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Perturbed Bifurcation of Stationary Striations

in a Contaminated, Non-uniform Plasma

J. F. Magnan and R. A. Goldstein

Abstract

A cylindrical, weakly ionized, and collision dominated neon plasma

described by a system of nonlinear, parabolic reaction-diffusion equations

for the electron and metastable atom axial densities exhibits a bifurcation

from a uniform to a striated state at a critical length of the plasma

column. The sharp transition between states predicted by the theory is

in contrast with the smooth transition observed in experiments. We apply

the theory of singular per urbations of bifurcations to show that small

inhomogeneities in the plasma, such as those caused by non-uniform heating

and contamination, are sufficient to qualitatively explain the experimental

results. We observe that a steady, axial magnetic field in the plasma

can also produce a smooth transition.
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1. Introduction

It has been found that the longitudinally uniform and axially symmetric

steady state of a cylindrical plasma may bifurcate transcritically to a

non-uniform striated state after the onset of an ionization instability [1].

The weakly ionized and collision dominated noble gas plasma which is uniformly

heated with radio-frequency electromagnetic waves can be described by a

system of non-linear reaction-diffusion equations for the electron N and

metastable atom M population densities. The theory in [1] consider the

following initial-boundary value problem for N and M:

(l.la) Nt = DNzz + F(N,M) , 0 z : L ,

(l.lb) Mt - ODMzz + G(N,M) 9 0 < z : L ,

(l.lc) N = No  , M - M0  at z= 0 and z= L

(l.ld) N(z,O) h(z,e) , M(z,O) - i(z,e)

In (1.1) t is the time variable and z the axial coordinate in a cylinder

of length L. D is the ambipolar diffusion coefficient of the ions and e

is the ratio of the metastable atom diffusion coefficient to D. N and M0

are the uniform steady state values of N and M. The initial functions h

and i have asymptotic representations ChI(z) and i I(z) which have Fourier

sine series expansions and vanish at the boundaries. The small parameter c

is defined below. The functions F and G are nonlinear particle production

and loss rates describing the interactions between electrons, metastables,

and neutral gas atoms in the plasma. They are discussed in [1, [2], [3].

Their form is given in [2) as
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(L.ie) F(N,M) - - f N + f2NM + f3N2M

(l.lf) G(N,M) - - g2M - g3NM

where the positive constants f 1  f2 ' f3, gl' g2 ' and g3 are rate coefficients

obtained by properly averaging collision cross sections over the electron

energy distribution function in the plasma.

An asymptotic expansion of the solution to problem (1.1) as e + 0 is

obtained in CI by a standard two-time method. The analysis of the problem

finds that the uniform state may become unstable when a critical value
L
2

of the bifurcation parameter A - is exceeded. For & near Mc an initial
DrT

perturbation of the uniform state will develop into a non-uniform steady

state with a sinusoidal density variation along the plasma axis. The

striated state of the plasma is given by

([.i L"]+ cA sin n + O(C2

M M c bnL

c

where the critical mode n is odd,c

+

(l.2b) A - - (0)

+
and qn , t b n are constants defined below. The normalization - c=

c c
defines e and 4'(0). The value of n in (1.2a) is determined by 4 since

disconnected regions of this parameter may exist where modes of different

n grow in amplitude. For even nc it is necessary to choose &'(0 ) = 0 and

a higher order calculation is required.

Experimental investigations of the phenomenon have qualitatively con-

firmed the results of the analysis E4]. Experiments [51 show however

that the transition from the uniform to the striated state (nc - 1) is

MW. OM
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smooth, in contrast with the theoretical prediction that an abrupt change

of state occurs at the bifurcation point. The contrast between theory and

experiment is shown by Fig. 1. We attribute this discrepancy to the non-

uniform heating of the plasma by the radio-frequency electric field and to

the presence of impurities in the plasma. In this paper we show that these

effects are sufficient to qualitatively explain the smooth transition

between states. In addition, we show that the transition can be smoothed

by a steady magnetic field in the plasma.

In §2 we modify problem (1.1) to include the effect of impurities and

non-uniform heating which are assumed to be of the same small amplitude 6.

We specifically consider the case of an argon contaminant in a neon plasma

and call the resulting steady state problem the perturbed problem.

We apply the method of Matkowsky and Reiss [6j, [7] in §§3-5 to find

asymptotic solutions of the perturbed problem. The technique used is that

of matched asymptotic expansions where an outer and inner boundary layer

expansion, which are perturbation expansions in 6 of the bifurcation

branches away from and near to the bifurcation point, are connected by a

matching procedure. A uniform asymptotic representation of the solution can

then be obtained. The method has been applied to the buckling of columns,

forced nonlinear oscillations, Rayleigh-Bgnard convection, Poiseuille flow,

and panel flutter C71, £8), [9), 103. In our analysis we have retained

much of the notation used in E1).
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2. The Perturbed Problem

Impurities in a laboratory plasma are always present. They consist

mainly of water vapor and air from leaks and surface desorption. Two sample

reactions with impurities are

(2.1) e +H 204 A + OH

and

(2.2) A+ Ne 9 A+ + Ne + em

where the two processes are, respectively, dissociative attachment and

Penning ionization (of an argon ground state atom A by a neon metastable

atom Nem). Each impurity has a different effect on the plasma: water

molecules destroy electrons; and argon atoms create electrons and destroy

metastable atoms.

We shall consider a neon plasma contaminated by an argon impurity which

is introduced at a constant rate by an external source. The argon reacts

almost immediately with the metastables because of the large argon collision

frequency and high probability for Penning ionization to occur. For this

reason we can neglect the direct ionization of argon by electrons, the

diffusion of argon, and the change of the argon reaction rate with small

variations in the metastable concentration. Under these conditions the

conservation equation for the argon concentration is decoupled from the N

and M equations and gives the result that the steady state concentration has

the same spatial dependence of the source.

The time rate of change of the electron and metastable atom populations

due to an argon impurity concentration 61(z) is proportional to 51(z)M,

where 8 > 0 is a small parameter characterizing the magnitude of the impurities.
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It may be defined, for example, as

(2.3) 6 =max IZ0:9z cL M 0

In the theory presented in [I] it is assumed that the plasma is uni-

formly heated by the radio-frequency electric field so that the reaction

rates do not vary along z. In experiments, however, the heating can be

non-uniform and the rate coefficients of the plasma depend on z. In the

experiments described in [4] the heating is concentrated near the ends of

the plasma where the field produced by two end electrodes is strongest.

The large field at the ends is due to the proximity of the electrodes and

the shielding of the central region of the plasma by the plasma at the

'j boundary.

If we assume the non-uniformity of the field to be small and of the

same characteristic magnitude 6 as the contamination in the plasma we may

write the space dependent part of the reaction rates as

(2.4a) 6 [ -r1 (z)N + a 2 (z) NM + t3 (z)N] - 8X(z,N,M)

and

(2.4b) 8 [ 101(z) - 02 (z)M - 03 (z)NM] a 6Y(z,N,M)

where the a's and O's are rate coefficients.

The steady state problem for the non-uniformly heated, contaminated

plasma is given by

(2.5a) N + ju[ F(N,M) + 6(kMI( ) + X( ,N,M))] - 0 , 0 : r

(2.5b) OM + IA G(N,M) + 8(-kMI(Q) + Y(C,N,M))J - 0 , 0 g

(2.5c) N-N 0 , M- M0 at -0 and TT
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Trz

where - is a dimensionless space variable and k is a rate coefficient.

Equations (2.5) define the perturbed bifurcation problem when 8 0 0; and

the bifurcation problem when 6 - 0.

I-

I
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3. The Outer Expansions

The four sub-branches of the bifurcation branches are shown in Fig. 1.

The branches include the uniform state sub-branches to the right and left

of sc and the transcritical striated state sub-branches branching above and

below ;&,. Let the vector u with components N and M be the outer expansion;

and let 3o be a bifurcation sub-branch. We seek asymptotic expansions as

8 + 0 of the solution of the perturbed problem near 3o in the form

(3.1) u - u Uj( 6j

j=O

The coefficients uj of the outer expansion are obtained by substituting

(3.1) into (2.5) and equating to zero coefficients of 65 This results in

the following linear boundary-value problem for u1 :

(3.2a) (L + O)u 1  R ,u- for 9=0 and i- ,

where

.(3.2b) L = 2 2 ' [

0 Q -G GM

and

[-1 r (C M 1
(3.2c) R p I( ) L - L(,) J
In (3.2) the derivatives of F and G are evaluated at and N;, M; are

the components of u

We solve (3.2) by using eigenfunction expansions. The eigenfunctions

va and eigenvalues an of the operator L + /AQ are defined by
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(3.3) (L+ Q)vn , v -0 for §=0 and =, ,0 <m .

To solve the eigenvalue problem (3.3) for the uniform branch where

N - No and M' - M we rewrite (3.3) as
0 0 0 0

(3.4) EL + 1cQo + O-A - )Q0 Vn - anVn

where Q0 is Q evaluated at 1O M0 . The eigenfunctions Vn, vn and eigenvalues

en, en of the operator L + IQo and its adjoint L + are defined byen' n0 Q

(3.5a) (L + ;0)V = env  , v 0 for §=0 and g=TT

and

(3.5b) (L*+ e , v = 0 for g =0 and g=w0 IQvn n n n

where 7n is the complex conjugate of en In (3.5) each operator has two

families (+ and -) of eigenfunctions and eigenvalues. They are given in

C]as

+ I 1 1( +  2
(3.6a) v = sin ng , b n + n 2 ;FN)/AFN

(3.6b) vn sin n- , cn  2 _ n F F
I n

(3.6c) v+ E sin ng , E = 2

n * n 1 1 +b b*
b n

M~ =  + +  n 2  " S /

(3.6d) v* -K sin rg K(.)v n  n n rr 1 + c
Snn  n n

* - 2
Ca + n 2 JA/AGn (Ln N



~-9-

!2
(3.6e) en = ;CT (T2 4Pn)

2 42Sn N_ M + FNG.FMGN
(3 . 6 f) T i GM + FN  (I + 1 n (OFN + GM)

In [l it was assumed that T < 0 and P() =0.

The eigenfunctions satisfy the orthogonality conditions

. (3.7a) (vv = 0 for n m
n m

(3.7b) v, 0
n m

(3.7c) (vn.Vn) = 1

where the inner product of two vectors a, b is defined by

(3.7d) <a,b) -- I0

!-O

and at is the Hermetian adjoint of a.

We denote the eigenfunctions of the operator L + p Q and its adjoint
*c 0

L + JcQo by v and v respectively.

It is useful for the matching in §5 to expand the v and v in termsn n1

of the v and v as-- ,

(3.8a) V= : k +
k=l

(3.8b) V . * + , + _

k=l

where

(3.8c) a - >+ v " )ank " ('n> ' k n.'
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and

(3.8d) v = , = *V

The expansion coefficients in (3.8) are functions of 1A and are given by

+n + + bn)bn) n n 1 n + b )bn (c)

1 + b n(A)bn ( )  1 + bnUCn)n(C )

(3.9b) 0- +bn()c( 1 + C

n nn 1 + (A c) * )  n + )cn(* c)
n c n.C n 1 JA nC.L Cq)

I + bn )b I . . + b n(I c n QA)
= *nS _1bn)b(s) 1+ 4-()Cn4i)

(3.9c) a 1+ n .&) b 1n  cnn
1 + b n(QA)bn(;A) + C n )C n* )

(3.9d) = *+ * I+C n1 ,U)b () + C 1 (A c4)cQ()

and

(3.9e) ank = nk , Onk = Onk 0 for k n

Thus from (3.8) and (3.9)

:L :k+ * -
(3.10a) vn= a v +  vn n a n-n

and

ft *+ * -
(3.1Ob) v+- % v +

The asymptotic behavior of the coefficients as L c is needed below

and is given by

(3.11a) a. M On - +O ) O M 1 + 1
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and

(3. lb) n o -o

Nov (3.4) may be written as

(1 . + +

(3.12)1~v- :nen(jc )v + 0 e" )v".Uv + -)( Q + nQ0)
n n nn c -a n nc ^41c aQ~ Q(-

where we have used (3.10a) and (3.5a). Taking the inner product of (3.12)

with v and using the orthogonality of the eigenfunctions we arrive at ann

expression for the a 
:

:!:E
(3.13a) a n=k D+Q.&4- ,)-%

j: where

(3.13b) n= ao e(c ) + Onn en QC)

•** + +*- - * + I***
(3.13c) - + Cnn qn +a n nqn' + nn q

and
* * * =I Q=

(3.13d) (= v,Qo.4> , 04 •

.--

We expand the inhomogeneous term R in the vn as

(3.14) R (r
J. 

* 
+ rjvj)

The expansion coefficients r are given by

jj

and have the values

.. i i i
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where

+ 2
(3.15c) R - "-Bj(kM01 - S

b.| pB(kMc) -S 1 =) ~ c(3.15d) R; - * ' ¢. *

I +Cb MI) )  cj )
(3.15e) B . (d - *

j b 1 0 0)b. ) 1 +jIcY() C j C

(3.15f) Ij =T I(C) sin jC d§

(3.15g) S- .'0 (C) + b c(j)Y0 (g)]sinjCdt

(3.c15h) 1 C ) -+ c

and

(3.151) XO() a X(9,NoM O) , Y0 (t) a Y(9,NOM O)

We assume Rc # 0.
IC

The solution of (3.2) is given by

a(.6e +

where the v j 9 a and r are given in (3.10a), (3.13a), and (3.15b). The

outer expansions corresponding to the uniform sub-branches are

N0

(3.17) u + 0(8

where u is given by (3.16).owl
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The asymptotic behavior of (3.17) as g c is given by

(3.18) 0 + 2B i(kM0 1 " Si) + O(Jt-Lc) 1+O.8)uT0 r + + 2
oij -1l e1+ (Q-A c)qj+e0(,-c+Or ( -jQ Lc bj(iL).

C ji(kM1 T i) + O(L-C) 2 1 J sin J +
ej + (;L -Ac )qj + ejO (- c ) + 0or (U - e)A C) i(14c)

0 6(A-Ac) + 0(8 2) 

For j jc the first term inside the brackets in (3.18) becomes

(3.19) C jc + 0()+ bj
W" ;C) qJ b C (U )l

c c+

since e = 0. It is seen from (3.19) that the outer expansions (3.17)J c

are unbounded at the bifurcation point j4 = jc. They are shown in Fig. 2

for aR c > 0 and aRc+ <0.

The outer expansions for the striation sub-branches (1.2) will depend

on e because of the dependence !0, ; and Q now have on e. The eigenvalue

problem (3.3) thus becomes

(3.20) EL + ;(C)Q(c)Jv (9) = a (e)v (e) , v = 0 for = 0 and C = TT
n n n n

The matrix Q is evaluated at the striation sub-branch and has the form

(3.21a) Q(C) - Q0 + cA cD sinncC + 0(52)

where
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S ,,+ b nFN F N 1

(3.21b) D I

GNN + bn Gn GNMJ

We solve (3.20) by seeking perturbation expansions in 9 of v and a of
n n

the form

(3.22a) v (c) = v niC
J-0

and

(3.22b) an(c) - fn . n'j
J-0

The coefficients Vnj J n. j in (3.22) are obtained by substituting

(3.22) into (3.20) and equating to zero the coefficients of cJ. This leads

to the following equations for vnO and v :

(3.23) (L + p Q)v anv 0c0nO ,nO

and

(3.24) (L +/cQ anO)vn (a D sin n9)vn

Equation (3.23) is the same as (3.5a) and therefore v v and
n,0

an,O e n Thus we can rewrite (3.24) as

(3.25a) (L + 4cQ 0 e )v,1 W sin ng + Zsinng sin n
c n n.1l

where

(w I a +- '(0)(FN + bn F)
(3.25b) 14* a w [b~

6-W2 b na' (0) (GN + bnGM)_
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and

r zF +b nF b FK (3.25c) Z a LZj=MA ~ NM n(3.25c) Z C = cc GN + bn GN + bnGNM

2NN n NM bnGNMj

It will not be necessary to find the vn in (3.25a) because they

ultimately give terms of 0(66) in the outer expansions and are of higher

order than the 0(€) and 0(6) terms we are keeping. The a are obtained

from the solvability requirement

(3.26) < , *sin < + Z sinn C sin ng) - 0

This condition gives us equations which may be solved algebraically for

thea nl

(3.27a) (w* + b*W) + " + 2n-n 2n+n (z + bZ 2 )=

2 1 nw2 4 n 2n -n 1n~ n +c 2 )

c c c

(3.27"b) 1 (w- + c  2 +  ('__ + c + 0
2 ,2 n 2n -n 2n n (z n 2 )

c C c

for even n and odd n j nc,
Ic

and

(3.27c) Z (W+ + bnw2) + A- (z + bZ) = 0
2 1 n 2 3n In 2

(3.27d) 1(w1  + cnW2) + 4-(z1 +cz 2 )- 0

for n n We solve (3.21c) for a + (it will be needed later) and obtain

CCn c
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The solution of (3.2) for the striation sub-branches is given by

(3.29) v + + -j
jml7+ a

where the v., and R are given by (3.22) and (3.15c,d). Thus it follows

from (3.1) and (3.29) that the outer expansions corresponding to the

striation sub-branches are

N-0 -

(3.30) u= + CA [ sin n C +

am B(MO.S 1 C (kM0I -T) I2 A EL f i~ s J1 + I j ll [JIsin JC+
i.J1 Lej+c b e +e Ca- c

2 2
O(C6) + O() + 0(6 )

+

At the bifurcation point, where e 0 and e 0, the outer expansions

(3.30) are unbounded. They are shown in Fig. 2 for fR+ 0 and CR+ < 0.
ic ic

We have used (3.28) to draw the curves.
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4. The Inner Expansions

These expansions are valid near c as 8 + 0 and are obtained by stretching

the neighborhoods of 1c with the transformation

(A1 ~ =,i+ a a x:j(V~
(4.1) ) c +  j\ + (V

J=2

where I is the stretched variable of the method of matched asymptotic

expansions and the small parameter v is defined by

b
(4.2) 6(v) - v

The constants a and b are positive integers since we require that (V) -0 c

and 8(v) 4 0 as v 4 0 and that the derivatives of A() and 8(v) be bounded

as v-00.

Let the vector w with components n(v) = N( ,j(v),6(v)) and

m(v) -M(g, (v),6(v)) be the inner expansion. We seek asymptotic expansions

of the solution of the perturbed problem near the singular point defined by

(4.3) i - c and 0 = [O

in the form

(4.4) w= ,()v

J o

where !j has components njmj.

In the usual manner we arrive at the following equations for the wj:

(4.5) (L + I0 Q 1 c8 ' { 0 I(9) - a l

Sl - 0 for g-0 and 9-rr

I,
I I III I I 1 ll
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(4.6) (L + ILcQo) 2 = - -'o "~ 2 N 11* +
2n12
I-GN + nlmlG1Nt

(4.6 -l l +

S(\'M ' + 2 - o "L-- J

''I 0for =O0 and 2 '

and in general for j > 2,

:'I

*; (4.7) (L + McQ)wj m -o, j for = 0 and =r

The primes on 6 and a denote derivatives with respect to v evaluated at

v - 0 and come from Taylor expansions of 8 and +s. In (4.6) X1 ( ) U X( ,n11m1 )

and YI(V) I

:The operator L + cois not invertible and thus the inhomogeneous

* problems (4.5)-(4.7) have solutions if and only if , (j l ,2,'") is

* 1 *

orthogonal to the null space of L + which is spanned by " The

Csolvability conditions for these problems are thus

For j - 1, (4.5) and (4.8) imply that

(4.9) 6 'B c(kMI~ ) 0

T p c

V - an coe frm Tylo exansins f 8and A. n (.6)X 1 9) Vtn 1
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I+
Since we have assumed that R jci 0, (4.9) implies that

(4.10) 6' - 0

and thus b > 1. Therefore we conclude from (4.5) and (4.10) that

(4.11) At

I C
where the amplitude A is to be determined.

We conclude from condition (4.8) with j = 2 and (4.10) and (4.11) that

A must satisfy the equation

(4.12) a A + A - 2R; -0

where

(41)4 (.+ b l + b* GN + 2b b* N)( + b b*
3r n413 n NN FN 2n nc ncGM ( nc nc

+1

and R has 4 c .L" In arriving at (4.12) we have required that t' "0
c

and 8" 0 0 which by (4.1) imply that a -1 and b -2, or

2 2
(4.14) p - IAc + IV + O(V , 8 v

There are two real roots of (4.12) if

2 c
(4.15) +2

q c

Thus there are two inner expansions

(4.16 W + A*C1)j.(9)8 + 0(8)
6)[ L~MO c
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with

(4.17) IL= *c + 10 + 0(6)

If C(R + > 0 then these expansions are defined for all . If R+ < 0 then
ic +' +2k ic

there are two expansions for I > (-8 &R j /qj ) and two expansions for
2+1 2 +2)kj,~ jjj

C CC C 1 ~~T~<-(-8p ct /qj A 10 (AI+'I+2qj d c
c j c A = c
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5. The Matching

To obtain a uniform asymptotic representation of the solution it is

necessary to connect each of the outer expansions to the appropriate

inner expansions by using the matching conditions of the method of matched

1 asymptotic expansions. To apply these conditions we first express the outer

expansion in terms of the inner variables by substituting (4.14) into (3.1)

and expand the result in a power series in v:

(5.1) u u ( J,( ))V kO
SJ.0 k-0

The matching conditions then are

(5.2) lim 0 for k 1,2,... .

For the outer expansions corresponding to the uniform sub-branches

we have

+1
RI
qc(5.3) - c

qjcj

and corresponding to the striation sub-branches we have

(++

(5.4) cl + I

The asymptotic forms of the inner coefficients % are found from the

asymptotic forms of the amplitudes A according to (4.11). The solution

A of (4.12) is
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(5.5)__A' c +o0

It then follows from (5.5) that for cR+ > 0ic

- _ I , o e > 0

+ C

(5.6a) lm A +  lim A-

n 1w
nc --2 o > 0

R'

C -
++

(5.6b) li,- A lir A =

1 4 0 q

and that for cvR+ < 0
ic

Co>0

(5.6c) lim A +  , im A- =

2 of <
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iR

-f

(5.6d) 1 m A = urn =

q+n
1 c

+

In obtaining (5.6) we have assumed a c < 0 since in experiments this appears

to be the case.

The results of the matching are summarized in Tables I and II where

we denote the uniform and striation outer expansions for 1 < uc by u(0)

and U(1 ) respectively, and for 1 > 1 by U() and u(1). The resulting

composite expansions are shown in Fig. 3.

The qualitative features observed in experiments for the transition

from the uniform to the n = 1 striated state may be explained by Fig. 3a.

The fact that no jump in the state of the plasma is observed as )A is varied

rules out the behavior shown by Fig. 3b. The argon contamination and non-

uniform heating of the neon plasma are therefore sufficient to qualitatively

explain the experimental results.

We note that it may also be possible for a weak, steady magnetic field

of strength B(z) to produce smooth transitions between states. The effect

of the magnetic field is to reduce the radial diffusion of electrons in the

plasma by a factor which depends on B(z). The term in F, proportional to N,

which accounts for electron radial diffusion losses to the walls of the

* Icylinder will therefore have a coefficient which varies with z. This

effect can be included in the al coefficient in (2.4a) and our results

remain valid.
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Table I

(a> 0)

-- - -

w u U

U(0) ()
- -

Table II

(a < 0)

w U u

(0) U(1)



*Figure Captions

Fig. 1: The contrast between theory and experiment for

stationary striations. The amplitude is the
n T z

coefficient of sin L in (l.2a) with /1 < 0.
c

* Fig. 2: The curves 0 and 0 are the outer expansions corresponding
SU S

to the uniform and striation branches of the bifurcation problem,

respectively. The dashed curves I are the inner expansions.

The amplitude in each case is the coefficient of sin n
c

In (a) aR+ > 0 and in (b) cR+ < 0.
c c

Fig. 3: The composite solutions of the perturbed problem for

(a) aR+ > 0 and (b) aR. < 0. The noses of the branches in

(b) are given by rn*&4 ± 0 0 + ..

S.]
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