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ABSTRACT

In this report, we present a survey of problems and

solutions in the area of target tracking. The discussion includes

design trade-of fs, performance evaluation, and current issues.
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1. INTRODUCTION

For nearly two decades the target tracking-trajectory esti-

mation problem has been a fruitful applications area for state

estimation. Many problems have been solved yet new and diversi-

fied applications still challenge systems engineers. In this

report, we provide a review of the subject and discuss some current

issues.

An earlier excellent reference on tracking-trajectory esti-

mation [11 deals with tracking algorithms for ballistic re-entry

vehicles. Most of these algorithms are also applicable to a more

general class of targets such as tactical missiles and airplanes.

The emphasis of this paper will therefore not be on algorithmic

details but rather on discussing problem areas and approaches.

References containing estimation algorithms are cited for more

interested readers. Furthermore, discussions contained in this

report will be oriented from the practitioner's point of view and

consequently rigorous mathematical terms are only of secondary

interest.

This report is organized as follows. The fundamental problem

of target tracking, approaches and some design tradeoffs are

reviewed in Section 2. Four approaches for tracking targets.

with sudden maneuvers are presented in Section 3. The discussion

includes a comparison of their relative merits. The problem of

tracking with passive sensors (measurements containing only line-



of-sight angles) is discussed in Section 4. In some applications,

one is confronted with large scale system issues, i.e., the

existence of many sensors operating in a multiple target environ-

ment. In Section 5, several algorithms for processing multiple

sensor data and an algorithm for correlating measurements from

multiple sensors are presented. The problem of tracking in a

multiple target environment is discussed in Section 6. In each

tracking application, one may be interested in performance evalu-

ation without resorting to Monte Carlo simulations. Covariance

analysis techniques are outlined in Section VII for this purpose,

namely, the polynomial analysis, the Riccati Equation, and the

Cramer-Rao Bound.

Since this report focuses discussions on design considerations,

performance trade-offs and approaches to given problems, several

related subjects discussing algorithmic details such as the square

root [53] or U-D factorization algorithm (54] are not included.

One may notice that certain subjects are given more attention

than others, this is due primarily to personal preferences. In

each case however, we try to provide an adequate list of refer-

ences to allow a indepth study for interested readers.
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I1 2, FUNDAMENTALS

2.1. Problem Definition

4The tracking problem is a state estimation problem, i.e.,

assuming the state of a target evolves in time according to the

equation

= f(x) + W (2.1)

and the corresponding (discrete) measurement vector* is given by

z = + :k(2.2)
-k =h(xE.) +

where w and Yk are input and measurement noise processes, respec-

tively, one is interested in estimating the target states 3k based

upon all measurements z£, £=1,...,k.

We make these following remarks.

(1) Eq. (2.1) is a mathematical model represent&tive of
the target dynamics. The state vector x usually
contains target position, velocity, and--ometimes
acceleration as state variables. In some sit-
uations, key parameters characterizing important
target properties are also included as state
variables. The filter designer usually has the
option of choosing among several models with
different level of complexity. The trade-off is
performance versus real-time computational require-
ment.

(2) Eq. (2.2) is the measurement equation relating
state variables to measurement variables. When
a radar is used, z has at least three components,
i.e., range and tw angles. If a passive sensor
(such as a telescope) is used, Rk only contains
two angle measurements.

*The neasurefent device can be a radar, senar, telescope (passive), and others.
In most cases, these measurenmts are taken in discrete times.
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(3) The system (input) and measurement noise processes
and vk, respectively, are assumed to be zero

mean white noise processes. The covariance of
w, Q is selected to compensate for modeling
errors (discrepencies between (2.1) and the
actual process). The statistics of the measure-
ment noise process v should also be selected to
represent all possiblie excursions such as
measurement biases, false measurements, etc.

2.2 Basic Approaches

The basic tracking filter is a recursive algorithm.

During time tk to tk+lI the state estimate is computed by

integrating

x=f(x) (2.3)

A

from tk to tk+l using Xk/k as the initial state. At time tk+l , a

new measurement Rk+l is obtained, the state estimate is updated

by

KA

-k+l/k+l = -k+l/k -k+l( k+l - ki(k+l/k

A

where x i/j is the estimate of-xx" based upon measurements

k' k=l,...,j. Two questions arise:

(1) How does one choose f( )?

(2) How is the filter gain Kk+l computed?

These two questions which appear different initially are actually

intimately related and are discussed below.

4
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2.2.1 Target Dynamics

For some targets, a constant velocity (CV) model is

sufficient, i.e., the state vector contains six variables

[X l x1 x2 1x3,x4,x 5 "1x T = *x~y~lj * *T (2.5)_ , ]T [x x,y,y,z,z] T  25

where (x,y,x) are coordinates of a Cartesian coordinate system

used to describe the target dynamics. The state equations are

xi = X i+l

i=1,3,5 (2.6)

i+l 2 wi

where w. is a process noise term used to characterize modeling

errors.

If the target being tracked is maneuvering (accelerating),

a constant acceleration (CA) model is usually used, i.e.,

--= [x,,'x'y,y,,z, ,zl (2.7)

The state equations can be written accordingly, i.e.,

1 Xi = Xi+l

Xi+l xi+2 i=1,4,7 (2.8)

rS
1 xi+2 = i

5



These two state equations are also referred to as the first and

second order polynomial dynamics, respectively.

Note also that equations (2.6) and (2.8) assume complete

decoupling between x,y, and z. A commonly used Cartesian system

has the coordinate centered at the sensor location with the x-axis

pointing east, the y-axis Pointing north, and the z-axis per-

pendicular to the local horizontal plane.

The target dynamic is sometimes described in the sensor

coordinates. For example, if a dish radar is used for tracking,

the measurement variables include range (r), azimuth (a), and

elevation (e). A constant velocity target dynamic model decoupled

in r, a, and e results in the following equations,

r wr

a w a (2.9)

Where w r w a and w e are process noise terms representing modeling

errors in r, a, and e directions, respectively. The advantage

of using (2.9) is that one is required to construct three two-

* dimensional filters instead of one six-dimensional filter. Con-

siderable computational savings result. This model however, is

inconsistent with the assumption the target dynamics is decoupled

6



in the Cartesian coordinate, eqs. (2.6), and (2.8). A more

appropriate model is to retain the coupling among r, a and e.

This results in the following set of equations.

0 2 e2 2
r = r(e + a cos e)

a°= -2a + 2 tan e (2.10)
r a;2

e = -2- -e sin 2e
r 2

We note that using measurement variables as state

variables may result in more accurate state estimates because

this makes the measurement equations linear (see for example, the

discussion of [11). The Cartesian coordinates however, appeal

intuitively and provide easier interpretation of target motion.

These models are often used for tracking airplanes and

tactical missiles and are also used for tracking ballistic missiles.

In some re-entry (RV) vehcile applications, however, the vehicle aero-

dynamic parameters such as the ballistic and lifting coefficients

must be estimated in real time. This requires a set of nonlinear

differential equations to describe RV motion. A simplified* model

is
1 2 1t = jv (2.

r(t) = -pv (t)[.ud + 'tut + c + g (2.11)

where a(t) is the total acceleration applied on the vehicle

*This is a simplified model neglecting Coriolis and Centrifugal
forces. They are usually included using the vector sum as in (2.11).
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p is the air density

~1v(t) is the magnitude of the vehicle velocity

is the ballistic coefficient

u is the unit vector along the drag force direction
d which is opposite to the velocity vector

utluc are two orthogonal unit vectors defining a plane
perpendicular to A for modeling lifting forces

g is the gravity force vector.

A state model including a, ait, and ac as state variables results

in a 9-state state vector. Further discussion of this problem

I is-found in Refs. [7], [8].

2.2.2 Filter Gain Computation

The filter update equation (2.4) gives the weighted

*sum of the one-step predicted state and the difference of the new

* and predicted measurement (this difference is called the filter

residual process and in more rigorous situations, the innovation

process). The filter gain provides the weighting of this update

procedure. When the filter gain is very small, the estimator

becomes insensitive to the new measurements and this may result

in large bias errors. When the filter gain is very large, the

estimator is discarding past measurements resulting in larger

random errors. A balance can be achieved if one has sufficient

knowledge regarding the accuracy of the state model and the

measurement process. Such knowledge is embedded in the filter gain

computation. Four approaches for treating this problem are discussed.

8



2.2.2.1 The Extended Kalman Filter (EKF)

If an extended Kalman filter is used, the filter

gain is

T -K =P HR (.2
k k/k kTk (2.12)

where Hk is the measurement Jacobian matrix, R k is the measure-

ment noise covariance, and P is the covariance of the state
k/ki

estimate -k/k obtained by solution of the matrix Riccati equations,

i.e.,

(1) From tk to tk+l, compute P by integrating
k k~l'k+l/k

T= FP + PF + Q 'k/k (2.13a)

(2) At tk+1
k~T+

T H P
k+i/k+l k+l/k k+l k+i k+l/k k+l + k+l) k+lk+l/k

(2.13b)

where F is the system Jacobian matrix and Q is the process noise

covariance matrix. The matrix Q must be chosen to be representative

of modeling errors. For example, if a CV model is chosen while

the target may actually be accelerating, Q should be chosen

proportional to the expected magnitude of target acceleration.

A method for selecting Q such that the filter computed covariance

is an upper boui~d of the actual performance is suggested in [9].

Depending upon specific applications, the value of Q can also

9



be obtained emiial sn Monte Carlo simulation, Ref. [8].

Modeling errmay become a significant contributor to

estimation error when the Riccati equation reaches a very small

j steady state solution (the P matrix). In this case the filter

gain, eq. (2.12), becomes nearly equal to zero and the filter

A is essentially running open-loop, eq. (2.4). The use of a large

Q forces the steady state P matrix to stay "significantly"

large, so that the estimate is sensitive to the most recent

measurements.

'1 The above discussion presents a heuristic argument

on the use of a process noise covariance Q. Besides methods

using covariance upper bounds and Monte Carlo studies suggested in

[81 and [91, there also exists considerable literature which dis-

cusses methods of estimating Q, R, (and sometimes K directly) in

realtime based upon the statistics of the innovation process. One

notable paper in this area is by Mehra [11. We briefly outline

Mehra's method below.

It is well-known that if both the system model and noise

statistics are true representations of the actual physical process,

the filter innovation process

l= Kk -
1 ~k/k-.1) (2.14)

is white Gaussian with zero mean and covariance *

*This is clearly not true for nonlinear systems. In most applica-
tions using an extended Kalman filter, this expression appears to
be a very close approximation.

10



PYk = k Pk/k- 1 HkT +R (2.15)

and the filter achieves optimal performance. In [13), a method

for testing filter optimality based upon the aforementioned

property of the innovation process was presented. If the test

indicates that the filter does not attain optimal performance,

one then proceeds to adjust Q and R so that the covariance

of the innovation process will be consistent with that of

filter prediction. This method first computes a sampled

correlation function assuming that k is ergodic over a certain

time interval, one therfore has

Cj = E[Yi yi- j = HP H + R; j=0

(2.16)

=H[((I-KH)]J-I[P HT-KC 0; j>O

and NN li j  (2.17)

where P. denotes the steady state error covariance matrix and 4

is the transition matrix of the system dynamics.

Using the above equations and the steady state Riccati

equation, Mehra gives a procedure for solving for Q and R. There

are situations in which there is no sufficient number of indepen-

dent equations for solving them; Mehra then gives a recursive pro-

Cedure for solving for the filter gain K directly.
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We emphasize that the above technique is important be-

cause a systematic procedure for identifying the noise covariance

or filter gain is established. It may not be very useful for

realtime applications because of its computational requirement.

For non-realtime applications, however, this method is useful for

simulations and post-mission data analysis studies.

There are situations in which the dynamic process takes

large and sudden changes (such as target maneuvering) , such

that either a large Q must be used all the time to account for the

maximum expected deviation or else a quick and easy method must

be utilized for realtime identification of Q. This subject is

covered in Section 3.1.

There exist other methods for preventing the P matrix

from becoming too small. These including the finite memory filter

[1], [12], and the fading memory filter [1], [10], [11].

2.2.2.2 The Finite Memory Filter

The finite memory filter applies a sliding window

to the data and computes the state estimate based only upon data

in that time span. The window width is selected such that the

system model is an adequate approximation to the actual process

over the time interval. During this time interval, the system is

assumed to be noise free. This assumption is related to the

selection of the time interval in that the variation of the

unknown parameter over this interval is small. The filter to be

12
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discussed is due to Jazwinski [12]. We briefly outline it below.

Let the measurement sequence be denote by

and N=k-m where N is the total number of measurements desired in

the finite memory filter. Let the finite memory state estimate

and covariance be denoted by and respectively; they

can be computed using the following equations

,, - -i^ -

-k/m,k k/m,k (Pk/k -k/k Pk/m -k/m

(2.18)
-1 - - 1 - -l

k/m,k - k/k k/m

A

where Xk/k is the state estimate at time k based upon all data
A

up to and including Ak and 2k/m is the state estimate at time k

based upon all data up to and including Am. One can interpret

the above equations to say that the finite memory estimate is

obtained by subtracting an estimate based on all data prior to

the time window from the estimate based upon all data. We note

that the above equations can be re-organized to obtain a computa-

tionally more efficient and numerically more stable algorithm.

For more discussions, see [12].

Notice that the finite memory filter requires that a

batch of N measurement vectors be stored (for updating Xk/m ) .
k/i

Furthermore, the computational burden is much larger than that of

13



the EKF. Typically, the cost of added computation outweighs the

benefit when compared with other methods.

2.2.2.3 The Fading Memory Filter

The fading memory filter (sometimes referred to as the

aging filter) weights recent data exponentially higher than

past data. A derivation of this filter can be found in [10]-[il].

The resulting algorithm turns out to be very simple. Let P+k4-l/k

denote the covariance of the one-step predicted estimate of the

aging filter, it is related to the Kalman filter covariance

(solution of Eq. (2.13a)) by

k+1/k k+l/k (2.19)

where a is a scalar quantity greater than unity. The P*+l/k

is then used in Eq. (2.13b) to obtain the update covariance

P The scalar a is the exponential weighting factor.
k+l/k+l.

This is accomplished by changing the measurement noise covariance

matrix to

RY = R (a)k- i  (2.20)

for i=l,...,k where k is the current time. With measurement

noise covariance, data rate and an assumed modeling error, one

can find an optimum a for minimizing the mean square error.

14



2.2.2.4 A Constant Gain Filter: The ,i-f(-y Tracker

in some cases, because of computational constraints,

it may be impractical to compute the filter gain in real-time.

Under such conditions one must use either a set of pre-computed

filter gains or a constant gain filter. One commonly used con-

stant gain filter is based upon the steady state solution of the

Riccati equation. In order to minimize the modeling error effect,

a sufficiently large process noise covariance Q must be artfully

selected.

Another popular constant gain filter is the ,- -y

filter, (or a-0 filter when using a CV model), [5], [6]. The

main difference between the a-P,-y filter and the steady state gain

filter is that the former assumes the complete independence of

the three spatial coordinates in the filter update equation.

Notice that the state space and the measurement space may be

related through a nonlinear function (Eq. (2.2)). In using the

a-0-y filter, this assumption is not allowed. Let (r,a,e)

denote the radar range, azimuth and evaluation, respectively;

the state vector becomes,

x = r,,rs,a,a,a',e,e,e1T  (2.21)

Let r denote [r,r,r']T , then the filter update equation becomes

A a m
rr K (r - r ](2.22)-Ek+l/k+l m-k+l/k +k+1 -.k+l =k4-l/k

where Ek+., is the range measurement at time k+l. The gain matrix

15



I
Kk+l for the a-B-y filter is

K = [a , 2y 2( 2.23)

'itk+ltk (tk+ltk)

4The update equations for azimuth and elevation can be obtained
accordingly.

Notice in Eq. (2.12), when an extended Kalman filter is

used, the gain matrix Kk has the dimension (9x3) while the

gain matrix for the a-8-y filter consists of three (3xl) vectors.

There is a wide range of methods for choosing the

values of c,5 , and y. One method is to compute the steady

state Kalman gain in the above chosen coordinate. A more

reliable method is to conduct extensive Monte Carlo simulation

studies to define a, a, y over a variety of cases for a given

application.

2.3 A Batch Filter

In Section 2.2.2.2, we discussed a finite memory filter

developed by Jazwinski. The input elements of that algorithm are

the outputs of the recursive Kalman filter. The estimate is

based upon data from a finite time interval and a batch of N

measurement vectors corresponding to that time interval must

be stored. Another assumption of that filter is that the system

model is noise free and this assumption is reasonable because

16
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the finite time interval is selected to reflect the tolerance on

model errors. The Jazwinski algorithm is optimum for linear

systems under the given conditions.

In this section, we present an algorithm for nonlinear

44 systems. This algorithm iteratively solves for the optimum

V. estimate based upon a noise free system model and a batch of N

*~ ~ measurement vectors zi' Z2' 'z' This filter is fundamentally

-I different from the approach of Jazwinski. For linear systems,

this approach is the same as the Kalman filter, For nonlinear

systems this approach gives a better estimate than that of the

extended Kalman filter.

Let the system and measurement equations be the same

as eqs. (2.1) and (2.2) except that w is now zero. The batch of

N measurement vectors is denoted by {zl, z2 '...'5N}
" Let

^k
IN/N denote the k-th iteration of the estimate of N then

^k+l = k + k / G kTH kTR-I(zn - h (;k(2.24

NN= -N + N/N [LT---1 n n n! ( n/N)

N-1

NIN Gk Hk1R HkGk ]  (2.25)P/=Ln- 1 n n nnnj

where

Gk 0k-lGk
Gn = k-Gk ; n=N-l, N-2,...,l

n n n+l

17



* k - I (an identity matrix)

k = e fS
n

k Ak
F s the Jacobian matrix of f(Xs/N)

Hk the Jacobian matrix of h(k/N)n hn

^k
-n/N = result of integrating :_=f(x) backward from-n/N t to t using xN ^ X

N n -N N/N
^k+l ^k

The iteration is terminated when N/N and ?N/N are sufficiently

close.

We make the following remarks:

1) The above algorithm is a realization of the maximum

likelihood estimator with Gaussian measurement noise process.

It is well-known that the maximum likelihood estimate

is asymptotically efficient and Gaussian and approaches

the Cramer-Rao bound.

2) The PNIN of (2.25) is an approximate expression for

the covariance of XN/N. The PN/N evaluated at the true

state is the Cramer-Rao lower bound on the covariance
A A

of xN/N. Since N/N approaches the true state

with pzobability one, PN/N also approaches the

Cramer-Rao bound with probability one,

3) Notice that the inverse of P is Yiser's informa-N/N
tion matrix. The invertibility of the information

matrix is tied with the observability of the system,
see for example [58].

18



4) For linear systems a closed form solution can be found

Aand the iterative procedure becomes unnecessary. An

interesting exercise is to derive a batch filter using

* the polynominal dynamics with linear measurements equa-

tions (see for example (491).

There are many application areas for this algorithm.

For example, in tracking space objects where the target dynamics

can be modeled very accurately, the algorithm of this section is

particularly suitable. This method has been used for ballistic

trajectory tracking with angle-only measurements [30] and

tracking of deep space satellites, [31]. Another application

is for track initiation. Since the initial covariance and state

estimates are not generally given a priori, the above algorithm

can obtain the best estimates based on the first N measurement

A
vectors and then proceed to use xN/N and PN/N as the initial

state and covariance estimates, respectively. This method is

sometimes referred to as the information matrix approach for

filter initiation.

2.4 Summary

In the above, we have discussed various algorithms for

addressing the basic tracking problem. These approaches employ

simple to sophisticated system models for target dynamics and

attempt to compensate for modeling errors in a variety of ways.

Several well-known nonlinear estimation algorithms were not dis-

cussed. These include the second order filter (14] and the single

19



stage iterative filter (151,. They are not included because of

*1 their excessive computational requirement although these algorithms

can indeed improve the estimation accuracy.

Before closing this section, a brief algorithm comparison

A can be stated. If the objective of tracking is to obtain pre-

I cision information about the target dynamics, then one should use

the most accurate target model and apply the EKF, (or even more

sophisticated algorithms). If the dynamic model is sufficiently

accurate so that the process noise term is negligible, then the

algorithm considered in the Section 2.3 is a good choice provided

that the computation time and data storage requirements are not

* excessive.

If the objective is just to maintain the target in track,

then one may use the simplest track algorithm such as the ct-6-y

tracker. One exception to this case is when tracking in a dense

target environment where precision tracking may be necessary for

target correlation. This subject will be discussed later.

The finite and fading memory filters are usually the

secondary choices (especially the finite memory filter) because

* the same purpose (reducing sensitivity to model errors) can be

achieved by adjustment of the process noise covariance, Q. They

are nevertheless included here because (1) they reflect the histori-

cal development of adaptive filtering techniques and (2) they still

provide an option for readers to choose for their applications.

20



3. TARGETS WITH SUDDEN MANEUVERS

Targets with sudden maneuvers can be modeled as systems

with abrupt changes. We modify equation (2.1) to become two sets

of equations, one representing the pre-maneuver dynamics and the

other incorporating the maneuver feature

f f(x, 2E) + w (2.1a)

where x is the vector representing maneuvering force and satisfies
-m

x =0 ,for t >t (3.1)

and

f (x) + w , for t > tm (3.1a)

where t m is the time the maneuver begins, f . is the maneuvering

dynamics and I! is the system noise for f .) For targets with
-Inm

sudden maneuvers, tm is unknown, f * and w may be unknown orm mn

partially known.

In tracking airplanes for example, the target may first

be flying in a straight line with constant speed. A CV model

is adequate for the airplane dynamics in this case. A sudden

maneuver of this airplane implies that the airplane is accelera-

* ting unexpectedly and the acceleration is time-varying and follow-

ing an unknown profile. The instantaneous acceleration vector is

therefore the maneuvering vector x6 defined above.

In tracking a ballistic re-entry vehicle, the target

dynamics is the equation (2.11) with a c and a t equal to zero. A
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sudden aerodynamic maneuver means ac and at become nonzero

and follow unknown time-varying profiles. The maneuvering

vector in this case contains a c and a t as its elements.

Four approaches to this problem are discussed individually

below.

3.1 Filter Compensation Using Process Noise Covariance

In this first method, one simply ignores the maneuver

vector x and lunps the system errors introduced by x with the

process noise term Y., If the estimator's only concern is to

maintain the target in track (adequate position estimation

accuracy), this method can work quite well.

Basically, it examines the "regularity" of the filter

residual vector

Yk= Sk - I(Ek/k-i) (3.2)

against its covariance matrix

P HkPk/ HkT
P k k/k- k + Rk (3.3)

using (the Chi-square variable)

.= T -1 (3.4)

When Zk becomes too large one suspects that the target is man-

euvering and the covariance of w, Q is increased so that Xk is re-

duced to a reasonable value. This method therefore has the
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combined feature of maneuver detection and filter compensation.

This method is based upon the adaptive filter of

Jazwinski, [161 and shares great similarities with the method

of Mehra, [131 (see also section 2.2.2.1). The main difference

is that the above method tests the filter regularity using

Chi-square statistics, and stresses the simplicity (not the

optimality) of the approach.

A thorough discussion of this method and its performance

against maneuvering re-entry vehicles can be found in Ref s. [7j

3.2 State Augmentation

The second method is straightforward, computationally

more costly, but with substantially better performance than the

previous method. This method is to include 2.as part of the

state vector, i.e., the augmented state consists ofJ

xa [x TIx ~T IT (3.5)

In the case when the target maneuvering dynamic is completely

unknown, one uses

x =w (3.6)n -iHn

where Y is modeled as a zero mean white noise process with-n

covariance *m If bounds on the magnitudes of maneuvers are

known, a method for choosing Q m such that the Actual filter per-
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formance is bounded by the computed filter covariance can be found

in [91. As a rule of thumb, the values of the entries in Qm should

be a fraction of the expected magnitude squared of the maneuver

force and proportional to the measurement time interval. A method

for selecting Q for estimating ballistic and lifting coefficients
m

of reentry vehicles is discussed in 17], [8].

Notice that Eq. (3.6) assumes xm uncorrelated in time.

This assumption is sometimes not very realistic. A model often

used in airplane tracking is

a_ = wX (3.7)
=w

where a is the correlation constant to be estimated and w is
aa noise process. Methods for selecting statistics for wand the

performance against airplane tracking can be found in Ref. [171.

The maneuvering state x is usually not influenced by

the state vector x (Eqs. (2.1a) and (3.1a)). With this

assumption, one can compute the state and maneuver estimates

separately to obtain

2k/k -k/k + Ak m,k (3.8)

where x is the estimate assuming ?m is zero, A is the maneuver

estimate, Ak is a gain matrix, and 4k/k is the final state

estimate. The advantage of this decoupled implementation is a

saving in computation. It can be shown that the decoupled estimator

is optimum for linear systems when tm is known and the maneuver
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state model is known and deterministic; see for example [18], [19],

and [211. Suboptimal designs for the case when the above assump-

tions are not true can be found in [9].

Since the maneuver time tm is unknown, a trival

application of the above method is to use it throughout the entire

track. Inevitably, the filter performance is degraded when the

target is non-maneuvering, Refs. [8), [9]. An ideal extension is
i to use a maneuver detector for switching the tracking filter from

nonmaneuver to maneuver mode, this subject is discussed in the

following subsection.

3.3 Manuever Detection

The detection problem is the problem of discriminating

the following two hypotheses based upon filter residuals:

H1 : Xk = k + gk(xm); maneuvering target hypothesis

(3.9)
H0 : Xk = 1k ; non-maneuvering hypothesis

for k = k0,..., K where lk is the residual vector before themaneuver

starts, and g( ) is a known function relating the maneuvering vector

x to the residual vector. A generalized likelihood ratio test

-is
is mmax,

A= X (3.10)
P(yk;kO,. " "K/H 0 )

For a given application (target dynamics, sensor type, etc.), the

above equation can be further simplified, [7], [18], [201, [211.

The use of a generalized likelihood ratio test for

detecting maneuvers is discussed in [7], [81 for re-entry vehicles
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and in [20] for airplanes. General discussions on the detection of

sudden changes in linear systems can be found in Refs. [18) and

[21].

Drawbacks of using a detector-directed tracking include

(1) detection delay and (2) large transient errors during filter

switch. Numerical results in Ref. [8] show large estimation

errors immediately after filter switch. This is partially due

to the maneuvering filter going through its transient period.

Notice that the maneuver detection relys on the fact

that target maneuvering generates residual bias in a non-maneuver-

ing tracker. Once the filter is switched to maneuvering, the

above detection scheme can not be used to discriminate if the

target has returned to non-maneuvering status.

All the above problems can be alleviated if one employs

the adaptive multiple model estimator, [22]-[29], discussed in the

next subsection.

3.4 Multiple Model Estimator

Let H1 denote the hypothesis that the target is maneuver-

ing and H0 the hypothesis that the target is non-maneuvering.

One may construct two filters, the first one uses a maneuvering

dynamic while the other one uses a non-maneuvering model. Let

these respective state be denoted byxlk and x0k theoptthes repecivestat bedentedby x andXk;theoptimum

estimate 4/k is obtained using
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"(k)

Xklk = P(k)kk+O k ) I (3.11)
I K Kk/k P1 Pl k/k + PO k{k (.1

where P.i(k) is the a posteriori probability that Hi is true at

time tk . The computation of Pi(k) can be very complicated. If

one uses a simplifying assumption that hypotheses at time tk are

independent of hypotheses before tk 1  i.e., a first order Markov

process, then one obtains a much simplified expression for Pi (k).

N
Pij(k)P (k-l)

P (k) = N (3.22)

Pi (k)P .P.(k-l)
i=0 j=0 3.) 1ij)

where Pij (k) is the residual density assuming that the i-th

hypothesis is true at time tk and the j-th hypothesis is true at

time tk-l, Pij is the transition probability, and Pj (k-l) is the

a posteriori probability that H. is true at time tklI  Notice

that we have made the above equation slightly more general by
assuming-that there are total of N+l hypotheses. The xk is

-k/k

computed using
N

i P(H(k-lT/H (k)Z (3.23)
-k/k j=O A

Pi (k)PijP (k-l)
P ~ ~ ~ ~ ~ ~ 1 (H(-)/ k jj

i = N (3.24)

j=a Pij (k)PijPj (k-1)

j=07
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where Xk/k is the state estimate using -- i/k-i updated

with the i-th hypothesis and Zk denotes all the easurwmts up :, time t k .

Derivations and discussion of the above results in a

more general context are given in [22], [23].

The advantage of the above approach is that when the

target switches between maneuvering and non-maneuvering modes, the

hypothesis probability values change to provide a smooth

transition of the final estimates E/k"

A higher level multiple model approach is to use several

hypotheses to model different maneuvering force levels. This

approach enhances the estimation performance at the cost of more

computation resources.

We would like to emphasize that the multiple model

estimator is a general adaptive estimation technique. It was

first derived by Magill [271 for the time invariant hypothesis

case, i.e.,

1 , when i =j

P.. = (3.25)

0 , otherwise

Its extension to the switching hypothesis case was the subject

of [221. References [281 and [29] stated the above concept in the

continuous domain and gave a representation theorem known as the

partition theorem.

A word of caution about the multiple model method; it
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is a tightly tuned algorithm (for the case of modeling various

maneuvering levels) and therefore very vulnerable to the

situation where none of the models match with the actual dynamics.

In this c.se, strange filter behavior may appear and this behavior

is not yet completely understood from a theoretical point of view,

[23], [24].

Discussions applying this method to target tracking

can be found in [25]-[26]. Its extension to adaptive control was

applied to the flight control of a F-8C experimental aircraft [24].

A tutorial treatment of this method for state estimation is given

in [23].

3.5 Summary

In this section, we have discussed four approaches to

tracking targets with sudden maneuvers. The first method

(Section 3.1) provides a way for adjusting the process noise

covariance level through use of the filter residual "regularity"

to compensate for the modeling error induced by target maneuver.

This method uses the least computation but does not give very

precise velocity and parameter estimates. The second method

(Section 3.2) is to augment the state vector with maneuvering

variables. The dimension of the state vector is enlarged and the

filter is therefore computationally more costly. It does however

provide more accurate state estimates. The drawback to this

method besides the higher computational burden is that the filter
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performance is degraded when the target is non-maneuvering. A

method to circumvent this problem is to use a maneuver-detector-

directed filter (Section 3.3). This method suffers from large

errors occurring during filter switch over. A compromise to this

problem is to contruct two filters (Section 3.4) with one using

a maneuvering dynamic model and the other a non-maneuvering

dynamic model. The final estimate is a weighted sum of outputs

of these two filters using the a posteriori hypothesis probabili-

ties as weighting factors. This method has the advantages of all

the above approaches but at a cost of a much larger computational

burden. One may also use a bank of filters to model different

maneuver levels and apply the multiple model adaptive estimation

method. This method may work very well, it is however, also very

sensitive to model mismatch errors and system nonlinearites.
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4. TRACKING WITH ANGLE-ONLY MEASUREMENTS

In this section, the problem of tracking with a sensor

measuring only the target line-of-sight angle is discussed.

There may be two separate objectives of tracking. The

Ifirst one is simply trying to maintain targets in track in the
angle domain. In this case, techniques discussed in Section 2

are applicable. The only difference is that ir the angle only case

the target dynamic equations are described in two-dimensional

coordinates. Polynomial equations decoupled in two orthogonal

angular directions are often used. The second tracking objective

is to obtain estimates of the complete state vector as defined in

a three-dimensional coordinate system. This objective may not

always be achievable since tracking with angle-only measurements

may constitute an unobservable system. Physically, it can be

explained as follows. In radar tracking systems, each measurement

vector determine the instantaneous target position to within a

finite uncertainty volume, i.e., uncertainties in both range and

angles can be expressed with finite standard deviations. In an

angle-only tracking system, the uncertainty volume of each measure-

ment vector is infinite (due to the inability to measure range).

Such a system may be observable only for certain types of

target dynamics. For example, when a telescope is used to track

a satellite, this constitutes an observable system and target

range can be estimated (with large errors however) because the
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satellite trajectory is influenced by the earth gravity 130).

If a telescope is used to track an airplane traveling with constant

speed, this system is unobservable, i.e., the estimation of the

3-dimensional dynamics is impossible.

There are means available for enhancing the observabil-

ity of the system. For example, one may use two passive sensors

at separate locations simultaneously tracking the same object.

The intersection of two angular beams gives the total measurement

uncertainty which now has a finite uncertainty volume. One

complication of this approach occurs when tracking in a multiple

target environment. Here, one is confronted with the problem of

recognizing the same target at both sensors. The subject of

sensor-to-sensor correlation and efficient methods of processing

multiple sensor measurements are discussed in the next section.

Another method of enhancing observability is to incorporate other

types of measurements in addition to angle measurements. One

such applications is in passive sonar tracking (321 where target

Doppler measurement is included. A passive sonar system with

Doppler measurements makes the system completely observable.

We note that orbit estimation using angle only measure-

ments is an ancient problem (see [331 for a discussion of classical

approaches and a list of references). Most emphasis of [33] how-

ever, was placed on the plan tary mechanics and dynamic modeling

and very little effort was applied from the estimation point of view.

For example, the Gauss method for orbit determination ensures the

32



I solution of the entire orbit with only three angle measurements.

This is true if noise free angle measurements can be made. With

.1 even slight errors in angle measurements, the target range

estimation error can be very large.

When one is tracking a ballistic object (a satellite

or a long range ballistic missile) using a passive sensor, one

is confronted with two questions: 1) how to initiate a Kalman

type recursive tracking filter; and 2) since the range estimation

error will inevitably be larger, will the extended Kalman filter

provide adequate performance. In [30], these issues were studied

in detail. It was shown that the batch filter described in

* Section 2.3 can be used to provide initial conditions for the

extended Kalman filter. Other discussions include methods for

computing an initial guess for the iterative procedure, applica-

tions of the batch filter recursively for tracking, and techniques

for incorporating trajectory a priori knowledge (bounds on heading

angles, velocity, energy, etc.) for improving the state estimation

accuracy. An important conclusion of [30] is that the performance

* I of the batch filter asymptotically approaches the Cramer-Rao

bound (see Section 7.3 of this paper) for the covariance of state

estimates while the performance of the extended Kalman filter

generally does not have this property.

Finally, we remark that recent developments in target

tracking on the focal plane using a infrared sensor are in the pro-
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blem areas of both signal processing and target tracking. The

approach discussed in [55] is to first process focal plane data

with a prescribed model, then establish two-dimensional target

state estimates using a Kalman filter.
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5. TRACKING WITH MULTIPLE SENSORS

There are a number of applications in which multiple

* sensors operate in a multiple target environment. There are

I two problems which confront a multiple sensor tracking system:

* 1) how to efficiently update the tracking filter with multiple

sensor measurements and 2) how to identify the same target for

all sensors in a multiple target environment. The first

question is discussed in Section 5.1. The second question is

a special case of tracking in a dense target environment. It

* fits however, conveniently in the context of sensor-to-sensor

correlation and will therefore be discussed in Section 5.2.

5.1 Filter Update Algorithm Considerations

Consider the situation in which there are several sen-

sors simultaneously observing a single target. If these measure-

ments are not time synchronized, one can formulate the problem

as that of state estimation with non-uniform measurement times.

It should be noted that in this particular formulation the

functional transformation from state space to observation space

depends upon the geometry, hence one can be confronted with a

situation in which the measurement equations change from observa-

- - tion to observation.
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If the measurements are time synchronized (such as in

a multi-static radar system), then one is interested in seeking

the most efficient way of processing these measurements. Let lk,i

denote the measurement at time tk from the i-th sensor, then

= h.(x k ) + vki i = 1,. ., I. (5.1)-kk

Three processing methods are discussed by Willner, et al., [34].

1. Parallel filter: The set of measurement vectors are
concatenated to form a new measurement vector

'T T T ]T (5.2)
1k =[k,I , Zk,2,'' !k,I

which is processed by the filter at once.

2. Sequential filter: Each measurement is processed
sequentially by the filter with zero prediction time
between measurements.

3. Data compression filter: Prior to processing,
measurement vectors are transformed to a common
coordinate system and compressed to a single measure-
ment vector. Let z i denote the measurement of i-th
sensor and all zk I--ihave been transformed to a
common coordinate'system. The compressed measurement
vector !k is

R= ,i kRi (5.3)

Rk ~l3 i (5.4)
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The above three methods can be shown to be equivalent

and optimum for linear systems, [34]. The data compression method

is computationally the most efficient for a wide range of cases [34].

It is possible to use decentralized processing wherein

each sensor produces its own estimate. These are then combined

to form a single estimate. The major drawback to such an approach

is that the computational burden is significantly higher than any

of the methods described above. Furthermore, when the system model

is stochastic, the state estimates obtained by each sensor are

correlated. It is uncertain as to whether the estimate combination

method is optimum even if the correlation matrics in the combina-

tion procedure are included (see for example, the Gauss-Markov

theorem stated in [35]).

Algorithms for data compression with non-synchronized

data vectors is a straightforward extension of the work described

above. This may involve integration of measurement vectors to

achieve time alignment followed by an application of the data

compression equations. Polynomial data smoothing may be used for

data compression in very high data rate systems as is discussed in

[36]. One can also apply polynomial smoothers to the non-

synchronized data case.

5.2 Sensor-to-Sensor Correlation

One important problem facing a multiple sensor tracking
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system in a multiple target environment is the unique identifica-

tion of the same target as observed by each sensor. There are

two approaches to this problem. The first approach attempts to

correlate the existing track files (state estimate of a given

string of measurements) with measurements. This method is the

same as the track continuation mode of tracking in the dense

target environment. We will address this approach in the next

section. The second method is to directly correlate the set of

measurements from the i-th sensor with that of the j-th sensor.

A brief discussion of the second method is given below.
Consider the case when there are two sensor simultane-

ously tracking multiple targets. The results which follow can

be extended to that of multiple sensors. Let {xi; i=l,...,N}

and {z.; j=l,...,N} denote N measurements obtained by the first and

second sensors, respectively and respective covariances are given

by Pi and E. Consider now the question of which yj corresponds

to a particular z1i This is an N-array hypothesis decision pro-

blem. That is, for a given ji, one asks which of the following

hypotheses is true.

*We have obviously neglected the problem of imperfect detection at
the sensor and unequal coverage problem by assuming that each sensor
observes the same number of targets and that there is a one-to-one
assignment between them. For dicussions which include these fac-
tors, consult Ref. (37).
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A H :z +nHI: i = -1

. (5.5)

SHN:-i N + ni

- where n. is a random noise vector with zero mean and covariance

E. Using the likelihood ratio test procedure, it can be shown that

the yj is choosen as the one which maximizes the joint density of

z. and xj" That is, decide that H, is true when

P(ziX,) = max p(zi,y,) (5.6)

.1 Y, = Y.j

Ifz and _j are Gaussian random vectors, then one obtains the

following equivalent procedure.

Decide H. is true when yj minimizes

w = (--) (Pi+E' z (5.7)

for all Z=I,...,N. Notice that (5.7) is a Chi-square random

*variable or, a weighted distance measure.

The above discussion gives a procedure for selecting

a Yj vector for a given zi vector. When one considers all z---

vectors, this procedure can not be extended without modificantions.

This is because if one repeats the above procedure for all Ei's, one

may obtain the correlation of the same measurement from one sensor
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to several measurements of the other sensor. One therefore has

to impose the constraint that each measurement can only be assigned

(correlated) once while optimizing some performance index (the

4 problem of multiple correlation due to limited sensor resolution

is discussed in [371). one such performance index is the sum of

all Chi-squares! That is, the N correlated pairs of z j and yj

are those achieving the minimum of

E w ij(5.8)

under the constraint that each ai and yjcan only be used once.

We note that the above problem is the same as the

*assignment problem in operations research. The optimum answer may

be obtained by exhaustively searching for all combinations which

results in searching through N! possibilities. A procedure

called the Hungarian method [38] (or the Munkre's method for a

specific implementation procedure [39]) requiring at most

3 2(11 N + 12 N + 31 N) /6 operations 'is oftnused in this type of probleas.

In the case when the target density is not very high so

that the wi of a mismatched pair may attain large values, a thres-

hold may be first applied to examine all w. .' s. For Gaussian

measurement vectors, this threshold can be selected to provide a

given probability of leakage. Those pairs exceeding the thres-

hold are first rejected, one is therefore only required to corre-

late oni a subset of measurement pairs which do not exceed the threshold.

*This criterion is corresponding to the minimum error probability
for Gaussian measurement errors.
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Ai6. TRACKING IN A DENSE TARGET ENVIRONMENT

Tracking in a dense target environment was the subject

of a recent review article [40] and several invited sessions in

recent IEEE-CDC conferences. Representative work in this area

can be found in [401-(48]. This problem is sometimes referred to

as scan-to-scan correlation or tracking data association. In

this section, we offer some very general discussion on this pro-

blem and the interested reader should consult the references for

details.

* This problem can be divided into two phases. The first

phase is track initiation and the second phase is track main-

tenance. They are discussed individually below.

6.1 Track Initiation

Consider the case of a scanning sensor. The first and

second scan produce N1 and N 2 detections, respectively. The

problem is to associate the two sets of detections to form min

(N1 ,N ) number of track files. Notice that we have assumed that

N1 jO N2. This can be caused by (1) imperfect detection (2)

emergence of new targets in the second scan, and (3) targets

leaving the sensor field of view before the second scan. In the

* following, an approach for track initiation with k scans of data

is described.

Let Z k denote all the measurements (N) collected during

41



k-th scan, i.e.,

Zk = {Zl(k), z2 (k),...,zN (k)}  (6.1)

Let Zk denote the set of measurements up to and including the k-th

scan, i.e.,

k
Z = {Zi; i=1,..., k} (6.2)

Furthermore to simplify discussion, assume that N is the number of

detections for all zk s. Assume also that sensors have perfect tar-

get detection. When this is not true, one has to enumerate more

hypotheses to account for all possibilities. With Z k , there can be

Nk combinations of measurement sequences and each measurement se-

quence represents a possible track. Let each possible combination

be denoted by a hypthisis, HM(k) which is defined by

mk

H (k) = {z (1), z (2),,..,z (k)} (6.3)
m k -n -n 2 nk

Suppose that a tracking filter is applied to process each possible

measurement sequence. The a posteriori hypothesis probability of

H (k) being true can be computed recursively using

k = p(Znk (k)H (k-) k - lP(Hm (k)/Z kl P(Hm (k-l)/Zk) (6.4)
k p(Z (k)/Z ) k-l

where p(znk (k)/Hmkl (k-1), Zkl) is the probability density of the
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residual from the tracking filter using H mkl(k-i) and z nk(k)*.

The ,above equation can be derived as a special case of the results

presented in [22],[23]. The final set of tracks (total N) can be

chosen as those N feasible hypotheses with the largest hypothesis

probabilities, i.e.,
'Ik k

max {P(H m(k)/Z); mk = 1,..., N (6.5)
mk

{N; H } (k)CJmk

where the feasible set, F, is the restriction that each measure-

ment at a given time can be used only once, i.e.,

{H (k): H. (k) r) H. (k) = 4 for i A j} (6.6)mk 'k 3

The computational requirement of the above method is

clearly non-trivial. In fact, the above optimization problem

defines a N-dimensional assignment problem. To the best of

the authors' knowledge, the N-dimensional extension of the Hungari-

an algorithm is not yet available. In many applications, one

may be able to pre-cluster the detections so that the search over

the entire set of detections is not necessary. Other physical

constraints can sometimes be imposed to reduce the search require-

ments depending upon given systems and application.

A similar approach using a maximum likelihood method

*A more parametric approach for modelling this probability density

function is given in Refs. [401,[42] and [46] in which situations
including a priori traget distribution and the probability of a
given number of detections were also considered.
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was described in [42] in which the multidimension search

problem was reduced to a 0-1 integer programming problem.

Discussions on other track initiation techniques can be found

in (41], [461,[48].

6.2 Track Maintenance

once track files have been established, the computation-

al requirement is greatly reduced. This is because for each

track file one is only required to search the "admissible"

region dictated by the covariance of the filter residual process.

We note that a slightly modified method of the track

initiation algorithm discussed in 6.1 can be applied to the

track maintenance problem. That is, one establishes a new

hypothesis for each detection resident in the admissible region.

This procedure results in an exponentially growing number of

track files. One can inhibit the growing memory and computation-

al requirement by selecting a tree depth and conducting a

global search for a set of feasible tracks having the highest

'I hypothesis probabilities (eqs. (6.5), (6.6)). Another approach

is to combine a set of "most likely hypothesis" growing

out of the same track file using the weighted sum of state esti-

mates with the hypothesis probabilities as weighting factors.

This second approach is the basis of the Bayesian tracker

presented by Singer et al,[43], [44]. If the depth is equal to
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one, i.e., one combines all admissible detections at each scan,

then one obtains the probabilistic data association filter of

Bar-Sahlom and Tse [45]. We emphasize however, that the approaches

of [431-[45] are suitable for tracking in a cluttered environment
(see also (47]) and do not directly address the multiple target

tracking issue.

The above discussion did not include problems of track

termination, imperfect sensor detection, false measurements, etc.

Reid [46] provides an interesting paper which discusses extensively

:1 features of both track initiation and track maintenance.

Wenote that the subject of tracking in a dense target

environment is of current interest. Although all quoted refer-

ences present general approaches to this problem each application

typically has its own unique features which impose certain res-

trictions resulting in a variety of modifications. Reference

[48] represents such a situation in which practical constraints

were considered for tracking algorithm design with a passive sen-

sor.
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7. ANALYSIS TECHNIQUES

In system design and trade-off studies involving

target tracking, one is often required to evaluate the performance

of trajectory estimation (tracking and prediction, etc.) for

specific situations. Although Monte Carlo simulation is a

frequently used method, it is nevertheless time consuming and

costly. For a quick and general performance evaluation par-

ticularly in system trade-off studies covariance analysis tech-

niques are most appropriate. The following discussion treats

the application of polynomial analysis, the Riccati Equation and

the Cramer-Rao bound.

7.1 Polynomial Analysis

Let p0, v0 , and a0 denote at t=O, the position, velo-

city and acceleration, respectively, of a moving object projected

along a given coordinate (it may be either range or angles)

then its position at an arbitary time t is

1 ao2
p(t) = P + vt +  "t (7.1)

Let P(t n), n=l,..., N denote a set of noisy measurements of

P(tn). For the purpose of convenience, let the time samples be

taken uniformly with spacing T and let the total time interval be

centered about t-0. Under these conditions, the estimates of

target position, velocity, and acceleration at an arbitrary time
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t are given by

PWt)
V(t) = (t)s Sy (7.2)

a(t)J

where 0(t) = 1 t(7.3)

-0 0 1

3(3N2 -7) -30

4(N-2)N (N+2) 0
T (N-2)N(N+2) (7.4)

12

T2 (N-1)N(N+1)

-30 720

T (N-2)N(N+2) T (N-2)(N-1)N(N+1)(N+2)

: EP(t n )h~

- __ - 2 )P(tn) (7.5)

ET 2 (n-1 (N-l))2(t)/2

T = time between measurements

The covariance of the state estimate (Eq. (7.2)) is

47



22

*P = a2%(t)S ¢(t)T (7.6)

where c2 is the variance of the measurement noise.

We note that the above result, especially (7.6), is

I
I very useful because of its simplicity and applicability to a wide

I range of problems. Specific application of the above analysis to

re-entry vehicle tracking problems and discussions on polynomial

analyses are found in [49].

7.2 The Use of the Riccati Equation

The above analysis is straightforward and its cal-

culation can be carried out using desk top (or pocket)

calculators. The drawback is that it becomes overly optimistic

for long track intervals ((N-1)T). This results since the

target dynamic model (Eq. (7.1)) does not include process noise.

To circumvent this problem, one may compute the covariance

matrix using the Riccati equation (Eq. (2.13)). This

will require a computer when nonlinear dynamics and/or measure-

ment equations are involved. It is nevertheless a convenient

method since the Monte Carlo simulation is not required.

We note that the use of Riccati equation for nonlinear

problems only represents an approximate error analysis, If one

choses a sufficiently large process noise covariance, then the

result of the Riccati equation is an upper bound to the actual

performance, [9]. The tightness of this bound is however, rather
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difficult to assess.

7.3 The Use of The Cramer-Rao Lower Bound

There exist some situations in which the process noise

is negligible. The techniques of Section 7.1 are therefore

applicable to a limited degree although they do ignore the coupl-

ing between coordinates and assume a linear measurement system.

When the coupling between coordinates becomes significant one

must use the Riccati equation to compute the covariance. When

the process noise term is indeed negligible (e.g., the exo-

atmospheric trajectory estimation, Section 5.1), the solution of

the Riccati equation using Jacobian matrices evaluated along the

true trajectory becomes the Cramer-Rao lower bound on the covariance

of the state estimates, [49], [50], [51]. Furthermore, the Riccati

equation has a closed form solution. As an example, for the dis-

crete case,

= n NFnTHnTRnHnFn~l(7
PN E=  _H - (7.7)

N-l

F = TI .Pj1  for n < N-1

*n=l
(7.8)

I for n = N
A

where PN is the Cramer-Rao bound for the covariance of N/N' I is
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an identity matrix and 1 and H nare system (discrete) and measure-

ment Jacobian matrices evaluated at xn respectively.

1 The significance of the above fact is that the actual

performance is lower bounded by the solution of the Riccati

equation. An extended Kalman filter generally does not perform

as well while a properly designed filter can asymptotically

achieve this bound, see [30], [57].

Finally we remark that the corresponding Cramer-Rao

bound for systems with process noise is very difficult to compute.

Versions -of lower bounds to the Cramer-Rao bound have been pro-

posed [51], [52], these bounds are tight only for very large signal

to noise ratios.

8. CONCLUDING REMARKS

In this report, we have presented a survey of problems

and solutions which deal with target tracking. Although this

problem has been of active concern to practitioners in both

military and civilian applications for many years, new problems

still emerge and challenge systems engineers. It is felt that the

basic approach to tracking filter design is no longer an issue.

However, the problem of integrating the tracking system into the

overall command, control, and communication structure to achieve

improved performance while minimizing data processing requirements

represent the nature of problems that require current attention.
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