MAMMALIAN TOXICOLOGY TESTING: PROBLEM DEFINITION STUDY

INHALATION CHAMBERS AND SUPPORTING EQUIPMENT SURVEY (U)

by

G. E. Schiefer and R. H. Reuter

March, 1981

Supported by

U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND
Fort Detrick, Frederick, Maryland 21701

Contract DAMD17-81-C-1013

Life Systems, Inc.
Cleveland, OH 44122

Approved for Public Release; Distribution Unlimited
The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.
MAMMALIAN TOXICOLOGY TESTING: PROBLEM DEFINITION STUDY, INHALATION CHAMBERS AND SUPPORTING EQUIPMENT

1. REPORT NUMBER
4D-A1124

2. GOVT ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)
MAMMALIAN TOXICOLOGY TESTING: PROBLEM DEFINITION STUDY, INHALATION CHAMBERS AND SUPPORTING EQUIPMENT

5. TYPE OF REPORT & PERIOD COVERED
Supporting Document
15 December 1980-5 April 1981

6. PERFORMING ORG. REPORT NUMBER
LSI TR-477-26A

7. AUTHOR(s)
G. E. Schiefer, R. H. Reuter

8. CONTRACT OR GRANT NUMBER(s)
DAMD17-81-C-1013

9. PERFORMING ORGANIZATION NAME AND ADDRESS
LIFE SYSTEMS, INC.
24755 Highpoint Road
Cleveland, OH 44122

10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
62777A.3E162777A878.CC.208

11. CONTROLLING OFFICE NAME AND ADDRESS
US Army Medical Research and Development Command
Fort Detrick
Frederick, MD 21701

12. REPORT DATE
March, 1981

13. NUMBER OF PAGES
23

14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)

15. SECURITY CLASS. (of this report)
UNCLASSIFIED

15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)
Approved for Public Release; Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES
This report is one of 12 supporting documents to the final reports cited on the reverse side.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Mammalian Toxicology Testing, Mammalian Toxicology, Toxicology, Mammalian, Mammalian Toxicology Facility, Toxicology Facility, Toxicology Testing Equipment

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
Information on the inhalation chambers and supporting equipment needed for them are summarized in this report. This equipment represents a major expense that requires a tailored design and special fabrication to satisfy the Army's inhalation toxicology testing requirements. The data presented can be used for evaluating existing chambers and equipment and to assist in designing the special equipment or selecting equipment for an Army facility.

DD FORM 1 JAN 72 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
Report Subtitle

Final Reports:

Part 1. Comparative Analysis Report
Part 2. Facility Installation Report
Part 3. Impact of Future Changes Report
FOREWORD

Reports for this Contract, DAMD17-81-C-1013, consist of three major final reports and twelve supporting documents. The Contract title, MAMMALIAN TOXICOLOGY TESTING: PROBLEM DEFINITION STUDY, is the main title for all the reports. Individual reports are subtitled and referenced with Life Systems, Inc. report numbers as detailed below. Please note that the Life Systems report numbers in test references are shortened. In the Defense Technical Information Center (DTIC) data base the reports are identified by the complete report numbers (i.e., LSI-TR-477-XXX) and complete numbers must be used for retrieval.

<table>
<thead>
<tr>
<th>Report Subtitle</th>
<th>Life Systems, Inc. Report Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Reports--</td>
<td></td>
</tr>
<tr>
<td>Supporting Documents--</td>
<td></td>
</tr>
<tr>
<td>Technology Changes Impact on Testing Requirements</td>
<td>LSI-TR-477-14</td>
</tr>
<tr>
<td>Quality Assurance Plan</td>
<td>LSI-TR-477-17A</td>
</tr>
<tr>
<td>Capability Modules</td>
<td>LSI-TR-477-19B</td>
</tr>
<tr>
<td>Technical Plan</td>
<td>LSI-TR-477-20A</td>
</tr>
<tr>
<td>Equipment Plan</td>
<td>LSI-TR-477-21A</td>
</tr>
<tr>
<td>Personnel Plan</td>
<td>LSI-TR-477-23A</td>
</tr>
<tr>
<td>Inhalation Chambers and Supporting Equipment Survey</td>
<td>LSI-TR-477-26A</td>
</tr>
<tr>
<td>Equipment List for Modules</td>
<td>LSI-TR-477-28B</td>
</tr>
<tr>
<td>AMTR Protocol/Pricing Report</td>
<td>LSI-TR-477-29A</td>
</tr>
<tr>
<td>Global Army Toxicology Requirements</td>
<td>LSI-TR-477-31A</td>
</tr>
<tr>
<td>Comparison Toxicology Test Costs</td>
<td>LSI-TR-477-36A</td>
</tr>
<tr>
<td>Annual Testing Capacity</td>
<td>LSI-TR-477-38A</td>
</tr>
</tbody>
</table>
SUMMARY

During this program undertaking the study and defining the Army's requirements for Applied Mammalian Toxicology Research/Testing, a survey was made of the inhalation chambers and supporting equipment needed. These items, called the inhalation toxicology system, represent a major equipment expense for the Facility. They will require tailor designing and special fabrication to satisfy the Army’s testing needs.

The special design requirements result from the Army unique exposures that exist.

Sixteen toxicology facilities were contacted concerning their inhalation toxicology Systems. Six manufacturers were contacted that supply such systems. Worksheets were prepared to ensure all the important information was acquired during each contact.

Much significant information resulted from the survey. Manufacturers, for example, do not limit themselves to specified, off-the-shelf design; a major difference in chambers is the shape and subsequent ability to expose either the whole animal, just their noses, etc. A total of 16 summarizing conclusions were presented.

A highlight of the report is a table summarizing inhalation chamber characteristics starting with approximate volume, dimensions, and shape/type to animal capacity/species, construction material, operational status, delivery, cost and special features.

Equally important were the inhalation chamber operating procedures defined for each of the 16 facilities. Such parameters as temperature, relative humidity range, computer monitoring, etc. are cited.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>2</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>Scope of Document</td>
<td>3</td>
</tr>
<tr>
<td>Objective</td>
<td>3</td>
</tr>
<tr>
<td>Data Sought</td>
<td>4</td>
</tr>
<tr>
<td>Results of Survey Inventory</td>
<td>4</td>
</tr>
<tr>
<td>Assumptions</td>
<td>7</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>7</td>
</tr>
<tr>
<td>APPENDIX 1 INHALATION CHAMBER INVENTORY FORM</td>
<td>8</td>
</tr>
<tr>
<td>APPENDIX 2 RESULTS OF SURVEY INVENTORY</td>
<td>14</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2-1 Sources of Information</td>
<td>15</td>
</tr>
<tr>
<td>A2-2 Inhalation Chamber Characteristics</td>
<td>16</td>
</tr>
<tr>
<td>A2-3 Inhalation Chamber Operating Procedures</td>
<td>17</td>
</tr>
</tbody>
</table>
INTRODUCTION

A program was undertaken to study and define the Army's requirements for Applied Mammalian Toxicology Research (AMTR) and methods for meeting the requirements. Inherent in the latter is the consideration of the facility, equipment and expendables, personnel, quality assurance and resources needed for the design, construction and operation of such a facility.

Scope of Document

This document was conceived and prepared to accumulate in one spot information on the inhalation chamber and supporting equipment (hereafter referred to as the Inhalation Toxicology System). The Inhalation Toxicology System is a major equipment expense that will require a tailored design and special fabrication to satisfy the Army's inhalation toxicology testing requirements. All information considered critical to evaluating existing systems has been assembled in a standardized format in this document.

The Inhalation Toxicology System will determine to a great extent the inhalation testing the AMTR facility can perform. The system will directly determine the testing protocols that can be performed by influencing or fixing:

1. The number and types of animals that can be used.
2. The exposure pattern that can be used (intermittently or continuously).
3. The distribution of the test agent within the chamber.
4. The control and monitoring of the test agent.

Objective

The objective of this document is to assemble the data that can be used for evaluation of existing inhalation systems in order to assist in design of special equipment or the selection of existing equipment for an Army AMTR facility. The data base represents information provided from equipment manufacturers and from facilities with good systems selected by a group of inhalation toxicologist consultants.

The following sources were contacted to obtain information:

A. Facilities contacted:
 1. Brookhaven National Laboratory
 2. Chemical Industry Institute of Toxicology
 3. National Institute of Environmental Health Sciences
 4. Environmental Protection Agency, Research Triangle Park
 5. Environmental Protection Agency, Center Hill Facility, Cincinnati
 6. National Institute for Occupational Safety and Health, Cincinnati
The data sought is enumerated in the work sheets used for the inhalation chamber inventory in Appendix 1. When several sources (a manufacturer and one or more facilities) provided information on the same system, the information was checked for validity. If the information obtained from a manufacturer and a facility differed, information from the facilities with the systems was used. It was reasoned that manufacturers would be less likely to point out deficiencies or shortcomings in their system (most manufacturers are involved in only making some of the system components, not complete systems, therefore, it was necessary to contact several parties to get complete data on a system).

Results of Survey Inventory

The results of the inventory are summarized in Appendix 2.

Table A2-1 lists the sources of information in a matrix of the 16 AMTR facilities and the 6 manufacturers (both listed above). Table A2-2 and A2-3 provide a tabulation of data on the chambers' characteristics and operating procedures.

A summary of the data follows:
1. Manufacturers do not limit themselves to specified, off-the-shelf designs. For most applications a basic design concept is tailored to the specific needs of the facility by getting input from a consultant or the purchaser.

2. If chamber reliance is discounted as a variable, the major differences in chambers (not chamber systems) are their shape, their ability to expose either the whole animal or just their nose, and their design features to accommodate loading and unloading of the animals and animal care.

3. Inhalation chamber fabrication and design is a business with a small market, measured in both number of transactions and total dollars. Hazelton Systems, Inc. is the largest business (based on total sales) active in chamber fabrication.

4. Rack and cages should be either purchased in conjunction with the chambers or the specifications of existing cages (and cages that will be used) should be determined to avoid a compatibility problem. Certain special racks are available to reduce the effect of uneven distribution of the test agent inside the chamber and intercage contamination by feces and urine droppings from upper cages to lower ones.

5. Chamber manufacturers routinely fabricate chambers to the buyers’ specifications. Average lead time of three months was quoted by the manufacturers for up to 15 chambers. Longer periods would be required if more than 15 chambers were ordered from a single manufacturer. Purchases of chambers indicated that six months, not three, is the average delivery time they experienced. With an adequate specification package, several manufacturers could fabricate identical units—one manufacturer could make the acute chambers, another the subchronic, and a third the chronic.

6. A special team of chamber design experts and toxicologists should be used to design the chamber systems for the special Army requirements associated with troop exposures that are characterized by short-term, intermittent, high-level exposures. The chamber system will be influenced by the inhalation toxicology protocols used. Therefore, a protocol determination must precede chamber design.

7. Support equipment has probably a greater impact on chamber system capability than the chamber design.

8. Upjohn is patenting a new chamber design that has as one of its major features a lower height to chamber volume ratio. This is particularly attractive to accommodating chambers into existing buildings, such as LAIR, that may not have sufficient floor to ceiling distance to accommodate certain typical chamber designs.

9. Chambers can be categorized into those that are movable (routinely put through a washer) and those that are fixed in place (built-in) equipment.
10. The Hazelton 1000 chamber appears to be the chamber that is currently being produced in the greatest numbers. Because of its popularity there may be back orders. One of the principal features of the Hazelton 1000 is the use of catch pans to avoid droppings from the animals in higher cages upon lower ones and to maintain an even distribution of the test agent in the filled chamber.

11. One of the features desired in chambers used for certain Army tests is the ability to achieve a designated level of test agent concentration rapidly and maintain it in the chamber. The best approach for achieving this is to utilize an interactive computer which manipulates the input of the test agent and input air volume, and reduces the time to equilibrium concentration to less than two minutes. If a computer is not used it may require 30 minutes or more to bring the chamber up to its desired concentration.

12. Air handling systems, both entrance air and treatment of exhaust air, and the monitoring and control equipment are normally not provided by chamber manufacturers.

13. Chamber manufacturing remains a highly specialized field with relatively few manufacturers, and numerous tailored but basically similar units.

14. As concern for environmental quality, quality assurance and personnel safety increase, the inhalation chamber systems have moved to improved double filtration systems of exhaust air, automated monitoring and control with data storage retrieval and alarms. The chambers are frequently housed inside of separate rooms or hood enclosures with air pressure relationships which provide a double safeguard of protection (the chamber having the lowest pressure, the enclosure the next lower pressure and the general room area the highest pressure). This provides for inward air flow into areas with greatest contamination. Some chambers are serviced by special mobile service modules that provide protection to the ambient air during servicing of the chamber.

15. There have been some measures taken to provide inhalation exposures by means other than a chamber. For primates and certain other larger animals, the animals wear special exposure helmets. This type of system is adequate for short-term exposures, but is not practical for long-term studies.

16. The current chamber designs accommodate the numbers and types of animals called for in standard protocols. The chambers used for regulatory testing compliance purposes must be able to handle the standard number of animals and have a sufficient number of chambers (one per dose and one for control).
Assumptions

1. The Army's AMTR facility will consider inhalation studies for both the standard industrial occupational exposures and special exposures encountered by soldiers during training and combat.

2. Inhalation studies will include acute, subchronic and chronic durations, the use of rodents and primates, and the full spectrum of toxicology outcomes.

3. In some cases the studies will be for submission to regulatory agencies. In other cases, the studies will be performed for non-regulatory Army requirements.

CONCLUSIONS

The survey performed of the Inhalation Toxicology Systems provided a comprehensive and detailed collection of information and data. It provides a database, identifies sites that can be visited and manufacturers that can be contacted to assist in the development of the Army's AMTR facility system's specification package, the system design or system fabrication and installation.
APPENDIX 1

INHALATION CHAMBER INVENTORY FORM
Inhalation Chamber Code Number ______

Instructions for Inhalation Chamber Inventory

1. Name, address, phone number of organization contacted:

__

__

__

ph. ()

2. Name of individual contacted and department:

__

3. Assign code number to the chamber which is to be discussed and complete appropriate columns. Number should be in sequence with previous contacts.

Model Name ______________ Number ______________

Model Type ______________

4. Complete survey form through those categories which apply, e.g., if chamber only, fill out chamber characteristics section.

5. Ask for specifications sheet. If available, have it sent to:

Mr. Greg Schiefer
Life Systems, Inc
24755 Highpoint Road
Cleveland, OH 44122
INHALATION CHAMBER INVENTORY

<table>
<thead>
<tr>
<th>Chamber Characteristics</th>
<th>Code for Different Chamber Types</th>
</tr>
</thead>
</table>

1. **Package**
 - Chamber unit only
 - Four or more additional equipment items required
 - Less than four additional equipment items required
 - Complete system with all required peripherals

2. **Capacity (Volume, m³ or l)**
 - Cubic Meters, m³
 - Liters, l
 - Weight, kg

3. **Size (Dimensions, m)**
 - Length x Width x Height, m
 - Diameter x Height, m
 - Shape
 - Cylindro-conical
 - Cylindrical
 - Square
 - Rectangular
 - Hexagonal
 - Spherical

4. **Animal Capacity (Approx. No. of)**
 - Mouse
 - Rat
 - Guinea Pig
 - Hamster
 - Rabbit
 - Dog
 - Primate
 - Monkey
 - Baboon
 - Chimpanzee

5. **Major Material of Construction**
 - Stainless Steel/Glass
 - All Stainless Steel
 - All Glass
 - Aluminum
 - Plastic (e.g., Lucite)
 - Fiberglass

continued—
Inhalation Chamber Inventory - continued

Chamber Characteristics

<table>
<thead>
<tr>
<th>Code for Differing Chamber Types</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

6. Applicable to
 - Acute Studies
 - Subchronic Studies
 - Chronic Studies
 - Carcinogenic Studies

7. Lab Area Associated with, ft²
 - Chamber
 - Chamber and support equipment

8. Types of Inhalation
 - Gases/Vapors
 - Aerosols
 - Particles
 - Dust

9. Chamber Internal Specifications
 - Temperature, °C
 - Chamber Capacity, m³
 - Relative Humidity, %
 - Controlled
 - Normal-Range
 - Uncontrolled
 - Normal-Range
 - Light Intensity - ft. candles
 - During Day
 - During Night
 - Pressure, mm Hg
 - Normal-Range

10. Electrical Power Supply, W (v)
 - AC
 - DC

11. Reliability Data
 - Mean - Time - Between Failure, h
 - Mean - Time - to - Repair, h
 - Projected Equipment Lifetime, yr
 - Project Operational Lifetime, yr

12. Maintenance Level
 - Routine - Non-specialist
 - Special Personnel Required
 - Expendables
 - Type
 - Replacement Frequency, mo.
 - Replacement Procedure, mo

continued—
Inhalation Chamber Inventory - continued

<table>
<thead>
<tr>
<th>Chamber Characteristics</th>
<th>Code for Differing Chamber Types</th>
</tr>
</thead>
</table>

13. **Quantity of this type**
 - Produced
 - In Use

14. **Operational Status**
 - Operating
 - Ready to Operate
 - Testing Stage
 - Design Stage
 - New Addition Coming Onstream

15. **Clean-out**
 - Internal System
 - Pressurized
 - Drain
 - Drying
 - Special Sterilization Features
 - External
 - Space Required
 - Connections
 - Accessibility
 - Time Required, min.
 - Labor, h
 - Between Cycling, h

16. **Cost**
 - Total Cost/Cycle
 - Materials
 - Personnel
 - Power Input
 - Initial
 - Maintenance
 - Operation at maximum rate/yr.

17. **Availability**
 - Construction lead-time required, mo.
 - Development lead-time required, mo.

18. **Air (In-Out)**
 - **Input Air System**
 - Filtration, % Removal
 - Flow Rate, m/sec (CFM)
 - Pressure, kN/m³ (psia)
 - Test Agent Concentration, mg/m³ (ppm)
 - Normal
 - Range

continued
Inhalation Chamber Inventory - continued

Chamber Characteristics

19. Exhaust Air Handling
 Efficiency of Venting
 Residual, mg/m³ (ppm)
 Special considerations for particulate/aerosols
 In Chamber
 On Animals and Cages

Control/Monitor Functions

20. Personnel Data:
 Number of Chamber Personnel to Operate
 Personnel Skill Level
 Work Period, h
 Maximum Weight Lifted, kg
 Labor/Chamber Cycle

21. Safety
 Fail-safe Systems (Door Lockout)
 Sensors
 Warning Lights/Buzzer (Cycling and Sensor)
 Earthquake Proof Envelope
 Safety Level of Shock
 High Hazards - Particulate Carcinogens

22. Performance Characteristics
 Test Agent Data
 Complete Cycling Time, min.
 Time to Come up to Chamber concentration, min.
 Time to Get Down to Zero, min.
 Test Agent Consumption Rate, 1 hr

Instrumentation and Other Support Equipment

23. Unique Features
 Walk-in
 Controllers
 Temperature
 Pressures
 Humidity
 Vibration
 Shock
 Air Flow
 Rotating Drum
 Moveable
 Living Quarters
 Air Locks
 Wind Tunnel
 Automatic Atmosphere Sampling
 Multi-stress Capability
 Behavioral Observations
 Multi-animal Species Capability

Code for Differing Chamber Types
APPENDIX 2

RESULTS OF SURVEY INVENTORY

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2-1</td>
<td>15</td>
</tr>
<tr>
<td>A2-2</td>
<td>16</td>
</tr>
<tr>
<td>A2-3</td>
<td>17</td>
</tr>
</tbody>
</table>

TABLE A2-1 Sources of Information

TABLE A2-2 Inhalation Chamber Characteristics

TABLE A2-3 Inhalation Chamber Operating Procedures
TABLE A2-1

SOURCES OF INFORMATION

<table>
<thead>
<tr>
<th>AMTR Facilities</th>
<th>Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Army Environmental Hygiene Agency</td>
<td>X</td>
</tr>
<tr>
<td>2. Battelle Columbus Laboratories</td>
<td>X</td>
</tr>
<tr>
<td>3. Brookhaven National Laboratory</td>
<td>X</td>
</tr>
<tr>
<td>4. Chemical Industry Institute of Toxicology</td>
<td>X X</td>
</tr>
<tr>
<td>5. Environmental Protection Agency, Center Hill Facility, Cincinnati</td>
<td>X</td>
</tr>
<tr>
<td>6. Environmental Protection Agency, Research Triangle Park</td>
<td>X</td>
</tr>
<tr>
<td>7. Hazelton Laboratories, Inc.</td>
<td>X</td>
</tr>
<tr>
<td>8. IIT Research Institute</td>
<td>X</td>
</tr>
<tr>
<td>9. Lovelace Inhalation Toxicology Research Institute</td>
<td>X</td>
</tr>
<tr>
<td>10. Litton Bionetics, Division of Litton Corporation</td>
<td>X X</td>
</tr>
<tr>
<td>11. Monsanto Company</td>
<td>X</td>
</tr>
<tr>
<td>12. National Institute of Environmental Health Sciences</td>
<td>X</td>
</tr>
<tr>
<td>14. Toxigenics, Inc.</td>
<td>X</td>
</tr>
<tr>
<td>*5. The Upjohn Company</td>
<td>X</td>
</tr>
<tr>
<td>16. University of California at Davis</td>
<td>X</td>
</tr>
</tbody>
</table>

*(a) Upjohn is attempting to secure a licensee for their system; they do not plan to be a manufacturer.
INHALATION CHAMBER CHARACTERISTICS\(^{(a)}\)

<table>
<thead>
<tr>
<th>Manufacturer/Designer</th>
<th>Approx. Volume (L x W x H cm)</th>
<th>Dimensions (L x W x H cm)</th>
<th>Shape/Type</th>
<th>Animal Capacity</th>
<th>Major Materials of Construction</th>
<th>Operational Status</th>
<th>Delivery (mo.(^{(b)}))</th>
<th>Cost (dollars)</th>
<th>Special features (see list)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles W. Schenker</td>
<td>0.25</td>
<td>46 x 46 x 120</td>
<td>Square/Winners &</td>
<td>24 mice</td>
<td>Stainless Steel/Glass</td>
<td>Operating</td>
<td>2-5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>and Associates</td>
<td>0.50</td>
<td>62 x 62 x 130</td>
<td>Square/Winners &</td>
<td>48 mice</td>
<td>Stainless Steel/Glass</td>
<td>Operating</td>
<td>2-5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>92 x 92 x 200</td>
<td>Square/Winners &</td>
<td>96 rats</td>
<td>Stainless Steel/Glass</td>
<td>Operating</td>
<td>2-5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>92 x 92 x 200</td>
<td>Square/Winners &</td>
<td>75 rats</td>
<td>Stainless Steel/Glass</td>
<td>Operating</td>
<td>6-8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3.7</td>
<td>150 x 150 x 350</td>
<td>Square/Winners &</td>
<td>200 rats</td>
<td>Stainless Steel/Glass</td>
<td>Operating</td>
<td>6-8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>180 x 180 x 350</td>
<td>Square/Winners &</td>
<td>250 rats</td>
<td>Stainless Steel/Glass</td>
<td>Operating</td>
<td>6-8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>180 x 180 x 350</td>
<td>Hexagon/Hose Only</td>
<td>12 rodents</td>
<td>Stainless Steel</td>
<td>Operating</td>
<td>3</td>
<td>7.9</td>
<td>9</td>
</tr>
<tr>
<td>Hazelton Systems, Inc.</td>
<td>0.4</td>
<td>68 x 68 x 210</td>
<td>Square/Winners &</td>
<td>40 rats</td>
<td>Stainless Steel/Lucite</td>
<td>Operating</td>
<td>3(^{(f)})</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>62 x 62 x 210</td>
<td>Square/Winners &</td>
<td>60 rats</td>
<td>Stainless Steel/Lucite</td>
<td>Operating</td>
<td>3(^{(f)})</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>92 x 92 x 210</td>
<td>Square/Rochester</td>
<td>80 rats</td>
<td>Stainless Steel/Glass</td>
<td>Operating</td>
<td>3(^{(f)})</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>91 x 90 x 210</td>
<td>Rectangular/Winners &</td>
<td>120 rats</td>
<td>Stainless Steel/Lucite</td>
<td>Operating</td>
<td>3(^{(f)})</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>121 x 121 x 210</td>
<td>Square/Winners &</td>
<td>170 rats</td>
<td>Stainless Steel/Glass</td>
<td>Operating(^{(f)})</td>
<td>1-2</td>
<td>9(^{(f)})</td>
<td>1.5-2.8</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>180 x 180 x 340</td>
<td>Square/Winners &</td>
<td>240 rats</td>
<td>Stainless Steel/Lucite</td>
<td>Operating (^{(f)})</td>
<td>10(^{(f)})</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>180 x 180 x 340</td>
<td>Hexagon/Hose Only</td>
<td>220 rats</td>
<td>Stainless Steel</td>
<td>Design Stage</td>
<td>3-6</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>King-Lar Co.</td>
<td>16</td>
<td>230 x 230 x 350</td>
<td>Hexagon/Hose Only</td>
<td>400 rats</td>
<td>Stainless Steel</td>
<td>Design Stage</td>
<td>3-6</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>The Upjohn Co.</td>
<td>0.15</td>
<td>180 x 220 x 350</td>
<td>Honeycomb (^{(g)})</td>
<td>—</td>
<td>—</td>
<td>Ready for Manufacturer (^{(i)})</td>
<td>—</td>
<td>1.37, 10, 11, 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>230 x 230 x 350</td>
<td>Honeycomb (^{(g)})</td>
<td>—</td>
<td>—</td>
<td>Ready for Manufacturer (^{(i)})</td>
<td>—</td>
<td>1.37, 10, 11, 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>230 x 230 x 350</td>
<td>Honeycomb (^{(g)})</td>
<td>—</td>
<td>—</td>
<td>Ready for Manufacturer (^{(i)})</td>
<td>—</td>
<td>1.37, 10, 11, 12</td>
<td></td>
</tr>
<tr>
<td>Wernig Mfg. Co.</td>
<td>0.2</td>
<td>110 x 120 x 250</td>
<td>Square/Winners &</td>
<td>80 rats</td>
<td>Stainless Steel/Glass</td>
<td>Operating</td>
<td>6</td>
<td>—</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>110 x 120 x 250</td>
<td>Square/Winners &</td>
<td>120 rats</td>
<td>Stainless Steel/Glass</td>
<td>Operating</td>
<td>6</td>
<td>—</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>110 x 120 x 250</td>
<td>Rectangular/Winners &</td>
<td>200 rats</td>
<td>Stainless Steel/Glass</td>
<td>Operating</td>
<td>6</td>
<td>—</td>
<td>25.6</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>130 x 120 x 250</td>
<td>Rectangular/Winners &</td>
<td>300 rats</td>
<td>Stainless Steel/Glass</td>
<td>Operating</td>
<td>6</td>
<td>—</td>
<td>25.6</td>
</tr>
<tr>
<td>Young and Berte Co.</td>
<td>0.33</td>
<td>70 x 70 x 200</td>
<td>Square/Winners &</td>
<td>80 rats</td>
<td>Stainless Steel/Glass</td>
<td>Operating</td>
<td>3-6</td>
<td>1.8(^{(k)})</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>80 x 80 x 300</td>
<td>Square/Winners &</td>
<td>108 rats</td>
<td>Stainless Steel/Glass</td>
<td>Operating</td>
<td>3-6</td>
<td>2.0(^{(k)})</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.9</td>
<td>140 x 140 x 230</td>
<td>Square/Winners &</td>
<td>144 rats</td>
<td>Stainless Steel/Glass</td>
<td>Operating</td>
<td>3-6</td>
<td>3.5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>150 x 150 x 340</td>
<td>Square/Winners &</td>
<td>18 monkeys</td>
<td>Stainless Steel/Glass</td>
<td>Operating</td>
<td>3-6</td>
<td>4.4(^{(k)})</td>
<td>5.8</td>
</tr>
</tbody>
</table>

\(^{(a)}\) Blank spaces in table indicate information not collected.
\(^{(b)}\) Does not include any time for special design.
\(^{(c)}\) For chamber with special features 1, 2, 6 and 8.
\(^{(d)}\) Nose-only exposure
\(^{(e)}\) Heat transfer problems and solvents might react with lucite.
\(^{(f)}\) Approximate price, not a quoted or catalog price.
\(^{(g)}\) Haleton 100 design by Dr. Owen Moss at Battelle Northwest.
\(^{(h)}\) Some concern about getting homogeneous particle distribution within chambers.
\(^{(i)}\) Chambers designed by Dr. Basil Leong at Upjohn.
\(^{(j)}\) No manufacturer at this time.

SPECIAL FEATURES LIST

1. Designed to run with animal waste catch pans in place during exposures.
2. Cage racks can be rolled into and out of chambers.
3. Designed to be moveable. These are either self-contained units or have quick disconnects.
4. Designed to be cleaned in tunnel type rack washer.
5. Have internal spray rings for cleaning and flushing.
6. Available as knockdown units for construction in selected location.
7. Designed to fit into rooms with ceiling heights of 10 feet.
8. Available as a complete system with air handling and filtration (input and exhaust) does not include monitoring equipment.
9. Modular construction.
10. Transfer of animals to temporary housing unit without exposing handlers to test agent.
11. Atmosphere generating equipment contained inside chamber.
12. Built-in exhaust air handling system.
TABLE A2-3

INHALATION CHAMBER OPERATING PROCEDURES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Facilities Providing Information(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Temperature °C (range)</td>
<td>22</td>
</tr>
<tr>
<td>Relative Humidity % (range)</td>
<td>50</td>
</tr>
<tr>
<td>Pressure cm H₂O (range)</td>
<td>-</td>
</tr>
<tr>
<td>Light Intensity (ft candles)</td>
<td>-</td>
</tr>
<tr>
<td>Internal lighting</td>
<td>No</td>
</tr>
<tr>
<td>Air change/hr.</td>
<td>-</td>
</tr>
<tr>
<td>Computer monitoring</td>
<td>Yes</td>
</tr>
<tr>
<td>Computer feedback control</td>
<td>Yes</td>
</tr>
<tr>
<td>Cleaning - Time (min)</td>
<td>15</td>
</tr>
<tr>
<td>Equipment</td>
<td>Hose</td>
</tr>
<tr>
<td>Connections</td>
<td>Water</td>
</tr>
<tr>
<td>Input air Source</td>
<td>Prepared</td>
</tr>
<tr>
<td>Type filters</td>
<td>HEPA</td>
</tr>
<tr>
<td>Exhaust air</td>
<td>Charcoal</td>
</tr>
<tr>
<td>Separate system for each chamber</td>
<td>Yes</td>
</tr>
<tr>
<td>Type filters</td>
<td>Electrostatic precip and scrubber</td>
</tr>
</tbody>
</table>

(a) See Sources of Information table for names of facilities
(b) Supervisory and maintenance personnel not included
DISTRIBUTION LIST

USAMRDC (SGRD-RMS)
Fort Detrick
Frederick, MD 21701

Defense Technical Information Center (DTIC)
ATTN: DTIC-DDA
Cameron Station
Alexandria, VA 22314