000E+00 ,1000GCOE+D]
. X(1),F(1),W(L) FORI= 7 ,136300E+02 ,437300E+00 .100000E+0]
X(1),7(1),w{1) FORI= 8 ,]1400C0E+02 ,50G000E+G0 ,100000E+01
: X(1),F(1),W(I) FORI= 9 ,147500E+02 ,562500E+00 ,100000E+02
; X(1),7(1),w(1) FORI=10 ,148300E+02 .$23000E+00 .1G0GDOE+0L
{ X{1),F(1),Ww(I) FORI=11 .139400E+D02 ,687500E+00 ,10G300E+0]
: X(1),5(1),W(1) FORI=12 ,166100E+32 ,75000CE+00 .100G00E+01
; X(1),F(1),W(1) FORI=13 .1AA00CE+52 ,8125GCE+06 ,100000E+01
: X(1),F(1),W(1) FORI=14& [200C00E+02 .875000E+00 .1G00QQE+0L
: X{1),7(1},W(I) FORI=15 ,215000E+52 ,9325G0E+00 .100000E+01
: ACG=~,103722E+02 BG= .377017E+01
i RESD= ,A82176E+)0 SIGU= ,0CG0COE+00 SIGO= ,0000500E+00
§ AG=-,1037225+02 BG= .3770175+51
P RESN= ,A32174AE+G0 SIGU= LLI03ZE-07 S1en= ,0000GOE+DD
: ACG=-,1037225+02 BGC= ,3770175+01
b RESO= ,5821745E+50 SIGU= .558794E-G7 SIGO= .LL7G35E-07
| AG==,1034KGE+(2 BC= ,3762755+01 :
RESN= ,68217LE+5D SI1GU= ,2391855-01 s160= ,558794E-07
AG=-, 103460E+G2 BG= ,376275E+0]
RESN= ,682174E+00 SIGU= ,239183E-01 S1GO= ,239185E-01
AG=-,10344L5E+52 BG= ,376217E+01
RESD= .A82173E+90 SIGU= ,258319E-01 §IGN= ,239185E-01
AG=-,10343KE+02 BG= ,376207E+01
i RESO= ,682173E+G0 SICU= ,2611895-01 §I1G9= ,258319E-01
% WELBUL PARAMETERS ARE
E EC= ,321973E-04 EM= 3.76 SIGU= ,261189%-01 SIGO= 0.15634E+02
PCAL,F(I),W(I)= ,618403E-01 ,H25000E-C1 .10000CE+51
PCAL,F(I),W(I)= ,9704L61E-01 ,125000E+00 L10CCGOE+DL
{ PCAL,F(1),W(I)= ,225875E+0C .137500E+00 .100GGOE+01
PCAL,F(I),W(I)= ,2757A0E+00 ,250000E+00 .100000E+01
CAL,F(I),Ww(I)= ,352910E+90 ,312500E+30 ,100000E+01
! PCAL,F(I),W(I)= ,435352E+00 .375000E+00 ,10GO0QE+0l
4 PCAL,F(I),W(I)~ 4489125400 ,437500E+00 ,100000E+01
v PCAL,F(1),w(I)= ,480830E+00 ,500000E+00 ,10G000E+0L
[ PCAL,F(L),Ww(I1)= ,549775E+00 ,562500E+00 ,100000E+02
PCAL,F(I),W(I)= ,557114E+00 .Hh25000E+00 .10GO0DCE+D]
PCAL,F(1),W(I)= ,h58394E+00 ,h8750CE+00 .100D00E+DL
PCAL,F(1),W(I)= ,696612E+00 .75G000E+00 .100000E+0L
PCAL,F(1),W(1)= ,712237E+00 .B12500E+00 .10000OE+D]
PCAL,F(1),W(I)= ,9190055+00 .8750G0E+00 .10GO0DE+0L
§Sﬁ§.F(I).W(I)= <96313254060  .9325G0E+400 ,1G0000E+01
END AF EXECUTINN
CrU TIME: 1.9 ELAPSED TIME: 2:13.53
FYTT




BENDIN.FOR

THIS PROCRAM IS FOR THE 4-POINT LOADING PURE BENDINC STRESS
PROGRAM WEIBUL THREE PARAMETERS
THE PARAMETERS ARE SIGMAO, M ,AND C
THIS PROGRAM COMPUTES ALL PARAMETERS BY
LINEAR REGRESSION METHOD. FOR NOTATION SIGMAO=SIGO
THIS PROGRAM HAS BEEN EXECUTSD ON DEC-1060 SYSTEM
DIMENSION X(20),F(20),w(20),EK(20),P(20),WN(20),wM(20)
WRITE(5,10)
10 FORMAT(1X,°ENTER DATA FILE N2,°)
READ(S,*) ND
READ(ND,*) N ?
C ND=NUMBER OF DATA FILE
C N=NUMBER OF WEIBUL POINT PAIRS
C W=ARBITRARY WEICHTS
C X=FRACTURE STRESS VALUES
READ(ND,*) ((X{I1),F(1),W(I)),I=1,N)

AOOOO O

D2 1 I=1,N !
1 WRITE(5,20) (I,X{I),F(1),W(1)) 1
20 FORMAT(1X,°X{(1),F(1),Ww{1) FORI=",12,3(1X,E12.6))
DY 2 I=1,N
ER(T)=ALNG(ALNG{L./(1.-F{1)}))+ALAG(X(1))
2 CONTINUE
C V IS THE VOLUME NF TEST SPECIMEN
vV=1.0 1SHOULD BE CHANCED AS PER VALUME
NN=3
] JK=0
INT=19

RESO=],E+30
BEG=-,99*X{!)
EMD=,99*X(1)
s 98 H=(EMD~-BEG) /FLOAT(INT)
DO 95 I=0,INT
SIK=BEG+FLOAT(I)*H
DY 96 II=1,N
95 P(I1)=ALOG{X(II)-SIK)
CALL LIN(W,WN,P,EK,N,SIX,A,B,RES)
I-(RES.GT.RES?) GO T 95
RESD=RZS
SIG=SIK
A=A
BG=B
J=1
95 CONTINUE
WRITE(5,80) AG,BG,RESN,SIG,SICO
C REDIFINE EMD AND BEG AND CONTINUE
IF {JK.GT.NN) ¢O TO 97
JK=JK+]
IF (J.EQ.0) J=1
IF (J.EQ.INT) J=INT-1
EMD=BEG+FLOAT(JI+1)*H
BEG=EMD=-2.*H
RESN=RES




93

SIGO=SIG
GO TD 98
80 FORMAT(2X,°AG=°,E12.6,7X,°BG=" ,E12.6A/,2X,°RESO=° [E12.6,
1 5X,°SIG=°,El12.6,5X,°S8IGN=°,E12.5)
C EC,ESIGO, AND EM ARE THREE WEIBULL PARAMETERS
97 SICC=-{{AG-ALOG(V/2)+ALOG(BC))/(BC-1.))
SIGO=EXF(SIGC)
ESICO=SIG
EM=BG-1,
WRITE(5,100)SIG0,EM,SIC
106 FORMAT(/,2X,°WEIBULL PARAMETERS ARE:°,/,2X,°SIGMAC=°,E12.6,
1 5X,°m=°,E12.5,5X%,°SIQU=°,E12.6/)
C CALCULATED FROBABILITIES ARE LISTED AS BELOW
DO 130 II=l,N
130 P{I1)=ALOG(X(1I)-5IGQ)
CALL LIN{(W,wM,?,EK,N,SIG,A,B,RES)
D2 108 I=1,N
PCAL=1,0-EXP(~(V/(2*(EM+1.)))*(1.~(ESICO/X(1)))
1 *((X(I)-ESIGO)/SIGO)**EM)

108 WRITE(5,110) PCAL,F(1),w(1),wM(1)

110 FORMAT(1X,°PCAL,F(1),W(1),wM{1)=° ,E12.6,3(1X,E12.6))
STOP
END

C SUBROUTINE LIN CALCULATES VALUES OF CONSTANTS A AND B WHICH
C REPRESENTS A STRAIGHT LINE v=A+BX
SUBROUTINE LIN(W,WN,P,EK,N,SIG,A,B,RES)
DIMENSINN W(20),7(20),EK(20),WN(20)
c=0.
D=0,
E=0,
G=0.
H=0.
DO & 1=1,N
Cc=C+{W(1))
D=D+{W(1)*P (1))
E=E+(W(I)*P(1)*P(1))
G=G+(W(T)*EK(I))
H=H+(W(I)*ER(TI)*P (1))
4 CONTINUE
DEN=E*C-D*D
A=((E*G-D*H)/(DEN))
B=((C*H-D*G)/(DEN))
C THE CONSTANTS A AND B_ARE KNOWN
C NOW FIND RESIDUE

siMM=0, -
DO 5 I=1,N
WN(T)=(A+B*P L) )-EK(])

5 SUMM=SUMM+W( L) *WN{ T Y*WN(T)
RES”SUMM 9.
RETURN

END




EX BENDIN.FOR
FORTRAN: BENDIN
MAIN,

LIN

LINK:  Loadiag

{LNKXCT BENDIN Execucion]

ENTER DATA FILE NO,
39

X{1),
X{1),
X(1),F

x{1),F{(

F(I

F(1L

(1),9(1) FORI=
1

AG=-,5559A55+41
RESO= ,540424E-03
AG=- 4401 13E+DL
RESN= ,182929E-04
AG==,L55LLG0E+0]
RESO= ,AK14190E-Q7
AG=-,45609745+01
RESO= ,321890E-(7
AG=- ,L3A3A0E+G]
§0= ,AGL9S7E-08
AG=- 45A3A0E+]]
RESD= ,h0L957E-08
AG=-,43563485+01
RESO= .K02025E-08

]

), W{I) FRI= 1
),W(I) FORI= 2

Y,W{1) FORI= 4
X(1),F(1),W(I) FORI= 5

WEIBULL PARAMETERS ARE:

SIEMAG= .339834E+01

PCAL,F(I),W(1),wM(1)=
PCAL,F(I),W(I),wM(1)=
PCAL,F{I),w(1),wM{1)=
PCAL,F(I),W(1),wM(1)=
PCAL,F(I),W(1),wM(1)=
STOP

END OF EXECUTION
CPJ TIME: 0.94 ELAPSED TIME: 1:5.A2
EXIT

+8921089E-05
«289977E-C4
+574887E-C4

.100000E+01 -,416636E-04

.10GCGC0E+02 ,300580E+00 ,100000E+JL
+120000E+02  ,4691146E+00 .100000E+01
.150G00E+02  ,6990CCE+G0  .10GG0CE+D]
»170000E+D2  ,814079E+00 ,100000E+D]
+2000002+02  ,922720E+G0  .100000E+D1

BG= .328826E+91

SIG= ,1980GCE+QL SiG2= ,0GC00CE+GO

BG= .295214E+01

SIG= ,31A800E+G] SIG0= ,198000E+Gl

BG= ,299723E+]1

SIG= ,30096GE+51 SIGN= .315800E+01

BG= ,300173E+31

SIG= .29337AE+51 S1GN= ,300960E+01

BC= ,299995:2+01

Sif= .300GI0E+S] SIcn= ,299374E+01

BG= .293993E+31

Sic= ,30601%E+01 sicn= ,300910E+0L

BG= .2979912+01

SIG= .300022E+01 Sin= ,3G0010E+51
o= §,159992+31 SIcU= ,300022E+5)

+3060532E+00  ,3005802+656  ,10G0GOE+O]

+4h9106E+30  L,4A911KE+G0  ,1G0000E+0L -

+h99021E+50  ,699000E+00 ,190050E+C]

«8l4GHAE+Q0  ,814079E+0D

+922722E400 ,922720E+00 ,10GO00E+01

+76890GE-05
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HOLLOW.FOR
95

PROCRAM BENIDIL
THIS YROGRAM 1S FOR 4=POINT BERDINC HOLLOW CERAMIC 20D
REAL L N(lb(,)
DIMERS Lok EPF(A0),TPF(40) ,W(40) ,AA(5),v(4L)
COMMOL /vABII,u,,,M EI1,SICU,EM,R0,R]
WRITF(5,40)
FORMAT(ZX,°£NTER DATA FILE NOUMBER AKD ERROR BOUND®)
RFAD(S5,*)ND,ERR
K=ho. OF DATA POILTS
P=LUAD VALUES
REARCED,*) 1,RC,RI
READCID, %K
KS=]
RFARCUD,*) v(1),w(})
DO 22 1=L,K
READCID,*) »(1),W(1)
P (v{1).uQ.»(I-1)) Co ¢ 22
KS=KE+1
COUTINUE
X=¥LOAT(KE+1)
BUW DO RATK METHOD
J=1
FLr{1)=]./X
ot 'n;,K
CPr {1 deppn( (- 1)
T ({132 v(I-1)) Gu T 1
RERAFS
FPR{D)=FLOAT( S} /X
CCITLIIIE
WaLT=(5,201) (J,;v‘\JEJ,V 1 ,K)
FORMAT(IX, ®J=" 10, "EoR(J)=" v7,5)

A vivmas . -
FORMATOIX, ®diTFR L, 20,31, #RR°

?
SOW UALUCTLATE MUMELT FouM LOAD VAIDFS

oy oY T*J,K

MU=V (T )%y 4/,

TL‘{'. A/Q_\+’Qp**“—91*%“/

WATTF{5,50)L, 80,71, 6RR,F 1

FUSMAT(/ 3K, L=" 1\ ,T7.? 1x °°v= LIX,TE,3, 9K, °R 1= 1X,

bore 2x,°fz?=°,l\ /.;,:x A1=" 1K, RTS8, T)

e (FITHER 1 P 2R ')
3 LedCTH LR SeRcTMen
wiml o (0 VARTER) P el (oM VARTER) %% nhmt (I V2 )

WRITN(S 80 ?
«w°~"(1\,°1xy.r CLEN, 3TCT, H{OUNF ), FTIAL, NS :
RESAA R AN, ITED, NN, AL, s

ARDIIN

::,_(;}:rjx

-‘:}(',)th-\‘_

n:(;\.:.,;(:. : Co, 7L sf

O SMIPI L P Ta R R

- '{!“T:.L‘r\.":o::) /'ll"{ ¢ )

’I = T e




L

Yo

Do 17 1=1,K
VAP=AA(KI ) +FLOAT( 11 )*RliC
A
TIF (BK.£Q.1) C=VAR
IF (WN.EQ.2) EM=VAR
IF ({ili.£Q.3) SICU=VAP
CALL ACAR(ERR,il,Bl,XX)
TPF(I)=XX
17 CONTILUE
C* LOW COMPUTE RESTIDUES
RES=G,
DO 5 I=],K
Wi=(EPF(1)-TPr(1)) :
RFS=Ri7S +W{ T J*WI*WE :
IF(H.EQL1IWRITE(S, 150 VAR, EM, SICY, RF S g
1 IR(I.EQ.2)WRITE(S,16)C, VAR, S1GT, RES i
TF(EN.AQ.IIWRITE(S, 18)C, M, VAR, RES :
] 15 FORMAT(1X, VAR :C=® 714,68, 2K, iM=®,1X,P6,3,2X, °SICI=°,
, 1 OIX,F10.3,2X,°RFS=" | 1X,K14,8)
1 16 FORMAT(1X,%C=®  1X,E12,.7,1X,°VAR:F'M=" ,1X ,F8,3,1X,°SICU=",
11X, E10.3,1X,°R88=° [ 1X,514,6)
18 FORMAT(IX, U= 1X, 8127, 1X, " FM=°  1X, P63, 1X, °VAR: STICI=", IX, ,
i 1 E14.6,1X, °RES=" IX,F14.%) !
' IF(HeS.OF. L) CO Te M '
] oG8l I=1,K
. WRITF(5,72) (1,Eee(1),TPr(1),w (1))
70 FOPMATOIX, v o (1) ,Tee( 1) ,W(T) FOR I=°,12,3(2X,713.5))
3] CONTIONE
o CONTINIE
¢ TU N
8o STOY

(4]

[I0R
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DIN.FOR 97

SUBRCUTILNE ACAR(HRR,IT,BL, XXX)
RFAL L,M(&0)
COMMON /PAR/ 1,L,C,M,E1,SICH,EM,RO,R]
SIMPSON RULE PROCRAM FCR CIRCULAR BENDINC CASE
A ALD B ARE LOWER AND UYPER LIMIT OF INTECRATION
FOR FIRST PART OF INTECRATION
D AKD A ARE LOWER AND UPPER LIMIT CF INTTEGRATION FOR
SECOND PART OF INTKGRATION
I 1S THE KUMBER OF SUBDIVISION
DX IS THE INTERVAL
C,EM,ALD SICU ARE MATERTAL PARAMETFRS
FR=FLOAT(!1)
BNT=(,
ET=MOMENT OF THERTIA
M=BELDING MOMERT
D IS Y-THRESHOLL
THREL CASES HAVE ReEEN CONSIDERED FOR Y-THPESHOLD
A=R1
B=R0
D=SICI*FT/M(1)
CAS#E-1. Y-THRESHULL Cai
CASE-2. Y-THRESHCLD CAL
CASA=-3, Y-THRESHULD CARK

UCUTUR QGTSIDE PO, (IF QCCURS,THE!N, BIis()
U AKD R1

VCUEUR BETWHLN RT AND RC

1y 1F(D.CRLLCLALIRDLITAYCALL STMYP(A,B,D, PN, Bl)
IF(D.CT ALALRD.DLLT.BYCALL SIMM(A,B, D, N, BE)
I(D.GT.B) CuU T 3

U XXX=THERUTICAL VROBABILITY LF ¥RACTURE
XXX=], =XV {=B5)
IF(ABS{BN=RET ) LA #7R) RETURN
BT8R
[N SO
GU T LU

3 Bl

XXX=.,
RETURE

[BVIN
SUBRUUTLE
PEAL il
REAL L,M0A0)

CuMMUTT JRARY TLL, 0 M, R T, SO, EM, R, 0T
TI=1eIx{ri)

DXY={B=-p) /00

EXIm{A=D3/F0

TrX=2 +nx)

D AL ) WA

i
N B E Ot

SIM(A,B,D, ¥, B)

SELO gAY (R
RS AL SO IR I SO R IRk RS S
1 LITTLALLS Y o000 N
.;':y 4‘7"‘. -
P d®=,
.'.1.4“.'" .
TANCIAL SO
v~’=!“/'¢;-
R SRR TR A

Yimoeo KPPl A0
RIPASAT 308 G DI IR UL

AT OV e ()

e o gt pees N
IR TR .',(."vr

,,AHQ,«:I'

. N o
PR N L
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98

COLTIRUE
TI=A
Y2=D

HM=IRIX(IN)-1
DO 4 J=},hEM
Y1=Y1+TDX1
Y2=Y 2+TDX2
EN3V=FN31 +GRALNFI(Y])
FI32=F i 32+CRARF2 (YL)
Biis(DXI*(ENIL44 (REN2T+2 %F13) ) /3 )+ (DX2*(ERY 244 . %ER22
+2,%E3032)/3,)
RETURN
£ih
FUHCTION CRAKFICY)
RFAL 1,M(40)
COMMON /Y¥AR/ 1,1,C,M,ET,SICU,FM,RO,RT
SIC=H{T)*Y/RI
Ir((SIC-S1CU}.LT.GISTC=SICY
FOPMAT(2X,°M,Y, STCU, STG, (WHFH STC-SIGU,LT.0)=",1X,4F10,4)
CRARFI=(2 RL*C)*(((M(I)%*Y/ET)-SICH YRvEM)*
{{RO¥*RO-Y*Y Yo 5)
RETURL
EiD
FURCTLUN CRANT J(Y)
REAT L,M(41)
COMMUE /PAR/ T,L,0,M,ET,81CH,FM,RC, R
SIC=MITI*Y/FT
IR((3IC-<tL ”P).IT.L)°1C=§1CY

FUAMAT(LX, M, Y, 5160, S1C, (WHE S1C-SICV.L7.0 16 CF2)=° 48]0

c n:;'=(‘*'+")*(’(w(r *Y/r V=S ICU Je*EM)*
((RUFRQ=-YFY Yok 5 )= ({RI*RT-Y*Y )%, 5))

PETURN

tll

SUBROUTIOF SIMMOA,B,D, W, BiN)

ROALONN

1T=ITIX(D)

LXV={ =03 /%5

ThX =2, %pX!

r"‘11=L.?’\!"'1("/+G ALT] (B>

R R
TATTLALIGY il AN £

......

ISR L SN

=5/2,
BOOS gl U-1,0
Y1=badXI*ELoAT (S
fnt=E L eS20R (Y ])
LONT LY
Y=
MeTE XS 1.4/-“
ISR LR

S
Yiwy ) +7nx]

IR LTINS IRk SRR NS )
BRCISM SR I ERCE R RN SNl WSS TN DR A

e
ReThe

TN
e

(X3
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12
24

11
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NEWTON.FOR

PROGRAM NEWTON
NEWTON-RAPHSON METHOD
PROGRAM WEIBUL THREE PARAMETERS
THE PARAMETERS ARE C, M, AND SIGU
THIS PROGRAM COMPUTES ALL PARAMETERS BY
NEWTON-RAPHSON METHOD
DIMENSION X(26),F(20),W(20),A(20,29),2(20),B(20)
DIMENSION U(20),U1J(20,3),U1(20),v3(20),UIkJ(20,3,3)
WRITE(5,10)
FORMAT(1X,°ENTER DATA FILE N9.°)
READ(5,*)ND
READ{ND,*)N
ND=MO, OF DATA FILE
N= NO, OF WEIBUL POINT PAIRS
W= ARBITRARY WEIGHTS ASSIGNED TO DATA POINTS
X= FRACTURE STRESS VALUES
READ(ND,*){((X{1),F(I),w(1)),I1=1,N)
DO 1 1=1,N
WRITE(3,20)(1,x(1),7(1),W{(1))
FORMAT(1X,°X(1),F(1),Ww(1) 7ORI=",12,3(1X,E12,5))
NOW SET THE VARINUS SUMMATIONS FOR THE LEAST SQUARE
METHOD, BUT FIRST MAXE A GUESS FOR C, SIGU, AND M
WRITE(5,24)
FORMAT(1X,°INPUT THE GUESSES FOR C,SICU,EM°)
READ(5,*)C,SIGU,
DD 3 I=1,N ‘
T=(X(1)-S1GV)
IF(T.LT.0.) T=0.
U(I)=C*T**EM
S1=EXF(-U(1))
§2=51*51
UI(D)=W(L)*((1,~F(1))*S1-S2)
UIL)=W(I)*(2,*52-(1,-F{1))*S1)
UzJ(1,1)=u(1)/¢
UTJ{1,2)=~0(1)*EM/T
ULJ(I,3)=U(1)*AL0G(T)
UIKJI(I,1,1)=0,
UIkJ(1,1,2)=U1J(1,2}/C
UIJ(1,2,1)=U1kJ(1,1,2)
UIxJ{1,2,2)=-(EM-1.)*UL1J(I,2)/T
UIkJ(1,1,3)=U1J(1,3)/C
UIKkJ(1,3,1)=01KJ(1,1,3)
UIKJ{(1,2,3)=(1+EM*ALNG(T))*UTI(I,2)/EM
UIRJ(1,3,2)~UIKJ(1,2,3)
UIKJI(1,3,3)=U(I)*(ALOG(T))**2
CONTINUE
NOW FORM THE MATRIX B(I), AND A(I,J)
ZERD 0OUT A AND B
D2 30 1=1,3
B(1)=0.
DO 30 J=1,3
A{1,J)=0, '




30 CONTINUE
DO 4 I=],N
DO & J=1,3
B(J)=8(J)+U1(1)*U1J(1,])
; DO 4 K=1,3
A(JT,K)=A{T ,K)+UL(T)*UIRI(I,K, I)+U3(1)*UII(1,I)*V1I(I,K)
4 CONTINUE
CALL SOLVE(A,Zz,B,3,DET,5)
WRITE(5,13){2(1),1=1,3)
13 FORMAT(1X,°DC,DSIGU,DM=",E15.6)
c=Cc-2(1
SICU=SIrU-2{2)
EM=EM-2(3)
WRITE(5,14)C, SIGU,EM
15 FORMAT(1X,°NEW WEIBULL PARAMETERS ARE: C,SIGU,EM=°,3E15.6)
ITES1=1HY
WRITE(3,15)
15 FORMAT(1X,°DD YOU WISH TD CONTINUE WITH PRESENT CORRECTIONS®,
1 /,°ANSWER Y OR N°)
READ(3,1A)ITE
1% FORMAT(AL)
IF{ITE.EQ.ITESL) 60 ™ 1l
WRITE{3,17)
17 FORMAT(1X,°DO VOU WANT IO STOP-ANSWER Y OR N°)
READ(3,18)ITE
17(ITE.EQ.ITESL)eD Tn 21
GO TN 12
21 WRITE(5,106)C,EM,SICY
100 FORMAT(/,2X,°C=°,E12.6,5X,°EM=° ,E12,6,5X,°S1GU=° ,E12.5/)
STOP
END
SUBRMUTINE SOLVE(A,X,B,N,DET,NP)
DIMENSION B(20),X(20),A(20,20),K(20),v(20)
DO 16 I=1,N
15 K(I)=1
N1l=N-1
DET=10
SiG=l.
DO 8 L=I,N1
C ****  SEARCH FOR LARGEST ELEMENT
c NP=UNIT NUMBER OF PRINTER
D=0,
PO 1 LI=L,N
DO 1 L2=L,N
1F(ABS(A(LL,L2))-ABS(D)) 1,1,1550
15359 D=A(L1,L2)
1D=L1
JD~L2
1 CONTINUE
1F(D)2,99,2
C **x*x INTERCHANGE ROWS AND COLUMNS T PUT LARGEST ELEMENT AN DIAGNNAL
2 IF (JD.2Q.L) 69 T0 14




ol

S1G=-SIG
TEMP=K(L)
K(L)=K(JD)
K(JD)=I1EMP
DO 4 I=],N
TEMP=A(I,L)
A(I,L)=A(1,JD)
4 A(I,JD)=TEMP
4 IF (ID.,EQ.L) 69 T2 15
SI16=-SIG
D9 3 J=L,N
TEMP=A(L,J)
A(L,J)=A(1D,J)
3 A(ID,J)=TEMP
TEMP=B(L)
B(L)=B(1D)
B{ID)=TEMP
15 B(L)=B{L)/D .
CH*ELIMINATE ELEMENTS IN COLUMN UNDER LARGEST ELEMENT
Ll=L+1
DO 5 J=L1,N
5 A(L,J)=A(L,J)}/D
DET=DET*D
D9 7 I=L1,N
F(A(I,L)) 1513,7,1515
1515 pr=aA{1,L)
D9 6 J=L1,N
6 A(1,3)=A(1,J)-D1*A(L,D)
B(1)=B{1)-D1*B(L)
CONTINUE
8 CONTINUE
IF(A(N,N)) 9,99,9
Cx**BACK SUBSTITUTE TO SOLVE
9 v(N)=B(N)/A(N,N)
DET=DET*A(N,N)*SIG
D2 11 L=]1,Nl
LL=N-L+1
D1=B{LL-1)
DO 10 J=LL,N
10 pl=D1-A(LL-1,J)*¥(J)
11 Y(LL-1)=Dl
Cr**k RE-ORDER ANSWER
DD 12 I=1,N
J=K(1)
12 X(J)av(1)
GH T0 13
99 WRITE(NP,100)
100 FORMAT(2X,°MATRIX IS SINGULAR NO SOLUTION GIVEN®)
DET=0,
13 RETURN
END
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