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Abstract

This report represents the fifth year of research performed under the
auspices of the Joint Services Electronics Program at Texas Tech University.
The program is concentrated in the "information electronfés" area and in-
cludes researchers from both the departments of Electrical Engineering and
Mathematics. Specific work units deal with Feedback System Design, Non-
linear Control, Nonlinear Fault Analysis, Image Processing, and Pointing
and Tracking.

Each work unit is represented in the report by a summary of the work
performed during the past year, a list of publications and activities in the
area, reprints of all papers which have been published during the past year,
and abstracts of pending papers. In addition, the report includes lists
of all grants and contracts administered by JSEP personnel, the department

of Electrical Engineering and the Department of Mathematics; and a 1ist of

all publications prepared by JSEP personnel.
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Significant Accomplishments Report

A. Nonlinear Control

During the past year Professor L.R. Hunt and his students working

jointly with researchers at NASA/AMES have developed an entirely new

approach to nonlinear control system design problem. Tﬁe key to the :
new approach is the formulation of an exact linearization theory which
permits the nonlinear system under investigation to be transformed,
without approximation, into an equivalent linear system to which classical
design methodologies are applicable. This has, in turn, been achieved
through the application of the powerful techniques of modern differential
geometry through which it has been possible to convert the exact lin-
earization concept from a theoretical abstraction into a viable design
algorithm. Indeed, the algorithm has already been implemented at NASA/
AMES in the design of a helicopter autopilot.

Although the exact linearization concept goes back to Poincare and
has been investigated by a number of researchers during the past decade
the class of transformations employed in this work has typically been
lTimited to those which could be implemented by feedback. Unfortunately,
this class of transformations has not proven to be amenable to mathematical
analysis. To the contrary by adopting a larger class of transformations
originally proposed by R. Su, Professor Hunt has been able to formulate a
complete theory around the exact linearization concept. This includes
precise necessary and sufficient conditions for a plant to admit an exact
linearization and a partial differential equation whose solution defines

the appropriate transformation with which to linearize a given system.




Although Dr. Hunt's research is extremely theoretical in nature
his research has been closely coordinated with the autopilot design
program at NASA/AMES. Indeed, AMES has already employed his work in the
design of an experimental helicopter autopilot which is presently under-
going simulation and is expected to fly in the near futare.

B. Nonlinear Fault Analysis

During the past year we completed work (we believe successfully) on a
long standing JSEP work unit directed at the development of an algorithm
for the solution of the analog fault diagnosis problem. Although many
algorithms have been proposed over the years which were theoretically
capable of determining the fault circuit components from external measure-
ments the problem has been to find an algorithm which could do the job with
lTimited computational resources and constraints on the number of measurements
which can be made on the unit under test.

These problems have now been resolved via a new self-testing algorithm
developed by Professor Saeks and his students. In essence, the algorithm
exploits the fact that all of the system components do not fail simultaneous-
ly thereby permitting one to use a subset of the system components to test
the remaining components. This, in turn, yields conditional test informa-
tion which is valid if the given subset of components are, in fact, good.

The results of several such conditional tests are then combined with the
aid of an upper bound on the number of simultaneous failures to obtain the
final diagnosis. Although the procedure is somewhat roundabout it meets
most of the criteria which have been established over the years by
researchers in the analog fault diagnosis area.

i). It is applicable to both linear and nonlinear systems modeled
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in either the time or frequency domain.

ii). It can be used to locate multiple hard or soft faults.

iii). Finally, " it is capable of locating failures in "replaceable
Modules" such as an IC chip, a PC board, or a\subsystem rather
than discrete components.

As of the present time we have completed the algorithm development
work related to the new algorithm while we are presently doing a pre-
liminary investigation of the software engineering problems which must

be resolved as a prerequisite to implementing the algorithm in a user

oriented software code.
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Texas Tech University Institute for Electronic Science

Joint Services Electronics Program Research Unit: 1

1. Title of Investigation: Feedback System Design

2. Senior Investigator: Richard Saeks  Telephone: (806 )-742-3528
3. JSEP Funds: $25,875

4. Other Funds:

5. Total Number of Professionals: PI 1 (1 mo.) RA 1 (1/2 time)

Summary:

Although control theorists have studied higher order and multivariate
systems for more than a quarter of a century this research has had little
impact on the DOD community in which single loop PI designs still predominate.
Indeed, such controllers represent the physical 1imit of what can be achieved
F with the hydraulic and/or analog electronic hardware which is traditionally
used to implement a control system. With the advent of the digital control

computer, however, higher order and multivariate controllers have become a

reality, wherein, one can implement any desired compensator design simply

by burning the appropriate program into a ROM.
Given the renewed interest in higher order multivariate control brought
about by the digital control computer the present work unit is directed toward
f the problem of developing an efficient algorithmic design procedure for linear
| : multivariate control systems using frequency domain techniques. Qur approach
is based on a, now classical, result of Youla, Bongiorno and Jabr in which an
explicit parameterization of the set of compensators which stabilize a given

plant is formulated. Indeed, with the aid of a modified parameterization
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due to Desoer, Liu, Murray, and the author one can parameterize the set
of compensators for a given plant in such a manner that the resultant feed-
back system gains are linear (actually affine) in the design parameter.
This, in turn greatly simplifies the process of specia1izin; the design to
meet additional constraints and, as such, a powerful design theory has been

obtained which includes the truchking and disturbance rejection problems, the

pole placement problem, robust design, design with stable on proper compen-

satons, and the modef matching problem as well as the beginnings of a
sdmultaneous design and adaptive control theory.

7. Publications and Activities:

A. Refereed Journal Articles

1. Saeks, R., and J. Murray, "Feedback System Design: The Tracking
and Disturbance Rejection Problems," IEEE Trans. on Auto. Cont.,
Vol, AC-26, pp. 203-217, (1981).

2. Saeks, R., Murray, J., Chua, 0., Karmokolias, C., and A. Iyer,
"Feedback System Design: The Single Variate Case," Circuits, Sys- .
] tems, and Signal Processing, (to appear).

B. Conference Papers and Abstracts

i 1. Karmokolias, C., and R. Saeks, "A Fractional Representation Approach
to Adaptive Control," Proc. of the IEEE Conf. on Decision and Con- *
trol, Albuguerque, NM, Dec. 1980, pp. 272-273. i

2. Saeks, R., and J. Murray, "“Fractional Representation, Algebraic
Geometry, and the Simultaneous Stabilization Problem," Proc. of
the IEEE Inter. Symp. on Circuits and Systems, Chicago, April 1981,
pp. 463-464.

3. Karmokolias, C., and R. Saeks, "Suboptimal Control with Optimal
Quadratic Regulators," Proc. of the Conf. on Information Sciences
Systems, Johns Hopkins Univ,, April 1981, pp. 53-58.

4. Murray, J., and R, Saeks, "Simultaneous Design of Control Systems,"
Proc. of the IEEE Conf. on Decision and Control, San Diego, Dec.
1981, (to appear). '




Preprints

1. Saeks, R., and J. Murray, "Fractional Representation, Algebraic
Geometry, and the Simultaneous Stabilization Problem," (sub-
mitted for publication).

D. Dissertations and Theses
\
1. A. lyer, Ph.D. Dissertation, (in preparation).
E. Conferences and Symposia

1. Saeks, R., and J. Murray, 1980 I[EEE Conf. on Decision and
Control, Albuguerque, NM, Dec. 1980.

2. Saeks, R., 1981 Joint Automatic Control Conf., Charlottesville,
Va., June, 1981. F

3. Saeks, R., IEE Conf. on Control and its Applications, Coventry,
England, April, 1981.

4. Saeks, R., IEEE Inter. Symp. on Circuits and Systems, Chicago, 1
I1. April 1979,

5. Saeks, R., and J. Murray, 1981 Texas Systems Workshop, Dallas,
TX., April 1981.

6. lIyer, A., 24th Midwest Symp. on Circuits and Systems, Albuquerque,
NM, June 1981,

F. Lectures

1. Saeks, R., NASA/AMES Research Center, Feb. 1981.

2. Saeks, R., University of Manchester Inst. of Science and Tech-
- nology, April 1981,

3. Saeks, R., Cambridge Univ., April 1981.
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Feedback System Design: The Tracking and
Disturbance Rejection Problems

RICHARD SAEKS, FELLOW, IEEE, AND JOHN MURRAY, MEMBER, IEEE

Abswrass—The prebiem of desigaing 3 compemsator for 8 specified

plant which simuitancously stobilizes the resuiiant fesdback system and
couses i %9 track 2 prescribed family of lnputs and/or reject prescribed
distrbances is consldared. A sot of linear design equations, In the space of
stable systoms, is fermuisted (n s general lncer syvtoms setting sad an
axplicit parameterization of the resuitant solution space is obtained for 2
class of “gesarniized mmitivariate” systenss. The theary fs illustrated with
ssveral single sad maltivariste examples.

I. INTRODUCTION

THB FEEDBACK system design problem may natu-
rally be subdivided into two tasks:

1) satisfaction of design constraints, and

2) “optimization™ of system performance.

The first and foremost design constraint is stability.
Additionally, system specifications may also include a
tracking and/or disturbance rejection constraint. Once
these constraints have been satisfied, the remaining design
latitude may then be used to “optimize” the qualitative
performance of the system: cost, energy consumption,
overshoot, reliability, complexity, etc.

The purpose of the present paper is to report on the
resuits of a research program whose goal is the formula-
tion of a new algebraic fractional representation approach
to the feedback system design problem. The key to this
approach is a design philosophy pionecered by D. C.
Youla, in which one parameterizes the entire solution
space for the design problem, rather than simply con-
structing a single solution [15}-{17]. The approach is ide-
ally suited for the feedback system design problem,
wherein one can satisfy several design constraints by
sequentially reparameterizing the controller as additional
constraints are imposed with the system performance being
“optimized™” over the final parameterization. In (15] and
(16] Youla, Bongiorno, and Jabr parameterized the stabi-
lizing controllers for single-variate and multivariate feed-
back systems, respectively, and showed that the optimiza-
tion of the system performance over the resultant
parameteer space reduced to a standard Wiener-Hopf
problem. More recently Youla has adopted a similar ap-
proach to the design of stochastic estimators in which the
set of covariances which interpolate one’s observations of
a stochastic process are parameterized [17].

anript
uwpomdn the Joint Services Electronics Program at
‘rg Technical UﬁzduONk Soam 76-C-1136. T
suthors are w Ww oxas
Techaical University, Lubbock, TX 79409.

Fig. 1. Feedbeck system with reference generators.

The present research program began with the derivation
of a simple algebraic proof for the Youla/Bongiomo/Jabr
stabilization theory and the generalization of the theory to
include a variety of “system placement” problems in a
general linear system setting [6]. The spirit of this work
was very close to that of several other authors in the area
of “algebraic” control theory (1}, (2], (4], (71 (12], (13}
Among the problems which have been studied by these
authors are those of tracking and disturbance rejection. In
the present paper, we study these problems in a general
axiomatic setting. Two restrictions are made, however,
First, we assume that the disturbances affect the system in
a very simple way, and second, we assume that the de-
nominators of the reference generators commute with
everything. (See Section V for a more detailed explana-
tion.) With this simplification, it is again possible to
obtain a complete parameterization of all controllers which
achieve the prescribed design contraints by sequentially
reparameterizing the controllers as additional design con-
straints are imposed. Moreover,. the feedback system gains
which resuit from such a controller are linear (affine) in
the resultant design parameter, thereby simplifying the
second task referred to above, namely optimization.

Throughout the paper we will work with the feedback
system of Fig: 1. Here, P is a given plant and C is the
compensator to be designed while T and R are reference
generators that model the inputs to be tracked and re-
jected, respectively. (The sense in which these generators
model inputs will be made precise in Section IIL) The
problem of parameterizing the compensators that stabilize
the feedback system, termed problem S, was the subject of
[6] and will serve as the starting point for the present
paper in which we investigate three additional design
problems:

Problem ST: Parameterize the compensators that
simuitaneously stabilize the system and cause it to track
the response of T.

Problem SR: Parameterize the compensators that
simultaneously stabilize the system and cause it to reject
the response of R.

n -
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Problem STR: Parameterize the compensators that
simultaneously stabilize the system, cause it to track the
response of T, and reject the response of R.

Of course, the concepts of stability, tracking, and dis-
turbance rejection will be made precise as required.

This, of course, is by no means the most general possi-
ble system. In particular, the disturbance is assumed
merely to be added to the input, and the measured output
is assumed to be the same as the regulated output. We
remark in passing that the problem of rejecting an addi-
tive disturbance at the output is mathematically equiva-
lent to the tracking problem.

In the remainder of this introduction our algebraic
fractional representation theory is reviewed and the re-
sults on the stabilization problem, derived in [6], are
summarized. In Section II a more powerful *“doubly
coprime” fractional representation theory is formulated
and its properties developed. In the following section the
concepts of asymptotic tracking and disturbance rejection
are defined in our algebraic setting and theorems char-
acterizing the stable feedback systems which track the
response of T and/or reject the response of R are ob-
tained. The fundamental feedback system design equa-
tions are derived in Section IV, wherein it is shown that
problems ST, SR, and STR each reduce to the soltion of
a linear equation in the ring of stable operators. A neces-
sary and sufficient condition for the existence of a solu-
tion of these equations and the desired parameterization
of the solution space are obtained in a “generalized multi-
variate” class of systems in Section V. Finally, some
examples of the theory are presented in Section VI.

Our algebraic theory [6] is set in a nest of rings, groups,
and multiplicative structures

GDOHDIDJ.

Here, G is 2 ring with identity that represents the general
class of systems with which we wish to work: rational
matrices, continuous operators, a class of transcendental
fanctions, etc. H is a subring of G containing the identity
that models the systems, which are stable in some sense:
poles in a prescribed region, transcendental functions with
restricted singularities, stable operators, etc. Finally, 7/
denotes the multiplicative set composed of elements of H
that admit an inverse in G, while J denotes the multiplica-
tive subgroup of / made up of clements that are invertible
in H. Detailed examples of the axiomatic structure,
{G,H,1,J) were given in [6] and will not be repeated
here.

We say that a plant P has a right fractiona! representa-
tionin (G, H,1,J} if

P=p ! (1.0

where p, €EH and j, €1. Furthermore, we say that this
representation is right coprime if there exists ¢, and §, in H
such that ' :

.0 +8.5,=1. (1.2)

This equality is equivalent to the classical coprimeness
concept for rational functions and matrices while being
well defined in our general ring theoretic setting. In par-
ticular, if G is the ring of rational functions and H is the
ring of polynomials (e.g., in discrete-time systems), (1.2)
implies that p, and j, have no common zeros. If G is the
ring of rational functions and H is the ring of exponen-
tially stable rational functions, (1.2) implies that p, and §,

have no common right-half plane zeros.
Since the ring G is, in general, noncommutative, we also
define a left fractional representation for P via the equality
P=p;'p, (13)

for p, € H and j, €1. Furthermore, we say that this repre-
sentation is /eft coprime if there exists ¢, and §, in H such
that

Prdy +Pig=1. (1.49)

. Of course, in the classical case of a rational function or

matrix these fractional representations are assured to ex-
ist. However, this is not the case in the general ring
theoretic setting. Therefore, for distributed, time-varying
and multidimensional systems, we assume that our plant
admits such a representation as a prerequisite to the
theory.

If one is given two fractional representations for a
plant, say Pwx %' and P=p 3 !, where the second
satisfies the coprimeness condition of (1.2) then the two
representations differ by a greatest right divisor (6], r€ H,
ie.,

X, =p,r (13)
and
X =mpr, (1.6)

To give an idea of the arguments used later, we prove this
fact as follows. Since g, €/ the unique solution of (1.5)
and (1.6) is r=5"'%, and hence we must show that this
r€H. To this end we invoke (1.2) obtaining

reps %, =(q.0,+3,5,)5 %,
=90, '%, +4,%,=q.x, +,%,
which implies that #E H since it is expressed as the sum of
products of elements of H. Similarly, if P=5;"'p, = %" 'x,,

where 5 'p, is left coprime, then the two left fractional

representations differ by a greasest left -divisor [6] I€H
such that

x =lp, (1.8)
and
2, =ip, (1.9)

Thus, our abstract fractional representation theory is quite
similar to the classical theory for polynomiails and rational
functions even though it is set in an abstract ring and

12
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includes distributed, time-varying, and multidimensional
systems.

Since H represents a ring of stable systems we say that
the feedback system of Fig. 1 is stable if all of its internal’
and external gains are elements of H. By using the above
described fractional representation theory a solution to
problem S was obtained in [6). In particular, if the plant P
is given by P=p5; 'p,, then the compensator

C=(wp,+4,)"'(—wh, +4,) (1.10)

stabilizes the feedback system for any wEH such that
(wp, +4,)EI; and every stabilizing compensator is given
by (1.10) for some w € H. Moreover, when this compensa-
tor is used in the feedback system all of the usual gains of
the closed-loop system are linear (actually affine) in w.
Specificaily, the system’s input/output gain is given by

}l,- - -pr”ﬁl +Prqr (l'l l)

while the system’s input/error gain takes the form

hc; =1 +P,Wi, ~P 4, (l'lz)

The remaining gains are also linear in w and are derived
in (6].

We note that even though our approach to the feedback
system design problem is formulated in a ring, no “ring
theory” is employed. Indeed, the only mathematics re-
quired in the entire paper is addition, multiplication, sub-
traction, and inversion.

Finally, the above notation exemplifies a pattern that
we will try to follow throughout the paper, namely, an
input-output operator will be denoted by a single upper-
case letter (P), its coprime factorizations will be denoted
by the corresponding lowercase letter, with a tilde over the
denominator, and subscript ! or r for left or right (e.g.,
p,5""), and last, the elements appearing in the coprime-
ness equation will be the next letter in the alphabet, with
tilde and subscripts matching the elements which they

multiply (e.g. 9,0, +7,4, = 1).

II. DousLY COPRIME FRACTIONAL
REPRESENTATIONS

In the stabilization theory discussed in the previoﬁs
section it was assumed that the plant admitted both left
and right coprime fractional representations

P-Prp.r-l -P.I- 'pl (2'1)
for which there exist ¢, €H and §, € H such that
qrpr +q.’p.' - l (2'2)

and ¢, EH and §; €EH such that

1Our concept of stability here requires that all internal system gains
mmmhﬂ)h%mwmmmmq.
aﬂﬂhmﬂmmuhmmnmwnnmdmﬂu

P +hid,=1. (23)

Although this structure sufficed for the stabilization the-
ory of problem S, one can, in fact, adopt a stronger
structure without loss of generality {3].

Property 1: Assume that P admits both left and right
coprime fractional representations such that (2.1) through
(2.3) are satisfied. Then there exist ¢; and §; in H such
that

P +hidi =1 (2.4)
and
\
4,91 =9,4:- (2.5)

Proof: Recall that the inverse of a two by two matrix
with elements in 2 noncommutative ring is given by

[x Y "_[ A-! ~attyw-!
zZ W -w-'za™' wolewSlZATYyw !
(2.6)
where A=X—YW ~'Z, provided the indicated inverses
exist. Applying this to the matrix
[ N ‘f’] (@)
=Pt P
we find
A 'mp, _ (2.8)
and, after some computation,
-1 - -a’
=P P P 1
where
9% =pa41*+ 4 P A (2.10)
and
@i =4 ~Pa.4: +P4A YY)

Equations (2.4) and (2.5) now follow immediately. =

In essence, Property | implies that if a plant admits any
pair of left and right coprime fractional representations
then it also admits a stronger fractional representation in
which the ¢’s intertwine in a manner similar to the p’s.
We say that such a fractional representation is doubly
coprime and (dropping the primes) we denote it by

qr qr]—.-[p.r _ql]

=P B b &
Since a doubly coprime fractional representation exists
whenever separate left and right coprime fractional repre-
sentations exist we may work with a doubly coprime

fractional representation without loss of generality. This
in turn, means that rather than the three equalities (2.1)

(2.12)
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through (2.3) we have cight equalities with which to
manipulate the feedback system equations. These are ob-
tained by both premultiplying and postmultiplying the
matrix of (2.12) by its inverse to compute the identity and
take the form

PP, =P1p, (2.13)
d.9=94 2.149)
3.5, +q,p, =1 (2.15)
Py +hd =1 (2.16)
P, =ab, (2.17)
Pd, =gp; (2.18)
P4, +qp =1 (2.19)
and
P +dpr=1. (2.20)

Finally, we note that, if in the stabilization theory in [6]
one begins with the above doubly coprime representation
for the plant, the representation (1.10) for the countroller is
also doubly coprime: a simple calculation gives

1) ) 7 ] -t - [ pw+§, -p,
”il -~q, WI + qr —irw +q p-r
III. ANaLYSIS

We say that the feedback system of Fig 1 tracks T if
b, T€H. This definition may be justified by considering
the case where H is the ring of exponentially stable
rational functions. Here, if one lets u be the impulse
response of T, u(s)=T(s) and

p(s)=r(s)=e(s)=h ()n(s)=h(s)T(s). (3.1)

Therefore, » asymptotically tracks p if and only if
h,(s)T\s) is exponentially stable, i.c., 4,,7E€ H. Note that
the impluse response of T may be unbounded (since T
may be unstable) even though the input to the reference
generator is bounded. Of course, the same intuition ap-
plies in 2 more general setting where the condition 4, T€
H implies that » is asymptotic to x in whatever sense the
response of the systems represented by elements of A is
asymptotic to zero,

Similarly, we say that the feedback system of Fig 1
rejects R if h,, REH. Once again if H is the ring of
exponentially stable rational functions and x is the im-
puise response of R, u(s)= R(s) and

»(s)=h, (s)p(s)=h,(s)R(s), (-2

which is asymptotic to zero if and only if h, (s)R(s) is
exponentially stable, i.e, h,,REH. Thus, the system re-
jects R in the sense that its response to the impulse

Fig 2. Stable fesdback system.

" response of R is asymptotic to zero, See [1}, {3}, [4), and [7)

for a fuller discussion of these concepts of tracking and
rejection.

" Now, soasider the feedback of Fig. 2. Adopting
an argument similar to that employed by Francis (7] in a
frequency domain setting, we obtain the following the-
orem, which characterizes the stable feedback systems
which track T and/or reject R. For this purpose we
assume that P, T, and R each admit left coprime frac-
tional representations

P=pi'p; 33)
T=iY, (34)

and
R=7"'r, (3-9)

where

Pidr +51d; =1 (3.6)
tu, 46, = 3.7

and
Ry +RE =1, 3.8

Theorem 1: Assume that the feedback system of Fig. 2
is stable. Then, the system _ )

1) tracks T'if and only if ¢, is a right divisor of 5,, in the
sense that 5,¢,"' € H;

2) rejects R if and only if 7 is a right divisor of p,, in the
same sense.

Proof: We have
Roadi ! byt (4 + 6y (3.9)
= (Bl 'e1Jur +h oy (3.10)

and 50 h, i 't; € Heoh i;"' € H. Now
hy=(5 +2,)"'5, (3.11)

and since the system is stable, we know (from [6]) that

B+p €J.
Therefore,
bt €Hea( 3, +p)) " 5yi; ' €H
i EH, (3.12)
and part 1) follows. Part 2) is proved similarly. ]

14
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IV. THEe DeSIGN EQUATIONS

We now turn our attention to the system design prob-
lems ST, SR, and STR. Since in each of these problems
the compensator must stabilize the system in addition to
causing it to track T and/or reject R, the theory of [6]
implies that our compensator must take the form of (1.10)
with wE A chosen to assure that 4, T€H and/or h, RE
H. For this purpose we assume that the plant P admits a
doubly coprime fractional representation (2.12) while T
and R are assumed to admit left coprime fractional repre-
sentations as in (3.4), (3.5), (3.7), and (3.8).

Theorem 2: For the feedback system of Fig. 1:

1) problem ST is soluble if and only if the equation

pr”p.l +x;l =P4,— 1 (4‘ l)

admits solutions w and x in H;
2) problem SR is soluble if and only if the equation

pr“?-l +y ’-'l =P (4‘2)

admits solutions w and y in H;

3) problem STR is soluble if and only if (4.1) and (4.2)
admit simultaneous solutions w, x, and y in H.

Moreover, when a solution exists the set of compensa-
tors which solve the problem is given by

C=(wp,+4,) "' (~wp, +4,) (43)

where w is any solution of the appropriate equation(s),
such that

wp;+4§, €1,

Proof: Since every stabilizing compensator is given
by (1.10) for an arbitrary wE€ H with the resuitant L
given by (1.12) the w’s that are both in A and simuita-
neously place

htpT- [ l "'Pr“ﬁr _Prqr] ;I- lzl (4'4)

in A define the class of compensators which solve prob-
lem ST. In the course of proving Theorem 1, we proved
that A, ,T€H if and only if h,,1,”' € H. Now suppose that

hyti " m~x€H. (4.5)
Then,
1+p, WP, ~p,q, = — xi;, (4.6)

which is equivalent to (4.1).

Conversely, if (4.1) admits solutions w and x in A, then
using this w in (1.10) yields a compensator which stabilizes
the system with 4,/ "' = —xEH; that is, » compensator
which solves the problem ST.

The proof of 2) is obtained by a parallel argument with
h,, replaced by h, and T replaced by R while 3) is
obtained by recognizing that the solution of problem STR

15

requires a simultaneous solution of problems ST and SR
with the same compensator, hence the same w. ]

Following 14, we define p, and ¢ to be skew coprime if
there exists j and j in A such that

Prj+j.;l =1.

We then can state the following corollary, (Compare {2),
(4}, [13D.

Corollary 1: For the feedback system of Fig. 1,

1) a necessary condition for problem ST to admit a
solution is that p, and ¢, are skew coprime;

2) a necessary condition for problem SR to admit a
solution is that 5, and 7, are right coprime;

3) a necessary condition for problem S7R to admit a
solution is that p, and #, are skew coprime, 7, and 7, arc
right coprime, and ¢, and 7 are right coprime.

Proof: If problem ST admits a solution, (4.1) is satis-
fied for some w and x in A, hence, upon rearranging the
terms in this equation, we have

la, —wp ]+ [ ~x]t,=p, j+jt=1 @.n

where j=g, —wp, and j= —x. To verify 2) we substitute
(2.20) into (4.2) to obtain

PP, +yF=pq, =1 ~§p (4.8)
and rearrange terms {0 obtain
(pw+g )5 +[r]17=1 (4.9)

as required. Finally, if problem STR admits a solution,
(4.1) and (4.2) are satisfied with the same w, heace, so are
(4.7) and (4.9). To obtain the final coprimeness condition
we subtract (4.1) from (4.2), obtaining

(Y] +[=x]i=1 (4.10)

and thereby completing the proof. ]

Note that the coprimeness condition of (4.10) essen-
tially says that one cannot simultaneously track and reject
the same signal, and is therefore a natural auxiliary condi-
tion to guarantee the simuitaneous solvability of the track-
ing and disturbance rejection problems.

Note aiso that (4.1) is linear in the unknowas. It follows
that if this equation is solvable the solution space will be a
linear manifold in A which can be represented in the form
w= Lo+d where L is an appropriate linear operator on H
and v € H becomes our new design parameter. The com-
pensators which satisfy the constraints of probiem ST
thus take the form

Co((Lo+d)p,+4,]7'[ - (Lo+d), +q,] (4.11)

and similarly for problems SR and STR. Moreover, upon
substituting the expression w= Lo +d into (1.11) and (1.12),
we obtain expressions for the resultant feedback system
gains that are linear in the new design parameter v. Thus,
all of the properties associated with the solution of prob-
lem §, given in [6), are retained by the solutions of
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problems ST, SR, and STR of the present paper. It
remains, however, to derive explicit necessary and suffi-
cient conditions for the existence of solutions to these
problems and to formulate explicit expressions for the
parameterization of the resultant solution space.

Finally, we note that one normaily desires a proper
controller C. The obvious approach is to try to find the set

{weH|wp, +4,€1};

if one then takes G to be a ring of proper transfer
operators, one has obtained all proper stabilizing
controllers. Unfortunately, in the setting of general rings,
the above set may be empty. Therefore, rather than im-
pose the additional structure necessary for a general the-
ory, we indicate what can be done in the classical multi-
variable case. The additional condition needed in this case
is quite weak; we merely require that for any constant
matnx A, there is 2 wE H such that

w(co)= A4,

If we now take G to be the ring of proper transfer
matrices, it is easy to see that the above set is nonempty,
as follows,

Since 5, €1, 5" '(e0) exists. Then, from (2.19),

(77 '(0)q())p/(0) +§{0) =5 ().
Now, if we let

Hy={weH|w(xa)=p (2)q)(x0)}

it follows that, for all w€H,_, wp,+§, €1 In fact, it is
easy to show that wE& H,_ parameterizes all strictly proper
controllers. In general, one can show that it is possible to
find a controller with C(x0)=A if and only if ( p,(0)4 +
() ~" exists, and that the set of all such stabilizing
controllers is parameterized by the set of all wE H,,, where

Hy=
{weH|w(w)=(g,(20)—§,(0)A) 5,()+p/()4)}.

Similar considerations apply to the parameterizations
occurring in subsequent sections of the paper.

V. THE MULTIVARIATE Case

In this section we consider the solution of the feedback
system design equations, (4.1) and (4.2), for a class of
generalized muitivariate systems which includes most time-
invariant feedback systems encountered in engineering
practice. To this end we let X denote a commutative ring
of complex valued functions defined on a complex mani-
fold K which includes the constant function, 1, and we let
L denote the subring of X composed of functions which
are analytic on a submanifold £. Normally, £ is the
complex piane and £ is a half-plane or disk with K
representing any of the standard spaces of single-variate
transfer functions and L representing the subspace of

transfer functions which are stable in an appropriate |
sense. More generally, multidimensional systems are in-
cluded in our theory with X taken to be C*" and L an
appropriate polydisk.

Using the above function spaces we formulate an
axiomatic structure (G, H,1, J} by letting G=K"*" be
the set of # by n matrices whose entries are elements of X
and H=L"*" be the set of » by n matrices whose entries
are elements of L. Of course, / and J may be constructed
from G and X in a patural manner. Fipally, we may
embed L into H= L"** by identifying /€L with the 2 by
n matrix /1. Under this embedding each /€L commutes
with every §EG= K"*" and hEH= L™,

Although we will normally work with general fractional
representations in (G, H, /, /J}, in order to parameterize ;
our solution spaces we need to work with a fractional
representation M=mm~' =/ ~'m where m&L"** and
mEL. Such fractional representations naturally model the
situation where the denominator of a fractional represen-
tation is just the common denominator of each entry in an
n by n matrix. Since L commutes with H, m and /# define
both left and right fractional representations for M. More-
over, a standard function space argument using the usual
rank coprimeness for matrices will reveal that M = puit ="'
is right coprime if, and only if, M=/ ~'m is left coprime.
Therefore, we may say that m and /4 are coprime without
a qualifier and assume a doubly coprime representation

A, n |V |m ~-n
-m A| |m i, 1)

without loss of generality. Note, since H=L">" is non-
commutative we may have n, e n, and/or A, ¥ A,

In this generalized multivariate setting we would like to
derive explicit solutions of the feedback system design
problems ST, SR, and STR. To this end we assume that
the plant P admits a doubly coprime fractional represea-
tation in our multivariate setting while the reference gen-
erators T and R are assumed to admit doubly coprime
fractional representations

[ i, ':’]"-[:' -u,] (52)
-t ¢ t 4,
and
i s, "_ F o=
0 I M B

where ¢ and 7 lie in L.

This assumption represents a restriction on our system
to the effect that the coprime denominator of the transfer
matrix T is a common denominator for the elements of T,
and similarly for R [see (3)). Since the signals 10 be
tracked or rejected are by definition the response of these
operators to a delta-function, our situation is clearly anal-
ogous to that in which the signals are generated as the

16
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zero-input response of a set of ordinary differential equa-
tions.

A. Tracking

With the above restriction on the matrix 7, we now
proceed to parameterize the set of ail controllers which
solve the problem ST, ie., those which simultaneously
stabilize the system and cause it to track the impulse
response of 7. As in (6) our approach will be to find a
particular solution to (4.1), and then to find the general
solution of the corresponding homogeneous equation.
Lastly, we show that these are the only solutions. In all
three steps, extensive use is made of the various coprime-
ness conditions, and of the fact that ¢ commutes with
everything,

First we observe that the tracking problem admits a
solution if and only if p, and 7 are coprime [see (2), (4),(13)}.
The necessity of this condition follows from the skew
coprimeness condition of Corollary 1-1) since teL. Con-
versely, if p, and ¢ are coprime, then by the discussion
preceding equation (5.1), there exist ji, j,. Jji, and j in H

such that
- -l -
[ jr jr] - t -jl]
-p % i
Now, by invoking (2.20) and the fact that / commutes
with H we have

(5.4)

P4, == =gipy=—(p,Jr +1])dh,

=p,[ =hd)) B+ [ "j;qlp.l] ‘

=p[w] 5 +(x,]¢ (5.5)
showing that

w,=~j§, and x, = -.17‘71!71 (5.6

are elements of H which satisfy (4.1).

To parameterize the solution space of (4.1) we assume
that E=g,/~' admits a doubly coprime fractional repre-
sentation

-1
—f, g] -[:’ 2 (5.7
Then
i~ mé e (5.8)
and so
épy=el. (5.9

Therefore, for any o€ H = L%,
. o&] B+ [ ~poe,)i=poei-poei=0 (5.10)
verifying that

P

/Y -Oe-, a.nd x.- —P,ul (5.“)
are solutions to the homogeneous equation corresponding
to (4.1).

To verify that (5.11) represents all homogeneous solu-
tions to (4.1) we consider arbitrary homogeneous solutions

w, and x; in H satisfying

PV, B +x;t=0. (5.12)
Now, let o’ =w(é;~!, which yields
W] =0’ (5.13)
and
Xim—pwiBit = = —pwid ley= —poie, (5.14)

verifying that w{ and x; are of the required form. It
remains to show that o’ €H. To this end consider the
string of equalities in which the coprimeness conditions of
(5.4) and (5.7) are invoked along with the commutivity of
L.

v mwid mwid (e f, +é.];)

=wif + (Gt +1EIWE e,

=W} fy =jxi fy +i i e, S,

=wi i —Jxify ImE et

=Wy fy =hoxi o HIME E B,

=W fi—ixifiimiBLEH. (519
It follows that (5.11) represents the set of all homogeneous
solutions to (4.1) and the desired parameterization of the
solution space is given by

wm —jd +vé, and x= ;g5 —pve,. (5.16)

Summarizing the above development we have the follow-
ing theorem.

Theorem 3: For the multivariate feedback system of
Fig. 1 let P, T, and E be characterized by the doubly
coprime fracuonal representations of (2.12), (5.2), and
(5.7), with r€L. Then problem ST admits a solution if, and
only if, p, and ¢ are coprime, in which case the set of
compensators that satisfy the constraints of problem ST is
given by

C= [('f:il +90é,)p, +4r] -t [ —(=jidy +08)p, "‘Qr]
(5.17)

where j, and é, are defined by (5.4) and (5.7), respectively,
and o is an arbitrary element of H such that the de-
nominator of C is in /. Moreover, the feedback system
gains resulting from the use of such a compensator are
linear (affine) in the design parameter v. n

Finally, since & €I, considerations similar to those at
the end of Section IV show that the set of proper con-
trollers is nonempty.
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B. Disturbance Rejection

The derivation of existence conditions for the solution
of problem SR and the parameterization of the resultant
solution space parallels the above derived solution to

-problem ST. For this reason only a partial sketch will be

given here. First, we observe that the disturbance rejection
problem admits a solution if, and only if, §, and 7 are
coprime. The necessity follows from condition 2) of
Corollary 1. Conversely, if 7, and 7 are coprime there exist
m,, m,, m,, and m, in H such that

[ ’.ﬁr My]-.-[- —":I]. (118)
- 7 Pr m;

h ]

Thus,
29, =p.a, (R, 7+m,p;)
=p,[a,m,) P+ p.a.7,]7 (5.19)
verifying that
w,=q,m, and y,=pq,Am, (520)
satisfy (42).

Next we desire to parameterize the solution space of
(4.2) when 5, and 7 are coprime. To this end we assume
that A=7~"p, admits a doubly coprime fractional repre-

sentation
. -t
b' b' - d, "b, . (5.21)
-a 4, a, 5:

F='p,ma,a (5-2)

by an argument similar to that employed in the solution
of the tracking problem we find that the homogeneous
solutions to (4.2) are given by

w,=d,z and y,=—a.zp (5-2)

and hence the desired parameterization of the solution
space for 4.2 takes the form

wmgm, +4d,z2 . (5.24)

Now, since

and
y=p4q,m,~a,zp (5.25)

where z is an arbitrary element of H.

Theorem 4: For the multivariate feedback system of
Fig. 1 let P, R, and A be characterized by the doubly
coprime fractional representations of (2.12), (5.3), and
(5.21) with 7€ L. Then, problem SR admits a solution if,
and only if, §; and 7 are coprime, in which case the set of
compensators which satisfy the constraints of problem SR
is given by

C=((qm, +3,2)p,+4,)"'[ -(q,m, +3,2)5,+4,]

(5.26)

'
ey "}- o

where m, and 4, are defined by (5.18) and (5.21), respec-
tively, and z is an arbitrary element of A such that the
denominator of C is in I. Moreover, the feedback system
gains resulting from the use of such a compensator are
linear (affine) in the design parameter 2. a

Again, since 4, €/ the considerations at the end of
Section IV are applicable.

C. Simultaneous Tracking and Disturbance Rejection

To obtain a solution of problem STR in our multi-
variate setting we must find » simultaneous solution to
(4.1) and (4.2), using the same w, hence, the same com-
pensator. Since we already have a complete parameteriza-
tion of the solution spaces for these equations taken
individually, the solution of the simultanecus problem
reduces to finding values for the arbitrary parameters, o
and z, which yield the same w. In short, upon combining
(5.16) and (5.25), the solution to problem STR may be
obtained by solving the linear equation

q.m, +ar:- —/lil +°;l (5'27)

for z and o in H. From corollary 1-3) we have the
necesurycondmonthatp,andt,p,andr,a.ndundfdl
beeopnme.Moreover,nneetandrmbolth the
coprimeness condition for ¢ and 7 may be formulated in
terms of elements ¢ and 7 in L as follows.

Lemma 1: Assumethattandfmnghteopnmemthe
sensethattheree:nstt and # in H such that {f+3F=1.
Thenthereexxsttandrml.suchthat

a+iFml, (528)
Proof: Recalling that ¢, and 7, are matrices, we let
and 7 be the (1, 1) entries in /, and 7, respectively. |

Recall that ¢ " 'e, is a left copnme fractional representa-
tion of 5~ ﬁ,, it follows that l-k,e, for some
k,€H. Sumhrly. F=d. n, for some n, EH. We use this to
verify the sufficiency of the three copﬁmenm conditions
as follows.

We rewrite (5.27) in the form

" od—d,zmqm,+jid (529)
Now, starting with (5.28) and invoking the fact that L
commutes with G we obtain
[qrmr +jlql] - [ q.m, +jl4[] ;‘-+ﬁ[ qrmr +Jlél]
=(q,m, +iid] tké, +d,nH qm, +jid;)
-0,5, -a':’ (5-30)
where
0’ - [qrmr +jlil] ;kl and :p - = "rf[ qm, +jlql]
(5.31)

verifying that our simultaneous equations admit a solu-
tion.

To parameterize the resultant solution space, we ob-
serve that

1R
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(4,d)é ~a,[de)=0 (5.32)
implying that
o, =d,d and z,=dé (5.33)

are homogeneous solutions to (5.27) for all dEH. To
verify that (5.33) represents all homogeneous solutions to
(5.27) we consider an arbitrary pair of solutions v}, and z;
in H such that

oA —d,z, =0. (5:34)
We now let d’ =4, o}, in which case
o} =d,d’ (5.35)
and
2, =3 l\E = d'E,, (5.36)

verifying that o} and z; are the required form. It remains
only to show that d’ €H for which purpose we invoke the
various coprimeness conditions and the commutativity of
L with G as follows.

&'=d] ', =(b,a,+5,4,)3; "5,
=0, +b,8,8 o)1+ 77)
= b0, +b,a,3, "o, 7
+b,a,d] 'o)(e f; +& )it
wb o, +b,0,47'3,n,0,}
+b,a,8; "0\ fitt+b,a,8 \o\e,ift
wb o, +bano\P+ba,z,fiit
+b,0,87 'O\E 5 ¢
=bo), +b,a,n,0,/+ba,z, fit
+b,a,z, 5 fHEH. (5.37)
Consistent with the above, the required parameterization
for the solution space of (5.29) is given by
o=[q,m, +j,d,)tk, +4,d
and
zwm—=nj [ Qm, "’Jﬁl] +dé, (5.38)
which upon substitution into (5.16) or (5.25) yields
weg,m, +d( —=n qm, +/d]+dé}
=q,m, = q,m, +j,§,] +d di,
= it(g,m,) =)&) +d,dé,. (539)

We bave thus proven the following.

Theorem 5: For the multivariate feedback system of
Fig. 1 let P, T, R, E, and 4 be characterized by the
doubly coprime fractional representations of (2.12), (5.2),
(5.3), (5.7), and (5.21) with 7 and ¢ in L. Then, problem
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STR admits a solution if and only if p, and {, 5,and 7, and
f and F are coprime, in which case the set of compensators
which satisfy the constraints of problem STR is given by

C={[am)~#(id)+4,d2]p+4,) "
) { - [t?(qrmr) -ﬁ(jlal)+aral] i’ +q’} (5.40)

where j,, &, m,, 4,, f, and 7 are defined by (5.4), (5.7,
(5.18), (521), and (5.28), respectively, and d is an arbitrary
element of H such that the denonfinator of C is in /.
Moreover, the feedback system gains resulting from the
use of such a compensator are linear (affine) in the design

parameter d. ]
Again, the considerations at the end of Section IV are
applicable.

Although we have gone through some rather complex
derivations in the preceding it should be noted that the
only mathematics employed are addition, multiplication,
subtraction, and inversion. Moreover, the results of these
derivations are given in the form of explicit expressions
for the compensators that satisfy the constraints of the
three design problems.

Although the expression (5.40) in particular looks ex-
tremely complicated, most of the terms occurring in it are
fixed transfer matrices; it can be rewritten in the form

C= [(80 +d,dé,)p, +§r] -l[ -(2 +arﬁl);l "'4']
or even in the form |

C=(gd8: +85) (8485 +86)
where all of the g, are fixed transfer matrices.

V1. ExampLES

To minimize repetition, our first two examples are con-
tinuations of examples begun in [6], where the coprime
fractional representations employed below are computed.

A. A Single-Variate Tracking and
Disturbance Rejection Problem

Although the single-variate case is already well under-
stood, the theory is most readily illustrated in this case,
and hence we begin with a single variate example. Here,
the plant is taken to be

(s+1) ]_ (s+1)
(2=4) | [ (s+2)?

=p(s)p(s)”" (6.1)

sl

(s=2) |~
(s+2)

P(:)-[

(:+2/3) (2-2)
(s+2) (s+2)

=q($)P($)+4(s)B(s)=1. (62)
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Of course, since the single-variate problem is commutative
these ¢°s and p’s yield a doubly coprime fractional repre-
sentation in {G, H, I, J). Here G is taken to be the ring of
proper rational functions and X is the ring of rational
functions whose poles have a real part which is less than
— 1. Thus, the theory will yield “strongly stable” systems
in the sense that their poles will be bounded away from
the imaginary axis. Moreover, since the theory uses the
same stability concept for the tracking and disturbance
rejection problems as for stabilization, the resultant solu-
tions to these problems will be “strongly asymptotic™ in
the same sense.

Now, let us consider the problem of tracking a step
function. Here we let

1 1 s -
m)'[?]'[ (+2) }[ (:+2)
=e(s)i(s)™" (6.3)

[4((::21)) ][ (:-:-2) ]+[ (312) ][ (.1-:2) ]

=u(s)e(s)+id(s)i(s)=1. (6.4)

Moreover,

(s+1) s g
e ][( +2)’]+[(-v+2)][(”2)
=j(3)p(s)+/($)e(s)=1 (6.5)
verifying that p(s) and i(s) are coprime and, hence,

assuring the existence of a solution to our tracking prob-
lem. To compute the solution we define

o A ne (s-2) s 1
E(s)=3()i(s) '-[(—;5][5;—2;]

=e(s)é(s)"" (6.6)
where

(s=2) s
[- ‘J[(+2)} [][(.H-Z)}
=f(s)e(s)+f(s)é(s)=1. (6.7

From 5.16 we then have
w(s)= —j(5)d(s) +0(s)é(s)
(:+ 2/3) s
-[ (:+2) [m]o(s). (6.8)

Substituting this value of w(s) into (1.11) and (1.12) we

By (s)= [ (.1+1)

cr2) [( 3¢ +16.r+16)-(:—2):o(s)]

6.9)

and

h(s)= [ ][:(:-2)(:+2/3)+(:+l)(s—2)v(.r)]

(6.10)

in terms of the design parameter v(s). Note the zero at
zero in h,,(s) assures that the tem will track a step

function as required.
Now, let us consider an alternative tracking problem

where we are required to track e*'U(¢). That is,

1 1 (s-2) |
T(‘)'[ -2) }'[ (s+2) M (s+2)

=r(s)i(s)™" (6.11)

where

4| a5

(s-2)
+M G ]
=u(s)e(j)+a(s)i(s) (6.12)

[ 16] (s+1) (;+z/3) ][ (s=2)
(:+2)z (S+2) (s+2)
=j(s)p(s)+/(s)i(s)=1. (6.13)
Thus, p(s) and #(s) are coprime and we may proceed to

construct the desired set of compensators. For this pur-
pose we define a system E(s) by

(s=2) H (s=2) ™"

E(J)-i(-f)?(:)"'[

(s+2) || s+2)
wlm{1][1]  me(s)é(s)"" (6.14)
where
=[0][1]+[1][1]=ss)e(s)+As)é(s)=1.
(6.15)

Note that in this example 5(s) and #(s) are not coprime.
This is, however, not necessary as long as we can con-
struct a coprime fractional representation for their ratio,
E(s). Finally, substitution into (5.16) yields

w(s)= - [ 163(:.'12{)3) +0o(s) (6.16)

obtain the system gains while
(s+1) 3 4
h,(s)= [( 1) } [T( ’+-5:+ ) (:—2)(:+2)o(s)] (6.17)
20

+

#
B

e s il i s sl - VI U —— s




SAEKS AND MURRAY: TRACKING AND DISTURBANCE REJECTION PROBLEMS

and

b (5= 222

9(s+2)*
. [(9:’ —65% =205 8)+ s+ 1)(s +2)o(:)]. (6.18)

As before, the (s—2) factor in the numerator of the 4, (s)
verifies the tracking property. Also note that as v(s) spans
the set of “strongly stable™ functions so does w{s). Thus,
every compensator that stabilizes the system in our sense
also solves the tracking problem. Although redundant, the
extra term in (6.16) complicates our expression for C(s),
h,,(s) and A, (s) and should be eliminated if possible. In
our theory this would be achieved by choosing more
opportune fractional representatious for the various func-
tions with which we deal.
Now, let us consider the problem of rejecting a step
function for which we let

=4[5 o]

=r(s)i(s)"! (6.19)
where
4(s+1) s s
[ (+3) [(:+2) ]*' G+2) H G+2) ]

ms(s)r(s)+3(s)7(s)=1. (620)
Here,

(s=2)
[2 ] ( +2) ][ (.1+2)J
mm(s)F(s)+m(s)p(s)=1 (621)

showing that 5(s) and 7(s) are coprime. Next we compute

- - -1 (J+ l)
A(s)=p()H(5) [ ey }[(m)

~a(s)d(s)™" (622)
o .
' (s+1) s s
M[ (s+2)° +[ (s+2) ][ (s+2) ]
wmb(s)a(s)+b(s)d(s)=1 (6.2
obtaining
w(s)=g(s)m(s)+a(s)z(s)
..[ “]+[( +2)]z( 5) (6.24)
)= 222 2042 ~6-21t0)] 629

and 21

e

(s-2)
h -
w(#) 3(s+2)*

[(.f+2)(3.tz —8s—12)+3s(s+ l)z(s)].

(6.26)

Here, the factor of s in the numerator of A, (s) indicates
that the feedback system will, indeed, reject step func-
tions. Moreover, as we have previously indicated, any
stabilizing controller tracks e'U(¢) as is indicated by the
(s—2) factor in the numerator of A ,(s). Interestingly, if
we apply our theory to solve this simultaneous tracking
and rejection problem we obtfm an equivalent, but more
complex, parameterization of the desired feedback sys-
tems. To this end we let

s (s-=2)
[2][ (s+2) ]+[_ l][ (:+2)]
mi{(5)F(c)+i(s)E(s)=1 (6.27)

and obtain

w(s) =#(s)i(s)a(s)m(s)
= F(5)K(5)j(s)d(s) +(s)d(s)é(s)

_[ ! ][_ };_(,z+§,+4)+s(:+2)d(8)]

(s+2)
, (6.28)
hoals)= z:g’[%( +3:+2 (:—2)(:+2)d(:)]
(629)
and
g
ho(s)= [(9s* +125* +3252 — 1125~ 144)
(s+2)°

+9s(s+1)(s+2)d(s)]. (630)

Equations (6.28) through (6.30) represent a complete
parameterization of the simultaneous solutions to the
tracking and disturbance rejection problem where d(s) is
a design parameteer which may be chosea to “optimize”
some other aspect of the feedback system design. For
instance, if we would like to create an additional zero of
h,(s) at s=1 we let == —36.74 and obtain

H,y(5)= L1 (128067 + 7680~ 2048). (631)
27(s+2)°

B. A Muiltivariate Lumped-Distributed Disturbance
Rejection Problem

We now consider a lumped/distributed multivariate
plant

e~ (s-1)

(s+1) * (s+1)
1

(s=1)

P(s)= (632)
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which is included in our axiomatic theory by taking G to
be the ring of 2 by 2 matrices whose entries are L,
functions on the imaginary axis and H to be the subring
of 2 by 2 matrices whose entries are H,, functions on the
imaginary axis. We woulu like to design a compensator
for this plant which will simultaneously stabilize the
feedback system and cause it to reject the sinusoidal input
sin(¢)U(¢). To this end we obtain a doubly coprime frac-
tional representation

- =1

+

1 0 o 0
Sy 0 2
i ¢ | __e” _ (=D o
-p B = (s+1) (s+1) :
0 __1 (s=1
| (s+1) : (s+1) |
[ o o o |
(s=1)
0 (s+1) l| 2
————————— -‘_—-—---
=l eV (s=1)* i Cl))
G+1) (e, (+D)
1 i
L (s+1) :0 ! J
- j’ ';' (6.33)
L &¥r {
and we let
, -
2
R(s)= (s2+1) l
i (s2+1) |
[ o [ (s2+1) -
- (s+1)? (s+1)?
1 0 (s2+1)
i (s+1)? (s+1)
=r(s)7(s)"" (6.34)
where
2(s=1) 0 1
(s+1) (s+1)?
2(s=1) 1
0 s S A
(s+1) 0 (,+|)3

ms(s)r(s)+5(s)F(s) =],

T e ————

Of course, since the r’s and s’s are all commutative (6.35)
defines a doubly coprime fractional representation for
R(s).

To solve the disturbance rejection problem we must
now verify that 5, and 7 are coprime, for which we have

1 0 1 0

0 2 0 (s~1)

(s+1) (s+1)
0 0 ﬂzl
. (s+1)
(s+3) (s2+1)
(s+1) (s+1)
=m(s)p,(s)+m(s)F(s)=1. (6.36)

As before, these matrices are all commutative and thus
define a doubly coprime fractional representation for our
problem. We then define

e~Vi(s+1) (s=1)0
2 b3
A)mp()ey=| D D
(s+1)
(s2+1)

-1
e~s  (s=1)* || (s*+1) 0 ]
(s+1)  (s+1)? w+1)?

- 1 (s2+1)
(s+1) JI_ (s+1)?
=a(s)d(s)”" (637

which is right coprime. Of course, we ¢can also formulate a
left coprime representation for A(s) along with the ap-
propriate b's required to construct a doubly coprime
fractional representation. For the present purpose, how-
ever, all that is required is 4,(s) and hence we will not
derive the remaining a’s and b’s. Substituting g,, m, and
a, into (5.25) now yields the required set of w's for the
solution of problem SR for our lumped-distributed multi-

(s+3) (s241)

(s+1) (s+1)
(s+3) (s2+1)
(s+1) (s+1)?

(6.35)

22
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variate system.
w(s)=q(s)m(s)+d,(s)z(s)

o o G+
_ (s+1)? «(s)
4 (s2+1)
(s+1)? (s+1)?
(6.38)

where z(s) is an arbitrary stable matrix. Finally, substitu-
tion of this w(s) into 1.10 yields the required compensator
while the input/output gain for the resuitant fesdback
system takes the form

252+ 1)(s+3)(s=1)

hyy(2)m (s+ 1)*
2(s2+1)(s+3)
(s+1)*
[ -1/ -1)3
(Z_H) %:T% 23(s)  zp(s)
| o || =
[ (s2+1)
(s+1)? 6.39
(s2+1)(s-1) (639
i (s+1)

Note that the factor (s +1), in the numerator of 4,,(s)
implies that the feedback system will reject the required
sinusoid, while choosing z,,(s)= 0 will preserve the desira-
ble triangular nature of the plant.

C. A Periodically Varying Discrete-Time Tracking Problem

Although time-varying systems are not traditionally
viewed as multivariate, the class of periodically varying
discrete time systems admits a frequency domain theory
which closely resembles the classical multivariate theory.
In fact, we can apply the results of Section V to this class
of time-varying systems. Although it is not well known in
this system theory community, the frequency domain the-
ory for periodically varying discrete-time systems has been
rediscovered by a number of researchers over the past
quarter century in one form or another [5], {8]-(11}. The
basic theory, however, always employs an n by n matrix of
z-transforms to model a singie-variate system of period n.
For the present example we will take n=2 in which case a
single-variate system is modeled by a transfer fuaction in

23

Fig. 3. Periodically varying feedback system.

the ring G, composed of 2 by 2 matrices of rational
functions which have the form

P(2*)+2Py(z?) Py(z?)-zP(z?)

P(z)= 2 2y} 2 2
P(2*)+2P(2%) P(z2)-zPy(2?)

(6.40)

where P, i= 1, 2, 3, 4, are rational functions. As usual, the
stable systems H are taken to be the subring of G com-
posed of functions which are analytic inside the unit circle
of the complex plane. All of the constituent components
of a discrete-time system of period 2 can be modeled by
such matrices and the usual operational calculus for inter-
connected systems remains valid (5], (8]-[11]. For in-
stance, a constant scale factor with gain k is modeled by
the matrix

=k 0
P(2) [0 k] (6.41)
while a single-variate time-invariant component is mod-
eled by

where T(z) is the usual transfer function for the compo-
nent and 7(z), = T(—z). Finally, the periodically varying
multiplier defined by

0
T(z),

(z)

P(z)= [ 0 (6.42)

ye=(=1", (6.43)

is modeled by
=[] 4]

Now, consider the periodically varying feedback system of
Fig. 3. Here, the plant is a time-invariant system with a
parallel time-varying gain and it is thus modeled by the
transfer function matrix

(6.44)

} 4
p(zy=| @) - (6.45)
@2-2)

Since this system is stable (its poles are located at z= =2),
we may obtain a doubly coprime represeatation for P(z)
by letting p(z)=P(z), p(z)=1, q(z)=0, and §(z)=1.
Since these matrices are all mutually commutative p(z2)

»
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may serve for both p(z) and p,(z) and similarly for the
remaining p's and ¢°s.

Let us now consider the problem of designing a com-
pensator for this plant which will cause it to track a
prescribed input without destabilizing the system. For this

purpose we take
1

0
_,2\3
-l L e
0
(1-22)

which generates an input which oscillates between zero
and a ramp. Here TY(z) is unstable (since it has poles at
+1) but its inverse is stable. Therefore, we may form a
doubly coprime fractional representation for 7(z) with
(z)=],

= A=Y 0 ] (6.47)
0 (1-22)
3(z)=1, and 5(z)=0. Now
z
(2+2)
-z
Yo
[ 2(15~622%) (15-623)
44-z%)(2-z) 44-2%)
(15-622) -2(15-623) .
4(4~22) 44-22)2+z2)
(-2 0 !
+ (4-23)?
o a-2¢| o !
! (= @~z
=p(2)ji(2)+(2)ji(2)=1 (6.48)

and hence p(:z) and /(z) are coprime, verifying the ex-
istence of a solution to our tracking problem. The final
step required to obtain the desired compensator is to
compute

1

—_— 0
2
E@=s@ia = O
0
(1-22)
(6.49)

Since E(z) coincides with 7(z) we may let e(z)=¢(2),
é(z)=1(z2), f(z)=s3(z2), and f(z)=$(z) define our doubly
coprime fractional representation for E| :). Substituting
into (5.16) we obtain

z(15-62%) (15-62%)
44~22)(2-2) 44-2%)
W) (15-6z2) ~2(15—-62%)
i 44-1z3%) 44-23)(2+2) J
r \ 1
o(22)+20y(2%) 0y(23)—z0,(2?)
+
03(22)_,,20‘(22) 91(32)-292(31)
L
(1-2%)? 0
, (6.50)
0 (1-2%)?

which defines all compensators which satisfy the con-
straints of problem ST where the v, are arbitrary stable
rational functions. To construct an example of a com-
pensator we take o, =0, i=|,2,3,4, which yiclds a w(z),
which is just. the first term in (6.50). Substituting into

(1.10) we obtain the compensator
z
o S o A [ i o 5
— | 41-2)
(2+2)

(6.51)

Interestingly, this time-varying compensator perfectly
cancels the time-variation in the plant yielding a time-
invariant open-loop gain and time-invariant feedback sys-
tem gains in the form

b (15—-622) 0

Boy(z)= (4-2 (6.52)

" 0 (15-62%)

(4-22)

P(l—:’)’ 0
- 2
h(2)= (4-2% ; (6.53)
0 (1-2%)
i (4-22) ]

Here, the (1-2%)* factor in A (2) indicates that the
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Fig 4. Periodically varying feedback system that tracks 1/(1-23)%.

required tracking property is attained while the system
gains are clearly stable. The resultant feedback system is
sketched in Fig. 4. Although it is not clear from the figure
that the open loop gain for this system is time-invariant,
this fact can be verified by computing P(z)C(z) and
showing that it has the form of (6.42). Alternatively, an
opportune rearrangement of the subsystems in Fig. 4 will
lead to an equivalent time-invariant system.

VII. CoNCLUSION

Although the above derivations were occasionally com-
plex, it is important to note that the mathematics em-
ployed was quite elementary. Indeed, at no time have we
used any mathematical techniques which are more
sophisticated than addition, multiplication, subtraction,
and inversion. Moreover, a single proof technique has
been employed throughout the present paper as well as in
(6). First, one formulates a design equation which is linear
and characterized by two unknowus in the ring of stable
systems. A particular solution for this equation is con-
structed in terms of a specified coprimeness condition. A
homogeneous solution is formulated in terms of an arbi-
trary stable design parameter. Finally, a coprimeness con-
dition is used to verify that all homogeneous solutions
have been obtained and the desired parameterization of
the solution space is formulated in terms of the specified
particular and homogeneous solutions. We believe that
this algebraic formulation and solution technique is
fundamental to the feedback system design problem and
we are presently investigating several additional applica-
tions thereof.

Although our design equations, formulated in Theorem
2, are applicable to arbitrary linear systems, the solutions,
formulated in_Section VI, are restricted to multivariate
systems with ¢ and 7 in L. An inspection of the proof of
Theorem IV will, however, reveal that the multivariate
assumption was not used in the proof of the existence of a
solution to problem SR (although it was used in the
parameterization of the solution space and in the deriva-
tions of the solutions to problem ST and STR). We thus
have the following,

Theorem 6: For the feedback system of Fig. 1 let P and
R be characterized by doubly coprime fractional represen-
tations. Then problem SR admits a solution if, and only if,
p; and r, are right coprime. (No commutativity assumption
is necessary.)
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The main problem of adaptive control theory is to
design 3 system S which s capable of automatically
adjusting the generated control input to the plant P.
Such adjustments may be necessary for a variety of
reasons, such as insufficient knowledge about the
plant, plant perturbations, etc. A multitude of adap-
tive control techniques have been proposed through the
years. A characteristic shared by al) of them is the
presence of some means of identifying the unknown or
perturbed plant. 0Of course, the design of such a
mechanism, termed here the identifier, is an important
question in its own right. The design, however, of an
adaptive controller is heavily influenced by the par-
ticular technique used to generate the control and it
therefore inherits the technique's features.

A recent advance in control theory is an approach
to feedback control based upon the representation of
the plant as the ratio of two operators, both of which
belong to an operator ring H. (Ref}. A brief averview
of the approach is as follows. Consider the following
ring structure R

R = (G,H1] (.1

where G is a not necessarily comutative ring with
identity representing the general class of systems of
interest. The subring H also contains the identity

and represents the class of systems which in some sense
are stable. I is the set of elements in H which admit
an inverse in G and J the set of elements in H which
admit an inverse in H. As shown in (Ref),

GoHo1D] (1.2)

A plant P is said to have a doubly coprime
fractional representation if for
(erN]iur’ullvrlv])c H and {Dr,o1)€ 1

<1, -1
p=N D, 's, "', (1.3)
U N0 = (1.2)
NyUy 0V =1 (1.5)

The aim now is to design a system S so that the
system's inout-output map h is placed in H. Consider
the system shown in Fig. 1.1 and assume that P has a
doubly coprime fractional representation.

Fig. 1.1. A feedback control system.

\
For any arbitrary w, let the compensator C be
defined as

Ca(uiy#y, )" (w0 ). (1.6)

It was shown that if weH, then the input-output map h
also belongs to H and

h*Nr(-wD‘4Ur). (.7)

An important element of the approach is that {t
provides a complete characterization of the set of
compensators which place h in the ring H. It is there-
fore desirable to investigate the conditions under
which fractionally represented feedback systems can de
adaptively controlled.

Suppose then that either in the limit as tee, or
for all times t 2 t., an input-output map H in H {s
desired; in other wgrds. suppose that, with the appro-
priate time interpretation, it is required that

h=H. (1.8)

Clearly, there exists a choice of three independernt
variables, namely w, U_ and V_, to satisfy two linear
equations. The decisibn was Made to consider w as a
parameter in H, Thus the problem can in general be
stated as seeking the particular coprimeness operator
pair U_..V. which for a given w in # simultaneously
satisfies £q.s 1.4 and 1.8.

The two main problems to be addressed here are tne
acquisition and the plant-follower. In the former,
the linear, time-invariant plant P is assumed to be
insufficiently specified at the initial time ty- The
intention is to provide a feedback system S which
consists of an identifier ID and an adaptor AD as
shown in Fig. 1.2. The identifier provides the adaptor
with estimates p(t) of the plant P such that
1im p(t) = P, Then, using these estimates, the adaptor

tom

ADle v~ 10

o fe---

P y

Fig. 1.2. An adaptive control system.

provides the compensator with an operator pair
(ur(t).vr(t)) such that the required coprimeness pair

+
This research supported in part by the Joint Services Electronics Program of Texas Tech University under

OMR Contract 76-C-1136
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(V.,¥.) 1is obtained in the 1imit. The first task is
to delineate the class of plants for which such a
systam is possible. This can be done by deriving the
necessary and sufficient conditions for a solutfon to
exist under the assumption of instantaneous identifi-
cation, {1.e., 2 perfect identifier). Then it would
remain to show that in the non-ideal case the solution
can be attained adaptively. In other words it would
a&rm:?d that £q.5 1.4 and ).8 are satisfied in

In the plant-follower problem the linear plant P
ts perfectly known at the initial time tg, but it
undergoes perturbations thereafter, The intention is
to provide the compensator with an operator pair
{Up{t),¥r{t)} such that the systems input-output map
remains invariant under. the plant's perturbations.

In other words £q.s 1.4 'and 1.8 are to be satisfied at
every point in time. Again the class of plants for
which a solution exists is delineated under the per-
fect identifier assumption~ In the non-ideal case it
is desirable to examine the extent to which the input-
cutput map is perturbed due to the plant perturbatiom.

As always, stability is a question of paramount
importance. A consequence of the fractional represen-
tation approach is the fact that a system is stable
in the sense of H whenever the system's input-output
map is time-invariant and the coprimeness operators
belong to H. This is exploited in the ideal case of
both problems. But, whereas, in the acquisition prob-
lem the derived stability conditions are time-inde-
pendent and hence easy to check a priori, in the
plant-follower they are time-dependent and thus the
task of verifying whether they hold or not is consid-
erabley harder. However, the problem is by-passed by
showing that in this cage the question of the coprime-
ness operators belonging to H is equivalent to the
classical question of stability in the sense of H of a
system with time-invariant feedforward path and memory-
less, time-varying feedback path. In the adaptive
case of the plant-follower problem stability is re-
solved by a similar criterion appiied to the entire’
adaptive acquisition problem, the fact that the input-
output map converges to a time-invariant element of «
suggests that the system is stable as long as the map
remains bounded. [t s shown that for uniform asymp-
totic stability this is in fact the case as long as a
sufficiently "good” identifier is used. (The quality
of the identifier is also shown to be related to the
robustness of the adaptive plant-follower system).

The requirement to control the entire input-
output map restricts the application to a class of
plants which, for all practical purposes, is only
slightly larger than the miniphase case. But if a
Tess restrictive requirement is imposed the class be-
comes considerably larger. The point is demonstrated
by the pole positioning problem for plants represented
as rational functions ?not necessarily proper}. It
{s shown that the problem f{s équivalent to solving a
{inear, algebraic equation. Furthermore, 2 solution
to the equation is shown to exist provided that the
number of poles to be positioned is sufficiently large.
in terms of adaptive control, the equatfon must be
solved repeatedly in time by any of the available
methods, (e.g. a continuation algorithm).
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SUBOPTIMAL CONTROL WITH OPTIMAL
QUADRATIC REGULATORS®*
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R. Saeks
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Abstract

A new approach to the design of
suboptimal controllers for constrained,
nonlinear, decentralized, and non-quad-
ratic systems is presented. Here, one
designs a quadratic regulator for an
i{dealized system but chooses the weight-
ing matrices for the regulator to opti-
mize its performance as a controller of
the actual system relative to a pre-
scribed (not necessarily quadratic) per-
formance measure. The approach is illus~
trated via several examples.

1. Introduction

Historically, the control system de~- -

signer has been faced with the dilemma: .
*Should he work with an idealized model -
of a system which is amenable to simple -
solutions or a "real world” model which.
may be intractable?" The former approach
is epitomized by the LQG school wherein

a highly idealized model of a real world
system yields an easily implementable
analytic control theory (11,12). Alter-
natively, a more realistic model may be
employed in conjuaction with a nonlinear
programming algorithm at the cost of a
more complex implementation and increased
computer requirements (2,3).

The purpose of the present paper is
to describe an intermediate approach to
the control system design problem,
(4,5,13) wherein one designs a quadratic
regulator for an idealized system but
chooses the weighting matrices for the
regulator to optimize its performance as
A controller of the actual system rela-
tive to a prescribed {(not necessarily
quadratic) performance measure. The ad-
vantage of such an approach is that the
resultant regulator has the same "ease
of implementation“ and most of the “"sta-
bility characteristics" associated with
the classical LQG problem. The disadvan-
tage is that the system performance is
suboptimal. Comnutationally, the process
does not require any more effort than
required for a nonlinear optimization.

"This research supported in part by the
Joint Services Electronics Program at
Texas Tech University under ONR Contract
76-C-1136 .
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Moreover, the on-line computation needed
to implement the system is greatly re-
duced from that which would be required
for an optimal non-lingar controller.

The basic steps required for our
proposed design procedure are:

i. Approximate the given (nonlinear,
interconnected, or constrained)
system by a linear state model.

ii. Design a regulator for the approxi-

mate state model which minimizes a
quadratic performance measure with

. 'weighting matrices Q and R.

'ifiﬁ'éﬁhlﬁiée the performance of the

actual system using the above quad-
ratic control strategy. .

iv. Optimize the performance of the
actual system under such a control
strategy as a function of the
weighting matrices Q and R.

As is the case with any "real world"
design algorithm, its effectiveness can
be measured only by its performance in
engineering practice. As such, the re-
mainder of the paper is devoted to a
series of examples in which the above-
described design procedure is applied in
a variety of settings and compared with
existing design procedures. The examples
include three tracking systems, a case of
control under input constraints and a
case of decentralized control.

II. Tracking Systems

To illustrate the design procedure
we begin with a simple first order
tracking problem. Heze the system dynam-
ics are

x(2) = - x(t) +u(t) s x (t) = x, 2.1

The optimal input u*(t) minimizing
the quadratiﬁ index
dor fralie) WBle e 2.2
is

u‘(t). * -P(q,t) x (t) 2.3

——— _—
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where P(q,t) is the Riccati equation
solution. Hence the optimal state tra-
jectory is given by

. - £ p(q,0) do
x*(t) = xoe(t’ o Pa:9) ) 2.4

We now seek the weight g* which
minimizes a given performance index Jz.

2.5
case 1+« 1 Q0] ¢ (r(6)1?) ee”

The trajectories required by J,
and typical regulator trajectories
are shown in Fig. 2-1. Obviously q*

depends upon Xg* On the other hand,

finding gq* given an X, is not always
trivial (refer to Fig. 2-2}.

IM N »

A ' A o

AN A
. “\ w(t)
° 0 —=T>
”~
. 7”7~

e Meeutred Trejectories . Vd
- Tozical Trajectsries r

Fig. 221 Newsired sad Trptcsl Perfsrmance—cate !

As x>+, q*- +1 because for x

(-]
being very large, (x(t)-1)2wx?(t) and
thus equal importance is placed upon
the state and the input term of Jg. As
x, goes to zero from above,

Tl

R4

w3 23 3.0 1.0 0.0 9.3 .

fig. 22  Vartation of ¢ with n,, Care }

the state trajectory approximates its
requirement better and better. Thus the
regulator is "instructed” to emphasize
the input cost by decreasing q* which
then causes the input to decrease and
thus approximate its requirement better.
Then, since a scalar stable system with
a quadratic regqulator is always bounded
by its natural response, which in turn
is always bounded by the initial condi-
tion, the best approximation to the x=1
requirement that the system could ever
achieve for 0<x <1 is\its own natural

response. Thus for this range g*=0.
For go-o q* is indeterminate since both

state and input are identically zero.
once X, becomes slightly negative, the

reqgulator is instructed to drive the
state to zero as fast as possible be-
cause the state can now only add to the
error. However, as x becomes more and

more negative, the effort in driving the
state to zero becomes significant also
and hence g* approaches unity. Table 2-1

. shows that the present approach holds an

advantage over the competitive approach
with an optimally chosen constant gain
ho . ° .

Tadle 2-1 Tima-lavarfant Versys Tise-Veriant Opttma! Detigns-eCase 1

-

1, [ e | dplz %) Jp(z,,8°) | 3 O1ffarenca
3.0 [0 0.0 e.6 0.16008 -
2.0 [ -0.030 | o.10 0.19473 0.13820 0.7
4.0 | <0.1735 | 0.50 2.64189 2.62300 [ N
$0.0 | +0.3208 | 8.99 | 914,352200 | $11,40000 [ ®
Case 2:

Required and typical trajectories
are shown in Fig. 2-3 whereas the depen-
dence of g* upon x_ is shown in Fig. 2-4.
Once again, to benfhmark our results,
Table 2-2 compares the present approach
to optimally chcosing a time invariant
gain h. A noted improvement is obtained
for xo-l, the advantage becoming less

profound as x, gets larger.
2.6
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Tadle 2-2 Tims laveriant Yersvs Time Variast Optimal Oesigns--Case 2

2 he [ o J (2,4°) | (,.8°) | Oitferance
e |0 |oze | oosets | o.cesee Nz
1.0 |08 {09 | osson | a5 s.q
e |<un | en 1M | 110 X
20.0 |0.:0 | 096 |99.00000 |[s29.76000 0.68

As a variation on the tracking prob-
lem, consider the design of a pulse
forming system whose output is required
to approximate a triangular pulse. Speci-
fically assume that xz(t) is to approxi-

mate the pulse shown in Fig. 2-5 where

35

: : Ty .08

:ﬂzq . [-oms ooil “(t)‘L sl o

xy(t) 0.05 -0.08] xp(t)] Lo.08:  _
Our

with xz(O)-o and xl(O) variable.

goal is to design a regulator for the ‘
index . |

20 .
I -& txb(e)ax(e) + (01 e 2.8

80 that the measure
10
& {, CUxy(2) - 0.92¢] + 0.001fu(t)() et ¢

or (xy(e) ¢ 0.02¢ - 0.4] ¢ 0.001fu(t)[} ¢t - 2.9.
0

is minimized over the diagonal matrix
Q. The optimal designs are plotted
against %, (0) in Fig. 2-6. Optimal
trajectories of Xz(t) .
no
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are shown in Fig. 2-7. 1t is perhaps of
interest to note that as xl(o»»co , the

control is dominated by 011 causing
xz(t) to be regulated through its deriv-
ative.

IIXI. An Aircraft Landing Problém

A four state model

x(ty=Fx(t) + Gu(t) T 3.1

.for the landing of an aircraft was pre-

sented in (1,2) and was used in (3) to
treat the same problem with dynamic pro-
gramming. Although somewhat simplified,
the model is adequate for illustrating
our technique. .

‘The states are defined in terms of
the aircraft's coordinates and angles as
(refer to Fig. 3-1).

x(t)=(8(t) ,0(t) h(t),h(t)), 3.2

whereas the input u(t) is the elevator
deflection angle 6e(t) which is mechan-~

ically constrained between -35° and 15°.
Consistent with our suboptimal design
approach we will initially neglect this
limiting effect and design a quadratic
regulator for the linear system but we
will choose the weighting matrices so
that the behavior of the actual nonlinear
system is optimal relative to a perfor-
mance index J . This index is chosen to
simultaneously achieve a safe and com-
fortable landing. The complexity of the
resulting J is such that rather than
giving an explicit description here we
will only list some of the factors en-
tering its formulation. The interested
reader is referred to (4,5) for the
details.

Arplane Reference

a(t}

VOO OO IO TIIII OIS

Fig. 31 Atrcraft Cosrdinatas snd lngles

Safety Conditions

(1) The angle of attack J(t) must be
less than about 18° and not considerably
negative.

(2) At touchdown the airplane must be on
the runway and within a distance d_ from
the runway's start. s

(3) At touchdown the rate of descent
h(T) must be between -1.75 ft/sec and

0.0 ft/sec.

(4) At touchdown the pitch angle 6(T)
must be within 0° and 10°.

Comfort Conditions

(1) Avoid all accelerations.
(2) Avoid a “hard” landing.

€3) Avoid a negative pitch angle.

The underlying assumption is that
safety takes precedence over comfort and
thus should any of the safety conditions
be violated, J_=3U. It is noted that the
selection of a*matrix Q to satisfy these
conditions is not a trivial task.

It was shown in (4) that stability
considerations for the nonlinear model
lead to the establishment of an upper
bound for Q. 1In particular, if F is in-
vertible and P(Q,t) the Riccati equation
solution, the upper bound on Q is estab-
lished by

ReGTP(Q) F G 3.3

where P(Q)=lim P(Q,t). The landing was
simulated on an IBM-370 and for an
initial state

%x(0)=(0.0,-0.0181,-20.0,100.0) 3.4
the optimal matrix Q was found to be

diagQ*=(21.0,21.0,0.0016,0.00047),
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The resultant optimal input and
elevation trajectories are shown in
Figs. 3-2 and 3-3.

— e —— —— — —-
P Yway Lamtpratnt (9.2 vet)
Sttt me we me e
] ", v
i o— §
[
2“
3
3 ay
rd
-
.
% e Sumionemy {5 048 roll
b ¢ fotonsd byt U bonasar et dias Aunjod
-
e
&
R
s
K]
; as
T
3
"
»ne
\}_ L]
.~ [}
es . . . - -———.._..-' .
L XS " - XY - we
—, -
o 00 Al Mittalr Lot iy

IV. Decentralized Control

The dimension of a large dynamical
system is often so largec that control on
a global scale is prohibitive due to ex-
cessive requirements on computer storage
or time. In such cascs it may be desir-
able to consider the system as a collec-
tion of subsystems si,isl,z,...,u and

control each subsystem separately. Sev-
eral schemes have been suggested varying
from ignoring the subsystem interconnec-
tions to providing a separate control to
neutralize their effect (6,7,8,9,10).

As an alternative we adopt our sub-
optimal approach to control system de-
sign. Here the given interconnected -
system is initially apvroximated by a
decoupled system for which decoupled qua-
dratic regulators are designcd. These
regulators are then employed to control
the coupled system with the wecighting
matrices being chosen to optimize the
performance of the resultant coupled
system relative to some performance mca-

sure Jz.

. To illustrate the approach we con-
sider the system

x(t) = Fx(t) + Gu(t) « Hx(t); x(t)) = x5 4.1
where F and G are block diagonal matrices
characterizing the decoupled system com-
ponents and H is a coupling matrix.

For_our example we take

~0.10 0.05 | [ 7
0.0s-0.20  __ % ., _ o0
Q -0.10 0.05: 0
o o '0-01 0.
| |
L + 0.05 -0.08
:.;o! 0 l 0 4.2
G=| —'I' 5'.'3.'6{" -
0 0 4.3
oo
0 o 0.05
] | | 001
and

0 [o.0 o.0 (0.01
—— _}o.0 0.01} 0.0
0

0
0.
.01 0.0 0. .
T oo T T T T,
0.0 o.0fo0.01 0.0 | .

We now approximate the given system
by the decoupled system

x(t) - Fx(t) + Gu(t) 4.5

and design a decoupled regulator which
minimizes :

1
Jg * Lo Gl(eox(e) « ui(tluledl 4t ¢ g

where Q is a block diagonal matrix.
This regulator is then used to control
the coupled system of Eq. 4-1 with Q
chosen to minimize the global perfor-
mance measure

10
J. = & (x*{t) x(t) + u'(L) u(t)] dt 4.7
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The resultant optimal Q was found

to be .
0.5 0.0 o | o i
|
0 05, L
Qee 0 0.5 0.0 | 0 .8
—— o0 00f __ _
0 | o j0-0 0.0

It is interesting to compare the
above described approach to the so-
called "naive” scheme where the couplings
between subsystems are totally ignored.
{(To the contrary, we design decoupled
regulators for each subsystem but choose
the weight matrices through a minimiza-
tion of J where all the couplings are
included). 1In this particular example
the naive approach yields a J =6.590,
whereas our algorithm yields J =6.349,

a 3.8 percent improvement.

v. Conclusions

Our purpose in the preceding has
been the formulation of a new approach
to the suboptimal control of nonlinear,
constrained, decentralized and non-gua-
dratic systems. In essence we restrict
ourselves to a subclass of controllers
by assuming that our controller will take
the form of a quadratic requlator for a
linear approximation of the given system.

We then choose a particular regulator so °

as to optimize the performance of the
given system within our class. The ad-
vantage of the approach is the relative
ease in implementing the resultant con-
trol strategy and the stability inherent
in the use of a guadratic regulator. The
disadvantage is the suboptimality of the
result and the computational effort re-
quired to choose the optimal weighting
matrices.
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ABSTRACT

An exnlicit relationship between the fraction-
al representation approach to feedback system de-
sion and the aloebro-geometric approach to system
theory is formulated and used to derive a global
solution to the feedback system design problem.
These techniques are then aoplied to the simul-
taneous stabilization problem yielding a natural
neometric criterion for a set of plants to be sin-
ultaneously s:tabflized by a sinale compensator.

I. S;eaRY

Classically, in control theory one is given a
plant and desires to design a control system
around this plant which meets certain design
specifications. In fact, however, a "real world"
plant is never known exactly and, as such, a rea~
listic design must simultaneously meet specifica-
tions over an entire range of plants which
(hopefully) include the actual plant. The simplest
form of the resultant simultaneous design problem
is the robust design problem wherein one desires
to meet the design specifications in an ¢-ball
around 3 prescribed nominal plant. Although this
is satisfactory for dealing with modeling errors
it cannot cope with plants containing unknown
parameters and/or plants characterized by multiple
modes of operation. For instance, the dynamics of
an airplane or rocket vary widely with altitude
while the dynamics of an electric motor change
with speed and load. To cope with these problems
we must formulate a sinultaneous design theory in
which one designs a control system to simultaneous-
1y meet specifications over a prescribed set of
plants. Of course, the set of plants may be taken
to be a ball in which case the classical robustness
theory is replicated. Alternatively, one may
choose to work with a set of plants in which one
or more parameters vary over a prescribed range
and/or a discrete set of plants; say the dynamics
of a two speed motor in its high and low speed
settings,

The simultaneous design concept is possibly
best i{1lustrated in the 1st order case, wherein a
simple geometric solution suggests {tself. Assume
that our plants are of the form

p(s) = s—fg S
and we desire to design a stable feedback system

1

using a proportional compensator with gain t. This
results in a system with characteristic function

d(s) = s + (B + tA) (1.2)

and, as such, the feedback system will be stable
if and only if B + tA > (0, Here, for a given
compensator, t, the feedback system will be stable
if and only if the point (A,8) lies above the line
with slope 1/t as shown in figure la. As such, if
we want to simultaneously stabilize an entire set
of plants their representations on the A-8 plane
must all lie above a line through the origin. for
instance, the set of plants indicated by the hatch-
ed region in figure 1b. can be simultaneously

stabilized (by a compensator with gain - %) while

the set of plants shown in figure 1c. cannot be
simultaneously stabilized since they subtend an
angle greater than 180 degrees on the A-B plane.
Similarly, the set of plants shown in figure 1d.
cannot be similtaneously stabilized since they
cross the negative A-axis.

The example suggests two alternative criteria
for the simultaneous stabilfzation problem. One
m;y adopt an algebraic criterion to the effect
that

B+tA>0 (1.3)

for each plant in the prescribed set and som» t.
While such.a test is defipative it is local in
nature allowing one to test for stabilizability on
a plant by plant basis but yielding no gliobal
criterion with which to characterize a set of
plants which is simultaneously stabtiizable. To
the contrary one may adopt a global geometric view
point to the effect that a prescribed set of
plants is simultaneously stabalizable if and only
if it is contained in an appropriate half-plane.
The goal of the present paper is the formulation
of a similar geometric criterion for the simul-
taneous stabilization problem applicable to general
lTinear systems.

The starting point for our theory is the ring
theoretic fracticnal representation theory intro-
duced by the authors in a series of recent papers
Jn which the set of stabﬂizin? compensators for a
given plant are parameterized.l,* [ndeed, with

¥ This research supported in part by the Joint Services Eléctronics Program at Texas Tech Univ. under
ONR Contract 76-C-1136. .
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minor modifications one can invoke the same theory
to parameterize the set of plants which are stabi-
1ized by a given compensator. This, in turn,
yields an immediate algebraic criterion for the
siouitaneous stabilization problem. The resultant
criterion 1s, however, local in nature just as that
of equatfon 1.3. The desired global criterion for
stmultaneous stabilization can, however, be ob-
tained if one first translates the fractional
repr:sentat‘lon theory into an appropriate geometric
setting.

Indeed, the appropriate qeometric setting
proves to be just the Grassmannian first introduced
into thg gystem theory literature by Hermann and
Martin.“*? Unlike their frequency domain formula-
tion, however, we obtain the Grassmannian directly
from the ring theoretic fractional representation
previously employed by the authors. Indeed, the
frassmannian is obtained simply by factoring out
the non-uniqueness inherent in the fractional repre-
sentation theory. As such, in addition to formulat-
ina the global theory necessary for our study of
the simultaneous stabilization problem the geametric
anproach yields new insiaht into the relationship
between the fractional representation theory
{which we identify with the elements of a general

A
) \\
N\

N . stope 1/t

linear group) and the system itself (which we
identify with the elements of a Grassmannian).
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Figure 1. Simultaneous stabilfzation of a 1st order plant

with a proportional compensator.
42
= L " e e e e S - -

1




ABSTRACT OF

FEEDBACK SYSTEM DESIGN: THE SINGLE-VARIATE CASE

R. Saeks, J., Murray, 0. CHua,
C. KarmokoLIAs AND A, IYER

43




Abstract

A recently developed algebraic approach to the feedback system design
problem is reviewed via the derivation of the theory in the dingle-variate
case. This allows the simple algebraic nature of the theory to be brought
to the fore while simultaneously minimizing the complexities of the
presentation. Rather than simply giving a single solution to the prescribed
design probiem we endeavor to give a complete parameterization of the set of
compensators which meet specifications. Although this might at first seem
to complicate our theory it, in fact, opens the way for a sequential approach
to the design problem in which one parameterizes the set of compensators
which meet one specification and then characteri;es the subset of those com-
pensators which meet the second spec., etc. etc. Specific problems investi-
gated include feedback system stabilization, the tracking and disturbance
rejection problem, robust design, transfer function design, pole placement

simultaneous stabilization, and stable stabilization.
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Abstract

An explicit relationship between the fractional represe?tation approach
feedback system design and the algebro-geometric approach to system theory
is formulated and used to derive a global solution to the feedback system
problem. These techniques are then applied to the simultaneous stabilization
problem yielding a natural geometric criterion for a set of plants to be

simultaneously stabilized by a single compensator.
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Abstract

The problem of designing a feedback controller which st?bilizes a
number of plants simultaneously is discussed from the fractional represen-
tation point of view. An abstract solution of this general simultaneous
stabilization problem is presented, and an elementary, explicit criterion is
given for the simultaneous stabilizability of two systems. Finally, some

examples and counter examples are presented, and some open problems are

discussed.
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6. Summary:

Although Lineanizations have long been employed in the analysis and de-
sign of nonlinear control systems their applicability is severely limited
by the approximate nature of the concept. To the contrary, if one could
formulate an exact transformation of a nonlinear system into a Linear system

the established techniques for linear system analysis and desigh could bé

applied to the nonlinear probiem. The goal of the present work unit is the
formulation of such an exact Linearization theony via the differentiat
geometric techniques previously employed by the senior investigator in his
investigation of the controllability, observability, and stabilizability

characteristics of a nonlinear system.

Although the exact linearization problem goes back to Poincare and has

R M T e

been studied by a number of system theorists over the past decade with the
aid of a generalized class of transformations introduced by Su we have been
able to formulate readily testable necessary and sufficient conditions for
the solution of the exact linearization problem. Moreover, when these

conditions are satisfied the required transformation is given by the

*NASA Grant in support of Professor Hunt's leave of absence at NASA/AMES
during the 1981/1982 academic year.

— s

57 FRLCEWInG Faul blai=NOT FI




ST TSy TR T T

solution of appropriate partial differential equations.

Although one might expect that the set of nonlinear systems which ad-

mit an exact linearization would be quite thin; and, indeed, this is the

case; in practice, we have found that many "real world" systems either

satisfy the required conditions and/or are approximable by‘such systems.

Indeed, the exact linearization concept has been successfully implemented

at NASA/AMES on several autopilot systems.
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LINEAR EQUIVALENTS OF NONLINEAR TIME-VARYING SYSTEMS L
L. R. Hunt* and Renjeng Su** . . i

Ames Research Center, NASA 3
Moffett Field, California.

Abstract .

Recent results have shown that a single-input time-invariant system

of the form . .
x = £(x) + g(x)u

can locally be transformed into a series of integrators if and only
if (1) the vector fields g, (ad‘f,g)ﬂ_. . ., (ad""2f,q) are involu- 1
tive, and (2) g, (ad’f,q), . . ., (ad®"!f,g) are linearly indepen-

dent in a neighborhood of the origin in IRR. This result is gener-
alized to time-varying systems. A parallel theorem is obtained in
terms of the time-varying version Lie derivative T.

1. INTRODUCTION In reference 3, Su points out the differ-

This paper is concerned with the problem ence between the equivalence relations

of equivalence of nonlinear systems and a
particular linear system, that is, a series
of integrators. Expressed in state space

defined by Meyer and Brockett. Considering
the class of nonlinear systems with scalar
input of the form x = £(x,u), and using
the equivalence relation defined by Meyer,

PR T R

form it is
necessary and sufficient conditions for a

X1 = Xz, Xz = X3, - . . Xn=1 = X0y Xn = U pon1inear system to be equivalent to the
where xXi1,X2, . . .,Xpn are the state var- system I, are given. This is the largest.
iables and u the control. We shall call equivalence class in terms of state coordi-
this system the canonical linear system nates change and feedback, and it properly
' and denote it by I,. contains the results of Meyer and Brockett.
In the past this problem has been studied Later in reference 4, the authors extended
, by Meyer and Cicolanif(!) and by Brockett (2). that result to a sufficient theorem on the
They obtain two different (but intersect- problem of global equivalence. In another
ing) classes of nonlinear systems which paper(s) (submitted to this conference)
can be transformed into the canonical they also show an interesting connection
iinear system I,. between the renowned Poincaré lemma and the

construction of the desireé transformation.

*Researcher supported by Ames Research Center, NASA, under the
Intergovernmental Personnel Agreement (IPA) Program and the Joint
Services Electronics Program at Texas Tech University under Office
of Naval Research (ONR) Contract 76-C-1136.

**Research Associate of Natvional Research Council at Ames Research
Center, NASA.
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This paper is devoted to generalizing the
previous results from reference 3 to the

time-varying case. In section 2 we define-
the equivalence rela;ion; the main results
are stated in section 3. Because the

arguments in reference 3 can be applied
here with only slight modification, most

of the proofs of the theorems are omitted.

2. EQUIVALENCE RELATION

We consider the scalar input, time-varying
systems on R of the form

: x = f(x,u,t)

where the origin is an equilibrium state

for any time t when u = 0.

A J-transformation is a map T: RPY2.pRPH!
such that for any t € R the restricted
map T(e,t): RA*! « RP*! g a diffeo-
morphism. For each system I: x = f£(x,u,t)
the combined vector'(x,u) of the state and
the control is considered as an element of
R, wWith the
F-transformations we can define a concept

the space

of system equivalence.

A system I,: x = £(x,u,t) is said to be

g-related to a system I;: § = g(y,v,t) if
there is a J-transformation T that car-
ries each state trajectory of I; into a
state trajectory of I,: that is, setting
T(e(t;x,,u),ult),t) = {y(t),v(t)), we have

E (0 = glytv),vw),e8,

where ¢(t;x,,u) is the state trajectory
of L; with respect to the initial condi-
tion x, and control wu(t). The follow-

ing important observation of this relation
is parallel to that in reference 3.

Proposition 1: £,: x = £(x,u,t)
J-related to a system <I;: § = gly,v,t)
if and only if there is a transformation
T= (Tvy - « .:TnsTn+1) such that 7T has
the property

A system
is

ELER

1

3Tq

3Tn+1
= ‘ E
..;— 0, and —;—-— 0

and satisfies the following system of par-
tial differential equations:

n ari ari

j§, LEN TR I T Tnet)
i=1, .. ., n,

where £ = (f,, . . .,fn) and

g = (g[l e . 'lgn)-

Based on this observation one can prove
that the J-relation id indeed an equiva-
lence relation among the systems. There-
fore, we are justified in saying that two
systems are J-equivalent. In the next
section we shall characterize the equiva-
lence class that contains the canonical

linear system I,.

3. MAIN RESULTS

First we introduce our notations. Since
only the local theory is attempted here,
everything on RP will be defined locally
near the origin.

We assume the reader is familiar with the
basic definitions of vector fields and
one-forms on IRB. The vector fields and
the one-forms in this paper may be varying
in time, namely, their coefficients may be
functions of time when they are expressed
in a fixed coordinate frame.

For each smooth scalar function  on RD
the differential operator 4 maps 7 into
a one-form dg defined by

(3g/3x,)dx, + ., . + (3g4/%x,)dx,. For a

vector field
£ = £, (5/x,) + . .
one-form

+ £,(3/3x%,) and a
w =, dx, '+ s dx,, tae
dual product of w and £, denoted by
(w,f), is a scalar function defined by

&
w, £, + + unfy.

In the course of the development, several

types of derivatives with respect to a

vector field will be used. We state the

definiticns with a given vector field £.

64

Y




(1) For a scalar function (¢ on R%,
L°f(z) = ¢, L'£(g) = ¢dg, £,
LPf(g) = LIE(LPTE(D)).

and

(2) For a one-form « on RP,
Pf(w) = w, £ = Ao, ),
PNE(w) = PLE@DTIE(w)).

and

for a time-varying vector field g, we
have two types of derivatives:

(3) (ad°f;9) =g,
(ad'f,g) = (3f/3x)g - (3g/Ix)£, and

(ad®f,g) = (ad'f, (ad® 'f,q9)).

(4) (r°f,g) = g,
(Tif,q) = (ad'f,g) - 23g/3t, and

(I'Bg,g) = (T'f, (TP7if,q9)).

An important formula involving the deriva-

tives of types (1), (2), and (3) is

(LY €(w),g) = (w,(ad'f,g)) + LIE(w,gM) . (1)

Now we are ready to study the problem of
characterizing those systems that are

F-equivalent to the system L,.

If a system IL: x = £(x,u,t) is
F-equivalent to the system L, with a
transformation T = (T;,T,s - » -+Tn,Tn+1)o

then, frcm Proposition 1 we have

n 3Ti ari

jz—'; E fJ(x,u,t) + T (x,t) = Ti+x(x't)
1= lv sy - 1l (2)

n BT BTq

'2: = £5(x,u,8) + 52 (x,8) = Tny, (x,0,t)

= (3)

An observation similar to one in refer-
The
equations in (2) say that for each fixed

ence 3 is given as follows. n-1
pair of state and time (x,t), the n
.. £fp of £,
satisfy

com-

ponents f considered

1’

as variables of u, n-1 linear
equations with constant coefficients.
This leads to the following theorem.
system x = f{x,u,t) is

then £

If a
F-equivalent to .,

Theorem 1l:
can be
form

f(x,u,t) = £(x,t) + g(x,t}) * ¢({x,u,t)

and some
=0'
for any «t.

for some vector fields £ and g
with £(0,t)

3¢/3u * 0

scalar function ¢

$(0,0,t) = 0, and

From now on we will only examine systems
of the form x = f(x,t) + g(x,t)u; this
will not result in any loss of generality
(see ref. 3). A system will also be rep-~
resented by a pazr (f g) of time-varying
vector fields.

From equations (2) and (3), a system (f,qg)
J-equivalent to the system I,
only if there is a transformation
T = (T,, «-+Tn+Tn+,) such that the fol-

lowing equations hold.

Z

is if and

(f (x,t) + g (x,t)u)

j=2 J
3T,
+ —at—’ (xrt) = Ti+1 (x't)l (4)
for i=l,- 'ln-lland
(f (x,t) + g_.(x,t)u)
5;1 ij b
aT

(x,t) = Ty, (x,u,t).

b ——

3t (5)
In the terminoclogy introduced early in this

section, a transformation T satisfies the

system of equations (4) and (5) if and only
if T satisfies
<dTi,g) =0, i=1, ., n =1, (6
ari
(dTi,f) t = = Ti+y
i=1, .o =1, 7}
3T
(d'rn,f+gu>+?_:—='rn+;, (8)
<dTn.9f # Q. (9
Considering the case i = 2, equations '6)
and (7) state that
(dT,,g) = 0, (10}
3T
(aT, ,£) + = = T2. (11
Letting dT. = . and substituting [1l]

into (12), we chzain




e K YT 'wﬂmm

(@ E(w).g) + Qd ) g> =0 (12) 9iven in reference 3. We remark that the
time-varying version of the Frobenius
By formula (1) theorem plays a crucial role. ‘
(P'f(w),g) = (w,(ad’£f,q)) + L'E(Cw,g)) Theorem 2: A time-varying system
and (w,g) = 0, we have ' I: x = £0x,8) + g(x,8)0(x,u,t)
(2'£(w),g) = (w, (ad'f,g) ). Because the (as defined in Theorem 1) is J-equivalent
operators d and 3/t commute, we have to the system L, if and only if

d(3aT,/3t) = 3/3t(dT,) = 3w/3t. The second
term in equation (12) then is (3w/3t,q),
and the fact that (w,g) = 0 implies

{3 w,g’)/3t = 0. By the chain rule,

(1) The vector fields g,
(r‘f,g), . . ., (I'®'£,9) span
R" at the origin at any time t,
and

\ (2) The vector fields g,
Hw,g) _ 3w 3 - -
-—352- = <§€,g> + <w,§%/, r'f,9), . . ., (IP72F,q9) are

involutive near the origin for

which implies any t.

§ - '<P'a;> 4. CONCLUDING REMARKS

s ing up these observations, equation (12) The conditions in Theorem 2 describe a

special J-egquivalence class of time-

becomes
- varying systems. For a nonlinear system

(w,(ad'f,q) ) - <u,%%/ = 0. in this equivalence class we can solve the

. system of partial differential equa-
In terms of the operator [, it can be tions (13) and (14) for a transformation'
expressed as (u,(T'f,g)) = 0. Similar that will turn ﬁhe system into a series of
computations change equations (6) and (3) integrators; that is, the system I,. The A
into, réspectively, system L, is not only linear but also
’fr,,(rlf,g)> = 0, time invariant. Notice that the transfor-
i=20,1, ..., n-2 (13) mation is varying in time in order to
and "cancel" the time dependency of the sys~
(dT,, (T°h7ig,g)) = 0. (14) tem. It is not surprising that a time-

varying version of Lie derivative T has

It <hen can be readily checked that the to be used to generalize the result in

sten £ £ i ig- . - i
existe=nce of a transfcrmation T satis reference 3. This operator [ in its

fying equations (6)-(9) is equivalent to linear version has previously appeared in
the existence of a scalar functien T,
such that equations (13} and (14) hold.

Except for the use 0of the time-varying

the literature; for example, see Hermes. {¢)
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THE POINCARE LEMMA AND TRANSFORMATIONS OF .NONLINEAR SYSTEMS

L. R. Hunt* and Renjeng Su** 1
Ames Research Center, NASA

Moffett Field, California 1
Abstract

Recent results have classified those nonlinear systems tth can be
transformed to linear systems. For single~input systems of the form

x(t) = £(x(t)) + ult)g(x(t))

we assume that the vector fields

1. INTRODUCTION

Because of the extensive literature con-
cerning time-invariant linear systems, it
is interesting to characterize the non-
linear systems that can be transformed to
these linear systems. In this paper we
consider single-input, time-invariant non-

linear systems of the form

x(t) = £(x(t)) + u(t)gix(t)) (1)

where f and g are ¥° complete vector
fields on an open set in r" containing
the origin and £(0) = 0. The €~ trans-

formations of interest to us are

T =(T,, Ty, - « «+ Tn+;), which map

(x,, ] .» Xp,u) Space to

(T,, T,, .» Th+;) space so that the
system (1) is mapped to the linear system

*Researcher supported by Ames Research Center, NASA, under the
Intergovernmental Personnel Agreement Program and the Joint
Services Electronics Program at Texas Tech University under
Office of Naval Research Contract 76=-C-1136.

**National Research Council Research Associate at Ames Research
Center,

NASA.

g, [£,9],. . . ., (ad®"%f,q)
involutive and that g, [f,9], . . ., (adR7¥f,g) are linearly inde-
pendent in a neighborhood of the origin in 7,
the transformation mapping this system to a linear system exists by
virtue of the famous Poincaré lemma from differential geometry.

are

It is shown that

i it it e i

b (2)

ix =T, L
T, =T,

Ta+r *

If we think of T,.,
in equation (2), this
grator form with T,,
the space variables.

as being the control
system is in inte-
T,y - being
We want (i) T ¢to
have a nonsingular Jacobian matrix,

(ii) T(0) =0, T
be functions of

. o Tp

(iii) T a7 « « +0 Ty to
g¢ + ¢ -+ Xu ODly
and to have a nonsingular Jacobian matrix

in these variables, and (iv) Tps,

1/
Xy, X

to be a
function of x,, . -+ Xq, u which can
In addition
we can also ask where the T transforma-

tion is a diffeomorphism.

inverted as a function of u.

— -
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Necessary and sufficient conditions for the
local existence of such a transformation

are given in reference 1, and a constructive
proof of the transformation in addition to
global results is found in reference 2. The
purpose of this paper is to show that the
existence of such a mapping depends on the
application of the Poincaré lemma from
differential geometry.

Several authors have examined the equiva-
lence of nonlinear systems and linear sys-
tems under various assumptions. Meyer and
Cicolani (3)/(%) considered the block-
triangular nonlinear (possibly time-varying)
systems; Krener (%} gave conditions for-a
nonlinear system to be transformed tbfal;'_
linear system under state space coordinate
changes; and Brockett (¢) studied the equiv-
alence of nonlinear and linear systems
under coordinate chénges and additive
feedback. The transformation theory devel-
aped in references 1 and 2 contains the
results from the authors just mentioned.

In section 2 of this paper we give defini-
tions and study the system of linear par-
tial differential equations from refer-
ence 1 that determines the existence of a
transformation of the type that is of
interest to us. Section 3 contains
examples, the construction of the trans-
Zcrmation, and several applications of the

Poincaré lemma.
2. DEFINITIONS AND TECHNIQUES

~e give basic definitions and examine the
cechnigque in reference 1 that proves the
axistence of the transformation.

atting X and Y be vector fields on r"

2T on an open subset of R%), we define
X and Y

cre Lie pracket of

3X

3Y
(X,Y]-ﬁx EY'

wnere 3Y/3x and 3X/*x are n x n Jacobian

orackets like

ises. Successive Li

{x,(x,¥]], [¥,[X,Y]], etc., can be intro-
duced, and we set -

(ad’x,¥) =Y ,
(adlx'Y) = [le] ¥
(ade.Y) = (X, [X,Y}] ,

-
.

(ad®x,v) = [x, (adk=3x,¥)} .

A set of €” vector\fields

{X,, . . > %} on R® is involutive if
there exist € functions Y59 (x)
that

such

Xy, X:)(x) = ii Yi4 X ’
§ 1 3 =, J.Jk(x) Kk (%)

l1gi,jsger, i#3.

-‘The classical Frdbenius theorem states that

given a point x, € R” and an involutive
set {X;, . . ., Xy} of linearly indepen-
dent vector fields on R", there is a
unique maximal r dimensional €° sub-
manifold S of R" containing x, so
that the tangent space to § at each

X € S is the space spanned by

Xio o o We say that S is
the integral manifold of X,, . . ., X
through  x,.

A €7
called (smoothly) contractible to a point
X, € M if there is a ©°

. . o;’Xr at x.

r

n dimensional manifold M is

- function
H: M x [0,1] - M
such that

H(x,l) = x for x &M

Hix,0) = x,

of course,JRn is smoothly contractible to
the origin, and a star-shaped region with

respect to a point x, is contractible t
that point (see ref. 7).

let w be a k-formon M, 1 <k sn-=-1,
anéd let d be the standard differential

operator mapping . to a k + 1 form (in
our theory . is a cne-form). A k-form
w 1is called closed iZ duw = 0 and exact
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if w=dn for some kX ~1 form n on
M. This leads to a famous result of
Poincaré, which we state for €~ forms.

Lemma 1: If M is smoothly contractible
to a point X, € M, then every closed form

w on M 1is exact.

In later applications of this result M
is an open neighborhood of the origin in
R"™. Recall that we are interested in a
transformation T = (T,, T,, . . ., Tp,,)
which takes the system

k= f + ug (1)
to the system
. )
T, =T,
éz =T,
. ’ (2)
Tn = Tn+H
so that the conditions (i} through (iv)
{specified in the Introduction) hold. By

design, this mapping will be a diffeomcr-
phism near the origin; conditions under
which we have a global diffeomorphism are
discussed in reference 2. Necessary and
sufficient conditions for the local exis-
tence of such a map are that (a) the matrix
{g, (£,9}, + - ., (ad®71£,9)} has rank n

in some neighborhood of the origin in

{x,r x,, « « ., Xp) space, and
{(b) the set of vector fields
g, (£,9], . « ., (ad?"2£,9) 1is involutive

in some neighborhood of the origin in the
same space. By condition (a) above,

g, (£,9), . . (adP~%f,g) are linearly’
independent, and the Frobenius theorem!
implies the existence of a €” n - 1\
dimensional integral manifold of

g, (£,9), . . ., (ad™ %f,q), using condi-
tion (b) above.

From reference 1 we know that a transfor-
mation T = (T, T,, . « ., Tn) \
setisfy the system of partial differential

must

~ziaticne
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T3
3% 93 7 0. i=1,...,n-21,
I (3)
BTi
-a?j'fj"ri‘_l ,i-l,...,n-l ¢
=1
and
zarn
— \
3xj (fj * ugj) *They -

7=

Solving this system of equations is shown

to be equivalent to finding a €% func-
tion T, such that
<ar,, (ad®g,g) =0, k=0,1,...,n-2
@r,, (adPig,q) # 0,

(4)

{..,.) denotes the duality of one-
forms and vector fields. Thus a transfor-
mation satisfying conditions (i) through
(iv) (specified in the Introduction) exists
if we can find such a T; that vanishes at

where

the origin.

3. GENERAL RESULTS

We show that the Poincaré lemma can he

used to discover all of the ¥ functions

T, satisfying equations (4) under the
assumptions that the matrix

{g, [£f,9], « «, (ad®'f,9)} has rank n
and the set g, [f,g], . .. (adn~%f q)

The transformations
with condi-

is involutive.
T =Ty, Tye o o o0 Tpgy)
tions (i) through (iv) (from the Introduc-
tion) heolding can be found by applying
equations (3).

Example 1: We examine the nonlinear

system
Xy Ol x £(x) + ug(x)

X, 1

on R4,
we have

Computing the first Lie bracket

e —




cos x,
[f,9] = - ’
0

and g and [f,q]
on {(x,,x,): -w/2 < x, < ®/2} = U,
Certainly the vector field g = [g] is non-
vanishing, so there does exist a trans-
formation (T,,T,,T,) with (xl,xz) in'a
neighborhood of the origin in R? [(T,,T,)
is a diffeomorphism for a sufficiently
small neighborhood].

are linearly independent

We show that the Poincaré lemma implies
the existence of a transformation with
We need to demonstrate
function T,
Consider the

(xy,x,) in U.
the existence of a €~
satisfying equations (4).
one-form w =1 dx, + 0 dx,
it is closed an@ U is contractible to
the origin, there is a € function T,
satisfying dT, = w by Poincare. Now
{dT,,g) = 0, and since g and [£f,g] are
linearly independent on U and 4T, # 0,
(aT,,[£f,g9]) # 0. The transformation T
exists for (x;,x,)eU, and taking T,

with T,(0) = 0 conditions i) through iv)
hold as desired. Such a transformation is

on U. Since

(r,.T,,T,) = (x,,sin x,, (cos x,)u), which
is one-to-one on U.

Example 2: Consider the system oA R?

%, f%;(x) g, (x]
"l o= - + u

X, LE. (%) g, (x)

= f + ug .

Assume that there exists a smoothly con-
tractible neighborhocod U of the origin

in (x,,x;) space on which

1 g is nonzero and
@ /ix = =(3g,/%x))

2z ¢ and [f,g] are linearly
independent.

The cne~form « = g

> -
<

dx1 - g, dx2
on U (du = (3g,/2x, + 3g,/3x,)dx, A dxl)),
so there exists a ¢ function T, [we
cake T.(0) = 0] so that dT, = .. Again
iT..¢ =0 arnd 27.,{f,5]) #£0 by

TS e

is closed

Example 3: Suppose we have
X, £, (x) g, (x)
) = + = £ + ug
X, £, (x) g, (x)

on: R?. Assume there exists a smoothly

contractible neighborhood U of the origin
in (x,,x,) space on which

l. g is nonzero

2. g and [(f,g] are linearly independent

3. [[£f,9],9) = ag \for some €~
function a.

Assumption (3) above is due to Brockett (®)
and is one of his conditions for a trans-
formation (using coordinate changes and
additive feedback) to a linear system. In
reference 1 it is shown that a transforma-
tion of the type discussed in this paper
exists in a neighborhood of the origin
under assumptions (1) and (2) only. It is
interesting to note that Example 1 does
not satisfy assumption (3).

We take the one-form

g2 - 91
w=Fer e ¥ - Fer e X -

where C is the 2 x 2 matrix with columns

g and (f,g], which is nonsingular on U.
This form is closed if and only if

(ge) |2 ()
det C/ _ _ > \det C/
X, Ix,
Letting (f,9] =h, [h,g] = ag gives
3g 3g 5h 5h
1 1 1 1

%, h, + %, h: = 3x, 91 T 3x, 92 T %%
and

392 392 Shz Ehz

™, M tax, P TR 9 T3y, 9 T A9

Substituting these last two egquations into

() , 2 ()
>\ det C “\ det C

9X, axl

we get O0; that is, assumpticn (3) implies

that zhe one-form . is closed on U. 3y

the Poincare lemma treres exists a
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T

€ function T, on U with 4T, = w.
The facts that (4T;, w) = 0 and
(dT,, (£,9]) # 0 follow easily.

We consider the general case for equa-
tions (1) and suppose that the rank assump-
tion on the matrix

{g, (£,9], - . ., (a@dP"3£,g9)} and the
involutive assumption on

g, (£,9], . . ., (adP"%f,q9) hold on some
open neighborhood of the origin in

(X3, X, « « «+ Xy) sSpace. We seek a
solution T, of equations (4). It is
important to remember that first-order
linear partial differential equations are
solved by reducing them to systems of
ordinary differential equations. At each
stage of our constructive procedure we
give an equation for T, to satisfy, but
we wait until a construction is completed
and let the Poincaré lemma give a solu-
iion T, to all of these equations.
Since f and g are complete and

g, (E.ql, « . ., (adP7lf,g) are linearly
independent, we know that

(£,9], . . ., (ad®"!f,q) are complete.

For ali s € R we solve the system

%§ = {ad?"!f,q)

with initial conditions x(0) = 0 ¢to
obtain the unigue integral curve x(s) of
{ad® *£,g) through the origin in

{x,, x,, . . ., Xn) space. The partial
differential equation (d4T,, g) = 0 is
solved by considering for all t, € R

the system

2 daT
éx 1
a&, ~ 9 T, "0

We denote by x(s,t;) the solution of
the first system dx/dt; = g with initial
conditions x(s,0) = x(s).

We then examine for all t, € R the system

éx e ¢T.
dc, T (£90 v zg, =0

In this way we deal with the partial dif-
ferential equation (aT,, [f,g]) = 0. The
solution of dx/dt, = (f,g] with initial
conditions «x(s,t,,0) = x(s,t,) is
x(s,t,,t,). Continuing this process, the
last step }nvolves the system

dx 4aT,

n-2
a€, =(ad®™%f,9) . FE

’0,
n-i

which is associated with the partial dif-
ferential equation (dT,, (ad®~?f,g)) = 0.
By x(s, t;, . .+ tp~,) we denote the
integral curves of the vector field
(adP~2f,g) with s, t,, . . ., t

n-2
behaving like parameters.
Since g, [(f.g)l, . . ., (adP~1lf,g) are
linearly independent, the matrix
3x, 9x, 9x,
9s at, e 3tn.,
X, Ix, Ix,
9s at, ° 3th-,
Ixp 3xp 3xy,
Las at, ° ot 3tn-y .J
called the noncharacteristic matrix, is
nonsingular. Thus s, t,, . . ., the-
can be solved for X,r X0+ « .4 Xy in a
neighborhood of the origin. We denote the
map
(8,€y, «« «utp=y) = (x,(s,8;, .. .,tn=),
X, (S,8,, . . ortpayds oo -y

XnlS,t.y oo vhtnay))
by F and note that its Jacobian matrix is
the noncharacteristic matrix.

We are now ready to prove our result con-
cerning mappings of nonlinear systems to
linear systems.

Theorem 1: Let U be an open subset in

(x,, X,, . . ., Xp) space containing the
crigin and surpcse that

(a) ¢, (£,9l, . . ., (adR=1f g)| are
l.nzarly indegendznt on U, and
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(b) g, (£,9]1, . . ., (adP—2f,g) are

involutive on U. Also assume the mapping
F 1is one-to-one and that the noncharac-
teristic matrix is nonsingular on an open
subset V, which is smoothly contractible
to the origin in (s, t,, . . ., tn.,)
space and with U C F(V). Then there
exists a transformation

T = (T,, T,r « « -+ Tpsy):U = RP¥D taking
system (1) to system (2) so that (i) T has
a nonsingular Jacobian matrix xith respect
to (x,, . . ., %Xpn,u), (ii) T(O) =0,

(iii) t,, T,, . . ., Tp are independent
of u and have a nonsingular n x n
Jacobian matrix, and (iv) Tpe4,

which can be

is a func-
tion of (x,, . . ., Xp,u)

inverted as a function of u.

Recall that we need to find a ®°
that vanishes at the origin

Proof:
function T,
in (x,, %,, . . ., X3) space and satis-
fies equations (4). We have constructed
the function F(s, t,, . . ., tp.,)

Jacobian matrix is the noncharacteristic

whose

matrix.

Let ¢(s) Dby any €“ function of s
which does not vanish on V (think of ¢
as defined on V Dbecause of its indepen-
(€, &y, .+ Con-
sider the one-form

s = ¢(s)ds + 0 dat, + . .

V. Since it is obviously closed on V

dence in er tpay)).

+ 0 dtn— 1 on

there exists a ¢ function T,(s)

satisfying dT, = w such that T, (0} = 0.

Certainly
5T, aT, aT,
— =0, =— =0, . . ., = = ()
Ct*. ) 2 Chey

cn V, but how does this relate to the

equations (d4T.,g) = 0,
=0,...dT,,(a@"" %%, g))= 02
. ., (adB"if,q)
the Frobenius theorem
imply
n -1

réz.,(£.91)
(£f.9),

involutive on U,
and our construction of the map F

Since g, are

nat for each fixed s we have an

-
- b
éizensinnal integral manifold of

g, [£,9], . . ., (adP"%f,q) as
sty . vary.
constant on each integral manifold and

must solve (d4T,,g) = 0,

(ar,,(£f,9]) =0, . . ., (dT,,(ad?"%f,q)) - 0

L § tn-l.
and the noncharacteris-

«r they Now, T, i:

as functions of s, t,, . . Our
assumption§ on F
tic matrix imply that we can solve
(s, t5, . . .. tn=y)

(xl' xZ’ e o ey xn)

for
as functions of

and hence the desired |

partial differential équations are solved
on U. .
Since g, {f,9], . . ., (adh~'f,q) are
linearly independent on U and
AT 3T
1 3s 1 3s
S T PR ST T TS
+ <20 as a
. e -E-E Xn = ¢(s)ds

is nonzero on U, the
(aT, , (adP"1f£,9)) # 0

eguation
holds on the set U.

We conclude with the following example.

Example 4: We take the nonlinear system
X, sin x, 0
X,| = |sin x,| + u|0]| = £(x(£)) + ug(x(t))
X 0 1
on R?!. Computing Lie brackets we have
0
(£,g] = -] cos x4 ,
0
cos X, COs X,
(ad?f,q) = 0 ,
0
[9’;[frg]] = sin X3 .
0

Thus conditicns (a) and (b) of Thecrem !

are fulfilled on the open set

(x,,x,,x,) € RY: -'i—< x. < % ,

-
-

U=

|
I

- =< ®. <
2

2

[N E]

76

Y




i e

The solution of

dx

ax . 2 =
ds (ad“f,q) . x(0) 0
is x,(s) =s, x,(s) = 0, and x,(s) = 0.
The system
dx _°
a, - 9

with initial conditions x,(s,0) = s,
x,(s,0) =0, and x,(s,0) = 0 has the
three tuple solution x,(s,t;) = s,
x,(s,t,) =0, and x,(s,t;) = t,.
Similarly, for

dx

‘d?: = [f:g] ’

satisfying x,(s,t,,0) =s, x,(s,t,,0) =0,
and x,(s,t,,0) = ¢t,, we find

x,(s,t,,t,) =%, =35,

x,{s,t,,t,) =x, = (-cos t,)t,, and
x,(s,tl,tz) = X, The mapping

F = (s,(-cos t,)t,,t,) is one-to-one on
the smoothly contractible to (0,0,0)

=t,.
set

v fisite) e R - F <ty <

(STE]

and the noncharacteristic matrix

1 0 0
0 (sin ¢t )¢, (-cos t,)
0 1 0

is nonsingular on this set. Solving for

(s,t,,t,) as functions of (x,,X,,x,) we
find s = x,, t, = x,, and
t. = -(x,/cos x,), and these are defined

on U (i.e., U C F(V)).

Hence by Theorem 1, a transformation with

"

ae Zasired properties exists. Taking

= g, one such transformation is
Xy
7. = sin x_, ,

7, = cos x, sin X,

E)

TR
, sin‘x, + (cos X,

T,

T, ® -sin x cos x,)u

S+ner choices of yield similar

=v.nzfzrmacticns.

‘Roger Brockett presented results concern-

ing mappings of nonlinear systems to,
linear systems and provided a construction
similar to that preceding Theorem 1 at a
1978 CBMs.conference held at the University
of California, Davis.
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TRANSTORMING NONLINEAR SYSTENS#*

L. R. Huant And Renjeng Sut

ABSTRACT

We consider nounlinear systems of the form s

-

* m
‘ x(e) = £(x(8)) + ] u;(t)g, (x(r))
i=1 °

where f, By +ec1 & are c® complete vector fields on R" and £(0)=9,

K

Because of the amount of literature devoted: to”the study of linear time

1 invariant systems, it is reasonable to ack necessary and sufficient con-

ditions for the gzbove system to be transformable to a linear system.

Using such a transformat;on wé could comstruct a regulator for the non-

linear system by building ore for the linear system FG. Meyer has done

this in his study of automatic fligh. comcroi™. It is the purpose of

’ this paper to find conditiecns (deperdiag on Lie brackets) for a trans-
formation to exist. Basically, we choose a canonical form for a linear

time invariant system and investigate the possible mzpping of our non-

linear cystem to that canonical foim.

I. Introduction

Suppose we have a nonlinear plant that we are to.control to perform

some task. For example, an aircraft which is designed to automatically fly

*Research supported by NASA Ames Research Center under the IPA Program and

the Joint Services Electronics Program at Texas Tech University under ONR
Contract N0001l4-76-C~1126.

tResearch Assoclate of National Research Council at Ames Research Center.

&
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a designated path despite modelling errors and disturbances (see [1], (2],
[3)). -We consider the mathematics associated with such a problem.
Assume the dynamics of our plant are descr{béa by the system

" g

(1) x(t) = h(x,t,u),

where x € R" and h is a complete ¢ vector field. Our research involves

multi-input and time varying systems, but to save notation we emphasize

" the single inﬁu: and time invariant system

(2) x(t) = hix,u),

and mention the more general results.

Since the design theory for controllahle linear time invariant systems

is trcated in the literature, if our nonlinear system is equivalent (say

using coordinate changes and feedback) te a controllable linear system, then

we can use this fact in our comtrol problen.
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Thus we are interested in: characterizing those nonlinear systems which

are transformable to controllable linear systems. The transformations we

consider are maps T = (Tl,'l'z,--','rn+l) which take V x R (with variables

('::l,xz,"-,xn,u)), where V is an open neighborhood of the origin in state

n+l

space, onto an open set in R ((Tl,'rz,' .

origin, so that the following properties hold:

i) T(0) =0
ii) Tl,Tz,
» gular Jacobian matrix on V

iit) Tn-i'-l is a function of xl,xz,---,xn,u for which
VxR
iv) Tl’TZ’."’Trri-l satisfy

=T T 2

=1, Ty 3
(3) . or . =

Tn = Tn+1 Tn

— —

n+l

du

+ Tn+1

.’Tn-l-l) space) containing the

'-',Tn are functions of X190 "Xy only and have a nonsin-

is nonzero on

that is, Tl’TZ’.“’Tn are the state variables ar_xd Tn-l-l the control for our

controllable linear system

v) Ts= (Tl’TZ’“.’Tn+1> is one~to-one on V X RR.
83
-— - {q;‘.::«z o — .




A -31-;mmm

Results in this paper are local (near the origin in state space),
but global theorems have been proved in [4].
It is shown in [5] that if the system (2) is transformable to the

system' (3), then it can be "reduced" to
(%) 2(t) = £(x(t)) + u(t)g(x(r)),

" where f and g are €™ vector fields on V, and we assume £(0) = 0. Hence we
w?.sh to map system {(4) to system (3). |
For related results concerning the transformations from nonlinear
systems to linear systems we refer to the research of Kremer [6], Brockett
(7], Meyer [3], Jakubczyk and Respondek [8], and the authors (4], [5],(9],

f10], [11]. ‘ : ‘ 3

In section I we give basic definitions aund the partial differential
equations we must solve to build a transformation. Section III contains
the main result, é constructive proof of a transformation, and couments

about the more general theory.
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II. Definitions and Preliminaries

If £ and g are ¢” vector fields on an open set in r"® , we define the

Lie bracket of f and g

- OB Bf
(f,g] i 328

where %5— and -g—f‘ are n X n Jacobian matriées. We let

(adO¢ '8) = 8

(adlt,g) = [f,g]

(ad?t,8) = (£, [£,8)]

(ad®f,g) = [£, (ad* 1£,g)].

For h a Cw function on V we define t;he Lie derivative of h with

respect to f as

Lf(h) = <dh, £>,

with dh being the gradient and <¢,*> being the duality between one forms

and vector fields. If w is a C°° one form, then we have the Lie derivative

of w with respect to f

Sw

- (OW* o\ 3f
Lf(W) (ax f) + WTX'




vy a

*
where * denotes transpose and %% and %& are Jacobian matrices.

A relation between the three types of Lie derivatives just defined is

G) Lf<Vg8> = <Lf(V);8> + <w, [£,8]>,

where g is a C° vector field and f and w are as beforg.
In [S] it is proved we can transform system (4) to system (3) by
T = (Tl,T2,°°°,Tn+l) if and only if TI’TZ'...’Tn+1 have linearly indepen-

deqt gradients and satisfy
<dTi’8> = 0’ i’l,z,"',n—l

(6) 9T, £> = L (T) = T 1=1,2,++¢,n-1

141°

<dTn,f+ug> = I (T)=T7T

f+ug ' 'n n+l

Uéing the formula (5) repeatedly these equations become

<dt,, (ad“¢,8)> = 0, k=0,1,...,0-2

)]
n~-1 n-1
(=1)" Tu<dT, , (ad £,8)>+<dT ,£> =T ;.
Hence we have a desired transformation T if and only if we can find

a solution TI of

<dT;, (ad",8)> = 0, k=0,1,+¢,n-2
&) el
<dTl,(ad £,8)># 0
which vanishes at the origin. The remaining coordinate functions
TZ,T3,---;Tn are easily derived from (6).
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III. Construction of a Trarsformation

A collection of ¢ vector fields al(x),a2 (x),...,ar(x) of R* is

called involutive if functions Yijk(x) exist so that

\

r .
(221 = b vy @a @, istiseik.

Our main result depends on the assumptions
. :

a) the set {g, [f,g],"",(adn-lf,g)} spans an n dimensional space, and

b) the set {g.[f,g],"',(adn.zf,g)} is involutive.

Theorem 5.1 Conditions a) and b) hold for (:el,x' ",xn) in some neighbor-

27"
hood of the origin in R" 1f and only if there is an open set V © R"

containing the origin and a transformation T = (Tl,T2,~~-,Tn+l) : VX R +]Rn+l
such that properties i) through v) hold.
This theorem is proved in [5] , and we illustrate a method for con=-

' structing suech a transformation. For a real parameter s, € R we solve

dx(sl)

dsl

= (adn-lf,g)

with initial conditions x(0) = 0. Then we consider for s, € R the system

2

dx(sl »S )
1’72 n-
ds = (ad fsg )

2

satisfying x(sl,O) = x(sl). Repeating the process n=-2 more times we arrive

at the final system

dX(Sl’sz’...’s )

clsn




with initial conditions x(sl,sz,-°',sn_l,0) = x(sl,32,°'°,sn_l). We have

a map

(sltsg!...tsn). - (xl(sl’SZ’."’sn)’ xz(sl’sz’...’sn)’.'.’xn(sliszt...!sn))
. \
with a Jacobian matrix at (0,0,*°°,0) equal to the matrix with colummns
(adn-lf,g),(adn-zf,g),°°',[f,g],g. Since this last matrix is nonsingular
at the origin by condition a) we can solve for (sl,sz,---,sn) as . functions
of (xl,xz,-..7xn) in an open neighborhood of the origin using the inverse
function theorem. ' f
If we can find a function Tl which solves (8) as a function of
sl,sz,°-4,sn, then we know Tl as a function of X19%y, "0 ,X . Because

n~2

f,g) are involutive, as we fix s

-9 {fsg]"i.!(ad and let 82,83,"',sn

1
vary we get. an integral manifold of this involutive set by the famous

Prebenius Theorem. Hence if we choose Tl = 8)» then we have a solution of

(8). As was mentioned earlier TaFqseee are found by differentiationm.

’ Tn+l
An illustration of this techaique is given in the following example.

Example 3.2 Consider the nonlinear system

x, | sinx, . 0
%2 - kx| w0 ] = £(x(E) + u(©)g(x(r))
x, 0 1

for (xl,xz.x3) € V with

: it
V= {(xl.xz,x3) H "E 2 E
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Computing we find

0 o cosx2
" [£,8) == 11 , (adzf,g) - 0 .
0 0

and conditions a) and b) of Theorem 3.1 hold on V. Solving

dx 2.
e (ad"f,g8)

1
dx
e = [f’gl
ds2
dx
ds g

3

in order a;d with thé eorrect'initial conditions we have % =:sit X, = ~S,,
Xy * 8,. Thus our transformation T = (Tl’TZ’T3'Ta) is
g =%

T2 = sin32

T, = (cosx,) (x3-x]1.o)

fa = (cosxz)(-loxi)sinx2 + (-sinxé)(xafxio)z + (cosxﬁ)u.

It is interesting to remark how these transformations for (4) are
used in practice. We want to choose the control u to drive the plant. .
If all state variables are available to us (estimates can bec.used if they

are not), we map to the linear system and choose our control T .,. Then to

R . ~— © - — . e e
N U




find u we just have to solve the equation

-1 -1 '
D" u < a7y, (@d" e, g) > # < dT £ > =T,

1

which'is linear in u.
If we consider the multi-input system
o .
(9 x(e) = £&x() + ] u, (g, (x(t))
i=]1
then for our target controllable linear system we choose a Brunovsky [12]
cahonical form associated with a set of Kronecker indices KI'KZ'.'b’Kﬁ'
A transformation T = (TI.TZ,---,Tn+m) exists if and only if the following

conditions are satisfied for all (xl,xz,o--,xn) near the origin. The set

-1 . -1
K1 fygl),gzs [f»gzl ’...'(adKZ f132)3'°°»

¢ = (g, [£,8,1,%+, (ad
g, [f.gm]."n(adn‘rlf,sm)} ‘

spans an n dimensional space, the sets leﬁc with

Cj = {81’ [5,81] »* (3d'<j‘2f’81) »82, [fagzl »* ', (adrj-zfxgz) 1°°%%
’ Sn;’ [fagm] »** % (8dKj-2fs8‘n)}

‘ are involutive, and the span of each Cj equals the span of CjT1C for

j = 1,2,***,m. This result is proved in [9], and a discussion [11] of this

topic was presented at the recent JACC meeting.
; . For time varying nonlinear systems one must replace the Lie bracket
| (¢,*] with a time varying Lie derivative (see [10], [13], and [14]), The

time variable t appears as a paramcter in constructing the transformatien,
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and we map to a controllable linear time invariant system.
In system (4) we assume that £(0) = 0. Current research is in pro-
gress for which the origin ﬁay not be an equilibrium point 6f the vector

field £.

\
The authors wish to thank George Meyer for valuable conversations.
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1f f and g are completa ¥*® vector fields on K® we examine the nonlin.ar
system

x(t) = £(x(t)) + u(t)gx(t)) .

We find sufficient conditions for the existence of a global transformacion
definad for all (Xy,X3, « « «, xn) eRn which takes our nonlinear system tc a
unear system. A constructive proof is gi\.ren of the transfommation by solviag
a system of partial differential equations. We require that the lvecto: ficlés
g,[5,8], + . +» (adn-lf,g) span an n-dimensional space at each point of P.n,
that the set {g,‘[f,g], e e e (adn-zf,g)} is involutive on Rn, and that the
noncharacteristic matrix defined in our construction of the transformation

satisfies the assumptions of various global inverse function theorems.

-
L
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NOMENCLATURE

¥" infinitely differentiable functions

B n dimensional real Euclidean space

ugy coatrols
x time derivative of x
1. INTRODUCTION

Suppose we have the nonlinear system

o
() = £(x,8) + T v, (Dg (x0) , ¥

{=1

vhers £, 244 « . o1 Gy BTE cozplete (no finite
escape tiu} @™ vector fields on R and

£(0,t) = 0 for each t. Recent results have con-
taiged nscessary aod sufficient conditions for there
to be & local transformation of system (1) to a con-
trollable time {nvariant linear system. We combine
thease results with certain versions of the global
inverse function theorem to yleld conditions under
which a global transformation exists. To simplify
rotation ia this paper we resirict to the single
irsut tice invariant (autoncmous) systea

x(t) = £{x(t)] + u(e)g{x(t)} , (2)

but cur cheory will genersiize to che system (1).

In this single input case we map to the linear
systen in integrator form

- - - -
[5 ryz 0

7, ' 0

: =" J+vi©l. (3
.yn-! yﬂ 0

y 0 1

. n - L - - o

I1f wa were considering the general system (1) then we

attempt to map to a linear system in its Brunovsky (3)

c {cal form iated with the Kronecker indices.
We indicate the mappings of interest to us. A

®* cransformation T = (T},T;. . . ., Tpey) takes
n+l

R ({Xy34X30 « + «y Xq,u) space) io
atl

R ((T1aTae e oo TnoToen) @ (Y10¥2s - -

so that

<+ YqoV) sSpace)
T has the following propertics:

1) T(0) =0,
1) Ty,Tpy . - .. T, are functions of
-+ X, oaly and have a ncasingular Jacobian
matrix on R°,

1i1) Tpey 1s 3 function of x.,Xa, .. .. Xp.u
which can be inverted in terms of u feor all
(Xgs%20 + + +y %n)eRT,

iv) Ty Ty, . .+ Tp are the s:ate variatles
the control for our iinear system (),

v) T ® (T} T3y o +» Tpey) i3 @ cRe-to-une map=
ping of R o RM™! raking system (2) co sye-
tem (2).

We denote by [f,gl the Lie brackets >f our vector
fields f and g, {ad“f,2) = {f./f,gil, . . .,
(ad®f,g) = [£,(2d%=25.¢)]. If the set
(g, lf,¢g} .. (adP=tf,20) ) spens an
space oc -he oripin (n R™ and the sct
(g, if.2). « . ., (ad™7f,0) is favelutive for 2t}
points ncar the crigin, then system (2) ean be

Xy4Xas o

a=dizensionsl
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transformed tu system (3) for all (x,.xz. e e Xg) Let £ bea % vector ficld «and h a ©*
in sume open neighboraood of the origin. 1If :!-es. function. Then the Lie derivative of h with respect
N conditions on (g.[f.g]i ., (ad™ f.g)) and to £ is
{g,(f.8)e « « .. (ad®%f,g)} hold ar every point in .
PP, ve gilve 2 congtruction of a transformation Lf(h) ] (dh.f) ‘

T @ (Ty,T3. « « vy Tpet): In che process of bullding
T wec introduce the noncharacteristic matrix (named
for the noncharacteristic condition in parcial differ-
ential equations). If this matrix satisfies the
ratio condition on R", or other conditions for which
we can apply a global inverse function theorem, the
transforzacion T oxists £0r all (Xy.Xg1 s+ + o xn)cR ] - £,
and satisfies properties 1) chrough v) listed adbove.

For other results concerning the transformation from

where dh 13 the gradient and (.) is the duality
between cne forms and vector flelds. If

nonlinesr syscems to linear systeoms we vefer to the feo}l”
work of Krener (13)., Brockett (2), Meyer and Cicolani :
(14).(13), and Jakubezyk and Respondek (11), and the {a
authors (2,8.,9,10). Our results depend on the local \
theory develoyed in (18). Details, proofs, and other
theories concerning global transformations appear in then '
).
T Classical results involving global inverse func- (dh f) - —— %?— f,+. ..+ ;;h- f
H

tion theorems are found in the work of Hadamard (4),
(5), and (5). Other interestirg theories in this
dizection are atrribucted to Palais (16), Berger and For w a ®* one form on R", ve have the Lie
Berger (1), Wu and Desoer (19), Kou, Elliot, and Tarn  derivative of w with resmect to (: -
(12), and Sandberg (17).
Section I1 contsins definitions and the system 3wk \*¥ af
Lf(m) - (—‘—x— f) + o

of partial differential equations from (18) thac we ST
must solve in order to find a transformation of the
E . desired type. In section II] we state our main vhere * denotes the transpose and dw*/dx and 3f/ax
result, give an outline of its proof, and present are Jacobian matrices. .
several examples of irs application. Our three Lie derivatives are related by cthe !
formuls

II. DEFINITIONS < > ( > ( )
: : L w,g) = (L,(w),g) + (w.lf,gl) . (4)

for @™ vector fields f and g on R® (or £ f
generally on a differentiable manifold), we define che

Lie bracket Recall theat we want a transformation that maps our

system (2) to system (1), which we rewrite in the

i af T = (T;,T25 - « -s Tpey) coordinates (for KO*') au
(fal=get-5ce ' :
T, =T,
with 23g/9x and 3f/3x denocting n x n Jacobian i, - T,
matrices. We also have .
(ar” g) = g .
tn - Tnﬂ *
, , (ad'f,g) = (£,g]
' 2 ¢ From (18), necessary and sufficient cosditfous for Che
(ad"f.p) = (£,(£.8)] existence cf a transformation for (X;,X;, . . .. Xy)
o in some neighborhood of the origin in R" ar(..
: a) The set {g,(f.g), - . ., (ad" £ @)} spans an
X . k=1 n-dimensional space, and
(ad"f,g) = [£,(ad” €£,8)) . b) The set (g,1f.2]s « - .o (a¢"=2€,8)} s inve-
lutive,

A collection of %% vecror flelds f,,f,,. ..
f. on RM s called involutive £f functions a4y e
exist such that

poib in a neighborhood of the origia. A tramformatien
T must sacisfy the partial different:al equacions.

. r (@aTe) =0y L=, 0 n-d \
[F.£,100 = T o (G0, Lstysr, 14y, . . .
i &, Tk (dl‘i.f> SL(T) =T ey, n-d
* ivea ¢ ;o‘.r.r. %,cT” and an fnvoiuirve set (4T f + ug) = Lemg () = T
£4, . . ., £} of vector fields on ", then there )
a uniq;e -axiral r-dizensional ¥° submani-
5 of R centalning ¥, so that the rtangest as showm {n (}8).
eppce to § At eauh polni  xus L& the space spanned Using the formui (&) these cquatlons beonme
by fo(x).fsix), . . .. tp(x). 1n this case § s «
val rasafelt of f,,0.0 o« ., £. through (¢Ty ud®E,0) =0, k=00, . Lo .:}
T eaiiis oy che Frew us Thesrem. - . (6)
¥ e ¥ L-‘L 3 (dl:‘.! * ug) - an_,‘ )




The second equaticn in (5) Ls the same ag .

EOMET, @ T Y 4 (ST ) e T,

o that condlt lonn
Intrwduct ton held, we

Thus tu {ind a trans{ormat fon
1) through v) as piven fn the
aust find a solutlon T; of

a1y, (a®r,0)) =0, k=0,1, ..., n-2

M)

4T,,(ad" " '£,3)) A O ’
1

that vanishes at the origin. The functions
T2+Tye + « +v They are then easily derived from
equatiors (5)
The local theory gives us a transformation which
1s spplicadble to a neighborhood of the origin in R%,
but gives us no idea of the size of the neighborhood.
Next ve construct a solution T, and introduce condi-
tions under which the transformation
(T,,Ty «s Tney) is global.
I1XI. CONSTRUCTION CF THE MAPPINC
We begin this section by building a function T,
which satisfies equations (7). The firse (n - 1)
equations are parcial differential equations that are
solved by veducing to ordinary differential equations.
Parameters «» tpe; are introduced as
follows. For all t,;cR we solve

Trotae o o

dx

dt,

n=1

= (ad f,g)

wvith initial coaditions x(0) = 0 to find the inte-
gral curve of (ad™ 'f,g) through the origin. For
every t,cR we exanine

dx

n-2
ac, = (ad f,8)
Y(f;’.
satisfying x(t,.0) =8 Continuing, we solve for all
tycR the equation

n-3

dc, - (4

dx
t f.8)

wvith x(t;.t;,0) = x(t;,t;). This argument is
repeated until the final step 18 reached, solviag

dx

de,

with the initial conditions

X(Eyatyy o o oy B 300) = x{By 085, o 0wy B0 ) .
Thus we have a function
C I 50 RS T CRUL T 50 Bt N I PRIRIRIPRE o

saxq{Byatza s s aaty))

wvhich has a3 1t¢ Jacobian matrix the noncharacte.istic
vaivix

rﬂx‘ Ixy 3:,1
E T
Jxl, Ix, "~
J(I a, )(“

(&)
h] 73
! Xy *a x,

i a, """ e

_J l ? n-

By design this matrix evaluated at the origin in
R* (s the some as the matrix with colwans
(ad"1€,5),(ad™ %0 ,g), . . ., g evajuated at
0,0, . . ., 0). This last macrix ls nonsingular, so
by the inverse f{unction theorem therc is an open
nelghborhood of the origin on which we can solve for
Eystay - .y tn as functions of x,,X;, - . ., %,.

If we can find a solution T, of equation (;? as
a function of t,.t,, . we have a solution in
the x variables also.

We now use our assumption cthat g.,if.gl.. ..,
(ad“'zf,g) are Involutive. The Frobenius Theorem
tells us thac if ve fix the parameter t, and let
E24€3s « o oy Ty var¥ we get an integral manifold of
g.lf.gl, . . ., (ad®%f,p). An obvious chvics (our
cransformation is not unique) for T; fs T, = (,.
This function is constant on each i{ntegral manifold of
g.(f.8), . . ., (ad™?f,g) and

oty

T, T, T, o
———— 0 —— B w——
K, 3, 77 3¢, :

Hence the first (n - 1) equatiovns In equatfons (7)
hwld.

Suppose <dT,.(nd" f.g)) = 0. Since T, =1,
we have dTy # 0, and (ad""'F,p) $ 0 at the origin
tmplies thac (ad™!f,x) is tangent to the Lntcgral
manifold of g,(£.8), . . .., (ad™"%1,p) at
(0,0, . . ., 0), a contradiction to the assumptinn
that g,(£.8), . . ., (3d""'€,8) are linezrly ingepen=
dent there.

Hence there {s an open neighborhood of the origin
on which conditions 1) through v) hold. ©Note that
T, = t, and the mapping vhich has the noncharacteris~
tic matrix as its Jacobian matrix maps the origin to
the origin, implying that T(0) = Q.

The function T, satisfies

-1

(eT,.(ad®E,0)) = 0, k=01, ..., 8-2

and
T, AT, A
3, o, aty
Likewise T, 1is a solution of i
(4Ty. (ad®t,g)} » 0, k=04, . .., n=2 :
{use formula (4)), and :
T, T, a1,
— B — . —
i, Ay, A,
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Continuing {n this way we have T; independent of

«» tye and in general T4 does not depend
on €4y eCigas - vty for L €4 $n <~ 1., Since

1+Tse + - .4 Ty are linearly independent and thelr

Jacchian matrix with respect o Ty,tas » o o0 ty

has all entries above the diagonal zero, the mapping
(T Ty .+ Tn) L3 one-to-onc as a functlon Ln the
t variables.

Hence, wherever assumptions a) and b) hold, the
only possible obscruction to constructing a transfor-
mation T = (Ty,Tys .+ . «» Tn4i) with the desired
properties is contained in the noncharacteristic
oarrix. Our glodbal results depend on this matrix.

The first theorem that we need is found in (12).

- Cysbss

Theoren 3.1

Suppose there {s a map H: “l + B® which is dif-
ferenciable wich Jacobian matrix J(x). If there
exists a constant ¢ > 0 such that the absolute
values of the lcading principal minors 83,45, .., 8y
of J(x) satisfy

e | 8,1 [Aal
2 €, T 2 Cy . y T— 2
! 8,1 -l

for all =xcR" ,then H is one-to-one from R" onto
RB,

The condition stated on the -absolute values of
leading principal minors is called the ratio condition.
Our first result is proved by applying Theorem 3.1,
the construction of our transormstion, aad the com-

nents wmade during and after the construction.

Theotem 3.2
For system (2) nunum; that the set
{g.,/€,8)y « . .. (ad® 'f,g)} spans an n-dimensional
spcce ac each point of R™ and the set
(g lf,8), - - -, (ad® 2£,8)) is involucive on R,
If the noncharacteristic matrix (8) satisfics the
ratlo condition on R", then rhere exists a ¥
transformation T « (T;.T;. . . ., Tg), with the fol-
~ lowing properties.
; 1) T(0) = O,
11)' T;4T9s « & «» Ty are functions_ of
KyoXgs o ¢ oov X, only and have a nonsingular Jacoblan
ngrrix on R7,
111) Tpey 43 a funetion Xy,X3, . . .. ¥p,u
) which can be inverted in terms of u for all
(X3sXss o » o4 %p)ERT,

iv) T,,T,s + « .4 Tq are the state variadbles

and Tn+, the contral for our Vincar system (3),
V) T @ (TyuTas » + o4 Toey) i85 3 one=tuo~-one map-
ping of RO o RM™! taking system (2) to aystem (3).

Siramnle 3.3

2
we take the nonlincar system on R°®

;';l ;‘.l ’~x2 + exz L x ) [¢]
‘
- , +u = £(x(t)) + uglx(r)).
)':: Xy LIJ
. Our first Lie bracket

-e*2 + 1y
ff.el =
o

{8 lincarly [ndcpendeut from g on R:. and the e
lutive assumption on x (s trtvlal for twe dimeastons,
Sulviag dx;/dty = -(c 2 e 1), dxsldt, = 0 with
x1(0) = 0 and x3(0) = 0 we have x; = ~20; and
x, = 0. Fxamlning dx,/dt, = 0 and dx./dL. = |
tnitial conditiony x,(ty,0) = =2t,, and xs(c;,0}
we find xy = =2r,, and x; = t,. In this case the

noncharacteristic matrix (s

-2 0
o 1|’
which fulfills the ratio conditiond with

Hence our transformation

*y
(rl WT2073) = (’

wiln
=0

¢ = 1/2.

+ e e )t

171 »
T -7{z s :,

X

"l(%"x"’u‘

(@*2 + 1)(x,? + u))

+ ".*) 4";_1:

N )=

is defined on all of R 1)
through v).
The proof of the following corollary depends ou

results like Theorem 3.1 from (12).

and has properties

Corollary 3.4 -
suppose {R.ff.el. . . .. ™) | ospans an

n=dimenxlonal space on K amd (g [fop). .. ..

(ad™71,8)) s lovelut bve there.  IF the assumptlon o

the ratio conditinn for the noncharacteristic matrly

in Theorem 3.1 i3 replaced by any of the fojilowing

hypotheses, then the ccnclusicns of that theorem

rezain valid.

1) There exists an n x n uwonsingular cozstant
matrix A such that A muitiplied on the right by
the noncharacteristic matrix satisfics the ratio con-
dition on R".

2) The noncharacteristic matrix (vith a possidble
premultiplication by an n = n  noasingular consiant
matrix A) is positive definfite on  RY,

3) The determinant of the noncharactertstic maLrix
is positive on R® and the sum of the noncharacteria-
tic matrix and {ts adioine has nuvetepat lve principat
minors for all xcR™. 1o this case, the noncharacters
Istic matrlx may be presuttipiiced by an * n nog-
ainpuiar constant matrix A ax hefore.

Often we cannol construct o transformat{on on
of R™ but are able tu do so on some {ixed open
set U of R". 1In this ¢irectlon we consider the
following example.

a

suhe

Example 3.5

Let
%, [sin x, rb
X, | = [stn R o = £(x(t)) + u{t)pix(t))

%y I

amd

U - {(Xl.x,.!,);l‘.': B P K




Qur Lie brackets are

[+}
[£f.8) = |-cos x, ""_n—
. .
and )
cos X, cos X,
(£,0£,8)) = (ad?f,g) = 0 .
' 0
which to;.thcf with g span a three~dimensional space
on U. Also ’
"}
lgs{f,8]) = |sin x,
0
implying that g and [£,g) are involutive on U.
Solving
&, gE (el gk

in ovder and wiLh the proper initial conditions we

find tiuat xy(ty,ty,ty) = €;,xa(t;,8;,ty) ==~(cos ty)t,,
and xy(t,,t,;,ty) = t;. Solving for t,.t;,t, as
functicas of x,,X;,xy wa obtain t; = x,,t; = Xy,

and t, = X,/(-cos x,), all valid on U. The trans-
focrustion

T, = x,
T = 8in x,
T, « cos x, sin x,
T, = -sin x, sin® x, + (cos x, cos x,)u
holds for all (x;,x;,%y) in U,
CONCLUSIONS
We have given a theorem and its corollary in

vhich we state conditions for having a global trans-
formation of a nonlinear system to a linear system.

In ¢cing so ve gave an explicit method for constructing

suzk a transformation and introduced the i{mporctant
aoncharacteristis macrix, Exazples that illustrated
our technicue wcre pregented.
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ABRSTRACT \

In this pcper Brockett's feedback invariants c¢f nonlinear systeme are
gereralized tc a larger class of transformations. In terms of these invariaits,
we also ectend our recent results on linear equivalenis of nonlinzar systems ~

to the multiple-irput case.
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IKTRODUCTION

N .- By peans of state spice coordinate changes and
feedback, a controllable linear system can be traas-
forzed {nto decoupled series of integrators, that is

-x,,....i" = U,

p 3 5 1

- .
X,y %,

1
X -x ; - x ..o
ky+1 T 420 Ty 42T Ty 4y

x.

A

T R S . TE U ) S TR
e YL NS

This particuiar forp L5 sometimes called the Brunovsky

canceical fors. It is also well known that the orders

L of these ceries ¢f integraters are iavariant mdeT tbe
3 (2, 0); they are usually cailed the

i1suS.

iterttu'e. there have been soze efforts

Llize these linear results to nczlinear

er and Ciceolani (i) showed that the class

ngular systess can be transforumed into

. ¥ anonical forz. 32rocker: (§) discovcred
° ans class of Invarizants (discussed later) and
a necessary and sufficden: condition for a

< nonmlinear gvcic2 T be transfcraed into &

excies ef i".:e.gn.o‘s. By enlarging zhe set of
-
4
!
;

a!ctrc zlrse, La er L-a () :he aucxcrs exs e:-:e" :ne
IR c-tal trensloeraoiions and also gave & way

The goal of this paper is to generalize the pre-
vious results to obtain a characterization of the
class of linear equivalents of sultiple-input non~-
linesr systexs. Recently the authors were informed by
Professor E. Sontag adout similar Tesults obzained by
Jakubczyk and Raspondek (?); we shall briefly discuss
those results in the final section.

& -EQUIVALENCE .
We consider nonlinear systems in R® of the fora

x = F(x, Ups e o ey Up) Q3
vhere F defines a ¥ ™ vector field and TF(D) = O.
A F-tronsformoticn is defined tobe s €
deffecmorphiisn vhich praserves :the origin. &4 svsiex
I; 4s said to be J-reigted to another system =,
on a neighborhood U C E™= 4f there is a
& -transiorzation T = (T,, T,, . . ., Tpsn) such
that for acy state asd comirel traziectoTy
(xg{2), -« ., xq(t), v (2), « .y um(®)} 48 U of
Iy the image T(: (T, o o o0 5 (8), up(e), o o .,
u.(z}) corresponds :o a state ard cc-t-ol traiectory
ef the eystes I., with Tpagy .+« oy T 2eisg the
controls of [, B) u'guuts siailar to these = (U7
we have the folloving results.

Proposiczion 1
A SYSIEZ X ® F(X, Ups « .+ ., Up) i F-velated
To & sysiem P o= G(y, V., . . ., ¥g) 4 2nd oaly if
there iz ¢ iransformstids T = (‘."1 ooy T Syey
Taes) such that
1. T, . . ., Ty are independent of the cen-
£rods Uy 4 v ey

2. The Jacodian
.- .=

t Cenay -

«
b=
| SN
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15 noasingular near the origin of E™® 4od

3. T satisfies the systex of partial differ~
ential equatioas
°
3T,
3;; Fj = Gy°T , {=1, .. .,018
=

vhere F e (F,, . . ., F), G=(G,, . .., Gg), &nd
61-1' denotes the cozposition.

Preposition 2
The -relacion is an equivalence relacion.

With this equivalence relation ve now examine
the equivalence classes that contain the controllable
linear systems. It is clear that a aoulinear system
that is J~equivalent to a controllable linear sys-
tem is also F-equivalent to the Brunovsky canonical
for= of the linear systeam. More precisely, for such
a aculinear systen

ii-ri(xI' e o o3 Xpns “;: L) “n) »
i=1, ...,

it is associated with a transforzatiocn
T = (Tys « o «s Tgs Tnwye- = = =+ Tpeg) and a set of

‘m  positive integers (k;... . ., kp) such that by )

lecting _ : N
% - Ei: kg
L=o

with ky = 0, we have

2 a7, '
EFJ(X, Ups o o os tg) = Ty o
= ' 2>

..P_‘-t-lgigap-l

and
k-]
31'.?
Za_xj'rj(xc Ugs v o oy %) .TB“'P .. 3

3=

vhere p =1, . . ., =. Observe that for each fized
state x € B2, Bq. (2) is a system of n - © libear
ecuatic=s vith censtant coefficients satisfied by
Fiy « « .4 Fge A3 an extension of the result in (5),
we hzve the followizg necessary ccndition.

Thacrez |
if a system xg = Filx, uy, . . ., ug),
1=1, .. .,3 4is F ~-equivalent to a ccntrollatle
lizear gysie=, thex F = (F,, . . ., Fn) cust take
the fem=
=
Fyo=fx) + ) gij(z)ej(x.u)
=
fir ali 4 ~1], . «y D, Where ej(0.0) ® 0 aad the
Sesotian #lei. ...y )/Euy. LT L, ug) 8
A0CaLly moasingular.
Sirze the Teplatezant of the scalar fimcticns
€ss + o sy = Fr a set of new conztols v, v oee Ve
16 & legiTiziste  JetrizsicTmatior. we ensll o Liizuss o
TIT.abeel FUSIER ST L3 13TmS 32 I8 D e [ e IoT
1

F-1NVARLANTS

In this section we show thut the invaziascs dis-
covered by Brockett (¢) are dlsc imvarianis unier oud
§-transformaiicns. TFirst we aced the follosirg
obaezrvation.

Observation 1
1f a systes Lik « F(x, u;, + « ., ug) 15
& -equivaleat to a system of the form
B r'd

o .
Eef) o 3 gaeglm, g v ooy uy)
1= :
then I must take the gimilar form as

) ) \
§o-£@F) - 2 BiG)4r, Voo v v 0 V) .
L=y

This can be verified by simple computations which ve
leave to the reader. With chis fact we can now
generalize Brockert's results.

Let Lg 4 be the linear span of all the vec-
tor fields ¥ that are Lie derivatives of
£, 8ys + + «» By with the total degree of ¥ with
respect to £ being less than or equal to 1 aad
the total degree of ¥ with respect to the g's

" being less than or equal to j. For example

Ly, = linear span {f, g;, . . ., gq» (ad'f, g,),
oo es (a8, g)), (ad®, g)), . . ., (ad’f, g} .

Here the [ie derivaiives are defined inductively as
af 3
(ad®¢, g3 = ¢, (ad’f, g) = 5-3 -e“if.

(addf, p) = (ad’f, (adi™g, 3)) ,

where
x 0n
ax " ox

are the Jacobien —=2trices.

Let S3,4 be the subspace {plp = h(0), b € Ly )
of RU.

Theores 2 .

The dizensions of Sy 4 are § -inverisnc.
The proof is ozizzed,
tially Brockett's proucf ia () v 2Tis in wer case.
Fov we exa=ine scz2 i=periaci Cizensions of the
S:,4 vhich ve need i3 charactarizing the equivalienze
class of inzerest to us.
Civea 2 cyste= (£, g, « . .+ @)
construct & =atrix ¢f vector fields

ad, Sut ve re=zrhk that essea-
‘

in BB e

! i o o
L ! & 8 : ‘
v i
. , ' .
E. L(ac’s, 2 b gagie, gy ) botse
l " t i
| ! -
i 1]
b == . ACSTEL g viatT




Let By denote the ith row of the matrix. Ia
terms of Ly 5 ve have Lg , = spen {B,],

l;,; " span {g,. B,}, etc. We assume in the rest of
the peper that the dimension of Li,; is censtant on
so=e neighboraood and define the following indices.

1. Indices a = (gp, « + «» Gp_3)

oiedzsi.x for 0 ci1 <=1
2. Indices 8 : (Bos - -« -o_.:n-‘)
By = 0y, and By = a; - Ogay

(7'; o o oy Yn.x)
B8y ~ B4y, for 0sis1-1
vith &, =0
4. Indices k = (k;, . . .« k)
kg = the mmber of Bj's
vith Bj 21
Clearly, by way of comstruction,’ the indices
(ags» Bye + « ¢4 Spoy) are an increazsing sequence.
By computation, it also caa be shown that
(Bgs 334 « = +» Bpwy) 1is always a decreasing sequence,
and, thus, vy 2 0 for all 4. In this paper ve are

most interested In the case in vhich a3y = m and
%p.; = 0. If this is the case, one has

o=1
Yy ==,

for 1 £1i<a-~-1
"~ 3. Indices ¥

[ [-d

e

[1od

M/IN RESTLIS

We continue the developaent begun io the second

teczion (F-equivalence). Suppose a system
(£, g4+ - - -» 8g) 18 T -equivalent to a2 controllable
lincar system asscvciated wvith a set of (Kronecker)
indices (ky, . . ., kny) where k;, . . ., kg are
positive integers and

o)

2 ki -0 .

i=3
Equations (2) aad (3) chen becoxe

Ty \
-ax—Jng-O, l <k <m, ‘
= (6)
L,+lstcay-1,1<cpsn
.n
4Ty
. 2 ﬁ;f: * Tiey - @
= '

The nonsingularity of the transformation T {n turn
implies that the matrix

n h-]
T, 51'.1

E —lg ... E e
xy By i, ‘wj

= =

a -1
9T . T
i
x5 iy xy oy

L 3= ’ 3-1 . d

-

(8)

is oonsinguler.
Recognizing that the su=mation

o
=y &
s

can be expressed as a duzlicy product of forme snd
vector fields, E¢s. (6), (7), 2ad (8) are egquivaleatly
revTitten as .

(ﬁi,gk>-6, 1<k sm, }
9)
e

lp-;"‘lsif‘p""l

1A
h-]
(7,

(et €)= 1yy, {1c)
and ’

<dI‘z. 5-..-.> e <drax' %)

: an
(d‘rau. ;_,_x). (et s

is sonsingulas, where dIy 4is the form

(.:r, Ty
ErrA a.v,) -

am
Ol
S L
v T3
L °%5
FL

Caing the well-imown formule
{ar2T, €3, g) = dieT, g = {¢T, (ad*f, p)) O}

\

she prezedln | slszussien Tesoiza A0 the fillowing

theorex.
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TheoTen 3
A system (£, g4 « - -» Bp) 48 F-equivalent to
a controllable linear cyetez if and only if there is

a ser of positive imtepers k;, ki, . . ., kg with
hv
2okt
i=3

and ©w scalar functions

r-1+lnt.:+xp . . ;'T.n+"
such that
1. The forms dT are

e o oo AT
P . +
linearly independent, -1 = ° Bt

2. (47, 4+, (ad't, g)) =0, 153 s,
p

0515_1?“-2.
3. The matrix

&y a,*3
(@, 40 (a4 T8 .. (4T, 440 (a8 Rl )

"

e -3 . a 1
(s o yo td T ) e . (e f. ta))

) is nonsingular, vhere

LT 1
.pﬂikz,-lspsﬂ,k'-o-
i=0

Thercfore, the probler of the existence of &
traasforpation T becones the existence of ®» posi-
tive integers a=nd = linearly independent exacs one-
for=s which satisfy the above condicioms. COace Zhese
= ooe-forms are obtained, the rces: of the transforma-
tion can be comstructed by Egqs. (10). We remark that
in the proof of the above theorez one has to show that
a zransformation so comstructed in indeed nonsiagular.
Por details the rezder is referred to our paper (&).

Next we come to another main theorem which gives
conditions on tke characteristics of a system (includ-
ing the Zovariant indices discussed in the preceding
section — F-invariants) for being & -equivaleamt to
a linear systen.

Thecrex= &4

A systez (£, g;0 - - -4 B2) 16
s c2miTollable lizezr systes viih ©
only

g -equivalent to
controis if and

).
[

. Gg "3, 35, * 0

2, Fer each 4 suceb thar Yy # 0, the set of
vecior fields

(B0 v or e+ o0 @373, , 0, (2t T, g0))

.

H
-—.emtae .

ig Invelutive.

Low guppose L, = 1, 22, and wy, o . ey

Y.

ecr needicd nze~-forms that vanish cop the integrsal

associcted viih 1, nazely, the integrel
1

ef Ly -1, One step of Lie derivaiive

giver vt forzs Le(o)), <y Le(eg, ) which, by
defi=ziizn of .., ee «, o B3ve 3ero CUBlIlY

’
oA me s o e e P T -
POSALSILF wal® Lhe WeIL2D ILeldis 2D -11 - 2,1 -
re Trreesfyz theuses, Ly . 45 invelutive.

Theoren 5
1f a systen (f, g,, « - .+ 8p) Batisfiies the con=-
dictionms in Theorem &4, naoely, ¢

l. ¢y =3, Bpey * =
2. For each i such that yg ¥ 0, 1y _,,
is favolutive b '

then "Lj.x is lovolutive for every 0 < j < 1, - L.
CONCLUDING REMARKS

In this paper ve have obtained & complete chacac-
terization of these nonlinear systems which are
& -equivalent to a controllable lisesr system. These
nonlinear systezs ars grouped into difference eguiv-
alence . classes indexed by F-invariant indices.

The condizions stated in Theorem 4 are weaker
than those in the paper bty Jakuberzyk and Respondek (7).
Some of their conditions are redundant, as indicated
by our Theorem 5. Also their proof is an existexnce
proof, whereas ours is comstructive in nature. Details
and explicit coastructioc of the desired transforma-
tions are omitted here. They will appear in our
paper (8).
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CONTROLLABILITY OF NONLINEAR HYPERSURFACE SYSTEMS
L. R. Hunt* .

ABSTRACT. Consider the nonlinear system

n=1

x(t) = f(x(t)) + 3 u,(t)g,(x(t)).x(o)

1=]
= X, EM .
where M is a connected real-analytic n-

dimensional manifold, f,g].....gn_1 are

real-analytic vector fields on M, and
n.] 2re real-valued controls. We

are interested in characterizing the largest
open subset U of M, 1if any, which is
reachable from x_ and which we call the
region of reachab?]ity of our system from x

If the Lje algebra L, generated by
f.g1.....gn_] and successive Lie brackets
has vector space dimension n at xo, and
{ if f,g1....,gn_1 are linearly independent
at some point in M, we find the region of
reachability from Xy Suppose U s Ehe
smaliest open subset of M with Xq eu

so that :U contains the integral man‘f¢ids
of the Lie 2lgebra L‘A generzted by

9ysra0y that intersect it and f assigns
vecters on U which point in the direction

'UI...-,U

0

. *Zesezrch suoported in part by the National Science Founcaticn
uncer NSF Grant MCS76-05267-A01 and by the Joint Serviges Elec-
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L. R. HUNT

of U. Then U 1is the region of reachability
from Xo for our system. Much of the work”is

involved in proving a similar resuylt in the
more general @™ case under the stronger
assumption that f',g‘,....g“_I are linearly

independent on the connected @~ n-dimen-
sional manifold M.

1. INTRODUCTION. Let M be a connected real-analytic r-
dimensional manifold, f,gy,....9, ; be & vector fields on

M, and Upsen ool be real-valued controls. The system

n=-1
n=]
M) = Fx(t)) + 2 u;(t)g;(x(2)), x(0) = x, €M,
1=

is called a hypersurface system since the number of controls is
one less than the dimension of the manifold M. We assume that
the vector space dimension of the Lie algebra Ly generated by
f.975--.49, 1 2nd successive Lie brackets is n at Xq (i.e.
this Lie algebra spans the tangent space to M at xo) and that
f,g.l,....gn_1 are linear independent at some point of M. Re-
sults due to Sussmann and Jurdjevic [18] and Krener [15] show
that we can reach a nonempty open subset of M from xg. Let

U be the largest open subset which is reachable for our system
from Xy We characterize U by proving that U is the small-
est open subset of M with x € 0 (the closure of U in M)
satisfying i) 30 contains the integral manifolds which inter-
sect 1t 0f the Lie algebra L'A generated by 9y +9801 and
successive Lie brackets and i3) the vector field € points in
the girectior of J on 2y. This set U s called the region
¢f reachez ity from x_, and if J = M, the system ‘s contrcl-
‘atle fror x . )
The real-a;alytic thecry depends on results provec “or & sys-

ui{thg (x{t)), x(o) = x, €™

‘inearly indepencent vectior “elds

12
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HYPERSURFACE SY¥STEMS

on a coﬁnected ©" n-dimensional manifold M.= For this case
we show that the region of reachability U 1is the smallest open
subset of M with x, € U satisfying U is an (n-1)-dimen-
sional integral manifold of 9ys--+28,9 and f assigns vectors
on 3U in the direction of U.. We view the control problem much
as one would the famous Holmgren's Uniqueness Theorem (see [4])
of partial differential equations. A solution of the partial
differential equation is unique up to the characteristics. A
similar situation occurs in the study of uniqueness ‘of analytic
‘continuation for the CR-functions on a € real hypersurface in

‘ t", n>1 [11]. In this instance one gets uniqueness up to the

: characteristics of the tangential CR-equations, which are the
integral manifolds of a subbundle of the tangent bundle to the
‘hypersurface of codimension 1. If figys.--08,. 0 our system
are linearly independent on M, then 9yrees90 give us 2
subbundle of the tangent bundle of codimension ). Thus the only
possible way to have a set which is not reachable from g is to
have it disconnected in some fashion from the reachable set by

1 an integral manifold of 9yse-29p.1" 0f course such iqtegral
manifolds may not even exist in which case we expect controllabil-

‘ ity of the system from Xqr Michael Freeman has results giving

! conditions at a point for there to be an integral manifold of 2

collection of real-analytic vector fields through that point.

A nice expository paper containing the problems considered in
this articie has been written by Srockett [1]. Related results
can be found in the work of Krener [15], Lobry [16], [17], Suss-
mznn znd Jurdievic [1E], and the author [12], [13]. Thecrems
concernire tne oroblem of local control’abilisy along a reference
trajectory are due to Hermes (7], [8], [9]. GResults cealing with
ccntrol theory for iinear systems are in [14]. This oaper is
. arranged in the fellowing way. In section 2 we give definitions

end a relevant example. Section 3 contains a local thecry cone

. . *x
cerning the boundary of the recion of reachability U of cur @
. . PR
system under the assumstion that the beundary is € rear one
of its ccints. in section & we state a tneorem from [11]

e o e n
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concerning a subbundle of the tangent bundle to M and allowing
us to remove the 1ﬂ restriction. Then we prove our main result
for the @ case and give several applications. Section 5 con-
tains our result for the reai-analytic system on a real-analytic
manifold.

2. DEFINITIONS. We shall use the classical Frobenius Theorem
and Chow's Theorem [2]). For a statement of these results and
their applications to control theory we refer the reader to [1].

Of interest to us is the system

n=1

x(t) = f(x(t)) + ig vy (t)ey(x(t)), x(o) = x €M (2.1)

where M s a connected €  n-dimensional manifold,
'f,g1.....g".1 are €@" vector fields on M, and Upsoeealp g
are controls.

Let T(M) be the tangent bundle of M with T (M) the
tangent space for x € M. Recall that if X is a vector field
on M (i.e. X 1is a section of T(M)) then o is an integral
cuave 0f X if ¢ is a ir.’ mapping from a closed interval

I eR into M such that %ﬁl = X{a(t)) for all tel,
DEFINITION 2.1 [18). If D <s c subse:t of T(M), then an

intgeral curve 2F D 18 a mepping o From g reacl interval

t,t'] imzc M such thot there esist tat  ctyc. ct = T
oL vecter Fiélds )(.l,...,)(k in D witr cre restriction f o

- - . - - - .
sz Yy vaty) Eaing on inzegral curve cf Xy, fer aach
-
i=3,2,...,k.

JEFINITION 2.2, et D te o subser oF T(M) :z=nd le:

X M. A ypeint x €M <s D-regehcbie “rem X if there s

m

0 e —————————————)
o intecrel cwrve a ¢f D amd some T 2 ¢ im the inserval for

3 gushk sk z{0) = Xy ad alT) = x. 2 curses A of M2

Surgaohsiie Sre- L3 if evéry point x € A Is rezchalle frem X,

Since <he 5 we consider 1s the subset of T(M) civen by

X

t~2 vector fields of a system of the form (Z.)) we crop the D
fmzm D-reacratie. We sheli meke assumziicts of figy,...

1PN
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that assure us that we can reach an open subset of M from L

OEFINITION.2.3. The largest cpen subset U of M which is
reachable from x, is called the region of reachability from X.
If U= M, we say that the system is comtrollable from x. . o

DEFINITION 2.4. Zet O be an open subset of M ond let 1 .
x € 30 such that 30 is g ?‘ mnifold near x. Then f
points in the direction of 0 (or towards 0) ot x if f(x)
is not tangent to 30 at x and if there exists an open neigh-
borhood W of X in M such that the vector assigned by f ct
X, projected into M (by the esponential map), and intersected
with We{x} is containedin 0. If 0 isa € mmifold and
if the above is true for every x € 30, then f points in the
direction of 0 om 30.

DEFINITION 2.5. et O be an open set in M and let x€ 0.
Then f points in the direction of 0 (or towards 08) at x
if there is ot open neighborhood W of x in M such that the
integral aowe of f starting at x oid intersscted with W 1is
contained in 0. If this is true for all x € 30, then f

srection of 0 om 30.

peinte in the

- |

If £ and g are #" vector fields defined on M, we
. ' define the Lie bracket of f and g by [f.gl=33¢ .2
A set of €~ vector fields {f1.....fr} is called irnvolutive
if there exist r%"' functions y.. (x) on M such that
! [f'i"‘j] (X) = ‘; Yijk(x)fk(x) for all i:jrls": jgr, i # .
z
We introduce one example from [1] which may help us understand
the problems invclved ir trying to ceterming the reacnihle set

cf 2 syste-.

IXAMPLE  (onsider the system

= fxe)) + u(thela(e))
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where M is the.set {{0,0)}. Notice that f and ,g arz
linearly independent on M. Brockett [1] states that if lxo a
(x?,xg) is in the ﬁositive quadrant, then the region of reach-
ability U from Xq is contained in this quadrant. The inte-
gral curve of g through a point on Xy *0, X,2>0 is the
line (o.xz) with Xy > 0. Moreover, the integral curve of g
through a point on x, * 0, x; >0 is the line (x1.o) with
Xy > 0. These together form the boundary of the first quadrant
in M. The vector field f assigns vectors to this boundary
which point toward the first quadrant. Thus there is no hope of
a solution of the system starting in this quadrant to leave it.

We could give more examples at this time, but they would all
hint at the same conclusion. If f,g1....,g;n.1 are linearly
independent in the system (2.)), the important items to check
appear to be the integral manifolds of - IRTRRN- I if any
exist, and the direction of the vector field f on these inte-
gral manifolds. We next examine these conditions for regions of
reachability with ﬁ?‘ boundaries.

3. %J BOUNDARIES. Suppose we consider the system

n=-1
x(t) = f(x(t)) + Z; us(t)g (x(t)), x(o) = x; €M,  (3.1)
1=

where M is a connected €" n-dimensional manifold,

fi2ys. .09,y 2re @~ inearly independent vector fielcs on
M, eand Upsewenly ¢ are controls. It <s easy to see thal we
can reach an open subset of M which contains Xs in its ¢lo-

Let U be

=z reg‘On cf reachability ¢ t-e nyoersy~‘izs §yg-
te~ g¢iven in i

[V Iy S

\

booLet x dean element o tne douncary ¢°

U, arc assume 3y is @ is some open neignscrnocd a of  x
1ir " Lg iust mentioned we need to consider the directicns of

£ ¢ WA 2 and the possipiltty of having an integral =anifeld

Y3 ~
J- NIIR

shecugh x.  Becall that a ¢:ffere~tiable sub-

miefete § of M tgoan dwmsggrel mmmifzld T gy. 08,y YT
¢

T 'S 45 the scace spanned by 9y.....Gp.) &ty fCr each y€S.
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For a more thorough discussion of integral manifolds we must
consider the Lie bracket which we defined earlier. If 9 and
gj are different vector fields on M then

a9 993
[gi'gj] = ‘a—xi‘gJ - a_xl gi .

This may or may not give us a "new" direction in which to move
{see [1]), depending on whether the collection {91'95} is
involutive or not. Let L‘A be the smallest Lie algebra gener-
ated by taking successive Lie brackets of the I PP I
given in equation (3.1). If we get a vector space of the same
dimension at each point of M, _then L'A is a vector subbundie
of the tangent bundle to M. )

The following definition is essential to our work. Let S
and S2 be if‘ submanifolds of M of dimensions k and n-k
respectively.

DEFINITION 3.)1. ZThe manifolds S] and 52 intersect ircns-
versally ot a point y € $; NS, if and omly if Ty(5~|) ®
Ty(Sz) » Ty(M). Here © denctes the direct swm. .

We now prove a result under the assumption that locally our
open set has a i?] boundary.

THEOREM 3.2. et O ke an open set in M uwhich is reachcble
fram x, for system {3.1), ond iet x be = crbizramy point in
30.  Suzpose there is o cpenm neigrdorhood W of x in M
such trat W N30 isaa @ real (n-1)-dimensiongl submanifoll
SEOM L I oy cme of tie Frilovins oonditicms relis, shem O
18 mIT R régiom eF thé resorciil h

i) czhe fifer dimereiom of p o8 X%
i1} che integral curve oI scms 9;» 1 s ¥ sn-1 <g trane-
verszl to 30 ot x,
i11) f zcesigme st x g vaeter peinting <m the directiom
ef :he corplement ¢f Q.

Prosf.  If i) holds then the fiber dimension cf L, at all

zzints in scme coen neichborhood of x in M must be n (since

~

n is meyir2l). Thus 30 cannot be an irtegrzble manifoig of

n7
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NN I near x by the Frobenius Theorem, and there exist
a point y € 30 arbitrarily close to x and a 94+ 1$isn-1,
such that the integral curve of 9; js transversal to 230 at
y. Hence, i) reduces to ii). .
Next we assume that ii) is true. If the iﬁtegral curve of
9y» chosen arbitrarily from the set 9ys---98, 9 and renumbered
if necessary, is transversal to 30 at x, then it is trans-
versal to S0 in W N 30, W being an open neighborhood of x
in M (this W may be smaller set than our orig{hai W). Fol-
lowing the integral curves of 9 that start in WnNnOo, a
reachable set from Xor and continuing past W n 30, we have
that 0 cannot be the region of reachability from Xy- We have
used the fact that we may as well assume we can move along the
integral curve of any g, since uy is unbounded.
If §ii) holds at x, then it holds for all points in W n 230,
and the argument given in ii) with gy replaced by f implies
the desired result. n

It is interesting to note that condition i) does not depend
on W n 30 being a ﬁf‘ manifold.

We seek a minimum number of necessary conditions that an open
set Uc M be the region of reachability from Xy
THEOREM 3.3. Let U De the regiom of reachadility ‘rom Xs
c* *he gystem (3.1). Suppose U isc € memifolld for en
open ngightcriood W of x €3V <nm M Them WN U isan
irsecral =enifole of IETRE- AW and the vecser Fleid f

. . okt e atg A . ,
2sgiome co W N el veertore sointing in the divectiom cf Ul

Secpf. It f20%ows f-om part ii) of the oreceding tneorerm
Hence

<=2t w N U 15 an integral manifold of GyoceoaCply

w02 1s 2gtueliy 2 ¢~ submanifold of M. Since
1-+-vG,.y ‘OrT & linearly independent set on M 2nd

« " :U in an intearal manifold of gq,...,8,» Fert i)

tmz'ies the statement concerning f.

~& ¢k2'1 prove in the next section tnat the hydothesis U

R
is ' near x ‘s superfluous.
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4. THE RESULT FOR #° MANIFOLDS. The following theorem
was proved in [11] for use in the uniqueness of analytic contin-
uation probiem for CR-distributions on CR-hypersurfaces in
t", n > 1. The statement concerning a L boundary can be
relaxed to %’1. or we can simply replace 3’] by ?2 every-
where in the preceding section.

THEOREM 4.1. Let M be a ¥  manifold of dimension n,
and let H be o subbundle of the taowent bundle of M with
fiber (vector space) dimension n-1. Suppose UM i{s an
open set with the property that if 0c U is an open set having
a i?z boundary, them for eéach x € 30 N VU we Aqve TX(GO) =
H, (the fiber of H at x). Then for each point x € 3,
there is a naighborhood V of x, a real-valued function
h € €°(V) with nonzerc differential for cll points in V, end
a closed nowhere dense set t @R such that

(1) aunvs={xeVlh(x)€E}

{2) for ecck 2 €E, Sl s {x € ViR(x) = 2} {8 on imtecrsl
manifeld of H; .e. the boundzy of U 1is foliated by integwcl
menifolds of H.

<oy sy

We now restate Theorem 3.3 under more general conditions.

THEOREM 4.2. et U be thae region of reachadiiity from X

0
- v «© - - « A - s
of the syssem (3.1). Them 3 is e € intecrgl memisld

e Gyr--a8, q @€ f assigms vecters on ¥ which roims in
Z

Procf. Let H be tne suddbundle ¢f T!¥) scanned by
§yreeeaf,ye 17 0 s 2n osen subset of U with: €° Sc.nd-

P
ary, tnen an applicétisn of Theorem 3.2 and Tneorem 4.7 zives us
the statec conclusion. =

we nave the ‘ollowing important coroi'ary, the grgof of which

is cbvious.

CORCLLARY L. 3. Zurrzcse M comtzive vie imségral =zl clis
L Sy Sy Som vkisn Poth £Ff she Tollouing graztemsmes
neld:
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2) The closure of the integral manifold in M <is fbizctcd
by integral manifolds.

b) The vectors assigned by f om this integral manifold
aluays point in the same directiom relative to the integral moni-
feld (i.¢. if this manifold divides M into two components, the
vectors must point toward the same component).

Then the system (3.1) is comtrollable from oy x, € M.

Let Ad denote Hausdorff measure (see [3]) in dimension d
on M. Suppose L 1is the set of points on which the Lie algebr2
L'A has dimension n-1. Then L 1is a closed set in M, and
the Frobenius Theorem implies that L contains the integra)l
manifolds of g.l....,gn_%.1 if any exist. For such an integral
manifold we must have A (L) > o, and we have proved our next
result.

THEOREM 4.8. If A" V(L) = 0 then the system (3.1) is con-
trellcdle from ary X € M.

Notice that if M s of dimension 2, we always have integral
curves of g for the system x(t) = f{x(t}) + u{t)g(x(t)),x(0)
= Xg Thus Theorem 4.4 does not apply in this case. )

We state two theorems from [1] and indicate in a rather super-
ficial way the relation of these theorems to this present work.
We restrict our attention to dimension 2 and to a2 hypersurface
system.

THEOREM ¢.5. Suppose ¢

. L - . . . - 11 .
vested @ vezi 2-cimemgicmal memifeid M. Sugpose thar f.g0}

g &re vecier “Lelde om a com-

"4
[}

«

<elde,

19

e
€z 20" X, of che susiew x(t) =

shalle ¢
altla(x(t)) <e =he set ziven by Chou's Theorer.

we start at X € M and take the integrai curve of @
tmrisgn x_. Suszose this curve divides ¥ tntc two connectec

-

comnamemes Y and M7, 1€ the solution cf kit = f(x(t))

. : + . N .
gtarts 2t Xo in the direction of M, <nen s°~Ce the sCciution
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is periodic, there is some point on the integral curve of g
through x, &t which the vector of f is in the M~ direction.
Of course, this is in keeping with Theorem 4.2.
Hirschorn proved a very nice generalization of the following
result, which we state in dimension 2.

THEOREM 4.6 [10]. Consider the system
x(t) = f(x(t)) + u(t)a(x(t)), x(o) = L

for ¢ € real 2-dimensionagl manifold M. Suppose [f,9] = hg
on M, where h 1§ a ©* function on M. Then the reachable
set from X, is obtained by taking the integral curve ¢ of f
through x, (in the positive time sense) and then all integral
curves of § intersecting a.

This 2-dimensional version can be seen in light of the follow-
ing result found'in [6]). The one-parameter group of transforma-
tions generated by f permutes the integral curves of g with
2 change of parametrization if [f,g] = hg for some €«  funce
tion h on M. Interpreted freely, once an integral curve of f
passes through an integral curve of g it can never return.

This seems to be in agreement with Theorem 4.2.

An obvious question to ask is if the necessary conditions of

Theorem 4.2 are also sufficient.

THEQREM 4.7. ez x, €M and suppese U 1is the smaiiest
coen suizet of M with Xq €0 sctisfying U s o irtesrci
menifeid o Gyseee09p end f assicns vecters te 3U ir the
diressior ¢cf U, Them U s the regiom cf recohziilisy from

X fer ke syese~ (3.1).

In the statement of tnis theorem, we add the assumsticn that
i€ U # M, every cpen neichtorhood of any point D € 33U con-
tains goints from U and the comgiement of U. G. Stefani and
4. Bacciotf have pointed out that the correct conclusion o the
theorem as stated above is U < regicn of reachatility & interior
ef 0. Tnme aythor wisres to thank Professcrs Stefen’ ant
Saccicti for their comments.
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Proof. Ne"know that we can reach an open set and 6} the
theory developed in this paper we have that we can reach U. The
important fact to remember is that to leave U we must break
through 3aU near some point x € aU. In the system x(t) =

fi=

f(x(t)) + EE% u;(t)g,(x(t)) at the point x we can move in the
= n-1
directions  f.g,.....8,_1» =Gqs--e0"Gpyy and 4 2 us(tg,

i=]

for the appropriate finite ui's. Since 3U 1is an integral
manifold of g,,....9, ¢» Lie brackets like [91'gi] with

i#3 will give us no "new" directions in which to move from x.
Also, since f,gy,...,9, ; span T(M), the brackets [f.gi].
i=1,...,n=1 will yield vector fields which are linear combina-
tions of f'91""'9n-1 (the same is also true for successive
Lie brackets'. The only iinear combinations here which can be
used at x are those already indicated by the system. 24

The proof of Theorem 4.7 is applicable only for hypersurface
systems (or certain general systems that behave like hypersurface
systems). We prove results like those in this paper for general
systems of the form :

m
x(t) = f(x(t)) + i21ui(t)<.:f(x(t))

in [12] and {13]. Such a system with m<n-1 is more difficult
to handle than a hypersurface system, and we make stronger
assumotions in order to prove theorems concerning controllabil-
ity.

3. REAL-ANALYTIC MANIFOLDS. We examine the system
n=1
) = flx(t)) + 2 u(t)gg(x(t)), x(o) = x €™ (5.7)

iz

where M is a connectec real-analytic n-dimensional manifold

€'-1""'9n-i are reai-analytic complete vector fields on ¥,
and  uy,...u, g 8re controls. We take the Lie aglebras L,
and oy s definel srevicusly. [f the vector ssace dimension

cf L, at %o i¢ less than n, we apply the real analytic
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version of Chow's Theorem and refer the resader to [13]. We prove
the following result, which is an improvement of Theorem 4.7 for
the real-analytic case. . \

THEOREM §.1. Assume the vector space dimension of LA at x
i N omd that 1'.g.|,...,g“_.l are linearly independent at some
peint of M. Let U Dbe the smallest open subset of M with
x, € U satisfying 3U conigins the integral manifolds of L'y
which intersect it (and which are given by Chow's Theorem) and
f points in the direction of 0 om U . Then U ie the
region of reachability from x_  for the system (5.1).

-]

)

Proof. Because M, f'91""’9n-1< are real analytic,
f),g1,....gn-1 are linearly independent at some point of M,
and M is connected, the set of points P in M at which
f'91""’9n-1 are linearly dependent is nowhere dense in M.

Of course this set contains the points where the dimension of

LA is less than n. Since the dimension of Ly at Xo is n,
this is true for an cpen neighborhood of Xo in M. From
Krener's [15] proof we can reach an open set 0 in M which is
arbitrarily close to L By remarks made earlier in this proof,
we may as well assume that f,g],...,gn_] are linearly indepen-
dent on 0. Llet Q' be the largest connected component of M
¢containing O on which f,g],...,gn_1 are linearly independent.
Chocse a point x, € 0 and apply Theorem 4.7 with x replaced
by X3 and M by 0' to get the region cf reachability U' of
tne syste~ “rom % in Q'.

We exarine the houndary of V' in M, which nas twC CCM70-
nents 3U' H P and 3U' N P, where P denotes tne compiement
0f P in WM. If s’ " P is a nonemgty set, Theorer &.7
imalies that 30' NP 4is a (n-1) dimensional integral mani‘olg
0f gy,...28, 7 2nd ¢ points towards U' on ' A 5.

we assume that 3U' N P is nonempty and that 3" n P is a-
real-znaltyic {n-1) dimensional manifold in an coen reighborhooc
cf a peint x € sU' N P, 1f the integral curve ¢f scre
z..1 €1 €n-1, is transversal to aU' NP at x or <f f

! -
zesigns at x & vector which does not point towerds U,
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arguments like those given in the proof of Theorem 3.2 show that
we can reach an open set in another connected component of M
like 0', and we simply start all over thgre. \
Thus we assume that the (n-1)-dimensional manifold parts of
3U' n P contain the integral manifolds of L'A which intersect
them and ¢ points towards {' on these parts. let xesU'n P
and suppose the unique integral manifold N of L'A through x
contains the integral curves of f that start.at every point of
N. .In this case we have the vector space dimensions of LA and
L'A agree on N and if we reach any point of N, then we can
reach all points of N (this is the important part of the real-
analytic theory in [13]). Then N will not be in U if 3N
contains the integral manifoIds-of L'A that intersect it and
f points in the direction of N on 2aN. Of course this means
that if 0 and aN intersect, then the points in this intersec-
tion are in 3U and satisfy the required conditions on the inte-
gral manifolds of L‘A and on the direction of f. An easy
example of such 2 manifold N s a common equilibrium point of
f19ys---19,_ s which is certainly not reachable. .
Hence we have that 3U' N P contains the integral manifolds
of L'y (given by Chow's Theorem) which intersect it and f
points in the direction of ' on 3U' n P. Therefore 2U'

must consist of the intecral manifolds of L'A intersecting it
eanc f opoints towards U' on 3U'. A repeat of the proof of
3 Theorem 4.3 found in [1Z] shows that we cannot reacn an open sub-
' set of M in U from x;-
cecall there is &n coen ngighborrocd of X, in M on wnich
tne cdimersicn of by At x, is n. ~frbitrarily close to any
i SSint in tnis neichborhood that can be reachec fre- Xg is an
. ¢sen set which s reachable from Xq- Thus we can reacn 2n ¢pen
¥oef ¥ which contains Xq in its closure, and we may ess;me_
that 2V cortaing the integral manifcids of L - Tntersecting

ct &nd f ogints towards Vooon V. We reed t0 $°Cw thal

v 3 Y, &rd we know that x, € Vel

1§y €V N U, ther an spen subset of U (lar te -eachec.

<
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By the theory developed in this paper U is reachaﬁﬁe and no
Jarger open subset containing U of M is reachable. Also V
can be reached and we cannot leave VY once we get to it. Hence
we must have V = U, If xo € 3V N U, we reach an open subset
of M arbitrarily close to x_ (this is how we found V) which
must be in U. The same proof just mentioned implies V = U.

Suppose that Xy € 3U. Then the integral manifold of L'A
through X, Must remain in 3U and the integral curve of f
starting at x, {and moving in positive time) moves in 0. If
the curve for f reaches U, then we know we can reach an open
subset of U, which will also be an open subset of V by the
way in which V was formed. Above arguments show that we have
vV =U,

Assume that the integral curve of f gtarting at Xq stays
in 3U. Taking the unique integral manifold of L'y through
each point of this integral curve keeps ys in 3U. Let N' be
the set defined as the union of these integral manifolds of L'A.
At each point of N' we can start an integral curve of ¢, and
we suppose that all such curves remain in 3U. We can continue
to repeat this process and we assume that we cannot leave aU.
Perhaps Lie brackets like [f,g] and higher order brackets will
allow us to get out of 3U. Helgason [5] interprets the Lie
tracket [f,g] at a point x as the tangent vector to 2 Curve
secment (starting at x) and moving in the ¢ direction, the
€ direction, the -g direction, and then the -f direction
&1l for ¢ units of ¢ime. Thus Lie brackets will not helo us
reach ar 22en subset ¢f M. SinCe we know that we can reacn he

coer sgt v, an irze2cril curve of f rust take us into V.

11}

dnce we nzve tnis, we know that V = L.
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MULTI-INPUT NONLINEAR SYSTEMS

L. R. Hunt and Renjeng Su

Abstract
Consider the nonlinear system
. m
x(6) = F(x(6) + T us(t)g;(x(t))
where f,gl, - . +» G are ¢” vector fields on some neighborhood of the
origin in R" and f(0) = 0. We present necessary and sufficient conditions
for this system to be transformed to a controllable linear system. Our

results are constructive and depend upon the solutions of overdetermined

systems of partial differential equations.
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Global Transformations of Nonlinezr Svstems

L. R. EUNT AND RENJENG ST

Ahstract — Recent results have established necesszry and suificiezt
conditiocns for 2 nonlinear system of the form

*x(t) = £(x(t)) + u(c)g(x(c))
with £(0) = 0, to be loczlly equivalent in a neighbornood of the c:i_gzin
in R o a controllable linear system. We combine these results with
several ve;sions of ﬁhe global;inverse function theores to provefsﬁfﬁif
cient conditions for the :ransféénacion of a nonlinear system to g linear
systexm. In:doing sc we'in:roéﬁﬁg’a techmique fer comstructing i trass-

- forzation uader the assumptions thet {g,[(f,gl, . . ., (ad®

-159S)} bs.Pm
an p-dizensional space and that {g,[f,gl,:~ .~ \adn'zf,g)} is an

involucive sec:.
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CONTROL OF NONLINEAR TIME-VARYING SYSTEMS

L. R. Hunt and Renjeng Su

Abstract

Consider the time-varying nonlinear system of the form

m
LB = flat) + T ui(t)e;(x,t),
i=1
! -
with f,g1,..., 9m being ¢ vector fields on R"+1. We give necessary

and sufficient conditions for this system to be transformable to a time-
invariant controllable linear system. In order to control the nonlinear
system, we map to the linear system, choose a desired control there, and

return to the nonlinear system by the inverse of the transformation.

—— R
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TRANSFORMATION OF NONHOMOGENEOUS NONLINEAR SYSTEMS

R. Su, G. Meyer, and L. R. Hunt

Abstract
The problem of when a nonlinear system can be transformed to a

linear system is treated here. Previous results are further

generalized.
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ABSTRACT ' ¢

Sufficient Conditions for Controllability

L. R. Hunt . .

The problem is to find sufficient conditions for the system

n
X{t) = £(x(%)) +i£lui(t)gi(x(t)), x(0) = % €M

t0 be controllable. Here M is a connected £ n-dimensional mani-

- - a . -
folad, I, 9yr---+9, are complete 2 vector fields on M, and

c

g1 e-e U, 2Xe real-valued controls. If m

a1 2T€ real-analytic, M is simply connecteéd, and 91;’;"gﬁ-l

as

n—l, M[ f' gl,-.o,

\Q

are linearly independent on M, then necessary and sufficient con-

- . -] N
ditions are known. For the case of oux 2 system with gerneral r,

we assume that the space spanned by the Lie algebra LA generacte

o8

r-...6_ and successive Lie brackets has constant dimen-

sive l.e brackets has constant dimension z' <z oon M. I 3’ = 2

maniizlsd 28 conzaining x IZf o' < p, suiiicient zoriizions
z2rz Icund Lnwclvine the compnutetien ¢f cerceln Lig Draciets az
zcints where the vectcr I:eld £ is tancent t¢ the ntegral mani-
Izléz of L. zre we assume that every Lntegral maniicid ¢l Li
ZLoTiLns scoch & peint.

—_—
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ABSTRACT
n-Dimensional Controllability with (n-1) Controls !

L.R. Hunt

Let M be a connected real-analytic n-dimensional manifoid,

f’gl’°'3'gn-l be complete real-analytic vector fields on M which -

are linearly independent at some point of M, and Upreeesty g

be real-valued controls. Consider the controllability of the

system
n-1
i k(t) = £(x(t)) + I u, (£)g,(x(t)), x(0) = xyeM.
i=1

Necessary and sufficent conditions are given so that this sys-
tem is controllable on any simply connected domain D contained
in M on which Gyree-r9y; aTE linearly independent. These
conditions depend on the computation of Lie brackets at those

, points where f,gl,...,gn_l are linearly dependent.

— -
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Senior Investigator: Richard Saeks Telephone: (806)-742-3528
JSEP Funds: $25,875 |
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Other Funds:
5. Total Number of Professionals: PI's 2 (3 months) RA's

6. Summary: ;;
A decade ago the author initiated a research program directed at the
formulation of an algorithm for gault diagnosis in analog circudlts and Aystems

which was capable of running efficiently in the dual mode "depot/f§ield"
environment associated with most DOD maintenance systems. Specifically, it
was desired to formulate an algorithm which: ji
i). is applicable to both Zinear and nonlinearn systems modeled in
either the time or frequency domain,
ii). can be used to locate multiple hard on soft faults, «
iii). and is capable of locating failures in "xeplaceable modules"
such as an IC chip, PC board, or Aubsystem rather than dis-
discrete components;
all of this being achieved with a minimum number of test woints and at accept-
able computational cest. Although a number of algorithms which achieve these
goals in the linear case have been proposed by the author and others, little
progress had been made in the nonlinear case until the past year. During the

nast year, however, we have found a long sought mechanism for incorporating a

jallure beund into a sdmulaticn-after-test algoaithm thereby combining the

—
—— -
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best attributes of the classical simulation-before-test and simulation-
after-test algorithms into a single package. Indeed, the success of our
simulated experiments with the new algorithm has been phenomenal; and, as
such, we believe that our new algoaithm represents an essentially complete
solution to the analog fault diagnosis problem. ]

7. Publications and Activities:

A. Refereed Journal Articles

1. Saeks, R., and R.-w. Liu, "Fault Diagnosis in Electronic Circuits,"
Jour. of the Soc. of Instr. and Cont. Engrgs. Vol. 20, pp. 20-22,
(1981, a prelimary version of this paper also appeared in the
IEEE CHMT Society Newsletter, Vol. 3, No. 3, 1980).

2. Wu, C.-c., and R, Saeks, "A Data Base for Symbolic Network Analy-
s1s,” [EE Proc. Part G, (to appear).

3. Saeks, R., Sangiovanni-Vincentelli, A., and V. Vishvanathan,
"Diagnosibility of Nonlinear Circuits and Systems - Part II
Dynamical Systems, IEEE Trans. on Computers/Circuits and Systems,
(to appear).

4. Wu, C.-c., Makajima, K., Wey, C.-L., and R. Saeks, "Analog Fault
Diagnosis with Failure Bounds," IEEE Trans. on Circuits and
Systems, (to appear).

B. Conference Papers and Abstracts

1. Wu, C.-c., Sangiovanni-Vincentelli, A., and R. Saeks, "A Differen-
tial - Interpolative Approach to Analog Fault Simulation," Proc.
of the IEEE Inter. Symp. on Circuits and Systems, Chicago, April
1981, pp. 266-269.

2. Saeks, R., "Criteria for Analog Fault Diagnosis," Proc. of the
European Conf. on Circuit Theory and Design, The Hague, Aug. 1981,
pp. 75-78.
3. Wu, C.-c., Nakajima, K., Wey, C.-L., and R. Saeks, "Analog Fault
Diagnosis with Failure Bounds," Proc. of the 24th Midwest Symp.
on Circuits and Systems, Albuquerque, June 1981, pp. 515-520.
C. Dissertations and Theses

1. Wu, C.-c., Ph.D. Dissertation, Texas Tech Univ., 1981,

154




L R A

2.
3.

g P -——____. e _._____-—_"m

Wey, C.-L., Ph.D. Dissertation, Texas Tech Univ., (in preparation).

Brandon., D., Ph.D. Dissertation, Texas Tech Univ., (in preparation).

Conferences and Symposia

1.

PRy oy - s m— — -

Nakajima, K., Wu, C.-c., Wey, C.-L., and R. Saeks, 24th Midwest
Symp. on Circuits and Systems, Albuquerque, June, 1981.

Saeks, R., IEEE Design for Testability Workshop, Vail, April 1981.

Saeks, R., IEEE Inter. Symp. on Circuits and Systems, Chicago,
April 1981,

Saeks, R., ONR Workshop on Analog Fault Diagnosis, Notre Dame,
May 1981, (Co-Chairman).

Saeks, R., European Conf. on Circuit Theory and Design, The
Hague, Aug. 1981,

155

L™, o . ”




FAULT DIAGHOSIS IN ELECTRONIC CIRCUITS

R. SAEKS
AND

R, LIU

— -

B blauE=NOT FIED

ERLCELING Fa




Fault Diagnosis in Electronic Circuits

During the past quarter century the engineering
community has been witness to tremendous strides
The graphical
algorithms of the previous generation have given
way to the modern CAD package, the breadboard
has been subsumed by the simulator. Indeed, even
the universal building block has become a reality.
To the contrary electronics maintenance has changed
little since the day of the vacuum tube, remaining
the responsibility of the experienced technician
with scope and multimeter. As such, our ability

in the art of electronics design.

to design a complex electronic circuit is quickly
out-distancing our ability to maintain it. In turn,
the price reductions which have accompanied
modern electronics technology have been paralleled
by increasing maintenance and operations costs.
Indeed, many industries are finding that the life
cycie maintenance costs for their electronic equip-
ment now exceed their original capitol investment.

Given the above, it is quickly becoming apparent
that the electronics maintenance process, like the
design process, must be sutomated. Unfortunately,
the 50 years of progress in circuit theory, on
which our electronics design automation has been
predicated, does not exist in the maintenance
ares. As such, the past decade has witnessed the
insuguration of & basic research program to lay the
foundacions for & theory of electronics maintenance
and a parailel effort to develop operational elec-
tronic maintenance codes.

Thus far the greatest success has been achieved
in the digital electronics area, wherein the finite
state nature of the UUT (unit under test) may be
exploited. Typically, one assumes that all fail

* Texas Tech University
** University of Notre Dame

\
R. Saeks* and R. Liu**

ures manifest themselves in the form of com-
ponent outputs which are either “stuck.at-one” or
“stuck-at-zero” and/or shorts and opens®. Under
such an assumption a theory for digital system
maintenance has been developed and practical
fault diagnosis algorithms are in the formative
stages of development. Typically, one hypothesizes
some limit on the number of simultaneous faults
and then simulates the responses of the UUT to 2
family of test vectors for each allowed combination
of faults. The actual responses of the UUT are then
compared with the simulated responses to locate
the failure. Although lacking in asthetic appeal
the above approach, termed fault simulation, is
ideally suited for the maintenance environment,
wherein, the actual simulation process need only be
done once at the factory or a maintenance depot
with the simulated response data being distributed
via magnetic tape to the various field locations
where the actual test actual test is conducted. As
such, with the aid of some sophisticated software
engineering, this apparently “brute force” approach
to the fault diagnosis problem has slowly evolved
into a workable concept!’. Indeed, at the present
time a number of automatic test program gener-
ators which classify faults, choose test vectors, and
carry out the appropriate simulation (often in a
parallel processing mode), are commercially availa-
ble and, as such, the automated maintensnce of
digital electronic circuits is becoming & reality®.
Unfortunately, the above described success in the
digital world has not been paralleled by progress
in the analog world. Indeed, test engineers com-
plain that while 80% of the boards are digital, 80%
of their headaches are analog and hybrid. This
difficulty arises from a number of characteristics

—
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R. Saeks, R.Liu: Fault Diagnosis in Electronic Circuits

of the analog problem which are not encountered
in digital circuits. Indeed, in an analog circuit:
(i) there is a continuum of possible f: lures,
(§j) a compounent may be “in tolerance” but not
nominal,

(i) complex feedback structures are encoun-

tered, T
(iv) simulstion is slow and costly.
(v) post-fault compoment characteristics may
not be known,
(vi) and a fault in one component may induce
an apparent fault in another
Items () and (i) imply that an extremely large
number of simulations will be required for analog
testing. Items (i) and (iv) suggest that these
simulations will be far more expensive than similar
digital simulations. Fiqally, items ’v) and (vi)
indicate that the simulation of a post-fault circuit
by itself may not be s tractable problem. As

‘such, it is by no means clear that the kind of

“brute: ferce” fault simulation algorithm associsted
with the digital problem will be applicable to the
analog or hybrid case.

As an alternative to fsult simulation, a number
of scademic researchers have proposed a variety of
“post test” fault diagnosis algorithms, wherein, an
“equation solving like” algorithm is used to locate
the fauity component given the test data from U
UT»-9, Although these algorithms are, in some
sense, “smarter” than the simulation aigorithms,
most of the required computing must be done in
the field after the UUT has been tested. More-
over, these computational requirements must be
replicated each time a unit fails. As such, the
success of such “post test” algorithms is contingent
on reducing their computational requirements to
s bare minimum. Although no system is yet
operational, with the aid of the powerful linear
circuit theory developed over the past half century,
a computationslly efficient solution to the fault
diagnosis problem for linear analog circuits appears
to be within reach!-®, Unfortunately, no such
light exists at the end of the nonmlinesr tunnel,
wherein progress appesrs to be limited by a
“computational complexity/test point” bound.

Not suprisingly, the computational cost of an

analog fault diagnosis algorithm is an inverse func-
tion of the number of test points at which mes-
surements of the UUT may be made. Indeed, if
one lets n oe s measure of UUT complexity (which
may loosely be taken to be the total aumber of
terminals for all of the circuit components), thea
if one has access to O(n)(® 1) test points the fault
disgnosis problem can be resolved . asing linear
algorithms™+19, Moreover, by combining such algo-
rithms with the above mentioned linear algorithms.
acceptable computational efficiency can be obtained
with 0(m) test points where m is a measure of the
complexity of the “nonlinear subsystem” of the
UUTe. ", Although such algorithms can be effec-
tive on the typical academic exampie a “real world”
PC (printed circuit) board does not have terminal
space for the 20 or 30 test points which are
required even for a routine board made up of
discrete components and/or SSI (Small Scale Inte-
gration). Although the problem can be partially
allevisted by making internal messurements with
the aid of a “bed-of-nails” tester it has beea our
experience that such testers cause as many failures
as they locate while their applicability to two-
sided, multilayer, and coated boards is severely
limited. As such, we would like to limit the
number of test points to the terminal space
available at the edge of a PC board. On the other
hand, the UUT complexity, n, increases with the
area of the board. As such, the number of test
points required by an analog fsult disgnosis aigo-
rithm should increase at a rate of no greater than
0(nl). A further study of the possible tradeoff
between test points and computstional cost appears
in references 11) and 12).

Unfortunately, all cumputationally scceptable
“post test” algorithms which have thus far been
proposed have test point requirements which grow
linearly with UUT complexity (assuming that m
grows linearly with n). As such, many researchers
are looking at the classical fault simulation algori-
thms with renewed vigor. Indeed, these algorithms
have minimal on-line computational costs, while
the number of test points employed, can easily be

(3£ 1) f(n)=Qn) means f increases in the order of
n; more precisely, |f(n){ <cin! for some c>0.
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kept below O(n2). The difficulty lies with the
required aumber of simulations and the develop-
ment of decision algorithms which will allow us to
“interpolate” between simulated data points.
Thus, while the state-of-the-art in digital diagn.
nosis is fast maturing, a serious investigation of
snalog fault diagnosis problems is only just begin-
ning. Indeed, a satisfactory fault diagnosis code for
linear analog circuits has yet to be demonstrated

while the nonlinear problem has yet to progress '

beyond the basic research stage.
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R. Saeks
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INTRODUCTION

after & half century of neglect by the electronics
cosmunity the past decade has witnessed an expand-
ing effort in the analog fault diagnosis area.
indesd, the ever increasing complexity of elec~
ezonic circuits combined with the decreasing avail-
ability of trained maintenance technicians has

computen-aided Lesting (CAT) to the fore-
front of electronics research. Unfortunately, the
trenendous strides which have been made in digital
gest technology have not been paralleled by equal
progress in the analog area. As such, even though
*gon of the boards are digital 80 of the problems
are analog”.

tThe lack of progress in analog CAT vis-a-vis
digital CAT may be attributed to four factors:

i). the cost of analog circuit simulation,

ii). the continuous nature of analog failure
Pm'

{i{). tolerances on the "good” components in an
analog circuit,

iv). and the lack of viable models for the
components in a faulty circuit,

Moreover, these difficulties have been exagerated
by the economics of the maintenance environment
vhich limits the degree to which many of the
clagsical tools of analog circuit design can be
used in a CAT package.

The purpose of the present paper is to describe a
set of criteria which we believe a practical
analog CAT algorithm should achieve and to indi-
cate the degree to which they are met by the var-
ious algorithms which have thus far been proposed.}
These criteria include computational requirements,
nunbers of test points and test vectors employed,
robustness to tolerance effects, availability of
nodels, and the degree to which the algorithm is
inenable to parallel processing. Although many
specific algorithms have been proposed they may
naturally be classified into three categories:

i). simulation~before-tast,

{1). simulation-after-test with a single test
vector,

{ii). and simulation-after-test with multiple
test vectors.

Lach of these three approaches to the analog CAT
problem is compared against our criteria, and,
interestingly, each approach fails to meet at
least one of the proposed criteria.

CRITERIA

A. Computational Requirements: Unlike & CAD ai-

gorithm wh.ch is used only in the initial design
of a circuit or system, a CAT algorithm lives in

an operational environment and thus must be used
repeatedly each time a system fails. As such, a
viable measure for the computational cost of a CAT
algorithm must distinguish between on~line computa-
tion which is done in the field and must be repeat-
ed for each unit under test (UUT) and off-line com-
putation which is independent of the unit under
test and thus need only be done once at the factory
or a maintenance depot. Indeed, the digtinction
between on-line and off-line computation is further
exaggerated by the high cost of cnmputing ané the
dearth of trained personnel in a field maintenance
environment vis-a-vis that is available at a
maintenance depot. Thus in a CAT algorithm a great
prionity must be placed on reducing the on-line
computational requinements even at the cost of
significantly increasing the off-line computatiom.
As such, an algorithm which is viable in a design
environment might not be acceptable in a mainten-
ance environment and vice-versa. Indeed, in a CA?
algoritha one would be happy to accept the cost of
generating a complex data base in an off-line en-
vironment to achieve a reduction in on-line compu~
tational requirements.

B. Test Points: Historically, analog circuits have
been tested with the aid of a “ded of nailg” tester
wvhich allows cne to make use of test data which is
not accessible via the input and output terminals
of the circuit board. Unfortunately, modern ciz-
cuit boards are often multilayered and/or coated,
theredby limiting the applicability of the "bed of
nails” concept. As such, a modern CAT algorithm
must be designed to work with the test data which
is available at the externally accessible terminals
of a printed circuit board., 1In practice, this
proves to be a dominating factor in the design of
a CAT package, which precludes the use of some of
the more attractive algorithme with test point re-
quirements which grow linearly with circuit com=
plexity. In fact, circuit complexity is propor-
tional to the area of a printed circuit board (if
not a power thereof) while the number of accessible
test points is proportional to the edge length of
the board. As such, in a practical CAT package it
is reasonable to require that the number of fest
points grow with the dquare r00t of circuit com-

plexity (or less).

C. Robystness: Unlike a digital system wherein a
device is either good or bad in an analog circuit a
device is either "in-tolerance” or "ocut-of-toler-
ance” and, as such, an analog CAT algorithm must be
able to copa with the effects of components which
ane in-tolerance but not mominal. Although, at the
time of this writing, there is insufficient experi-
mental data to determine the import of robustness
in an analog algorithm it is, at minipum, a facter
of which one must be cognizent and may, in face,
prove to be a dominating factor in the design of a

* This research supported in part by the Joint Services Electronic Program at Texas Tech University under ONR

Contract 76-C-1136.
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viable CAT package.

D. Models: Since mest CAT algorithms presuppose
some form of circuit simulation in their operation
and design of such an algorithm must consider the
cype and availability of circuit models which are
required and/or available. 1In particular, does
the algorithm use nominal circuit models or
faulted circuil models? 1Indeed, even if nominal
circuit models are used do they operats in their
normal range? Finally, one must consider whether
or not the rigorithm is capable of dealing with
“fuzzy” components which do not admit viable simu-
lation models.

E. Moduls vs. Parameter Testing: Most analog
fault diagnosis algorithms can be catagorized as

either module oriented or parameter oriented. In
the former case the algorithm tests the input-
output performance of the individual modules or
subsystems which make up the UUT while in the
latter case the algorithm estimates a set of para-
meter values which deatermine the performance of a
given circuit component. Although one can often
formulate a circuit model for a given module there
by permitting one to use a parameter oriented al-
gorithm to test modules, such a process may
unnecessarily complicate the test procedure. As
such, a module oriented CAT algonithm {4 preferred
over a parameter oriented algorithm if it can be
formulated without compromising other factors.

P. In-Situe Testing: Although secondary to the
above considerations the ideal CAT algorithm
should allow for in-iitue Lesting. Since one
cannot control the input signals applied to the
OUT in-situe such an algorithm must work with an
arbitrary input signal rather than a fixed set of
test vectors.

G. Parallel Processing: Since the CAT problem is
inherently a large scale systams problem it is
essential to exploit vhatever computational power
is available to reducs both on-line and off-line
computational requizrements. In particular, digital
CAT algorithms often use scme degree of parallel
processing in their implementation. Given the
additional computational problems associated with
an analog CAT algorithm the degree 2o which an al-
goxithm can be implemented in parallel becomes a
dignificant facton in determining its viability
and should therafore be included among our criteria
for an analog CAT package.

In the above paragraphs we have described seven
aspects of the CAT problem which must be consider-~
ed in judging an analog CAT algerithm. .Although
we would ideally like to formulate an algorithm
with minimal computational requirements a moderate
amount o off-Line computation is acceptable since
the off-line computation need only be done once
and is carried out in a depot environment where
good computational facilities and high level per-
sonnel are available., On the other hand sincs the
on-Line computation associated with a CAT algorithm
is replicated for each UUT and carried ocut in a
field environment it must be kept to a minimum,
Likewise the test point requirements for an analog
CAT algorithm must be kept to a minimum. Although
the requirement that the number of test points
used by a CAT algozritha grow with the square root
of circuit complexity i{s open to debate it is in~
dicative of a fundamental limitation to the effect
that the number of test points should grow at less

+

than a linear rate with circuit complexity. Cone
cerning the remaining criteria we want an algorithy
that is robust though the significance of this re-
quiremant {s not fully understood at this time.
Similarly, the availability of cizrcuit models to
implement an algorithm must be considered. Finally,
but secondary to the above reguirements, it would
be desirable to have a module oriented algorithm
which is amenable to in-situe testing and paralle}
processing.
1, along with a set of goals which one would wish
to achieve in an "ideal analog fault diagnosis al-
gorithm”,

CAT ALGORITHMS

A. Simulation-Before-Test: Although it is essen-
tially a brute force search'algoritha, simylation-
before-test is well suited to the depot/field com-
putational environment of the CAT problem and, as
such, it predominates in most state-of-the-art
digital CaT packagu.’ On the other hand its weak-
nesses become more pronounced in the analog probles
wherein it has yet to be successfully implemented,
Basically, a simulation-before-test algorithm is a
search algorithm in which one simulates the expect-
ed test data which would result from various
hypothesized failures in an off-line environment.
Then when the actual test data is obtained in the
field it is compared with the simulated rasults to
determine the failure. Needless to say the tech-
nique requires immense amounts of off-line computer
time to generate the required data base but is ex-
tremely efficient on-line, vhersin one need only
compare the test results with the simulated data
base.

Unfortunately, the cost of an analog simulation is
much greater that that of a digital simulation.
Moreover, one requires a much larger data base in
the analog problem than in the digital problem to
cope with the continuous nature of the analog fail-
ure phenomena and the robustness problem. .As such,
there is considerable doubt about the applicabilite
of the sinulation-before-test concept in an analeg
CAT package.

Vis-a=-vis our criteria for analog fault diagnosis
simulation-before~test requires extramely large
amounts of off-line computer time but only a
minimum of on-line computer time. Additiocnally,
the test point requirements for the algorithm are
minimal. On the other hand the technique has no -
inherent robustness and uses faulted simulation
models for all components. With regard to the
secondary factors the algorithm is module oriented
and amenable to parallel processing but not in-
situe testing. These considerations are summarize
in Table 1.

B. Simulation-After-Test vith a Single Test Vectn
Rather than using a search algorithm for fault
diagnosis one can attempt to model the analog faul
diagnosis problem as & nonlinear equation in which
one solves for the internal variables or component
parameters in terms of the test data. Although
this may, at first, seem to totally bypass the
repetitive simulation-before-test algoritha, a
careful analysis will reveal that each iteration o
the required numerical equation solver amounts te¢
simulation of the UUT. In this case, however, the
particular simulations which one carries ocut are
based on known test data rather than a-priori
fault hypotheses. As such, the simulations are

- el v e otlioer v =~ wre v
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done on=line after the test data has been obtained
and the technique is thus termed simulation-after-

GCSC'-

fn the case where only a single tast vector is
ecployed the resultant fault diagnosis equations
are "almost linear” and may be solved with the aid
of a single {(off-line) sparse matrix inversion.%$
the test point requirements for the algorithm,
novever, grow linearly with circuit complexity.
Interestingly, this class of algorithms has been
discovered independently by a number of authors
over the years, most of whom though that they had
found the "ideal algorithm®™ until they fully
appreciated the significance of the test point re-
quizement which severely limits its applicabilicy.
froa the point of view of our other criteria,
nowever, the algorithm is, indeed, "ideal”. Off-
1ine computational requirements are moderate while
on-line computational requirements are minimal,
Mozeover, the algorithm is inherently robust and
requires no simulation models of any kind, it
tests modules, and it is amenable to in-situe
testing. Finally, the computational requirements
associated with the algorithm are sufficiently low
so o8 to render the parallel processing question
po0t.

€. Simulation-After-Test with Multiplie Test
vectors: One approach to reducing the test point
zequirements of the simulation-after-test algorithm
is to use multiple test vectors to increase the
aumber of equations obtained from a given set of
test points, thereby rendering the fault diagnosis
equation ‘soluable with a restricted number of test
points. The most common form of the multiple test
vector algorithm {s the multifrequency algorithm
used in linear fault diagnosis, though the concept
extends to the nonlinear case via the use of
mltiple test vectors of any type.l:2

The reduced test point requirement cbtained via
the use of multiple test vectors is, however,
achieved at the cost of greatly increasing the
complexity of the resultant fault diagnosis equa-
tions. Indeed, the "almost linear” equations of
the single test vector algorithm are replaced by
an extremely complex set of nonlinear equations
{even for linear systems) in the multiple test
vector algorithm, Although these equations can be
made trackable in the linear case they appear to
be totally untrackable in the nonlinear case and,
ag such, most of the advantages of the simulation=-
afrer-test concept are lost when multiple test
vectors are employed. -

With regard to our criteria the multiple test
vector algorithms require large amounts of on-line
computer time though relatively little off-line
computer time is required. 1In its most obvious
form the technique is robust, though this robust-
ness is compromised by most of the "tricks” which
have been proposed to make the multiple test vector
fault diagnosis equations trackable. Faulted
simulation models are required and the algorithm
{8 inherently parameter oriented. Finally, it is
not sujited to either in-situe testing or parallel
implementation,

CONCLUSIONS
The above concepts are summarized in Table 1,
vherein the various criteria, by which an analog

CAT alqorithm should be measured are tabulated,
the g0als for an ideal algorithm are described,
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and the degree to which the various algorithms
achieve these goals is indicated. From the table
it i{s apparent that none of the algorithms is fully
acceptable. 1Indeed, even if one neglects the
secondary considerations regarding modules vs.
paraneters, in-situe testing, and parallel process-
ing all three approaches fail to meet oOne or more
of the primary criteria (indicated by capital
letters in the table). As such, the proper
approach to the solution of the analog CAT probles
remains an open question.
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Abstract

A simulation-after-test algorithm for the analog fault diagnosis problem is pro-
posed in which a bound on the maximum number of simuitanecus failures is used to

" minimize the number of test points required.

The resultant algorithm is appli-

cable to both linear and nonlinear systems and can be used to isolate a fault up
to an arbitrarily specified “replaceable module”.

1. INTROQUCTION

Conceptually, analog fault diagnosis algorithms
can be subdivided into three classes;” simylation-
before-test, simulation-after-test with a single
test vector, and simulation-after-test with multi-
ple test vectors. The former is commonly employed
in digital testing and is characterized by minimal
on-1ine computational requirements. Unfortunately,
the high cost of analog circuit simulation coupled
with the large number of potential fault modes
which must be simulated in an analog circuit limits
the applicability of simulation-before-test al-
gorithms in an analog test environment. As an
alternative to simulation-before-test, a number of
researchers have proposed simulation-after test al-
gorithmg, in which the internal system variablesor
component parameters'are computed from the test
data via a "nonlinear equation solver - 1like" al-
gorithm. Indeed, in the case where sufficiently
many test points are available only a single test
vector is required and the faylt diagnosis problem
reduces to the solution of a linear equat‘lon.s'9
Except for the large number of test points required

* This research supported in part by the Joint Services Electronic Program of Texas Tech University
under ONR Contract 76-C-113§.
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this approach is ideally suited to the analog fault
diagnosis problem and, as such, a considerable re-
search effort has been directed towards the problem
of reducing its tezt point requirements.3 One such
approach uses multiple test vectors to increase the
number of equations obtained from a given set of
test points. Unfortunately, this is achieved at
the cost of greatly complica;ing the set of simul-
taneous equations which must be solved and, as shch.
the applicability of the approach is limited.

The purpose of the present paper is to describe an
alternative simulation-after-test algorithm in
which a bound on the maximum number of simultaneous
failures is used to reduce the test point require-
ments while still retaining the computational sim-
plicity inherent in a single test vector algorithm.
Indeed, even though a circuit may contain several
hundred components it is reasonable to assume that
at most two or three have failed simultaneously.

As such, rather than solving a set of simultaneous
equations in n-space the solution to our fault
diagnosis prublem actually lies in a two or three
dimensional submanifold which should yield a
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commensurate reduction in test point requirements.
Unfortunately, even though we may assume that at
most two or three components have failed we do not
know which two or three, and as such, some type of
search is still required. Fortunateiy, with the
aid of an approgriate decision algorithm the re-
quired search can be implemented quite simply.

Consider the circuit or system which 1s {llustrat-

ed in figure 1.
/@ ,
©.
i ‘@D
/
® / | ®
®/ l
, )
Lo .., '
Figure 1. Test algorithm for abstract circuit or
system,

Heré. the individual circuit components or sub-
systems are denoted by circles indexed from a to n.
These components are subdivided into two groups,
at each step of the test algorithm, as indicated
by the dashed lines in figure 1. At each step we
' assume that one group; say, d through n; {s com-
posed of good components and we use the known

characteristics of these components together with
the test data to determine whether or not the re-
maining components; a,b and ¢ in this case; are
good. Of course, if components d through n are
actually good then the resultant test results for
components a, b and ¢ will be reliable. On the
other hand, {f any one of the components d through
n is faulty the tegt data on a, b and ¢ will be
unreliable. As such, we repeat the process at the
next step of the test algorithm with a different
subdivision of components. For instance, we may
assume that a through d and h through n are good
and use their characteristics to test components
e, f and g. Finally, after a number of such
repetitions the test results obtained at various
steps are analyzed to determine the faulty com-
ponents,

0f course, the number of components which may be

( —-—— - P - -

tested at one step is dependent on the number of
test points available while the number of steps
required is determined by the number of components
which may be tested 2t any one step and the bound
on the maximum number of simultaneous failures.

As such, the procedure yields a natural set of
tradeoffs between the numbers of test points, sim-
ultaneous failures and steps required by the al-
gorithm. Indeed. since the gomputational cost
associated with each step of the algorithm is
essentially the cost of a single System simulation
the latter parameter is a natural measure of the
computational cost.

In the following section we describe the simula-
tion model used to test one set of components
under the assumption that the remaining components
are good. In section three two decision algorithms
for analyzing the resultant test data are describ-
ed.  Indeed the required theory is reminiscent,
though not identical to, the t-diagnosidbility
theory developed for digital testing over the past
decade.4'6 Finally, section four is devoted to a
number of examples including linear circuits with
12 and 22 components which were run on a desktop
calculator and 3 16 bit mini, respectively.

II. THE SIMULATION MODEL

Although our test algorithm can be formulated in
terms of any of the standard system models for the
purpose of this exposition we will assume a com-
ponent connection model for the circuit or system
test.“ In the nonlinear case the unit unden test
is represented by a set of decouplied state models
characterizing its components and/or subsystems
together with an algebraic¢ connection equation as
follows.

JRRACEN

H x’(o) = 0.1.‘.2' ces 3N (2-‘)
b‘l = 91(Xf,li)
and
amlyb ¢+ Ly (2.2)
ys®* LZ«‘b + L22U (2-3)

Here, a = col(ai) {s the column vector composed of
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the component input varniables, b = col(bi) is the
column vector composed of component output vari-
ables, u is the vector of extewnal test {nputs
applied to the system and y is the vector of sys-
Lom reaponses measured at the various test points.
Although the component connection model is not
universal it is quite general and subsumes most
of the classical topological connection models

. commonly used in circuit and system theory.z

#Aoreover, its inherently decoupled nature is
ideally suited to the test problem wherein we de-
sire to distinguish between the characteristics
of the indfvidual system components. Although
these components may be taken to be elementary
RLC components and/or discrete semjconductor de-
vices, in practice the “components” are taken to
be the “replaceable modules" within the circuit
or system, under test; say, an IC or.a “throw-
away" circuit board.

At each step of the test algorithm we subdivide
the "components into two groups denoted by “1" and
"2" with the components in group "1" assumed to be
good and used together with the known values of u
and y to compute the component input and output
variables, 3, and bi’ for the components in group
“2*. Although computationally we prefer to work
with the decoupled component equations for nota-
tional brevity we combine the equations for the
components in each group into a single equation

ML f‘(x‘,a‘)
3 x}(0) = 0 (2.4)
b! 9‘(:1.31)
and
;2 » fz(xz.az)
; x2(0) = 0 (2.5)

bl 2 a2)

= g%(x2,
Here, x1.a1 and b1 are the vectors of group "1"
component state variables, fnputs and outputs;
and similarly for xz.az and bz. To retain nota-
tional compatibility with 2.4 and 2.5 we reorder
and partition the connection equations of 2.2 and
2.3 to be conformable with 2.4 and 2.5 as follows
) 11,1 12,2 1
a s L11b + L}]b + L]zu (2.5)

S

a2 =12+ L2 412y (2.7)
y =iynt e 120?e L (2.8)

Given equations 2.4 through 2.8 our goal is to com-
pute the goup 2" component variables, a’ and b2,
given the Lest inpul, u, the measured Lest
Aesponses, ¥y, and an assumption 2o the effect that
the group "1" components are mot faulty. To this
end we assume that L§1 admits a left inverse,
EL%ll'F. which, in turn, determines the allowable
component subdivisions. Under this assumption one
may then formulate a component connection model
for a2 "pseudo cireuit” composed of the group “1°
components with external input vector uP

col(u , y) and external output vector yP =

col(az. bz) in the form

;1 - f‘(x‘.l‘)

: x}(0) =0 (2.9)
b] = QI(XI va1)
al = Kypd! + Kyyu (2.10)
9° = Kyyb! + Ky (2.11)

Since, in our test problem u and y are known, the
above equations can be solved via any standard
analysis code to compute yP = (az.bz). Now, under
our assumption that the group "1 components are
not faulty yP = (az.bz) represents the inputs and
outputs which actually appeared at the terminals
of the group "2" components during the test. As
such, we may determine which of the group “2"
components are faulty by solving equation 2.5 with
input az and checking to determine whether or not
the resultant output coincides with bz. 0of course,
since our assumption to the effect that the group
“1" components are not faulty may not be valid the
results of this test ane not reliable. As such,
we repeat the process a number of times with
differen€ choices for the subdivision of the com-
ponents into group "1" and group "2". Here, the
only constraint on the choice of subdivisions is
the requirement that CL§1]'L exist while the num-
ber of combinations employed is limited only by
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the cost of the required simulations. The results
of the several steps in the test algorithm are
then analyzed via the techniques described in the
following section to determine those components
which are actually faulty.

I11. DECISION ALGORITHMS

Since the results of the test described in the
preceding section are dependent on our assumption
that the group "1* components are not faulty they
are not immediately applicable. Following the
philosophy initiated by Preparata, Metze, and
chein® in their study of self testing computer
networks, however, if one assumes a bound on the
maximum number of faulty components it is possible
to determine the actual faylt(s) from an analysis
of the test results obtained at various steps in
the algorithm. To this end we will give a com-
plete analysis of the theory required to locate 2
single fault together with an heuristic which {s
applicable to the muitiple fauit case.

Let us assume that at most one circuit cdnponent
{s faulty and that the test results obtained from
a given step of the algorithm fndicate that alfi-
group "2* components are good as indicated in the
following table, where the binary anotatine ¢a
the left of the group “2" components indicatae
those which were-found to be good(o)'ana pad (1)
at this step of the test algorithm ’

-1-
“2* a b € ... k
0
0|y
0]z

In this case we claim that the group "2" components
are, in fact, good. Indeed, if a group two com-
ponent were actually faulty then our test results
are incorrect, which could only happen if one

of the group “1" components was faulty. As such,
the system would have two faulty components con-
tradicting our assumption to the effect that at
most one component is faulty,

Now, consider the case where the results from a

given step of the test algorithm indicate that ex-
actly one group "2 component is faulty; say, x.
'1-

“2* b [ O

Q =
< »x

N
1

In this case the same argument we used above will
guarantee that the components which test good; say,
y through z; are, in fact, good. On the other hard
we have no information about x. It may be faulty,
or alternatively, the test result may be due to a
faulty group “1* component. .

Final'l.y.’- consider the case where two or more group
“2" components test bad in a given step as indicat-
ed in the following table.

nye . . ;
.2. a b [ ene k .
X
1]y .
0]z

Since, under our assumotion of a single fai‘lur'é,'_ig .
{s-impossible for two or more gréup “2* components
to be faulty, this test result implies that at
least one of the group “1" components {s bad. On
the other hand since we have assumed that there {s
at most one faulty component the faulty group "1*®

- component is the only faulty component and, as
such, the group "2 components are 2]} good.

Consistent with the above, at each step of the test
algorithm, efther all or all but one group "1"
components are found to be good. As such, if we
choose our subdivisions so that the components
which are found to be good at one step of the al-
gorithm are {ncluded in group "1" in all succeed-
ing steps we eventually will arrove at a group *1°,
all of whose components are known to be good., As
such, the test results obtained at that step will
be rel{able thereby allowing us to accurately de-
termine the faulty components in group “2*.
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Unlike the single fault case, at the time of this
writing, we do not yet have an exact decision al-
gorithm for the multiple fault case. Following
Liu, however, the problem can be greatly simpli{-
fied if one adopts an "analog heuristic" to the
effect that two independent analog failures will
never cancel.

Recall from our discussfon of the single fault
case that whenever a test result indicates that a
component is good then it is, im fact, good. Al-
though this is not rigorously true in the multiple
failure case it is true under the assumption of
our heuristic. For instance, consider the test
results indicated in the following table in which
x is found to be good.

" .
2" a b € .en k
¢ «x
1
0 z

Now, if x is actually faulty there must be a faul-
ty group "1* component whose effect is to cancel
the error {n x as observed during this step of the
test algorithm. This is, however, forbidden by
our heuristic and, as such, we conclude that x is
actually good.

Interestingly, our heuristic can be carried a step -
further than indicated above since, under our
heuristic, a bad group "1" component would normal-
ly yield erroneous test results. An exception
would, however, occur if some of the group-"1°
components are totally decoupled from some of the
group "2" components. As such, {f prior to our
test we generate 3 coupling table (by simulation
or a sensitivity analysis) which indicates whether
or not a faulty group “1" component will effect
test results on a group "2" component, our heur{s-
tic may be used to verify that certain group "1"
components are good whenever a good group "2" com-
ponent is located. Consider, for example, the
following table in which a "1" in the i-J position
fndicates that the test resulgs for component |
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2" a b c .o k
0 x 1 0 1 1
11y 1 1 0 0
0}z 0 1 1 0

are effected by component J while a “0" in the 1-J
position indicates that component j does not effect
the test results for component {. Now, since com-~

ponent z has been found to be good in this test our
heuristic implies that b and ¢ are also good. Simi-
larly, since component x is good so are a,c, and k.
Thus, with a single test we have verified that x,z,
a,b,c .and k are all good.

IV. EXAMPLES

To obtain examples the above techniques were
applied to the 12 and 22 component linear amplifier
circuits shown in figure 2 using simulated test
data for various numbers of simultaneous failureé.
choices of test point locations, and both decision'

“algorithms, A1l analysis for the 12 component

circuit was done on an HP 9825 desktop calculator - -
while the 22 component examples were run on a TI -
990/20 minicomputer. The results or some 150 simu-
Jations of the algorithms are tabulated in table 1.
where the number of test points, simultaneous
faults, and the decision algorithm employed are in-

- dicated. The results of the various simulations

are indicated by‘ the ambiguity of the resultant
diagnosis. For instance, in our simulation of the
12 component circuit with 3 test points, one fail-
ure and the exact algorithm 12 runs were made (one
with each component fauly). On 10 occasions the
fault was located exactly whiie the fault was lo-
cated up to an ambiguity set composed of two compon-
ents on 2 occasions. Finally, we note that the Sth
run of the 12 component circuit indicated by an as-
terick in the table represents a simuiation in
which the good components were set at +/-2% off of
nominal to test the robustness of the algorithm,
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Figure 2. a) 12 component amplifier and b) 22 component amplifier. A1l stages of the amplifier

circuits have romina) op-amp gains of 1.6, nominal resistance of 10K ohms, and nominal
capacitance values of .001uf while the feedback capicators have nominal values of 100pf.

TR R A TARPRATIe e o T

Circult/Computer  fTest Points  fFaults Dec. Alg  jroiguity set
l 12 component 4 ) Exact 12
circuit simu;ated 4 2 Heuristic 12
on an HP 982
* desktop calculator 3 1 Exact 102
3 1 Heuristic ‘IZJ
3 1 Exact 104 2*
22 component 8 1 Exact 22
circuit simu;ated 6 1 Exact 18 P
on a T]1 990/20
minicomputer -5 1 Exact 16 6
5 ] Heuristic 22

Table 1, Simulated test data. * indicates a simulated test in which
the good components were taken to be #/- 2 off of nominal.

176

B S UV



i

A DIFFERENTIAL-INTERPOLATIVE APPROACH
TO ANALOG FAULT SINULATION

C.-c. Hu
A, SANGIOVANNI-VINCENTELL!

AND r

R. SAEks

1931 IEEE INTERNATIONAL SYMPOSIUM ON
CIRCUITS AND SYSTEMS PROCEEDINGS

Rapisson CHicaco HoTer, CHicaco, ILL., ApriL 27-29, 1931




A DIFFERENTIAL - INTERPOLATIVE APPROACH T0 ‘
ANALOA FAULT SIMULATION !

C.-c. Wu**, A, Sangiovanni-Vencentelli*, and R. Saeks**

1. INTROOUCTION

After a half century of neqlect by the cir-
cuits and systems community the past decade has
witnessed the emergence of a research effort in the
analoq circuit matntenance area. The various al-
qorithms which have been thus far proposed for the
analog fault diagnasis problem may naturally be
subdivided into two classes termed “simulation-
before-test” and "simulation-after-test”. The
former are commonly used in digital system test al-
qorithms and require an automatic test program
qenerator (ATPG) which simulates the responses of
“311 possible” failures. This is typically done at
a maintenance depot with the simulated responses
deing recorded and shipped to the field where the
response of the unit under test (UUT) {s compared
with the simulated responses to determine the
failure. The major advantace of simulation-before-
test is that 1t is ideally matched to the depot/
field maintenance environment with the largest part
of the compytation done only once. As such, the
technique is ideally suited for digital testing
where the binary nature of the problem keeps the
number of failures to be.simulated within bounds
and eliminates tolerance problems. Unfortunately, .
in the analog problem we must cope with a continuum
of possible fatlures and simultaneously deal with
qgood components which are in tolerance but not nom-
inal. As such, a tremendous number of simulations
are required by a simulation-before-test algorithm,
while some type of deciston alqorithm is required
to cope with the tolerance effects.

Unlike simulation-before-test, simulation-aftar-

test uses an “"equation solver-like" alaorithm to
compute the parameters of the UUT components in the
field. Since most such alqorithms require iterative
evaluation of the equation to be solved, the UUT is
effectively simylated at each fteration, though the
simulation 1s based on actual test data rather than
hypothesized failure data. The simulation process
is, thus, carried out after testing the UUT and
hence the choice of terminoloqy. The advantage to
such an approach 1s that the faulty component para-
meters are computed explicitly, thereby, eliminat-
ing the ambiquity caused by the use of discrete
simulation-before-test data and tolerance effects.
Although relatively few simulations are required
for each UUT, they must be carried out in the field
rat:e&n than the depot and they must be repeated for
eac .

The purpose of the present paper is to

¥ Dept. of Elec. Enqrq. and Comp. Science, Univ. of California at Berkeley, Berkeley, CA. 90024.
** Dept. of Elec. Enqra., Texas Tech Univ., Lubbock, TX 794N9. This research supported in part by the
Joint Services Electronics Program at Texas Tech University under OMR Contract 76-C-1136.
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describe a research effort directed at alleviating ‘
some of the difficulities in developing a simulaton-
before-test algorithm for analoq fault diagnosis.
The underlying philosophy and motivation for our j
formulation is discussed in section 2, along with a ‘
derivation of the required differential-interpola-
tive faylt diagnosis formula. Finally, sectton 3
{s devoted to a number of {1lustrative examples of
the approach. These include both linear and non-
1inear examples formylated in the frequency and
time domains, respectively.

I1. A ODIFFERENTIAL-INTERPOLATIVE ALGORITHM

Although any practical fault diaqnosis algo-
rithm must be able to handlie systems with a hundred !
or more components, from an intuftive point of view
our alqorithm is best i1lustrated in the two com-
ponent cases where the parameter space can be dis-
played qraphically, Say, we are dealing with an RC i
circuit for which the parameter space is illustra-
ed in figure 1.

. . . . 4 . . . . .

. . . . 3 . . . . .

Figure 1: Parameter space for RC circuit.

Here, R and C represent normalized parameter values,
wherein, the nominal parameter values are transtbm-
ed to the origin. In the most aenera) simulation-
before-test algorithms one assumes that the faulty
parameter values may lie anywhere in the R-C plane
and therefore carries out simulatfons along a two
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dimensional discrete array spread over the entire
plane,

Fortunately, in a “real world” testing environ-
ment one ¢an assume that only a “limited number of
components” fail simultaneously. In our two com-
ponent example we may therefore assume that either
R or C has fatled with the other remaining nominal,
tn which case the circuit need only be simulated
at a discrete set of points along the coordinate
axes in the R-C plane denoted by x's in figure 1.
As such, the number of simulations required is siq-
nificantly decreased. Indeed, this is one of the
major advantages of the simulation-bLefore-test
concept as compared to simulation-after-test ilgo-
rithms which typically fail to exploit a “limited
nunber of fatlures™ assumption,

While the above described approach has been
used with considerable success in digital system
testing, wherein, the axes are binary and no toler-
ance problems are encountered, it is not well suit-
ed to the analog test problem., First, an analog
failure may occur anywhere along the axis and hence
same type of approximation scheme {$ required to
interpolate between the discrete simulations.
Secondly, a "good” component is assumed to be in-
talerance, though {t may not be nominal, As such,
in an analog environment the "1i{mited number of
fatlures® assumption implies that the solution to
our fault diagnosis problem lies near, but not
necessarily on, the coordinate axes as indicated by
the shaded reqions fn figure 2a.

a}

[ 1a]

Figure 2: a) Solution space under a single failure
assumption.
b) Illustration of the differential-
{nterpolative diaanosis alqorithm,

While we might choose to simply £i11 the shaded
region with additional simulations, the cost of
such & process may prove to be excessive, Rather,
we exploit the fact that the deviations of good
component parameters from nominal are small and use

a Ist order Taylor series approximation to approx-
imte the deviation, We note that such an aoproach

e . CLEE
. .

cannot be used to locate the faulty parameter values
which may be far from nominal; indeed, 1t 1s often
infinite or zero; though it can be used to cope
with the tolerance effects,

Our differential-interpolative approach thus
uses a classical minimum distance algorithm to lo-
cate the general reqion of the faulty parameter
values indicated by the circle in fiqure 23 (which
is maqnified in figure 2b). Now, it is assumed
that the simulated values of the system responses;
fl' fz. and f3; corresponding\to the points; €yeCas

and c,; are available along with the assocfated in-
verse sensitivity matrices; J;‘. JE‘ .and JS‘. Ve

then interpolate these data points to approximate
the system responses and the associated inverse
sensitivity mtrice along the axis by functions

f(c) and J(c) . Althouah any interpolation can be
employed we have had our best results using a bi-
Tinear interpolation for f (which qives exact
results in the linear case) and a second order

polynomic fnterpolation of J". Now, 1f x denotes
the faulty parameter vector and m denotes the
measured system responses then a st order Taylor
series approximation combined with our interpola-
tion will yield the (approximate)equality

m = flc) + J(c)x - c] 1.
for those values of ¢ near x. Equivalently,
tx - ) = J(e)'tm - f(c)) 2.

Interestingaly, by invokina the Projectfon
theoren one can reduce the above vector equatton to
a scalar equation and simultaneously eliminate the
requirement for storing the fnverse sensitivity
matrices. Indeed, the vector (x-c) will be perpen-
dicular to the axis at the point c which makes the
closest approach to the fault. As such, if e de-

notes the unit vector in the direction of the axis
then

0= elx-creelie)m- fen 3.

which can be solved for the faulty parameter value,
c. Note, our qoal is to solve for ¢, not x, since
we are interested in locatina the faulty parameter
value in the presence of the tolerance problem, but
we really do not care to compute the deviations
from -ominal in the qood parameters.

To swmarize, {f rather than simply storing
the simulated circuit responses, f,, we 2130 store

the vectors ezd;' then the tolerance effects

associated with the aood components can be com-
pletely removed from our fault dfagnosis alnorithe-
at least up to the approximation error induced by
the interpolation process and Taylor series ex-
pansion, Since most qood circuit simulation coces
inclinle a packaqe for aenerating sensitivity ma-
trices at little additional cost over and above
that fnvolved in simply simulating the circuit
responses, the approach can be implemented with
only a minima) increase in simulation costs. As
such, the major expense associated with the
aporoach 1ies with the storaae requirements (for
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the f, and e:J;] vectors) which are approximately

double that of a classical fault simulation aigo-
rithm,

Although the above derivation has been §1lus-
trated in the two dimensional case with a single
faulty parameter it can be readily extended to a
general setting, say with several hundred comporents
and three or four simultaneous faults, If one
assumes D simultaneous faylts then p inner products
are required to apply the Projection theorem yteld-
ing p equations and p unknowns to be solved for the
faulty parameter values. Otherwise the formulation
for the general case ts identical to the sinmgle
fault case described above.

111, EXAMPLES

In this section, two examples are given, one
of them for linear systems and one for the nonlinear
case. All of these examples were simulated on an
HP9825A programmable calcylator, and yielded fairly
qood results.

Our first example is a second order low pass
filter. The filter contains five components, K,
Ry, Rys Cqs and Cy, while, the circuit diagram is

shown in figure 3-1

G
i
i
u—t\/\/\__.‘ 0
l!1 R2
Y
| I ’
Figure 3-1.
The transfer function for this circuit is
qiven by
f(r.s) = X (3-1)

2 -\
s C1C2R1Rz + s[RzCZ + R‘Cz + R‘C,(I-K)]*\

The partial derivatives of the transfer func-
tion with respect to each parameter take the form

- D + SCyRK
%:—(r.s) s ——Dz-‘—-l— (3-2)
-x[szc‘cza? + SC,* SC,0-K))

& -
(rvs)- (3"3)

'SR'.I D%

-K{S C,C,R, ¢+ SC + SC,)

&f 17271 2

'6]'2(!‘.8) s Dz (3‘4)
. -K[S2C,R,Ry *+ SR, (1-K)]

sf . 1720 1

zti(r.s) 02 (3‘5)
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i -xrszc1n1n2 + SRy 4 SRy1
r,s) =
TCZ 02
a §¢ .
where D s § C1C2R1Rz + S[ilzc2 + k.lcz + R.|C1('I K))+ 1

(3-6)

Stnce we have five parameters in the transfer
function, five distinct test frequencies are re-
quired to provide sufficient information for
diaqnosis.

The fault diagnosts rgsults are listed in
table 3-1. Here, the nominal valyes of K.R, .nz.c,.

C, are 1.6, 1K, 1kn, 0.16 F and 0.16uF
rZsuctively and the faulty parameter is underlined
in the table

Iable 3-1
v 3 3 s .
t 0.6 162 {1e | ra | v [
., Yoso | 2500 | 1090 | 070 | 0% | 0%
n, e | e 10 90 o0 | oes
6, [0 joaene | oasnd .25 | 015l 0.2
6.162y | 0.962, | €.162,) 0.17{ 0.2%y | 0.362»
Sesult [ 4 l‘ l’ < t, g
L !o.m 2097 el onm| 0.2 w0 i

In the first simulation, K is the faulty com-
ponent with a value of 06, while theother four com-
ponents are 5% or so off their nominal values, the
simulation result shows that K failed, and locates
it 3t K=0.591. The same remarks apply to the other
five simulations.

Althouah the technique generally yields satis-
factory results occasional errors occur when the
good components are too far out of tolerance. For
instance, the following parameter values K=1.62, Ry
=1070, R,=910, ¢y=0.5 , and c2=0.‘l72u led to an

erroneous result. The simulation shows that C2 has

failed with the value of 0.179u. However, the
faulty component, in this simulation, is actually
C}. 1f we sketch a two dimensional representation
of the Cy, C; plane the difficulty becomes clear.
Fiqure 3-2 shows that C2 is too far away from its
own nominal value, and thys instead of locating the
error at o 3s we expect the sirulation resut locates
the failure at 8, with the differential term still
pointina toward the actual failure denoted by x.
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Our nonlinear example §s composed of a
diode loaded by a shunt RC circuit as 11lustrated
tn Fiqure 3-3. The diode is modeled by the
characteristic functionv N

t
lelfe® *-1) (3-7)
° -1 | °
’V - _L Vo - Vc
. T1
O —0
- Figure 3.3

Now, fnstead of working with frequency domain
transfer functions, we work in the time domain. A
state equation for this circuit is given by

(V,-v_)/V v
1 i t .
Veuglle n © t-N-g (3-8)

The goal is to inteqrate_this differential
equatian so as to build a V_(r) vector and f(r)
vectors as in the previous Examples.

Numerical techniques can be used to compute
Vc(t) at any instant t. In this example, the

V.(F) vector was elevated by applying the fourth
Runqe-Kutta method. Note that since there are four
independent parameters, R, C, Ig. and ¥7; in
equation (3-8) V,(r, t) should ge evaluated at four
.different time instants to build a Vc(F) vector.

The simulation results are summerized in table
3-2. The nominal values of [,, Vy, R, C are 0.2,
0.1, 1K, and 0.25 respectively.

Table 3-2

] ? 3 ] $

1, | o | o 0.2 o2 | g.0m

vy on b7 | oen [ N1 LN}
L} w 90 (e FEL L 1090
4 .13 [ R4 o8| 2.8 .23
! g ] < I
Result . .

oomz | see | w0t | 2.em | 0.00
1V. CONCLUSIONS

For the simylation-before-test-approach to
fault diagnosis, we aain from the fact that most
computation can be done by off-line computation,
thus greatly reducing the repetitive on-line com-
putation associated with many fault diagnosts alqo-
rithms, From a practical point of view, the eco-
nomics of such an approach are extremely attractive.
Unfortunately, the simylation-before-test approach
ts subject to a certain deqree of ambigquity intro-
duced by qood components which are in-tolerance
but not nominal,

In this paper, we have proposed a simulation-
before-test alqorithm for analog fault diagnosis,
in which a8 differential-interpolative technique {s
used to eifminate the ambiquity caused by tolerance
effects. Our approach has been tested with satis-
factory results in both the linear and nonl{inear
cases. In fact, for the linear case, the approach
provides an exact interpolation for f{(c) on the
axes, and thus reduces the amount of simulation-
before-test data required on each axis. Although
this is not true for nonlinear case, the diagnosis
results are still very attractive. Of course,
occasional errors may occur when the good compon-
ents are too far out of tolerince. This phenomena
is, however, expected and well understood.: [ndeed,
the difficulty occurs only when the st order
Taylor series approximation is too qood. Because
this phenomena will rarely occur in the real world,
we believe that it may be neqlected in a
practical algorithm,
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Abstract

Historically, symbolic network analysis has been motivated by the prob-
Tems of circuit design and, as such, the emphasis has been pilaced on
quickly and efficiently obtaining a symbolic transfer function from a
given set of circuit specifications. In an operational or maintenance
environment, however, one is typically aiven a prescribed nominal circuit
and desires determine the effect of various (possibly large) perturbations
thereon. This is the case in a power system where one is given a fixed
network and desires to determine the.effect of proposed modifications thereto.
Alterpatively, in the problem of analog circuit fault diagnosis one desires
to simnulate the effect of a number of alternative failures to compare the
simulated data with the observed failure data.

In such an operational or maintenance environment numerous perturbations

' of the nominal circuit are studied and, as such, significant computational

efficiencies can be obtained if one first generates a data base ‘n terms
of the nominal circuit parameters and then extracts the appropriate symbolic
transfer function from the data base each time a different symbolic transfer

is required. Of course the benefit to be achieved via such an approach is

dependent on the size of the data base and the ease with which a symbolic

The obvious manner in which to generate such a data base is to simply

i transfer function may be retrieved therefrom.
t

pre-compute the coefficients of all required symbolic transfer functions
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and store them in the data base. Retreival from such a data base is, of
course, immediate but the data base may become overly large. Indeed, the
number of transfer functions which must be stored is 0(kE) where k is the
total number of potentially variable circuit parameters and p is the maximum
number of circuit parameters which may vary simuItaneously.‘ An alternative

approach is to store the nominal transfer function information and then use

Householder's formula to compute the required symbolic transfer functions.
In such a data base we need only store 0(3?) transfer functions where n is i |

the total number of component output terminals but retreival requires

O(g?+p3) multiplications where p is the actual number of circuit parameters
which vary simultaneously. Since, in practicq.‘g >> p the retreival process

requires approximately 0(3?) multiplications and is dominated by the large

dimensional matrix multiplication required by Householder's formula rather
. than the low dimensional inverse.

In the present paper we will formulate an alternative data base for

the symbolic transfer functions which also requires O(E?) entries, but for
which retreival requires only 0(p3) multiplications. Since p is typically

small this is tantamount to immediate retreival.
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Abstract

A theory for the diagnosability of nonlinear dynamical systems is develop-
ed. It is based on an input-output model of the system in i Hilbert space
setting. A necessary and sufficient condition for the local diagnosability
of the system, which is a rank test on a matrix, is derived. A simple
sufficient condition is also derived. It is shown that, for locally diag-
nosable systems, there exist a finite number of test inputs that are suffic-

ient to diagnose the system. Illustrative examples are presented.
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Abstract

A simulation-after-test algorithm for the analog fault diagnosis
problem is pnroposed in which a bound on the maximum number of simul-
taneous failures is used to minimize the number of test points required.
The resultant algorithm is applicable to both linear and nonlinear
systems with multiple hard or soft faults and can be used to isolate

failure up to an arbitrarily specified "replaceable chip or subsystem™.
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Summary:
Although most research in the image processing area is motivated by the

computational problems associated with the actual image processing algorithms,
progress in the area has also been limited by the cost of designing an
efficient 2-D signal processing algorithms. Indeed, in many image processing
applications simple non-recursive algorithms are used in lieu of far superior

! recursive algorithms because of the prohibitive design costs associated with
the recursive algorithms. As such, this work unit is directed at the problem
of developing efficient design techniques for stable 2-D digital signal pro-
cessors. In this endeavor we have developed, and reported upon, a 2-dimensional
design algorithm based on a spatially-invariant symmetric half-plane recursive

model and are in the process of developing an algorithm which uses a 2-D fre-

quency domain model for a periodically varying system originally introduced
by Jury and Mullin, The latter model completely eliminates the analytical
difficulties classically associated with 2-dimensional design but this is
achieved at the price of working with high dimensional matrices. As such,
the computational cost of the design process based thereon is prohibitive.

We, however, believe that the structure of the matrices which arise in this
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model can be exploited to formulate a class of efficient design algorithms
and are presently investigating this possibility.
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“A TIME-VARYING APPROACH TO TWO-DIMENSIONAL
DIGITAL FILTERING" *

John Murray
Department of EZlectrical EZngineering
Texas Tech University
Lubbock, TX 79409 USA

Abstract

A new approach to two-dimensional digital filtering is presented.
This approach is based on a one-dimensional periodically time-vary-
ing model which accurately reflects the scanning process inherent in
most recursive multidimensional signal processing. Time-varying
models are in general intractable; however, periodically time-vary-
ing discrete-time models such as occur in the present case are essen-
tially equivalent to multi-input, multi-cutput, one-dimensional time-
invariant systems. They therefore permit the application of classi-
cal techniques to design and analysis problems. Two further advan-
tages of the approach are the fact that it bypasses the problem of
boundary conditions, and that allowing time-variation gives a degree
of design flexibility not available in the shift-invariant case. Some
possible design methods using these time-varying ideas are presented.

1. INTRODUCTION well understood and, although there are

problems in some areas (such as uniform
approximation) and difficulties with the
data-rates and amount of computation re-
quired (which are inevitable in two-dimen-
sional work) the use of FIR filters is
almost routine by now in two-dimensional
data processing. The design and use of

The general field of two-dimensional data
proc2ssing has been the subject of exten-
sive investigation during the past several
years. The simplest situation, and that
which has received most attention in
theoretical work, is the shift-invariant
case, where the processing operations are

assumed to commute with translations in
bcth directions. Much of the effort in
tnis direction has been devoted to the

analysis and design of two-dimensional

digital filters. In studying this work,
cne guickly becomes aware of a basic die
chotomy between finite impulse response
(FIR) fillters, which are usually imple-
mented nonrecursively, and infinite im-
pulse response (IIR) filters, which are
usually implemented recursively. The

IIR filters, on the other hand, very often
presents serious difficulties. 1In what
follows, we will point out some theoretical
problems assoclated with shift-invariant
IIR filtering, and show how the theory of
time-varying systems offers a (theoretical)
resolution of these problems.

2. IIR FILTERING AND CAUSALITY

2.1. Two-Dimensional Cuusality
In one-dimensional data »rocessing, the
dimension in question is usually time, and

theory and design cf FIR filtering are
T =nils research supportec in part by the Joint Services Electronic Program of Texas
Tech Uaiv:rsity under ONR Contract 75-C-1136.
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so there is a natural concept of causality.
In two dimensions, the situation is more
complicated. In many cases, the dimensions
are both spatial, and so there (s no in-
trinsic causality. Even in the case where
one dimension is time and the other is
space (e.g., transducer arrays) one will
often have the data already recorded, and
so causality will not pe significant. How=
2ver, in this latter case, the appropriate
zausality is 2 two-dimensional "symmetric
2alf-plane” sausality - but it should be
2mpnasized that this causality is not in-
crinslec 0 the data; it is, rather, 2 pro-
perty of the processing used. At this
point, a distinction must be made between
FIR and IIR fillters.

2.2. One-Dimensional Causality.

As was mentioned in the previous paragraph,
there may or may not be a notion of causal-
ity inherent in two-dimensional data. How-
ever the data must be processed .in time,
and this introduces a concept of causality
which (at least with classical processing)
is one-dimensional. How compatible this
is with two-dimensional causality in the
data will depend on the specific problem.
In the contexrt of nonrecursive processing,
the order in which the data are processed
is irrelevant, and so no real conflict can
arise; but the very nature of recursive
processing, in which the output at a point
depends on the ocutput at previous points,
demands that an order be specified. This
order is almost always taken to be a
"scanning” order, ln which a line is pro-
cessed from left to right, followed by the
next line below it, etc.. We will assume
that this 1s the Jrder In which processing
occurs for the remainder of this paper.

There is, however, an inconsistency between
this ordering and :he assumption 5f shift-
invariance. While not serious i{n practice,
1t does indicate that the cheoﬁy may Tun
into difficulties. This inconsiscency

arises from the fact that the above order-
ing requires that the horizontal lines be
finite, while the use of shift-invariance
requires in principle that they be infinite
in at least one direction. A first approx-
imation to resolving this difficulty is
given by the McClellan transformgll which
essentlally concatenates the lines into
one long line, and appliés one~dimensional
linear shift-invariant theory to the re-
sulting signal; this however has the dis~
advantage in principle of treating the
edges of the image in =hs same way as
polnts in the interior. (In practice, of
course, one applies suitable boundary con-
ditions). It is clear that the model
W#hich most accurately reflects the actual
processing being done in this situation 1s
a one~dimensional periocdically time-vary-
ing model.

3. PERIODICALLY VARYING

DISCRETE-TIME SYSTEMS

Time~varying systems in general are ex-
tremely difficult to work with; it is
therefore fortunate that one of the few
classes of time-varying systems for which
a complete closed-form theory exists is
the class of periodically varying discretc-
time s:,yst:ems.tz'B’LLJ There are several
versions of this theory, but they all des-
¢ribe scalar-input scalar-output systems
whose period of variation is n sampling
periods by nxn ¢ime-invariant transfer
matrices. We proceed to ocutline one
version.

Input and output sequences are represented
by the transform:

) b— u(z)

“here ™~ 2n

(uo,ul,..
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so that the transform of a scalar signal
is an n-dimensional column vector. The
input-output relationship of a scalar
system of the type under consideration is
then given by

¥Y(Z) = P(2)U(2)

where P(Z) is an nxn matrix of rational
functions of the form

- kK n
Pyy(2) = 20qy,(2)
where
1-] 12
K =
n+i-J 1 <

For example, a memoryless time-varying
gain a(m) is given by the diagonal matrix

a(o)
a(l)

0 a(n)

while the unit delay is given by the
matrix

o O
[«]

o~

fsllows that

e R

in this representation,
me-invariant svstems are described by
matrices).

T
-

car be shown that by using the above

immense difficulty; namely, n must be
taken to be the number of points in a line
of data, and so is usually very large.
This implies that nxn matrices of rational
functions will be totally intractable. Be-
fore discussing this problem, however, we
will outline how the two-dimensional situ-
ation relates to the périodically time-
varying approach. From now on, n will de-
note the number of points in a horizontal
line.

As an example, we consider a mask of the
form

350

where the (0,0) subscript indicates the
point at which processing is occurring.
Specifically, if the above were the input
mask of a purely nonrecursive filter, the
output would be the convolution of the
above arréy with the input array.

The two-dimensional Z-transform of the
above array is given by

= . -1
p(Zl,Zz) = a.oc4~a0122 (all 22+a10+‘,l’_122 )Zl'

If one uses the McClellan transform, that
is, concatenates the rows ané regards the
filter as a one-dimensional shift-invariant
filter, the resulting one-dimensicnal Z-

transform {s

- =1,on
p(Z) = ag0*ag;? +(auz+am+a1 1Z 120 ()

sransfcrmation, srstcems which vary with
a zerics egual =0 rn sampling periods can To put this in 2learer perspective, we
ce trea<ed trecisely as (f they werr~ - will write 1t {n terms of our time-varying
input r.-cutput time-invariant systiems; model: the resuiting transfer operator lis
LA mpeet “a 2 JSe s 1 : -~ == ’q
tn particular, such a2 system is stable | ao0+amzn 2 _l‘n }“°°'301Z*‘112n 1
znd orly Lf the matrix P(3) is invertible ’
’ a,.2+a,, 2"t 0
far all 2 wizh (2] ¢ 1. 01" “11* ,
- g~ A TERET AN 0
e APPLICATION TO TWC=DIMENSICNAL P(Z)m {2)
TROCE33TNG .
. n=1 -n
2 “ne thecry cutlinaed in the a z a..+a
g yocu 1,-1 00*81c¢
ion "5 *wo-dimensgicsnal date - -
imrmedlately eancounter an -a circulant matrix, as expected.
- . e, v . e
T o e i o T e e i P e




In practice, of course one does not imple-
ment this as a strictly shift-invariant
one-dimensional filter; one puts in appro-
priate boundary conditions when a boundary
13 crossed. It is easy to see that, if
Zero boundary conditions are assumed, the
transfer operator which describes the
actual processing performed is

= -0 n -
aoo*ama R al,_lz ,00- 0, 0
n+l
a012+a112 ,
B(2) = 0 (3)
o 300%10% |

~a Toeplitz, rather than a circulant, ma-
trix, since the processing is now (slight-
ly) time-varying.

While this may seem like a trivial modifi-
cation, it can in some situations have
serious theoretical effects. For instance
1f one speclalizes to a quarter-plane
filter by setting al,-l = 0, the time-
invariant stability condition is (from
(1)

n+l

n
agp*tag Zra g2 +a 20 40 for |2} s1. (W)

However, if one uses the time-varying
version (3) in this situation, the result-
ing matrix 1s a lower triangular Toeplitz
matrix whose diagonal element is

n
aoo+aloz

and so the stablility condition in this
case is

aooalozn$ 0 for |2) s 1 (5)

wWhich 18 substantially different fprom (4).

(The problem here iz that if (4) is not
sacisfled and (5) is, the matrix (3) will
be invertibls for all [Z! ¢ 1, dut the {n-
verse matrix may ctontain axtermely large
elements, and so while the system (s
stable. in principle, it will be unstable
in practice.)

5. POSSIBLE DESIGN APPROACHES
As was pointed out previously, a major
problem blocking any realistic applica-~
tion of the above approach is the size of
the matrices involved. This problem is
not completely hopeless, however, for the
following reasons. Firstly, the matrices
which occur are banded wfth bandwidth
equal to the horizontal width of the fil-
ter array. Thus for reasonably-sized fil-
ters, the matrices are both sparse and
structured. Secondly, one does not nor-
mally want to design filters which are
wildly shift-varying; it is usually de-
sireable to have a filter which is approx-
imately shift-invariant far from the
boundaries. In this connection the change
from circulant to Toeplitz which occurred
in the previous section (as a result of
inserting boundary conditions) comes to
mind, and suggests that "displacement rark"
ideas may have some relevance here.

Another possibllity is to replace the
shift in the horizontal direction with
some other "basic dymanical cperator" and
to design in terms of this operator.

The most obvious choice is a descrete
approximation to the derivative, which
has the following advantages:
1) It is local, and so can be calculat=
ed efficiently.
2) At the boundaries, it can be calcu-
lated as a one-sided derivative, and
80 avoids the problem of boundary
values.

The simplest operator which is a discrete
approximation to the derivative and en-
Joys both of these advantages (s <he
matrix

(-1, L, 00, 0 ... 3

a,=1 a.+i !
2,0 ol

T= 3= =08y 3, 0 .. | 5

o
.
[4]
(
o~
(V3 ]
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+
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where 35, 83,0 are arbitrary but fixed. more, rather than less, stringent. We
note in passing that T always contains
a two-dimensional Jordan block with
zero eigenvalue.

U)The previous two paragraphs taken to-
gether imply that the. minimal polynomi-
al should be of low order. This has the
further benefit of eﬁ%uring that the
support of the filter in the horizontal

irection is of limited width; achieving
this is a major problem in the shift-

invariant design approach.

The
and

algebra generated by T, the constants,
the vertical shift is then commutative,
and so offers the possibllity of a tract-
able theory. The major remaining question
concerns the cholce of the constants a5,
33... While this is currently under inves-
tigation, and no definitive results have
been established,
be noted.

1)If one designs a filter in terms of the
derivative in the horizontal direction
and the shift in the vertical direction 6.
one can then replace the derivative by
the discretized version T.

the following points may

CONCLUSIONS
We have pointed out some theoretical in-

consistencies between the assumption of

(7) must be replaced by

§ erzJ $#0, VIZ| ¢ 1,

J &0
for all w such =hat jw = A,| ¢ 1.
Thus using large Jordan tlocks can acte-

ually make the stabiility conditions

2)Since the spectrum of the derivative is two~dimensional shift-invariance and the
the entire imaginary axis, while the usual scanning model employed in the pro-
spectrum of T can be adjusted by vary- cessing of two-dimensional data. As a
ing the LY this approach yields the remedy for thisinconsistency, a one-dimen-
possibility of choosing the approximation sional periodically time-varying model has
so that the discretized filter is stable Dbeen proposed; thils also has the advantage
even when the original designed filter of not requiring boundary conditions. Fin-
is unstable, for example by concentrat- ally, two pbssible design approaches have
ing the spectrum of T on a few points. been mentioned.
) - .
To be specific, if the dgnominator of REFERENCES
the original filter is Z fJ(D)ZJ, 1. J.H. McClellan, "The Design of 2-D Dig-
J=0 ital Filters oy Transformation”, in
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zontal direction, and Z the shift in é;iogfiiégg Sciences and Systems, 1973,
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LUMPED-DISTRIBUTED NETWORKS AND OIFFERENTTAL-DELAY SYSTEMS
J. Murray

1. INTRODUCTION. 1In thi§ paper we will consider some known
properties of differential-delay systems and their relationship
to the lumped-distributed networks studied by classical circuit
theorists. The two theories are fundamentally the same, but the
emphasis is different; in particular, the first question asked
in the system-theoretic approach tends to be about stability,
while the circuit-theorists' primary interests have had to do
with passivity. A further major difference is that the system-
*eorists are concerned with the (infinite-dimensional) state
snares associated with these systems, while the circuit-theorists
tent¢ 0 ignore the state space, and concentrate enti?ely on
inpat-output properties.

Aztually, the similarities and differences between these two
fields (and others) have been treated recently (and excellently)
by Kamen [1]. The present paper gives a different viewpoint,
however, being an analytic approach in contrast to the algebraic
aporoach in {1]. Further, it considers only input-output proper-
ties of systems, and may be considered as a study of the simplest
cese of the convolution algebra approach in [2,3]. It is hoped
that the following discussion will give some intuition for the
last-mentioned approach, and in particular for the relationship
between it and the classical circuit-theorists' use of several
complex variables to model lumpec-distributed networks.

2. OIFFERENTIAL-DELAY SYSTEMS: ALGEBRAIC ASPECTS. The sub-
ject matter of this section has been extensively treated in many

€ Amencan Mathematical Socrery 1980
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J. MURRAY

places; we give a quick summary simply to fix ideas. We will
work with the simplest possible case of differential-delay sys-
tems, namely, the case where all the delays are integral muiti-
ples of one fundamental delay; time-units are assumed to be
normalized so that this fundamental delay is of length one. The
input-output mapping for such a system (assuming BIBO stability)
is given by convolution with an expression of the form

H(t) = Ft) + 3 K, 8(t-n) ()

s

where F(t) is a matrix-valued function in L1(-.-) and the

a8
K; are matrices with 3 |KJ <w; this is the simplest case
{w-e

of the algebras studied by Callier and Desoer [2,3].
For conceptual purposes, we have included non-causal systems
in the above; in the real-world case of causal systems, we have

F(t) =0, t<0O

and
K1 =Q, i<0.

For a system composed of a finite number of differentiators
and integer delays, the Fourier transform of a transfer operator
of the above type is well known to be of the form

R(s,e”%)  (s=iw)

where R is a rational matrix function of two complex variahles.
Since the functions s and e > are algebraically independent,
R is unique. Also, since the transform of a composition (con-
volution) is the product of the transforms, it follows that an
algebra of input-output operators of the type (1) arising from
¢inite systems is isomorphic to a subalgebra of the field of
raticnal functions in two variables (over R or (€, as appro-
priate). The realization problem for differentiali-delay systems
zonsists of identifying this subalgebra, and has been treated in
several places (e.g. (4]). Since it is not our purpose here to
treat either the aigebraic aspects of these systems or the
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problems of their realization, we merely repeat that the alge-
braic treatment rests on the fact that there is an algebra iso-
morphism between the appropriate set of input-output operators

and an algebra of rational functions in two variables. Thus one

may say that from the algebraic point of view, systems of the
type (1) can be treated as two-dimensional.

3. DIFFERENTIAL-DELAY SYSTEMS: ANALYTIC ASPECTS. Much of
the power of transform methods in electrical engineering arises
not simply from the algebraic isomorphism between a convolution
algebra and a function algebra which these transforms define,
but from the more "analytic” properties of the isomorphism; e.g.,
the relationship between pole-location and stability, or between
passivity and the positive-real property. Both of these rela-
tionships will be discussed below as they apply to the present
class of operators. The most obvious analytic property of these
operators is that they have a norm defined by

H] = f-[F(t)Idt + 1'2 1Kl . (2)

For convenience, we will restrict ourselves to scalar-input,
scalar-output systems from here on; this case contains all the
essential features which we wish to discuss. With this assump-
tion, it is easy to check that the operators of the form (1),
with the norm (2), form a commutative Banach algebra which we
will denote by B. It is therefore natural to try to comoute
+he Gelfanc spectrum of this algebra, and see if it can contri-
bute to the understanding of these operators. This can be done
“in various ways, but one of the most ratural is to begin with
the spectrum of L](-n.-), and investigate its behaviour under
the transformation discussed in the previcus section, which
changed the original one-dimensignal problem into a two-
dimensional problem. This transformation is given by the map-
ping

Foo o~ gl
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defined by
f(s) = (s,e7%)
In order to avoid working with points at infinity, it is conven-

ient to take a bilinear transform of the first coordinate, and
work instead with the mapping

£ 02

#s) = (J5. ¢) .

This has the advantage that f maps the right half-plane
into the unit bidisk, UZ, and maps the imaginary axis (which
is the spectrum of L1(—.-)) into the distinguished boundary
12, of U2. (We will use the notation

u={zet|lz] <1}
b=zet|izlsn

T=zet|z] =1}

and
1 UZ

defined by

=UxU, etc. . . )

Since 3 has an identity, its spectrum is compact, and it is
natural to conjerture that this spectrum, o(B), is the closure
of the image of the imaginary axis. This is in fact the case
{8]. The image is defined by

(%5}5, e'i") w € R
Representing the torus as a square with its opposite edges
identified in the usual way, we can draw an approximation to
c(B) as in Fig. 1. It consists of the circle &, = = together
with a line which is asymptotic to this circle.

: As mentioned in the introduction, one of the most important
questions in system theory is stability. In virtually every
situation in wnich it arises, input-output stability is equiva-
lent to some operator having a bounded, causal inverse. [t is
for tnis reason that transforms are useful: invertibility of an
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element in a Banach algebra is equivalent to invertibility of its
(Gelfand) transform at every point in the spectrum. However,

the spectrum in Fig. 1 is that of B and so nonvanishing on this
set implies only the existence of an inverse--not necessarily a
causal inverse. There are two equivalent ways of deciding
whether or not a causal inverse exists; the first (“Hurwitz")
approach is to find the spectrum, S, of the causal subalgebra
of B, and check for nonvanishing on this set. (The second
{"Nyquist") approach will be discussed in the next section.}

Exactly as in the tase of the spectrum of B8, one is led to
conjecture that S (the causal spectrum) is the closure in i
of the image of the half-plane (the spectrum of L1[0.-)) under
f. Again, this is the case. While we can no longer draw a pic-
ture of this spectrum, we can get 3 good idea of what kind of
object it is. [ts intersection with u2 is the image of a one-
(complex) dimensional manifold under a proper holomorphic map,
and so is a two-dimensional analytic subset of U . The inter-
section of § with the boundary of Uz consists of two parts;
the spectrum of B described in the previous section, and the’
disk

{(1,22) lZzl <1} .

The upshot of all this is that the spectrum is a very small
subset of U°. While nonvanishing 6f a function on a one-
dimensional analytic subset of U2 together with nonvanishing
on T can imply nonvanishing on all of g8 (6,71, o(B) is
much t00 small a subset of T2 for any such conclusion to be
possible in this case. Thus we are led to the conclusion that
stability of a system is equivalent to the nonvanishing of a
two-variable rational function R(Z‘.Zz) on the fairly complii-
cated one-dimensional subset, S, of (°; or equivalently,
t0 the transcendental function

1-s -s
R [l+s ' €
being bounded away from zero in the half-plane. In either
case, from the analytic point of view, one has a strictly
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one-dimensional problem. The two-variabie approach appears
? merely as a device which gives one a convenient way of calculat-
ing the spectrum of the appropriate convolution algebra.

4. DIFFERENTIAL-DELAY SYSTEMS: A TOPOLOGICAL ASPECT. We
digress from the main purpose of the paper in this section in
order to discuss the “"Nyquist" approach to stability mentioned
above. The essence of this approach is that instead of looking
for nonvanishing of the transform on a spectrum bigger than o(B)
one Jooks for conditions {in addition to nonvanishing) on the
behavior of the transform on o(B) itself. The classic case of
this is, of course, the Nyquist criterion itself, where one
demands that the transform in question does not vanish on the
1 imaginary axis, and in addition that the image of the imaginary
axis under the transform does not encircle 0. In other words,
one associates an index with the operator in question and, assum-
ing that the operator is invertible, demands that the index be
zero for causal invertibility. (We are assuming here that the
original operator is itself a bounded, causal operator). In-the

\ case of the Nyquist criterion itself, the index is an integer,
but one can not expect this to be true in general. The most one
can expect is that the index will take its values in some (pos-

, sibly partially ordered) group. Since it is known (for fairly
general convolution algebras over R) that a causal invertible

element a has a causal inverse if and only if a is in the
connected component of the identity in the group of invertibles
in the algebra (see [8]), the appropriate "Index Group" here is ' }
the quotient group: Invertibles/component of the identity.
{For an arbitrary 8anach algebra, this group is actually known
. as the abstract index group of the algebra [9]).
This would be of Tittle use were it not for the fact that the
structure of this group is known for commutative Banach algebras; 'J
for such an algebra, the abstract index group is given by

§1(spectrum, Z)

the first Lech cohomology group of the spectrum of the zigebra,
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simpler proof using the cascade loading formula is given in [13],
ﬁ there appears to be 1ittle point in making the above discussion
rigorous. The important point is that whereas stability imposes
restrictions on the behavior of the two-variable transform only
on thin subsets of _T2 and Uz, passive synthesis imposes con-
straints over the entirety of both sets. From any point of view,
the passive synthesis problem is two-dimensional.

6. STABILITY FOR VARIABLE DELAYS. It is clear from the pre-
vious section that if one considers the stability of a system for
. all lengths of delay time, one will have a two-dimensional prob-
' Yem. Various results can be derived using this approach [14].
As an example we have:

PROPOSITION: Suppose a system R is composed of a finite
mamber of éifferentiators and delays of equal length a, so that
its two-vericble tramsfer function 18 rational:

R(2..2.) = P(Z1,Zz)
, : 1*%2 6(21.22)
Assume that R has no indeterminacies on TZ. If the follouwing
‘ conditions are satisfied:
i i) There ezists a mmber M such that R is stable for
cil a>M
i) Q(1.2,) # 0, 1Z,] < |
ifii) R <{g stckle for a =0,
shan R is siatie for all a > 0.
0] c(Bu) ] {(1,e‘°)|o <@g <n} = 12
‘ a>M

so that the hypotheses imply that Q(Z].Zz) has no zeros on Tzn

. Condition iii) implies that 0(21.1) £0 for |Z1| <1, and
this together with condition ii) implies that 0(21,22) ¥ 0 for
fZ]{ <1, :Zzl <1 [6,7]. 1t follows immediately that R is
stable for a1l a > 0.

Condition iii) is actually unnecessary here; it can be elimi-

nated by a slightly more sophisticated argument.
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with integer coefficients. It is intuitively clear {and not dif-
ficult to prove} that

W(a(8), 2) o 22

Thus in the present situation, stability requires that two
distinct integer indices be zero, rather than one as in the clas-
sical Nyguist criterion. This is not surprising--intuitively one
might expect to have one index for each "independent" kind of
delay element. While one can get some feeling for these indices

by examining the generators of ﬁ‘(a(s), Z), it must be admitted -

that this is by no means the best way of actually calculating the
indices for any given element of B. In fact, the problem of
calculating these indices for elements of algebras considerably
more general than B has aiready been solved [10,11] in a much
more straight-forward manner than that discussed above.

However, the above discussion does bring out a numbe: of
points. The major one is that the stability of lumped-distrib-
uted systems is associated with the algebraic topology of the
spectrum of the appropriate Banach algebra. Further, the impor-
tant topological entity is the first Eech ¢ohomology group--and
we note that in the case of o(8) this is not the same as, e.g.,
the first singular cohomology group (in contrast with the classi-
cal case). Thirdly, one can tell simply by looking at the spec-
trum what kinds of conditions are needed for stability--in this
case, that two integers vanish. Finally, since n1(a(8), Z) =
ZZ , One can say in some vague sense that, from the topologica)
or index point of view, the stability problem in B is two-
dimensional.

5. LUMPED-DISTRIBUTED CIRCUITS: PASSIVE SYNTHESIS. As was
mentioned in the introduction, the treatment of circuits consist-
ing of lumped elements and commensurable transmission lines is
formally similar to that of differential-delay systems. There
are two major differences however; in the first place, the func-
tions invoived are input parameters (impedance, admittance, or
scattering) rather than transfer functions (we will again confine
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our attention to the scalar case): secondly, the really inter-
esting problem is passive synthesis.

The purpose of this section is to give some feeling for the
fact that, in contrast with the stability problem, the problem
of passive synthesis is genuinely two-dimensional.

To this end, suppose that we are given a two-variable rational
function R(Z],Zz) and that we wish to synthesize a passive one~
port whose scattering parameter is

p(s) = R(-}-’é , %) .

Exactly as in the classical case, it is necessary that p be
bounded real on the right half-plane or, equivalently, that R
be bounded real on the set S discussed in section 3. However,
if a circuit devoid of sources is constructed from lumped com-
ponents and unit delay lines, it remains passive when delay lines
of any nonnegative length replace the unit delays. It follows
that the function

po(s) = R(FE . )

is bounded real on the right half-plane for 211 a > 0 or equi-
valently (in an obvious notation) that R 1is bounded real on
the set Sa. a > 0. While it is moe true that Ua Su like this
£i11s out the bidisk (cha is three-dimensional, while the
bidisk is four-dimensional), it <s true that as a varies over
the nonnegative real numbers, the set c(Bc) zdrawn in Fig. 1\
moves in such 2 way as to sweep out all of T~, with the excep-
tion of the set (labeled C in Fig. 1):

Considering the known results about the stability of two-
variable systems in terms of their behavior on T2 (6,7], and
of their behavior on three-dimensional subsets of U2 [12] it
is then quite plausible that a necessary condition for passive
synthesis is that R(Z1.ZZ) be bounded real on ail of Uz.
This in fact is well known to be the case, and can be proved by
cornsiderations aleng the sbove lines. However, since 2 much
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7. SYSTEMS WITH I[RRATIONALLY RELATED DELAYS. We have been
concerned throughout with systems whose delays are all integer
multiples of one fundamental delay. If there are n independent
delays over the rationals, then one gets, in the usual way, \
rational functions in n+1 variables. We remark in passing
that if one has two independent delays without any differentia-
tions (lumped elements) one will again get rational functions in
two variables. However, the theory here is very different from
the lumped-distributed case discussed previously, since now the
spectrum is all of Tz., and the causal spectrum is all of 02
For this reason, the stability theory of pure-delay systems with
several incommensurable delays is much simpler than that of dif-
ferential-delay systems.

In the general case, we will merely indicate what the spectrum
looks Jike. For systems involving n independent delays and
differentiations, o(B) consists of a line together with an n-
dimensional torus, the line being asymptotic to a dense line
{i.e., one which winds around the torus at an irrational angle)
on the torus. <

The set S (the causal spectrum) consists of o(B) as
described above together with one-dimensional analytic set in
Unﬂ, and an n-dimensional polydisc {whose distinguished bound-
ary is the n-dimensional torus mentioned above) contained in
the boundary of u"ﬂ. Again, the spectrum of the convolution
algebra, o(B), can be found by examining the image of the
imaginary axis under the manping which transforms the one-
dimensional problem into an (n+1)-dimensional problem; that is,
the several-variable aporoach may be regarded as a vehicle for
¢omputing the spectrum.

finally, the "stability index group" is isomorphic to ZZ(M'.
a more detailed analysis shows that when one allows arbitrarily
many delays of arbitrary lengths, this group is isomorphic to
ZxR (see [10,11)),
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8. CONCLUSIONS. Our main purpose here has been to give a
discussion of the radical differences which can occur between i
algebras of systems which are formally similar. These differ-
ences may arise from the problems under consideration, as in the
difference between the problems of stability and passive syn-
thesis; or from differences in the classes of systems themselves,
as in the stability problem for systems composed of differentia-
tors and integral multiples of one delay compared to the same
problem for systems involving two irrationally related delays.

A further objective has been to demonstrate the utility of
the Gelfand spectrum in connection with these problems. In the
classical cases of either lumped, continuous-time systems or
discrete-time systems the Gelfand spectrum is a circle, (or a
disk in the causal case), and the usefulness of the representa-
tion of elements of the system as functions from this set into
¢ is well known. In mixed differential-delay systems, the
spectra are considerably more complicated objects, and the intui-
tion to be gained by studying the action of individual systems
on these spectra is not quite so transparent. Nonetheless, it
is hoped that the above discussion has shown that even in the
nonclassical cases the spectrum is significant, and that know-

) ledge of the spectrum of the algebras involved can give a Jeeper
insight into the behavior of the systems.
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Abstract

A method is described for the design of two-dimensional half-plane
recursive digital filters, in the form of a cascade connection of filters
which are of second order in the (principal) direction of recursion, and
of arbitrarily high order in the other direction. The filters thus derived
are shown to be automatically stable, but yield poor responses in the
vicinity of very wide or very narrow bandwidths. Some techniques for
tackling these difficulties are discussed, and the results of applying

these design procedures are shown.
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THE DESIGN OF 2-D FILTERS AS 1-D TIME-VARYING SYSTEMS

Abstract i

In a previous paper a theoretical approach to two-dimensional recursive
digital filtering was proposed. This approach was based on the fact that
two-dimensional recursive filtering with the normal "scanning" recursion
is in reality a one (time) - dimensional periodically time-varying discrete-

time operation. Time-varying systems are normally intractable; periodically

time-varying discrete-time systems, however, are among the few classes of
time-varying systems for which a complete, closed-form theory exists. This
theory transforms single-input single-output time-varying systems of period
N (where we assume that the sampling period is 1) into a subclass of N-input,
N-output time-invariant systems. There is a possibility of using classical
multi-input multi-output time-invariant system theory to design 2-D filters
in this setting.

There are two problems which arise. Firstly, N is usually very large,
and so direct manipulations are impossible. Secondly, the time-varying sys-
tems correspond to only a subset of multi-input multi-output systems, and
the classical design methods do not necessarily yield a design in this
subset.

This paper exhibits a desian procedure which takes care of both of

these problems, and shows examples of filters designed by using this

procedure.
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Summar

Although one might, upon a cursory investigation, conclude that the image
processing problem was simply a two dimensional generalization of the standard
1-D signal processing problem this is not the case since both the signat and
noise phenomena encountered in the image processing problem tend to be either
nonlinearn and/on Apace variant (the spatial analog of time-varying). Indeed,
both photo-electrnic shot noise and §4&m grain nodise are highly signal dependent
in nature while the edge effects in a finite image introduce space-variant
effects. Although a theory for coping with these nonlinear and space-variant
effects has been developed in a 1-D setting, in the 2-D image processing problem
these techniques have proven to be comoutationally prohibitive. As such, the
present work unit is directed towards the problem of developing computationally
viable algornithms fon the digital image processing problem. These include
sub-optimal algonithms for estimation in signal-dependent noise, analytic
techniques for reducing the effective dimensionality of an image and technigues

for exploiting the signal dependent nature of the nodise phenomena.
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Estimation in signal-dependent film-grain noise

Gary K. Froehlich, John F. Walkup, and Thomas F. Krile

3

Optimal estimators are derived for a signal-dependent film-grain noise model, and the effect of signal-de-
pendence op the estimators's structures is investigated. Due w the mathematical complexity of these opti-
mal estimators, various suboptimal estimators are proposed. Computer simulations are then presented
which compare the optimal and suboptimal estimators with regard to mean square estimation error, sensitiv-
ity to signal-dependence, and robustness with respect to the a priori signal probability density function.

. Introduction

A number of physical noise processes are inherently
signal-dependent. These include photoelectronic shot
noise,! magnetic tape recording noise,? and of course
photographic film-grain noise.!34 In an earlier paper,*
a very general model was presented which embodies all
the just mentioned processes and more. That model
is presented again in

r=g+ kfis)n, +ng, (1)

where r is the noisy measurement; s is the underlying
signal to be estimated, which is generally characterized
by its probability density function p(s); f(s) is a zero-
memory (spatial) function of the signal; n; and n, are
signal-independent random noise processes; and k is a
scalar constant, which, when set equal to zero, yields the
signal-independent additive noise model. It is further
assumed that ny, no, and s are mutually statistically
independent.

It bas already been shown that estimators which ig-
nore signal-dependence of noise pay a penalty in terms
of mean square estimation error (MSEE) and that in-
clusion of the signal-dependence, while increasing the
complexity of estimators, results in potentially superior
performances.*® In this paper, we intend to compare
various estimators with regard to ease of implementa-

When this work was done al) authors were with Texas Tech Uni-
versity, Department of Electrical Engineering, P.O. Box 4429, Lub-
bock, Texas 79409; Gary Froehlich is now with Sandia Nationa)
Laboratories, Albuguerque, New Mexico 8718S.

tion, MSEE, sensitivity to signal-dependence, and ro-
bustness with respect to the a prior: probability density
p(s). This is achieved through a comparison of the
estimators’s structures and by using computer simula-
tions.

To simplify the comparisons as much as possible,
various assumptions about the model of Eq. (1) are
necessary. The signal-independent noise terms, ny and
na, are assumed to be 2ero-mean normal random vari-
ables with variances o7 and o3, respectively. Nota-
tionally, this is represented by

n~N(0,03), i=12 2

Furthermore, a specific function for f(s)} must be chosen.
The function f(s) = sP is of particular interest, as it
represents photographic film-grain noise when s rep-
resents photographic density, p is between 0.2 and 0.7,34
and k is a scanning constant. The exponent p is taken
to be 0.5 in the remainder of this paper. Thus

fis) = /5. (3)

The final assumption is with regard to the a priori
probability density function (pdf) of the signal, i.e., p(s).
Several cases are treated in Refs. 4 and 5. These in-
clude the Gaussian, Rayleigh, uniform, discrete-uni-
form, and folded-normal® pdf’s, which were chosen for
their tractability or their positivity constraints.” For
purposes of comparison and brevity, only the Gaussian,
Rayleigh, and uniform cases will be presented here.
With the above assumptions, the model becomes

r-:+ks/?n,+ng, (4)

-and the conditional measurement r, given s, is distrib-
uted normally with mean s and variance

u(s) = k2efs + of, (S)
or, in the notation of Eq. (2),
ptris) ~ Nlis.u(s)). 6)

235 —_ -
FRLCEIAG Faul blaid«NOT ¥l

i




2e2 : 0.0
§u-u D v
3
N $sr
_- %0
2 - Pl
-
- .
L ate oo
. ,4” ‘5' - oo
e
0 T T T T T T .
! 2 3

Fig. 1. MMSE estimator structure for Gaussian p(s): solid line (63
= (.3, k207 varies); dasbed line (k203 = 0.3, o3 varies); p(s) ~ N(1.5,
0.25).

ll. Optimal Estimation—Minimum Mean Square Error

Optimal estimators based on the measurement model
of Eq. (4) are now presented. The first optimality cri-
terion considered is minimization of MSEE, or equiv-
alently, minimization of the Bayes's risk for a quadratic
cost function.3® Computationally, this is merely the
conditional rnean of the a posteriori probability density
function p(s|r). Thus the minimum mean square error
(MMSE) estimate is given by

$MMSE = f_: sp(sir)ds. )]

Unfortunately, the a posterior: density p(s|r) is very
difficult 1o compute. Bayes's rule can be applied,
however, to rewrite Eq. (7) as

f- sp(ris)p(s)ds

SMMSE = (8)

f_: plris)pis)ds
where p(r|s) is given by Eq. (6), and some particular
form is assumed for p(s). As an example of the com-
plexity of this estimator, consider the computation of
Eq. (8) when p(s) is Gaussian, i.e.,
pls) ~ N(g,,c2). (9

In this case 2(r|s)p(s) is given by

1 (r=5)2 (s=u?
)p( ——— -, d —— R (10
plrlsip(s) = 210‘,\/?(-5“‘,{ h u(s) a )

where u(s) is given in Eq. (5). Similar complexity re-
sults when p(s) is assumed to be either Rayleigh dis-
tributed or uniformly distributed.

To arrive at some general conclusions about the
MMSE estimators, the structure of the estimators is
presented. The estimate ¢\gp is plotted vs the
measurement r in Figs. 1-3. InFig. 1, p(s) is assumed
to be Gaussian, in Fig. 2 it is assurned Rayleigh, and in
Fig. 3 it is assumed uniform. In each figure, the solid

lines represent cases in which o3, the variance of the
signal-independent noise term, is fixed while k2¢3,
which is proportional to the variance of the signal-
dependent noise term, is allowed to vary. The dashed
lines represent cases in which k207 is fixed and o3 is al-
lowed to vary. The actual numerical values of all the
parameters are realistic, and they serve to restrict the
photographic density variables to a practical range of
zero to three.!® Also, inspection of Eq. (4) shows that
when & = 0, the model reduces to the classical signal-
independent additive noise modelr = s + n,.

Several general conclusions are implied by exami-
nation of Figs. 1-3. In all three cases, for example, the
estimators exhibit greater sensitivity to the signal-
dependent noise term than to the signal-independent

Sume
3~

Fig. 2 MMSE estimator structure for Rayleigh p(s): solid line (o}
= 0.3, k%0 varies); dashed line (k2¢3 = 0.3, o3 varies); p(s) ~ Rayleigh
with mean = 1.25, 02 = 0.43.

[70>]

T l 1] 1 L ] L
| 2 3 r
Fig.3. MMSE estimator structure for uniform pis): Solid line (o}
= 0.3, k30t varies); dashed line (k2¢% = 0.3, o8 varies): p(s) ~ uniform
with mean = 1.5, ¢ = 0.75.
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Fig. 4. MAP estimator structure for Gaussian p(s): solid line (o3
= 0.3, k207 varies); dashed line (k20 = 0.3, 03 varies); p(s) ~ N(1.5,
0.25).
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Fig. 5. MAP estimator structure for Rayleigh p(s): solid line (o3

= 0.3, k3g% varies); dashed line (k20% = 0.3, o3 varies); p(s¥-~ Rayleigh
with mean = 1.25, ¢? = 0.43.

one. Also, in all three cases. if either noise term in-
creases without bound, the estimate becomes the (as-
sumed known) mean of s. Furthermore, note that the
more pis) deviates from normality, the more nonlinear
the estimator structure becomes. This implies that
estimator performance will suffer if the assumed form
of p(s) is wrong. Ideally we would like to find a robust
estimator. i.e., an estimator for which the structure is
invariant to changes in p(s).

One final note about the MMSE estimator is in order.
The complexity of Eq. (8) would seem to discourage the
use of this estimator on a point-bv-point basis over an
image. However, if the parameters k,07,03, and the

moments of s do not change for the class of images
under study, the numerical integration of Eq. (8) can be
done off-line for the entire practical range of measure-
ments 7. The only on-line operation then is reduced to
a table look-up procedure 1o match the precalculated
estimate with the corresponding measurement.

. Optimal Estimation—Maximum a posteriorl

As an alternative to minimization of mean square
error, we now consider an estimator which minimizes
the Bayes’s risk8 for a uniform cost function. This turns
out to be the conditional mode of the a posteriori
probability density function p(s|r). Since the mode is
merely the peak value of the pdf, the estimator is often
referred to as the maximum ¢ posteriori (MAP) esti-
mator.8? The MAP estimate is treated in detail in Refs.
4and 5. For the model of Eq. (4), the MAP estimate is
the solution of a2 polynomial. For p(s) normally dis-
tributed, the polynomial is cubic. For Rayleigh p(s),
the MAP equation is of degree four, and for uniform
p(s), the polynomial is quadratic. The latter case, with
uniform p(s), is equivalent to maximum likelihood
(ML) estimation.*58° The ML estimate is used when
no prior information about the statistics of s is assumed
or known. The uniform distribution for p(s) corre-
sponds to this worst case,

As with the MMSE estimator, the MAP estimator
structures are presented as plots of the MAP estimates
vs the measurements r. Figure 4 is the MAP estimator
structure for Gaussian p(s), Fig. 5 is the MAP estimator
structure for Rayleigh p(s), and Fig. 6 is the ML esti-
mate. Once again, the solid lines repre..2nt the cases
wherein o3 is fixed and k2073 is allowed to vary, and the
dashed hnes correspond to the case where k207 is fixed
and o3 is allowed to vary.

The overall trends in these three figures are very
similar to those indicated in Figs. 1-3. Again, the es-
timators become increasingly nonlinear as p(s) departs
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Fig. 6. ML estimator structure: solid line (¢ = 0.3, k20 varies);
dashed line (A3¢3= 0.3. &3 varies).




from normality. Also the sensitivity to the signal-
dependent noise term is much greater than the sensi-
tivity to the signal-independent noise term for all three
cases. However, the value of the estimate when k2¢?
increases without bound is always lower than the esti-
mate when o3 increases without bound. This is quite
different from the MMSE estimators which converged
to the same value regardless of which noise term became

unbounded.
Another characteristic shared by both the MAP and

MMSE estimators is computational complexity. Itis
generally undesirable to have to solve a polynomial at
every poiht of measurement (pixel), just as it was un-
desirable to integrate numerically at each point.
However, if the parameters k, o7, 63, and the statistics
of s do not change appreciably for the class of images
under study, the problem is again reduced to one of an
off-line table generation followed by on-line table
look-ups.

V. Suboptimal Estimation

The major limitations of the optimal estimators just
presented were their general computational complexity
and their sensitivity to choice of p(s). It might prove
acceptable to sacrifice some theoretical performance for
ease of implementation and some measure of robust-
ness. Toward this end, suboptimal estimators are next
investigated.

A. Weighted Spatial Averaging

As a first step, the basic sample mean will be ex-
ploited. The sample mean is certainly easy to imple-
ment, and it is also known to be the most robust esti-
mator of the true mean.11-14 The estimation procedure
then is to replace each measurement with the average
of that measurement and its neighbors. Ina2-D sam-
pled image, for example, this might correspond to a
pixel and its eight nearest neighbor pixels. Defining the
sample mean at the point j as F;,

?; = i Fips (11)

1e]

the weighted spatial average (WSA) estimate is then
Swsa; = 7. (12)

Unfortunately, this estimator has one rather severe
limitation: it is not robust with respect to the spatial
noise power spectrum. This occurs because the WSA
algorithm is in effect a finite-window spatial low-pass
filtering operation. As such, it does not affect low-
frequency noise, and it destroys high-frequency signal
information.

B. Moditied Signal-independent MAP

In an attempt to combine <he desirable features of the
WSA algorithm and the sophistication of a slightly more
compiex :stimator, the MAP estimator designed for
signal-independent additive noise and Gauvrsian signal
statistics was modified. The modification allows the
statistics to vary spatially—a consequence of signal-
dependence. The signal-independent MAP estimator
is given by45

e e sy

§ si—r"l'c_g
MAP d+¢e d*’ﬂ?“" (13)

where it was assumed that s ~ N(u,,07). This requires
a priori knowledge of u; and ¢3, which remain fixed in
the estimator of Eq. (13). :

It can be easily shown that the expected value of 7; is
s, be.,

EF| = &, (14)

Thus we can eliminate the need for a priori knowledge
of p, and simultaneously allow the statistics to vary

spatially by replacing u, in Eq. (13) with an estimate of

s, namely, 7;. The modified signal-independent MAP
(MSIMAP) estimator then becomes

L. U ;
MAP).-O%*’ng £+';’jv (15)
where 7; was given by Eq. (11). Because the MSIMAP
estimator of Eq. (15) adapts spatially over the image,
it should out perform the unmodified MAP estimator
of Eq. {13) when both are applied to the signal-depen-
dent noise model of Eq. (4).

A potential limitation of the MSIMAP algorithm is
the requirement that o2 be known a priori. There may
be situations where this is not unreasonable, such as
when the energy of the signal is known; however, there
may well be situations when it is quite unreasonable to
require a priori knowledge of any of the signal statistics.
An additional modification is required to eliminate this
defect.

C. James-Stein

Just as the signal mean is adaptively estimated in the
MSIMARP algorithm, the signal variance ¢? can also be
adaptively estimated within the overall estimator
structure. Note that Eq. (15) can be rewritten as

§i=Qri+ (1 =-QF, (16)

§

where
Q% o¥/(c? + o}).
Equation (16) can in turn be rewritten as
8 =F + Qe = 7)), (18)

Now the signal-independent additive noise model for
which the signal-independent MAP estimator was de-
signed has. r distributed normally with mean u, and
variance ¢2 given by

[¥)
~3
~

o =g+ gl (19)
Thus
' o o}
- e 2 o m ] == (20)
o+ 0} of ! o

Rewriting @ in this fashion eliminates the explicit re-
quirement to know o>, It was assumed at the outset
that o was known, so the problem is reduced to one of
estimating ¢2. Since r is the measured quantity, the
obvious intuitive estimate for o7 is the sample variance,
employing the same nearest-neighbor approach used
to compute the sample mean. Defining the sample
variance at location j as vj, it is given by
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Table . Sample MSEE for Gaussian p(s) with u, = 1.5 and o} = 0.25

kg2 =0 bzci = 0.0 k2ai = 0.03

Case ot = 0.03 o3 = 0.01 1=
Noise 0.027 0.014 0.012
MMSE 0.031 0.011 0.011
MAP 0.024 0.014 0.012
ML 0.027 0.014 0.012
WSA 0.163 0.164 0.162
MSIMAP 0.026 0.014 0.012
Js 0.026 0.015 0.012

Table . Shmpie MSEE for Rayleigh p{s) with &, = 1.25 and 0§ = 0.43

kigi=0 kig? = 0.01 k2q} = 0.03

Case = 0.03 = (.01 =0
Noise 0.026 0.012 0.011
MMSE 0.024 0.012 0.009
MAP 0.025 0.012 0.010
ML 0.026 0.012 0.011
WSA 0.297 0.2%0 0.293
MSIMAP 0.025 0.012 0.011
J8 0.025 0.012 0.011

Tabie ., Sempie MSEE for Discrete-Uniform p{s) with Mean = §.25 and

Var. = 0.02
R =0 kgt = 0.01 k203 = 0.03

Case = 0.03 a3 = 0.01 =0
Noise 0.038 0.011 0.002
MMSE 0.009 0.007 0.004
MAP 0.015 0.009 0.001
ML 0.038 0.011 0.002
WSA 0.015 0.0058 0.001
MSIMAP 0.022 0.008 0.002
JS 0.027 0.007 0.002

Table IV. Sampie MSEE for Oiscrete-Unitorm p(s) with Mean = 1.5 and

Vor. = 0,78
R23= 0 kg3 = 0.01 kigl = 0.03
Case o3 = 0.03 = (.01 =0
Noise 0.026 0.014 0.012
MMSE 0.021 0.014 0.014
MAP 0.023 0.014 0.012
ML 0.026 0.014 0.012
WSA 0.021 0.015 0.015
MSIMAP 0.025 0.013 0.012
JS 0.016 0.009 0.012
L -
v = Py E (ry = %0, (21)

where 7, was defined by Eq. (11).

With ¢; adaptively estimated by v,, the variable @
now varies with location and thus is subscripted as @),
where

Q-x-ﬁ- : (22)
v,
The final estimator resulting from these manipula-
tions is given by

§ Qi =F). (23)

As it turns out, this is an empirical Bayesian estimator
which estimates the mean of a multivariate normal

distribution and exhibits uniformly lower MSEE than
the sample mean. This estimator is known as the
James-Stein (JS) estimator.}%16 It can be shown!® that
the MSEE is further lowered by restricting Q; to be
nonnegative. With this final modification, the (JS)
estimator is given by

§=Fi+Qrir, =F), (24)

where a* & max(0,a), Q; is given'by Eq. (22), and 7; is
given by Eq. (11).

An estimator which is in some sense intermediate
between the MSIMAP estimator [Eq. (15)] and the JS
estimator [Eq. (24)] can be obtained by using the sample
variance v; of Eq. (21) to estimate the signal variance
o? rather than the measurement variance o2, This es-
timator is discussed in Ref. 5, where it is called the
MSIMAP? estimator. It was also discussed by Lee,”
who showed some experimental results with noise-
degraded images.

V. Simulations

To compare the optimal and suboptimal estimators
with each other, it was necessary to perform several
computer simulations. Only a few results are presented
in this paper. For a very extensive tabulation of results
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Fig. 7. Uncorrupted signals with discrete-uniform stauistics: (s}
low-contrast lov.-signal-mean case: (b} high-contrast case.
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2 to a low-contrast low-signal-mean case (Table III), while I
the second corresponds to a high-contrast case (Table 2
4% 2

d Looking at Table I, two things are immediately ap-

parent. First, the MMSE estimator does indeed exhibit

minimum sample MSEE, except in the case where sig-

nal-independent noise dominates. Second, the WSA

estimator performs very poorly. This latter condition

occurs because of the low-pass filtering nature of the , ‘

algorithm. The signal s in this case is a sample function ,

W from a pseudorang;)m Gaussiandprocess. Conse- ?

T LN . quently, a low-pass filtared version deviates more from ’

ST mm Ny O B8 @ Re e true signal than the noisy measurement itself does.

@) Note also that the other estimates perform more or less
equally well.

Turning next to Table II, where s is a Rayleigh-dis-
tributed random variable, note that the MMSE esti-
mator again has a slight edge over the other estimators
in most cases. As before, the WSA estimator performs
very badly, again due to the nature of s and the effect
of low-pass filtering. Also the remaining estimators
again perform about equally.

Table III shows quite different behavior on the part
of the WSA estimator. This is primarily due once again
to the nature of the signal. The particular sample i
function used as a signal for this case is shown in Fig. i e

. 7(a) and is seen to have very little high-frequency con- : |

el T T tent. Thus a low-pass filtering operation is ideal for
®)

Fig. 8. Waveforms of Fig. 7 corrupted by equal parts signal-inue

pendent and signal-dependent noise (¢} = o} = 0.01).
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see Ref. 3. The estimators treated here are as follows:
{1) the MMSE estimator with p(s) Gaussian; (2) the
MAP estimator with p(s) Gaussian; (3) the ML esti-
mator; (4) the WSA estimator; (5) the MSIMAP esti-
mator; and (6) the JS estimator.

These six estimators were applied to measurements
generated by the noise model of Eq. (4). Here three NWNM/‘«/’\/\/‘W
noise regimes are considered. They are (1) a signal- . - -
independent noise only case (k20? = 0,03 = 0.03). (2) a
signal-dependent noise only case (03 = 0,k202 = 0.03),
and (3) a case with equal parts signal-dependent and
signal-independent noise (63 = k207 = 0.01). The vai-
ues were chosen to insure reasonabie SNRs for purposes
of visual comparison. Each Monte Carlo simulation
emploved 256 sample measurements, and 200 simula-
tions were run for each case.

The sample MSEE for each of the six estimators, as
well as the squared deviation of the noisy measurement
from the true signal (labeled simply noise), is tabulated
under columns corresponding to the three noise mix-
tures described above. There are four such tables
presented in this paper. Table I is for Gaussian p(s).
To get some feeling about robustness, p(s) is next
treated (Table II) as a Ravleigh pdf. To allow still
further deviation from normality, p(s) is next taken to
be a discrete-uniform density. Here, however, two sets ®
of parameters are considered. The first corresponds Fig. 9. MMSE estimates for the noisy measurements of Fig. 8.
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eliminating noise with a large high-spatial frequency
component. The other estimators performed relatively
well in most cases here also. '

The last case considered is the high-contrast case,
with s shown in Fig. 7(b), and the results of the simu-
lations given in Table IV. Due to the large step size in
this signal, there is a sizable high-spatial frequency
component. Because of this, the superior performance
exhibited by the WSA process in the similar case above
is lost here. The various optimal estimators perform
rather poorly as well due to drastic deviation from the
normality assumption. It is the spatially adaptive es-
timators which performed well in this case, most notably
the JS estimator.

To aid interpretation of the data presented in Tables
I-IV. consider the pictorial representations. Figure 8
illustrates the signals of Fig. 7 after corruption by equal
parts signal-dependent and signal-independent noise.
These corrupted waveforms are then used as noisy
measurements, and three of the estimators are applied.
The MMSE estimate is illustrated in Fig. 9, the WSA
estimate in Fig. 10 (where the low-pass filtering effect
is evident), and the JS estimate is shown in Fig. 11.
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Fig. 10. WSA estimates for the noisy measurements of Fig. 8.
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Fig. 11. James-Stein estimates for the noisy measurements of
Fig. 8.

Vvi. Conclusions

Overall, then, using the MSEE as a performance
measure, several observations may be made. If the
criginal signal has a great deal of high-frequency con-
tent, as does an image with a lot of fine detail, the WSA
estimator should be avoided. The MMSE estimator
is the most desirable when the signal statistics do not
deviate too far from normality, with the JS estimator
becoming the better choice in-cases of large deviations
from the normality assumption. On the other hand, if
the signal is known (or suspected) to have little high-
frequency content, the superior estimator is the WSA
algorithm, especially when substantial deviations from
the Gaussian assuruption are also encountered.

This work was supported by the Joint Services
Electronics Program at Texas Tech U. under ONR
contract N0014.76-C-1136. The assistance of Gus Ol-
iver with the computer simulations, the tvping of the
manuscript by Heidi Hanssen. and the assistance of
Rangachar Kasturi with the figures are gratefully ac-
knowledged.
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Summary:
The present work unit represents the continuation of an on-going re-

search program in which modern group theonetic methods are used to obtain

a solution to the wointing and tracking problem. Initially, we developed an

algorithm applicable to imagery in the plane whose motion is characterized

by a four parameter Lie group (two translations, rotation, and magnification).

At the present time we are in the process of .impfementing the resultant

pointing and thacking algornithm (hopefully in real-time) on our video image

processing system and simultaneously extending the theory to a true three

dimensional model.

7.

Publications and Activities

A. Conference Papers and Abstracts
1. MNewman, T.G., and L. Zlobec, "Adaptive Pattern Matching Using
Control Theory on Lie Groups”, Proc. of the Inter. Symp. on the
Mathematics of iletworks and Systems, Santa Monica, Aug. 1981,
pp. 206-210.
B. Theses
1. Demus, A., M.S. Report, (in preparation).
2. 0. Tarrel, M.S. Thesis, (in preparation).

3. C. Hsia, M.S. Report, (in preparation)
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ADAPTIVE PATTERN MATCHING USING
CONTROL THEORY ON LIE GRQUPS

THoMAs G, NEwMAN

AND

LEOPOLD ZLOBEC




1. INTRODUCTION how two planar images could be matched un-~
A rroblem of classical interest in pattern C@F arbitrary affine transformation of the
recognition is that of determining the plane, if a match were at all possible. In
presence or absence of a particular sub- addition to affine transformations, an al-~
pattern or subpattern class. In the anal- lowance was also made for dilation of in-
ysis of two-dimensional imagery this can tensity scale such as that which results
take the form of detection of corners and from under or over exposure of film within
edges or the location of a specific sil- latitude li"itf' The results cited, how-
houette. More particularly, we may be in- SVeIrs are of little use in matching subpat-
terested in obtaining an exact match of a terns, since the algorithms are highly sen-
specific portion of the image to a sub- sitive to the background context. Never-
image, often a prototype, which may appear theless, the utility of a.group theoretic
in an arbitrary manner, varying in size, approach to pattern matching was clearly
location and orientation. This is the demonstrated. -
problem which is herein addressed. In the following we present a method for
A related question was considered by pir-  Performing a local search for an imbedded
ilten and Newman [3] where it was shown subpattern of a two-dimensional image. The

ADAPTIVE PATTERN MATCHING USING CONTROL THEORY ON LIE GROUPS*

Thomas G. YNewman and Leopold Zlobec
Texas Tech University
Lubbock, Texas

Abstract

A method is given for matching a subpattern of a two-dimensional
image against a stored prototype, where the latter is defined on a
window whose position and shape is determined by the action of a Lie
group of transformations. The method involves the construction of a
path in the control group along which the matching error decreases
t0 a local minimum.

*This research was supporﬁod by the Army Research Qffice, Contract
DAAG29-30~C-0087 and by the Office of tlaval Research, Contract
N0O14-76-C=~1136. .
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method is one involving adaptive control
of a retina which seeks the desired sub-
pattern by evolving along a curve in the
space of parameters in a direction which
assures inmprovement in the goodness of
£it.

2. BACKGROUND

Let G be a Lie group of transformation on
an analytic manifold M. Suppose G has di-
mension n while M has dimension m. Let x
and y denote the coordinates of elements £
and g in G, respectively, in a patch con-
taining the identity element e of G. Also,
let p denote coordinates of an element u
of M in some patch in M. We may then ex-
press the coordinates z of the product
h = fg and the coordinates q of the ele-
ment v = gu, relative to suitable patches,
by means of analytic functions

z = J(x,y) (2.1)

q = K(y,p) (2.2)

K and J are vector-valued, having values
in n-dimensicnal space R” or ¢” and m~
dimensional space R® or ¢®. Hereafter we
shall assume that these underlying spaces
are real. We denote the ith component of

J by Ji and the jth component of K by Kj'

In order to define the Lie algebra of G we
girst introduce real-valued maps on G by
3Ji
Piylx) = 5Y—j(x,y; ly_e, (2.3)

where i and j each range from 1 to n. The
cross-section P'j' which congists of the

?ij as i ranges from 1 to n, and j is fix-
ed, may be thought of as a vector field in
R™. Such a vector field attaches to a

point x the vector P,.(x). As such, Puye
PagreeesPay form a basis for the tangent
space at the point x (1,2]. The infinite-
simal transformations of G may now be de-
£ined by

n
2
X, = § P..(x) , (2.4)
j 1-2-1 S R EY

for j = 1,2,...,n.

The differential operators so defined are
to be considered as linear operators on the
space of analytic functions on G, or, more
generally, on the space of differentiable
functions on G. The Lie algebra of G is
simply the n-dimensional vector space con-
sisting of all linear éombinations of these
operators, and will be denoted by L(G) {(2].

The Lie algebra of G may also be definad in
terms of its actions on the manifold M.
Analogous to (2.3) we define

3K
= a
Quj(P) gy—j(Y,P) |y_e (2.5)

fora=1,2,...,m and j = 1,2,...,a. Pin-
ally, as in (2.4) above we set
P e T 3
Xy = uzloaj ™, (2.6)
The operators xi, Xé, cres x; apply to
functions defined on M and span a Lie alge-
bra isomorphic to L{(G).

The following result from {4] will be used
later, and is stated for reference:

Theorers 2.1. Let £f: M - R be differenti-
albe and define F: G x M « R, in terms of
coordinates, by

F(x,p) = £(K(x,p)). (2.7
Then for each j = 1,2,...,n we have
xjr = x;r. (2.8)

Let us consider a curve t - g(t) in G sat-
isfying g(0) = e. In terms of a coordinate
patch at e, g(t) may be described by a
curve x(t) in R® satisfying x(0) = 3. We
shall consider the case in which x(t) is
given as the sclution of an evolution equa-
tion of the form

x(t) = A{(B)Pa (x(t)), x(0) = 0,(2.9)

!
i=]
where P'l""P'n are cross-sections of the
array of functions given by (2.3), and

xl(t),...,xn(t) are suitable control func-

tions.
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Now let » denote the coordinates of a
point u in some coordinate patch. For a
differentiable map £f: M - R we may define
H: R x M« R by setting

H(t,p) = £(g(t)u). (2.10)
We recognize that H(t,p) = F(x(t),p) where
F is the extension of £ to G x M as in
Theorem 2.1 above. From the point of view
of application, if we regard £: M - R as
then H(t,p) represents the mov-
ing image obtained by translation due to

an image,

the curve g(t). Also from [4], we have

“heorem 2.2. In the context above,

1

T (2.11)

n
ilei(c)xia.

3. THE CONTROL MODEL

3y an image we mean a map f: M - R, whers
the value £(p) at a point p € M represents
the gray value at the picture element at
p. In practice, values are observed on a
subset W
which may be translated by the action of G
on M. Thus, upen translation by an ele-
ment x € G, the value chserved at p € W is
given by F(x,p) = £(K(x,p)), as in (2.7)
above.

M, which we regard as a window

We consider a given prototype sub-image V
defined on the window W, V: W - R. The
problem then is to determine x € G such
that F(x,p) = V(p) for all p @ W, or detar-
mine that no such x exists. As a matter
of practice, wa seek x € G which minimizes
the objective function

voo =3 [ (Fxp - v, (3.0
W
“here dp represents a volume element and
the integral is over the window W, which
is assumed %o be of bounded volume.

In general, for any two functions tl,lz:
W - M we define
't

]
W

<tl,£2> - £l!2dp and

IR R

Thus, ¥(x) = ||F - V|[2/2, where x is re-
garded as a parameter.

The following is a well-known property of
the Lie group G (2]:

Lemma 1. In order that the differential

d (x) = Q0 at a point x € G, it is necessary
and sufficient that each xi\l'(:f) = 0 where
xl,xz,...,xn are the generators of L(G)
given by (2.4).

By direct calculation, we obtain xiv(x) =

J(F(x,p) = V(p))X;F(x,p)dp.
)
this expression is difficult to conpute

numerically, due to the presance of the
term xiF' which cannot be computed directly
from observed data. However, by Theorem
(2.1) we have xiF = XEF, and the latter can
be calculated from a single value of x.

In practice,

Suppose now that a curve in G is given by
coordinates x(t) obtained as a solution of
Equation (2.9). We seek to find A (%) =
(Xl(t),...,kn(c)) 80 that Y(t) = ¥(x(t))
decreases to a minimum valve. Defining
H(t,p) = F(x(t),p) we obtain,

§(E) = [(H(e,p) - V(P)I % (t,p)dp (3.2)
W

which, by application of Theoren (2.2), be-
comes

n
b(e) = § Ai(c)I(a(z,p) - V(p)) X{E(t,p)dp
i=l 4

n (3.3
= J A (E)<H - V,X!H>
is1 * s
Upon observing that <H - V,Xiﬂ> -
<F - v,xir> =Xt at x = x(t), we deduce:

Theorem 3.1. If Ai(t) is chosen so that
sani(t) = - ggn <H =~ v,xiu>, we have ,

B(t) < 0 for all t, with equality at t = &y
if and only if d¥Y = 0 at x = x(to).

Among the class of bounded controls,

[A{ = (&) s 1, we see that the rate of ce-

crease of (t) is maximized by the choice
xi(t) - - ggn <H - V,xiH>, (3.4)
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for i = 1,2,...,n. Of course, other stra~
tegies can be formulated, including steep~
est descent, and some methods using un-
bounded controls. By proceeding along
trajectories defined by the solution of
23.9) with A(t) given by (3.4), we ap~
proach a critical point of ¥ (i.e. 4 = 0),
Since maxima and saddle points are un-
stable under perturbation, in practice
this extreme point will always be a mini-
mum .,

4. SIMULATION RESULTS

The results discussed in the previous sec-
tion have been implemented by a discrete
algorithm and tested on simulated data [S].
A digitized two-dimensional image was
£irst generated in the form of a large
two~dimensional array, and the prototype
was generated in a 20 x 20 window array.

The image space was assumed to be subject
to translation, magnification and rotation,
giving rise to a four parameter Lie group
of transformations in the plane, Rz.

A number of cases were considered, includ-
ing some involving multiple (false) tar-
gets and others in which the prototype was
absent from the image being searched. 1In
some cases the image was contaminated by
54 random noise. In all cases the search
was started with overlap betwesn the pro-
totype target and the image target.

The differential equation (2.9) was solved
by means of a Runge-Kutta fourth order
method, with a dynamic step size, which
was increased as necessary to accelerate
convergence and decreased as necessary to
maintain stability. Integration was re-
placed by summation, although we conjec-
ture that convergence could have been ac-
celerated by the use of a trapezoid rule.

Generally, search times ranged from 30 to
S0 steps, with the longer search times
prevailing for the more difficult cases.

In all cases, the final results were quite
reasonable, even in those cases where the
prototype was absent. In the latter cases,
the search terminated with a "best" match,
with a cormmensurately large final error.

As an exanmple, Figure 1 shows that starting
position for a noisy image containing two
objects. The prototype is indicated by the
central silhouette, while the true target
is shifted upward, slightly to the right
and is reduced in size. A false target
overlaps the lower right corner of the pro-
totype.

vees 2e0v0%00000 oo
ese3d% 000

® ®p @e B a0t 4 s we o

v o ev e

Fig. 1. Initial Window Position.

The termination conditions are shown in
Figure 2, where the true target was located
after 49 steps. All parameters were cor-
rect with the exception of magnification,
which was about 5% too large. Smaller val-
ues of magnification, however, increase the
error due to the presence of the false ob-
ject, which is barely touching the bottom
edge of the window in Figure 2.
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Fig. 2. Terminal Window Position.
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OPTIMAL SELECTION OF IC FABRICATION PARAMETERS

C. KARMOKOLIAS, W. M. PORTNOY AND R. E. SAEKS
Departmen: of Electrical Engineering, Tezas Teck University, Lubbock, Texas 79409. U.S.A.

SUMMARY

A procedure is described in which the output characteristics of an integrated circuit are optimized with respect to a setof
variable fabrication parameters. A simple RC coupled audio amplifier is used as an example. The gain~bandwidth
product is obtained as a function of oxidation and diffusion times and temperatures, and the optimization is performed
by way of a line search using these variables as the parameters of the optimization. The values established for the
process parameters are consistent with those employed for conventional fabrication, and desired changes in per-
formance can be obtained, in general, by a straightforward readjustment of the values of the process variabies.
Although limited by certain assumptions and a relatively primitive circuit, the resuits demonstrate the validity of the
procedure.

1. INTRODUCTION

The manufacture of an integrated circuit can be considered as a three-stage procedure. Initially, per-
formance requirements are provided or established by the circuit application. These requirements suggest
an interconnection of passive and active elements whose values and geometry are determined during the
second stage. Finally, a suitable process is chosen to fabricate the circuit design of the previous stages. Every
fabrication process generating the necessary impurity profiles is controlled by a number of independent
variables which must be assigned appropriate values. The specification of these values is an integral part of
the design and constitutes an implicit relation between the performance requirements and the fabrication
process. In practice, the process is usually known in advance, but the independent variables must still be
specified.

A situation which often occurs is one where a circuit is desired whose output characteristics are close and
vet not identical to those of a generically related circuit for which the entire three-stage design has been
completed. What is often done in these cases is to introduce appropriate changes in the second stage of the
procedure and then redesign the third. Because of the number of iterations involved, this practice turns out
to be quite laborious and expensive. In addition, more often than not, the new design calls for a2 new
geometry, and the creation of new masks adds significantly to labour, cost and delays.

The technique described here introduces optimal changes at the fabrication stage, several steps beyond
the circuit design stage. A given process model is incorporated into a given circuit model and the predicted
output characteristics are optimized with respect to a specified set of variable fabrication parameters. The
predicted output characteristics can be quite accurate if accurate circuit and process models are employed.
There is certainly an abundance of reliable circuit models; very detailed process models are available also,
(see, for example, Reference 1). The optimization is performed by way of an index which measures the
difterence between desired and predicted performance over a physically prescribed range of the fabrication
variables. For all practical purposes, the fabrication of the new circuit is obtained without any delay and is
essentially cost-free. Additional constraints can, of course, be imposed to resolve questions of realizability,
sensitivity, thermal variation, and so on.

The technique is particulariy useful for those integrated circuits which are designed on a modular basis. In
these cases, a circuit consisting of several modules is desired, where most or all of the modules may have
been previously designed independently. The designs are frequently incompatible; the technique would
then provide a unified fabrication design using the existing geometry of the given modules.
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The following work applies the technique to the fabrication of an audio amplifier which might itself form
the modular basis for an operational amplifier array. Although simplified circuit and process models are
used, the results indicate the feasibility of the method, which is the objective of this paper.

2. CIRCUIT MODEL

The amplifier circuit, which incorporates an n-p-n transistor, is illustrated in Figure 1a. The specified
output function is the voltage gain, |A (w)|, which depends on the circuit variables shownyin Figure 1b; these,
excepting the emitter bypass and coupling capacitors, depend on impurity concentration profiles
established by the process. Because the emitter bypass capacitance is usually quite large, it was convenient
to make it a fixed external capacitor. The values of C, and C, are very large and do not enter the
calculations.

o F!/"F 3

»)

Figure 1. (a) Audio amplifier circuit; (b) equivalent circuit of the audio amplifier

The resistances ryp and . are obtained from the fixed dimensions of the base and emitter regions and the
base sheet resistance. Distributed resistances R, R;, R.  and R, are formed during the base diftusion, and
also depend on the base sheet resistance; their dimensions are fixed. The Miller capacitance, Cy, includes
the depletion capacitances of the reverse-biased base-collector and forwasd-biased base-emitter junctions
(charge storage in the base is neglected).

The average impurity concentrations in the emitter and base regions (and the fixed uniform collector
concentration) determine the junction capacitances. These averages, and the base sheet resistance (which
includes a constant hole mobility term), require the emitter and base impurity profiles and the junction
depths in their calculation; the latter are obtained by equating emitter and base. and base and collector,
concentrations. The current gain, h,., is calculated from the average concentrations, the distance between
the junctions. and the minority carrier lifetimes and diffusion constants. Although these latter are
complicated functions of impurity concentration,’ approximate expressions can be obtained.

3. PROCESS MODEL

Each term appearing in the expression for the gain is implicitly related, through the impurity concentration
profiles, to the parameters of the process. The concentration profiles are the solutions of the diftusion
equation,

aN(x.1) =D(T) a'N(:f, 1)
at ax

262




Table 1. Optimal fabrication parameters for specified gain in the
bandwidth 20 Hz to 20 kHz. Gain is in dB, time (¢) is in seconds,

and temperature (7T) is in *°C
; Gain
Parameter 20 25 30 3s 40
L ]
ty 3300 7,140 7,200 469 6,210
T 1,100 1,130 1,170 1,200 1,200
1, 1,200 1.200 1,230 1,230 1,260 \
T, 1,190 1,190 1,190 1,180 1,180
le 2,300 2,400 2,370 2,310 2,370
T, 1.150 1,150 1.150 1,150 1,150
Ty 1.230 930 930 870 870
T, 1,100 1,100 1,090 1,090 1.090

Table I1. Optimal fabrication parameters for specified gain in the
bandwidth 10 kHz to 40 kHz. Gain is in dB, time (1) is in seconds,

! ' and temperature (T) is in °C
Gain
Parameter 30 3s 40 ' 4

ty 5,800 6,330 4,140
T, 1,160 1200 1,200
n 1,150 1260 1,150
T, 1,180 1,190 1,180 )
Ie 2370 2,340 2370 '
T, 1,150 1,160 1,150 i
fy 880 630 940

: T, 109 1090 1,090 ’ i

b o
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Figure 2. Specified (dashed lines) and optimally obtained (solid lines) gain versus {requency in the range 20 Mz to 20 kHz




assuming one-dimensional diffusion and a diffusion coefficient which depends on temperature only. The
process steps establish the boundary conditions on the solutions. A typical process sequence was chosen in
this work, consisting of a base diffusion blocking oxidation; a p-type base deposition followed by a base
drive-in diffusion; an emitter diffusion blocking oxidation; an n-type emitter diffusion; and a pre-
metalization oxidation. The bias resistors are derived from the base diffusion. Photolithography and etching
weré assumed to take place wherever required; metalization is not considered to affect the impurity
profiles. The circuit variables then depend on the times and temperatures of the process sequence. These
times and temperatures are the independent parameters of the_optimization; quantities which do not !
depend on them are considered constant. Eight significant process parameters were identified; these are

Iy, the base diffusion time;
T», the base diffusion temperature;
t,, the emitter diffusion blocking oxide growth time;
T\, the emitter diffusion blocking oxide growth temperature;
t., the emitter diffusion time;
. : T., the emitter diffusion temperature;
i fy, the pre-metalization oxidation time; and
f T;, the pre-metalization oxidation temperature.

~——r

These parameters were optimized assuming a fixed set of mask dimensions to obtain the desired frequency
response, |A(w)|.

4. OPTIMIZATION

The gain, |A(w)|, was calculated for an inital point, that is, for an 8-tuple of the independent parameters, ¢,
Tor t1y T1, tas Ty 2, T2, |[A{w)| was then compared with the desired gain, A,, by way of the integral

J= sz [Ao=]A(w)]]de

! where w; — w, is the desired bandwidth. J is minimized using a simple line search, that is, by varying each
‘ independent parameter while holding the others constant. In order to ensure reasonable values for the
optimal process variables, these were constrained; the maximum and minimum values permitted for
temperature were 1,200°C and 900°C, respectively, and for time, 7200s (2h) and 600s (10 min),
respectively.
i ) The optimization was performed first for several gains in the bandwidth 20 Hz to 20 kHz, and again for
the higher gains in the higher frequency range, 10 kHz to 40 kHz. The integral was evaluated using the
trapezoidal rule. 1,000 Hz increments were used throughout the calculation for the higher bandwidth; for i
‘ the lower, 1,000 Hz increments were used above 100 Hz, and 20 Hz increments below 100 Hz. Tempera-
ture and time were varied in 2°C and 30 s increments, respectively.

5. RESULTS AND DISCUSSION

The results of the optimization, obtained with two to three iterations, are tabulated in Tables [ and II. The
values which were obtained for the elements of the equivalent circuit were quite reasonable in terms of a
conventional circuit design; however, these values are not particularly important, because they are only the
results of the optimization, and do not participate in it. Even atypical values would not be significant, as long
as they could be obtained within the constraints set on the process times and temperatures.

Figures 2 and 3 illustrate the behaviour of the optimal gains versus frequency in the two frequency ranges.
Changes which match moderate frequency requirements are obtained easily by an optimal readjustment of N
the values of the fabrication parameters. As requirements become more severe, as at the higher frequencies
of Figure 3, deviation of circuit gain from desired values increases, finally becoming so large that a redesign
at circuit Jevel is unavoidable.
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Figure 3. Specified (dashed lines) and optimally obtained (solid lines) gain versus frequency in the bandwidth 10 kHz to 40 kHz

There are two major limitations on the accuracy of the calculation. First, the process model suffers trom
certain deficiencies because of several assumptions which were made. For example, the emitter blocking
oxide must be grown thick enough to be effective. For the tabulated values of 1, and T}, the oxide thickness
is around 2,000 A,* which is not thick enough to biock the required 40 min phosphorous emitter diffusion.’
However, a thickness constraint can be introduced, aithough it was not done here, to assure appropriate
oxide thickness. Also, the line search which was used to obtain the optimum does not guarantee a global
minimum. It is important to emphasize again that these results are not intended to establish a practical
process, but to demonstrate the use and feasibility of the technique.
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Continuation Algorithms for the Eigenvalue Problem*

B. Green, A. Iyer, R._.Saeks and K.-S. Chao o
Department of Electrical Engineering
‘Texas Tech Uﬁiversity
Lubbock, Texas ' 79409

Abstract

Three algorithms for the so1qtion of‘thg eigenvalue problem fqr ‘
q.continuous parameterized fami1y_of spargg_hgtrices_are presented;
g-contihuéus LU (or LR) aTgoriihm, 2 continuous QR algor%thm, and a
éontinuous Hessenberg a1gorithm._ Each of;ghg_three algorithms may be
implemented recursively and the_sparsity of.tbe given matrices isl,:.

preserved throughout the numerical process.
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