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ABSTRACT

The field equation for meridionally inextensional axisymmetric

deformations of shells of revolution is developed and applied to the

postbuckling analysis of simply-supported imperfect annular plates sub-

jected to compressive edge loads. The semi-inextensional model is then

compared with the usual extensional model by using an energy approach

with two and three deformation parameters.

The method is used to analyse the postbuckling behavior of an imperfect

annular plate with an eccentric interior edge stiffener. The results show

that although either imperfection or eccentricity lead to stable behavior,

their combination may introduce unstable imperfection-sensitive behavior

in some cases.,
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1. INTRODUCTION

The postbuckling deformations of many plates and shells exhibit rather

large rotations and curvature changes while the midsurface extensional

strains have a rather limited influence on the deformation patterns. This

type of behavior is related to the so-called "small-strain-finite-rotation"

theory of plates and shells which assumes that the equations can be linearized

in the extensional strains but not in the rotations (and displacements).

In many practical applications it has been observed that the incremental

extensional strains during the post-buckling deformation process are

sufficiently small and over most of the shell (or plate) so that the de-

formation could presumably be approximated by an inextensional model

which eliminates the incremental extensions completely. However, attempts

to do so have been found to be not entirely satisfactory because of two

main reasons:

(a) The need for the existence of localised regions of high strain

gradients in order to account for the boundary conditions and for the

internal compatibility of the shell deformation pattern. A good

example is the diamond pattern of the buckled very thin cylindrical

shell which requires significant strain gradients along its creases and

corners where the Gaussian Curvature of the surface undergoes large changes.

(b) In some cases the inextensional deformation has a definite

directional pattern. That is, the incremental deformations are virtually

inextensional in one direction at each point, while having a substantial

extensional component in the direction orthogonal to it. Quite a few
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postbuckling patterns possess this property. To cite a few examples, the

strong postbuckling of thin plates in shear, of thin shells of revolution

in twist, of cylindrical shells and of annular plates in axisymmetric

compression, are all of this type.

For the latter class of structures, semi-inextensional models can be

postulated. By doing so, the postbuckling analysis can be simplified both

by decreasing the number of variables and by a priori taking into account

the observed deformation patterns. In some other cases, a combination of

semi-inextensionality plus localised areas of high strain gradients may

be useful.

Some of the features of semi-inextensional plate models will be

exemplified in this study by considering the axisymmetric postbuckling

behavior of an imperfect annular plate. In addition, the study will

include an examination of the interaction of shape imperfections and

boundary eccentricities. This might be of some use to the understanding

of this complex phenomenon in more complicated 3tructures.

The problem of the axisymmetric postbuckling behavior of annular plates

has been considered in the past by several investigators [7,9,10,11.12,15]

with the clamped external boundary being the more popular case. Treatment

consisted of solving the axisymmetric Von-Karman plate equations by using

eith series expansion techniques or especially devised numerical methods.

In recentyears, general and special purpose computer codes were utilised

too. These methods have their advantages in accuracy but suffer from

the drawback of being difficult to use for overall design data or for the

evaluation of trends.

A i
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The approximate analytical approach prsented here for the evaluation

of simply suported annular plates under compressive edge loads is based

on experimental observations both for its basic assumption of radial

inextensionality and for its choice of deformation model. The semi-

inextensionality assumption is used for deriving the differential equa-

tion for the large rotations of shells and annular plates, whereas the

deformation model is combined with an energy approach to produce a simple

approximate model of post-buckling behavior. It is believed that this

and similar approaches are suitable for engineering estimates and as

necessary adjuncts to testing programs.

Observations made during a recent testing program [8,p.19; 10] on

simply supported annular plates have demonstrated that as high post-

buckling loads were reached, plates with free internal edges or with weak

rings tended to deform into snapes which were close to shallow cones.

Marked deviations appeared only if the stiffening rings at the interior

edge were relatively heavy. A similar mode of behavior- although with a

different loading case - was noted in the study of shallow conical springs

by Almen and Laszlo in 1936 and later by Wempner [2] and by Schmidt and

Wempner [3]. This observation will be subsequently used in the determina-

tion of the initial deformation model.
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2. PLATE MODEL, GEOMETRY AND KINEMATICS

Let (r,z,e) be a cylindrical coordinate system in space, to which an

annular plate or shell is referred (see Fig. 1). The interior boundary of

the plate (r=b) may be stiffened by an eccentric ring. Compressive radial

forces P (per unit length)are applied to the exterior boundary (r=a).

The initial configuration of the imperfect plate is that of a very

shallow shell of revolution, with 0 (r) being the angle between the

normal to the surface and the positive direction of the z axis. (Note:

the magnitude of €o in Fig. I is exaggerated.) Length measure along

the plate midsur~ace in the r-z plane is denoted by s and its local

radius of curvature by re. Obviously, the following two relationships

hold:

I d
- =- and dr = cos ds (1)
r ds o

The plate deforms from its initial configuration into another shell

of revolution with length measure s'. The radial displacement of a

material point on the plate midsurface is denoted by u (Fig. 2). The

angle between the normal t3 the deformed plate and the z axis is denoted

by * , and the radius of curvature of the deformed plate midsurface is

r'. The following relationships hold:

1 do
-r .dr' = cosds'r$ ds'

Note that primes relate to the deformed configuration (except for 0

which is measured in the deformed configuration),
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An expression for the meridional strain er can be derived directly

from Fig. 2:

ds'coso = ds cos4 ° + du

or, in view of (1):

du C0o
r dr cos(

See also equation (15) in Ref. [1.

The radial displacement can be calculated from (2) as follows:

U = ([(1. + -r )cos - cos ]ds + u (3)

The circumferential strain er is obtained directly from its definition

= ulr (4)

These also lead to the strain compatibility equation:

(I + r )cos - cost °  d(rc (5)r d--( 5

Bending strains should be derived in principle from the usual Kirchoff-

Love assumptions of transversely rigid shells. There is no final agreement

on the "proper" form to be used. Strict applicationof the K.L. hypothesis

leads to a formula of the type:

K*-(l +e)( - (6a)

Here £ is an extensional strain and R is a radius of curvature.

On the other hand, an alternate definition
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K U C L- (6b)
1 RK = (I +r) - R b

is widely used. It has also been shown to have a wide range of validity

in small and large strain analysis [14, p. 94]. Their difference is the

quantity s/R. Fortunately, in this study the strains are small and,

moreover, the imperfect undeformed plate is almost flat so that R is

very large. Hence, the difference is quite negligible, and the second

definition will be adopted for convenience. This leads to the following

expressions for the bending strains:

d,'d4s' d d = d

K _(7)
r ds ds' ds ds (

K = r __u -- 0 (sin -sino) (8)e r r+u r r 0

This is also the form adopted (as an approximation!) by Reissner in his

nonlinear theory of shells of revolution [1, eqns. 17,18].

From equations (3), (4), (7), (8) it follows that all the extensional

and bending strains have been expressed in terms s, r and the constant

of integration u .

3. EQUILIBRIUM EQUATIONS

Equilibrium is considered in the deformed (prime) configuration. The

force resultant vector acting on the cross section r' = c can be cecomposed

into either tangential (N') and transverse (Q') or radial (H') and axial (V')
r

resultants respectively. These are related by the equations (see Fig. 2):
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V' - N'sino + Q'coso (9)r

H' - NcosO - Q'sinO (10)
r

Axial equilibrium requires that V' = 0, so that N' can be expressed in
r

terms of Q' as follows:

N' = -Q'cote (11)r

The second equilibrium equation is in the radial direction and yields

the expression:

d (H'r') = N'

Now, H' can be eliminated from the equations by using the expression

for N' and substituting:r

H' = - O'cot~cos - Q'sinO = -•s ino

so that the equilibrium equation becomes

d(Q ) + N' = 0 (12)

dsT sin

In many applications stress resultants defined per units of length of

the undeformed shell cross sections are of advantage, especially in conjuntion

with constitutive laws. These are defined by:

rV  rV  rM1 v  sQ N - N M M' ; No  N' Me -- '
r r r r r r ds N8 e ds e

Then the force equilibrium equation reduces to

d Or +N = 0 (13)
dsinO
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The equation of moment equilibrium in the prime Lontiguration is that of

a shell of revolution:

d
(r'M) - Mr'cos = r'r;Q'

t

or:

,(d 1M) 1-j cosE, , = 'Q '

Passing again Lo the sLress !esultants pet unit undeformed length,

the following fesuilts*

dcM - ds'

S) dcos r O (l+E )rQ (14)

Hence, ali the equations ot equilibrtum are reducible to the single

equat ion:

d~ (Is L'
1. + NO  0 (15)

r

Note Lhat all the variaoles ate measured now with respect to the geometry

of the undetormed contigurati a.

4. CONSTITUTIVE LAWS

It will be assumed that the stress resultants per unit undeformed length

are related to the strain measures by the usual Hooke's law. This, plus

the other assumptions of the Kirchhoff-Love hypothesis lead to the

commonly used constitutive laws of plate and shell theory:
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M =-D (K + vK a W
r r+3) K

r

2WMe = -D(Ke + vKr) -= K

N = C(C + VE 6 ) =r r c
r

Ne . C (c + vr) ;W)

with

Eh Eh3  h2

C= D=---
12(l_2) 12

The strain energy function, per unit area of the undeformed reference

surface is also given in its common separated form

W . C (E +C2+ ZV r ) + D(K2 + K2 + 2vKK) (17)
2 r re 2 r e re

Here the shear terms have been deleted because of the axisymmetry. Re-

garding the magnitudes of the strains, equation (17) should be valid for

the same range of (small) strains for which Hooke's Law is valid. For

larger strains, more refined forms for the strain energy (or else, other

constitutive laws) ought to be used.

5. APPROXIMATIONS (GENERAL CONSIDERATIONS)

There are several approximations and simplifications to the nonlinear

expressions obtained above. These are related, as is usual in plate and

shell theory, to four distinct properties of any given shell problem:
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(a) Constitutive laws and the magnitude of the strains. Here, the small

strain approximation, which is usually made, is valid for most engineering

materials in the elastic (and low plastic) range.

(b) Particular geometry. Here, it may be assumed that the initial imperfec-

tion ( is sufficiently small so that the approximation dr % ds can be

(carefully!) introduced where appropriate.

(c) Restrictions on the magnitude of the rotation. Here, the quadratic

approximation can be introduced for Cos (to within 0.4% for 4 < 300) and

the linear (to within 4.5% for _ 30*) or cubic (to within .07% for 0 - 300).

approximations introduced for sin.

(d) Assumptions based on the estimated mode of behavior. Here, the semi-

inextensional approximation may be introduced by taking E r 0. Thisr

assumption must be justifiedby apjst ±wiai comparisons with more complete

solutions or with experimental observations. It should be noted here, though,

that this is not the only possible approximation. For example, the methods

of references four and thriteen which omit or replace terms in the elastic

strain energy function have been used with a varying amount of success for

the study of thelarge deflection of plates.

The present study makes selective use of the first three approximations,

with the intention of developing and examining the fourth, e.g. the semi-

inextensional assumption.

Some examples of the uses of approximations (a), (b) and (c) are as

follows:



Using assumption (b) and (c), the expression for u becomes

u =[(1+6r)coso - coso dr = f(i- 2)Er + !( o- 2)]dr + 0(0 4 )

/ 0(3a)

The expression for c in terms of u and is:r

(1+ du )coso seco - I = + !(02-02) + (2a)
r dr 0 dr 2 0

whereas the compatibility equation reduces to:

=( - 2 ' + .!(ql _.2) + O( 4) (5a)

Using (a) and (b), the expression for the meridional bending strain is:

K = d(o ) (7a)
r dr 0

Using (a) and (b), the curvature compatibility equation reduces to:

d (1710 = co scK
dr *e r

Introduction ot the quadratic approximation (c) for cos yields further:

L~K)= (I1-2)K+((
dr K0 ) - r

This equation Is of the same order of accuracy as the cubic approximation for

K , together with (b):

rC= (€ - o) - (43 0(€5) (Ba)

For most purposes the linear approximation is sufficient:
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rKe 0 + 0(C 3  (8b)

so that:

d
r(rKe) K

6. SEMI-INEXTENSIONAL AXISYMMETRIC SHELL AND PLATE ANALYSIS

In this model, the radial strains are omitted in the shell analysis

in comparison with the circumferential strains and the rotations (whose

magnitudes are not restricted).

Differentiation of the equilibrium equation (15) while making use of

(2), (4) and (16), and putting -r 0 throughout, yields the expression:

d

d d s- (r M +) ~cs - cos 0
ds - s sing + C(cos0 - cOSo ) 0

Making further use of (16) and also of (7) and (8) leads to a fourth order

differential equation in b:

d__ J d d~d
r . ,o cos (sino - sint ) +

ds ,.s sin Lds - rds r o

+V '-o _(s - cos' 1 12 (cosO - cos) 0
- h21

Noting that for thin plates and shells 2 >>l, the omission of the term
d 0 h2

with vdw- in comparison with the last term is justified, yielding the

simplified form:

s(0_0L ~ e~ co"' -sn si'' 12(coso-coso 0
ds rtds sin4 d"'O' r 0sn ~ 'i~ h V

(18)
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The last equation describes the axisymmetric semi-inextensional

deformations of shells of revolution in general. The input into the equa-

tion is the initial shape [r(s) and 0 ()] and appropriate boundary
0

conditions. The result would be 4)(s) which expresses the angular

coordinate of the deformed shell interms of the Lagrangian variable s.

The other terms which complete the description of the deformed configuration

are

u = !(cos - coso )ds

V = J(sino - sino )ds

0

where u and v are the radial and axial displacements respectively.

The bending strains (K :K,) and extensional strain E can then be calculated
r1

from (7), (8) and (4), thus facilitating the calculation ofthe moments

(Mr; M force resultan N,, and shearing force Q The meridional stress

resultant N can be calculated from:t

N = - QrCot.o
r r

(The constitutive laws cannot be applied for the calculation of N becauser

of the meridional inextensionality assumption). Note that for 0 = 0, N
r

cannot be calculated in a ditect fashion because of the apparent singularity,

but lim N does exist, as will be seen later
r

The imperfect annular plate is included in the broader class of "shallow

initial configurations" defined by approximation (b). Replacing ds with dr,

the result is:
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..r....d Cot (sinO-sin4o)1}

'rdrsi4)d -
- % --- -

Tr dr -A-nOdr dr 0 r0

12 (coso - cos~ o )  0 (19)

Here, also, the following can be used (if desired):

sine (b
o~0

o 2

The latter approximations do not lead to any obvious advantage unless the

deformed configuration is shallow too, in which case an expansion of the

trigonometric terms up to quadratic (or cubic) terms in 0 would make the

equation more "manageable" from a mathematical point of view. In such a

case, the use of a new variable

= - o

and expansions in S may be of advantage.

Equations (18) and (19) can be cast into algebraic forms by using the

new variable y = sine. Then:
1

cos+ = ( - yZ)

U ( - y)dz

ds ds

1

Coto = y-1 (I - y2)2

I1 III I a( t,- y ) ._ .. ... .
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and so forth. This form is particularly suited to uses of the equations

in conjunction with standard numerical programs for solving ordinary

differential equations.

Methodology:

While further analysis of the semi-inextensional differential

equation may be rewarding in itself,the purpose of comparing this model

with the more complete (and more complex) extensional model, can be

achieved by far simpler means which should offer their own rewards.

At the ficst stage of the investigation, simle deformation patterns

will be used in order to compare the regular plate model (which includes

the effects of + ) with the semi-inextensional model. The theorem of

the minimum ot th. total potential will be utilized to obtain the

response of tile plate to c-ompressive edge forces within the assumed de-

formation modes. At this stage the inner edge of the plate will be

free. rhe initial imperfection of the plate will be in the form of a

very shallow cone with a constant 'p" The fact that this is actually

the governing imperfection of the simply supported annular plate has been

borne out by experiments [8, Figs. 9b, 17a, 17b].

The comparison between the two models should provide an indication

of the adequacy of the semi-inextensional model, since a three parameter

extensional model will be compared with a two parameter semi-inextensional

model. The comparison will concentrate on the region of the buckling point

itself. The reason is that the semi-inextensional model should have its

greatest difficulties and inaccuracies as 0,0 -0.
0
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A three parameter more complex semi-inextensional model will also be

presented (see Appendix). It will not be investigated in detail since it

has been argued that only the simplest nontrivial models should be

investigated by analytical tools and more complex models are, in many

cases, inferior to ditect numerical procedures. This point is left open.

At the next stage, the effects of an interior edge beam will be incorporated

into the semi-inextensional analysis. This should facilitate the study of

the comparative roles and interactions of the edge beam eccentricity e

and the initial imperfection .. The possibility that the interaction

can cause essential changes in the response will be looked into. The

fact that a1n eccentrically stiffened imperfect plate can be imperfection

sensitive has been verified experimentally.

7. Three-Parameter Extensional Model

Consider a displacement field of the form:

Li = U + tU
0 1

(20)

' = O1 - $o

where 0o is the initial imperfection and us; u1 ; 01 are constant de-

formation parameters to be determined by minimizing the total potential.

The deformation pattern assumes that the dominant post-buckling mode is that

of a shallow cone. This has been well-correlated with experiments on annular

plates [8, p. 19 and figs. 9b, 17a, 17b]. Using the quadratic approximations

for the variousstrain measures and applying equations (2a), (4), (7), (8b),

the following expressions result:
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r 2 1oCr u + 2(-o

r o u

Also:

K =0
r

r 1

The total elastic potential of the system is:

a a
V TDf(K2+K2+2)K2 K)rdr + 0Cf(C r2++2v F )rdr + ZiaPu (21)
b r 0 r b r r a

where ua = u(r=a) and P is positive in compression.

introducing the values of r ; c" Kr ; K, the result for V is:

V = rD(, -0 )2Zn(a/b)+ nC( b)u 10_2] + fu22.n(afb) +
12 2 2 1 22 1

+2uul(a-b) + 1(a2-b2)] + 2v;u + j(02-)][u (a-b) + 1 u (a2-b2 ))}

+ 2raP (u+au1 ) (22)

The total potential can be now minimized with respect to the

parameters uo, U1 9 @i leading to three simultaneous equations in the

parameters. These can be brought,after some manipulations and an elimina-

tion process, to the following cubic equation for 4i

g g 2 0i (23)

where the loading parameter X and modified rotations 6, are given by:

Pa2 a
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Also:

gl G ( )  2' -Z Xu n + l+ ..t u nv

1-11 2+V (I -p)2+ ( +V )k nij

g2(i) = -6(1-) (l-i 2 ) [1-11+ 1(1+p) 9nj
920) 2+ I +(i

= b/a

For a given loading X, geometrical ratio v and imperfection ,

the equation can be easily solved for 0 l. Once il Is known, the displace-

ment parameters u and u can be easily calculated. These are given by:

u g3 ( - ) + g4  (24)

u 1 g5 ( 1 i-o) + g6A (25)

where:
1

93 - 4-A(-)(-2

g4 = -12A

1 1
g5  L 4 -(+ii~

[1+ nig6 1.2A- (1-0) (I+,V)

A- - (l+ )Ln - (1+v)(1-u)

u-

h2 i
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The special case 0 = 0 is that of the perfect plate. The equation0

for * breaks down into the straight line = 0 which describes the

prebuckling behavior and the parabolic "equilibrium path":

, 1 = g - g20i

which describes the postbuckling behavior of the plate. The intersection

is at

cr I.

where Acr is the critical (buckling) loading parameter. The equilibrium

paths of the imperfect plate are cubic parabolas. These parabolas approach

the two curve system of the perfect plate as ¢ 0 0. Also, for a given
0

, the two curves approach each other for ,>>O,. This signifies the fact

that for very large displacements the initial imperfection is not too

important.

Considering now the radial displacements, it is convenient to refer

to the displacement at a given point. The inner edge displacement %=u(r=b)

is chosen because of the direct connection between this displacement and

the circumferential stress level at the inner edge. An expression for

is:

% (g 3 + 'ig 5 ) (€1-g) o (g 4 +pig 6 )A (26)

Another expression can be obtained by eliminating - through
1 o

the use of the equation of the cubic parabola. This yields:
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91 o -1g 4 (27)- (g3+g 5) g2 g g (

The equilibrium path of the perfect plate 00 = 0 consists of two straight

lines: the prebuckling line

-%I = (g4+pg6 )X

and the postbuckling line

gl g 3+ug 5

-' (g3 +pg 5 ) - _____ - g4 -Ug6 )X92 g2

The two lines intersect aL the buckling point, where

Ub(,=Xcr) = Ubc = (94+O6)gl

Note that the radial motion reverses its direction at the buckling

point. It is inward up to the point and outward thereafter.

Again, the equilibrium path of the imperfect plate provides a smooth

transition between the pre- and post-buckling regions, approaching the

straight line of the perfect plate for \-Arcr

The fact that the high postbuckling curve of the plate approaches a

straight line was observed eperimentally [81, [10], where the use of the

two asymptotic straight lines for the experimental determination of the

critical load led to satisfactory results [10], This agrees quite well

with the results of this section and indicates that the three parameter

model is sufficient to indicate the main features of the deformation

process. As will be seen later, the mode. gives also surprisingly good

quantitative predictions of the buckling point over a wide range of the

geometrical parameter.



-21-

8. Radially Inextensional Model with an

Eccentricalfy Reinforced Edge

The condition of radial inextensionality imposes a relationship

between the rotations and radial displacement. For a quadratic approx-

imation of the cosine function the relationship is:

r
u = 1r -)d (28)

t lHence:
-e lf(2- I2)dr1 (29)

The expressions for Kr and Ke in terms of the rotations remain as

before (7a, 8b).

It is assumed that an eccentric ring with area A moment of inertia

I and eccentricity e (with respect to the plate center line) is attached

to the inner boundary of the plate at r=b. Positive eccentricity is

defined such that positive rotations at r-b would cause outward motion

of the extreme fibers of the ring (Fig. 1). Under these conditions,

the circumferential strain in the ring is given by:

S= u ![ u + ( bZ ]  (30)

0R r b b ( z

where z is the axial coordinate in the ring (positive in the e direction).

The radial variations within the ring are omitted in the analysis, for

simplicity.

The inclusion of the ring in the analysis, while not important for the

comparison with the extensional model, offers the capability for investigating
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the interaction of boundary eccentricities with geometrical imperfections

and their combined effect on the post buckling behavior.

The total potential of the system of a radially inextensional annular

ring with an eccentric stiffening ring along the interior boundary of the

plate becomes:

a a
V = 7C f rE2 dr + -nD (K2 -I-+2\K K )rdr + nEbr(C 2 dA +2Pfau

V 8 r r 8 je

a r a d1
r J [b- I ()I-)dr]2dr4-,Df [ + .1 2 (0-¢ )2+

b b o dr r

+ d)21 )[d + j(c-o )2 + [ub+( _¢)be]2A}
r d' 0 h0 b ]ud - [o b

a
+ 27TaP~ub - r(&p- 2dr] (31)

b

Here A is the cro,.s sectional area of the ring, and I is the moment

o0 inertia e,, i e,t to a radial axi., through its centroid.

sequel, ¢'o will be taken to he that of a shallow cone. This form of

imperfection, as noted before, is common and has been "-.i~drved experi-

mentally.

(a) Two Parameter Model with a Free Edge

Tnis is the simplest model possible. The deformed shape is

also Laken to be that of a shallow cone. It is similar to the

three parameter model discussed above, but needs only two

parameters for its description. The parameters are:

= = constant and ub. (32)
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Also, I = A 0 are taken in the analysis for the free edge. The form

of the strain energy simplifies to:

a 1 1 aaI

r [ 
=b T( r-b (0-o)]2dr + -D 4 )2 dr

b 2 -) 0 r 0

(33)

+ 2,saP[u b = I(b-a)(o2-2)]

or

u u -b)

)= - 2-( - o ) + -(3wI-4+1-2p2 nw)ta 2 C .- jjnj--)~ p
ai I l

- 2 .nv(>- o)2 + h2- b ((2-$2)] (34)12a 2  
0 6a2  a 2 1 o

The total potential can now be minimized with respect to (ub/a) and

This results in the folowing equations for l and u:

b f 3 (,- o >+ (36)

where:

f n ,, :

f

2 Zn;.+3(-2)m
3 = 24n

4 = 12 ;'
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An alternate expression for ub is obtained by eliminating (1-o):

3 1 (-)3 (37)
2b _E- l (2 -Y

The similarity in form between the 3 parameter extensional model

and 2 parameter semi-inextensional model is self evident. Also obvious is

the fact that the semi-inextensional model requires a smaller number of

parameters for the same (rotational) mode shape than the extensional model.

The rest of the analysis follows along the same lines of the 3 parameter

model, with the "f" functions replacing the "g" functions and with g5 and

6 deleted. The buckling load is given by

cr

The prebuckling line tor the radial displacements in the perfect

plate is

b 4

and that of the postbuckling line is:

If 3 t3,= - - _ 4 ) ,
_2 (f2

In Table I, values of the buckling parameter X are given using:c

(a) theoretical (exact) calculations (b) three-parameter extensional model

and (c) two-parameter semi-inextensional model. Also given are the other

coefficiente of the postbuckling equilibrium paths.

2
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Table 1: Comparative Values of A and Coefficientscr

0.2 0.3 0.4 0.5 0.6

(a) k theor 3.55 3.11 2.77 2.45 2.30

(b)),ext gl 3.68 3.10 2.75 2.51 2.35

(c)Xinextf 1 3,20 2.88 2.65 2.49 2.35

(b) g2 -.857 -.621 -.436 -.291 -.180

(c) f2  -.982 -.688 -.471 -.309 -.187

The table shows rhat the extensional model gives somewhat better

predictions for the buckling parameters for small ,i. This difference

disappears for increasing , and both models yield very good predictions.

Even for P = 0.2, which is a rather extreme case, P. is within 10% ofinext

the exact value.

From a theoretical point of view, the inextensional model is not

expected to yield accurate results for D-.0 since the in-plane extensions

are dominant in this range of the deformation process - and these are not

accurately described by the model. Accuracy is expected to improve with

increasing p. Hence, the good results near O= 0 are quite satisfying and

are good indications ot the overall capability of the model even at extreme

cases.

(b) Two Parameter Model with an Eccentric Stiffening Ring

The relative success of the simpler semi-inextensional model in the

case of the free inner boundary, makes it the model of choice for the more

complex case of the eccentrically stiffenedplate, where both imperfections
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and eccentricity interact. It should be stated, though, that the use of

a two parameter model restricts the analysis to relatively weak rings.

The reason is that the ring provides some restraint against rotation for

the inner edge. The rotational restraint of a heavy ring is sufficiently

close to the clamped ed e condition, so that the "cone approximation" can-

not adequately represent the bent shape of the plate, and a minimum of

three parameters would be needed. For the basic equations for this more

complex analysis, see App2ndix.

Ilntroduction of the assumed detoLmation node into the more complete

form ot the zocai. potentLal and differentiation with respect to 0 and u,

lead to the tollowing equatiors:

2 -(€ - )[d+de t(3"-- -)ed 2 - (.i-o)€id 4] = d (38)
o 3 6 2 03 4 1 45

_ 12(olo )e + ol ;_ 2 )d2, (39)

where:

A-l

e =

a

d A - fljw

d = 6 (1-p+ Zntj)

d3  (T - n,)d

d 3(3o'-4 i+l-2i
2z :n)d -

4 3. 6 2

40
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d5  (l-t)(A-l) - n

6

-E, Db

If A I 0 are introduced here, the equations for the free edge

result. The effects of the ring are twofold: Increases in the area A

and morent or inertia I of tne ring cause a corresponding increase in

the effective stifiness of the reinforced plate through their effects

on the coefticients, espezialiv, d and d . However, these do not lend
3 1

to qualitative changes ,n the behavior of the plate. On the other hand,

the addition of the eccentticity l.eads to the appearance of new terms

in the equations. The combination of eccentricity and initial imper-

fection introduces new modes of. behavior which did not exist inthe

centric plate. This will be studied in more detail in the sequel.

8. BUCKLING, POST SUCKLING AND SENSITIVITY OF ECCENTRICALLY

STIFFENED, IMPERFECT ANNULAR PLATES.

The investigation is carried out based on the semi-inextensional model

with two parameters, assuming axisymmetric behavior.

As is well known, the perfect annular plate has a stable initial post-

buckling behavior and is not imperfection sensitive. The addition of either

an eccentric stiffening ring or an initial imperfection does not change



-28-

the stability of the behavior of the plate. The structural problem,

though, is changed in either case from a bifurcation problem plus postbuck-

ling to that of a nonlinear behavior problem with the external compressive

load increasing monotonously with the deformation.

However, the situation is changed when both imperfection. and eccen-

tricity occur simultaneously, It can be shown that for some values of the

imperfection and eccentricity paramaters, the structure can buckle (that is,

it has a bifurcation point). Furthermore, this point is unstable and is

imperfection sensitive for a limited value of the imperfections to one side

of it. This mode of behavior should be anticipated if it is recalled that

the eccentricity reduces the order of the nonlinearity from the cubic to

the quadratic [i1] and that structures with quadratic nonlinearities are

usually imperfection-sensitive (the different behavior of frames from that

of beams is a common exanple).

To examine this mode of behavior within the scope ot the simplified

model, it is convenient to rewrite the equations by introducing the

variable and "equivalent imperfection" as follows

+ e (40)

The equation for the quilibrium path X = A(6) becomes then:

\(+r) = [d4 
2-3(d 7e + d4 )a + (dse 2 + 4d7ec + 2d4e

2 + d3 )]8- (41)d5

with:

d - d d = 3(1 + 2pinp _.,2)dI
7 2 d d

2
d d L--(d + d)
8 6 d 5 2 7
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Note that for 0- i " 1, all the coefficients (d1.. .d8) are greater

than zero.

When the "equivalent imperfection" t vanishes, the equation reduces

to a bifurcation problem with the two branches

3 = 0 (rrebuckling)

and

= (dR + 3d 7eB + d e 2 + d3 ) (postbuckling) (42)
d 5-7 5

The "bucklinp load" ' is the intersection of the two lines andcr

is given by:

+ d e' )  (43)

cr d-5 38

The formiua holds also tor e = 0 when it represents the "true" buckling

load k or he corresponding centrically stiffened plate. It should

be stressed again, though, that its validity is restricted to weakly

stiffened plates. When the stiffener is relatively heavy, an additional

term in the rpetesentation tor 4 is needed and the two parameter model

would tend to exaggerate the buckling load.

When e 0 0, the postbuckling parabola crosses the 6=0 axis at

a positive slope. This implies that the buckling point is unstable and

the load decreases foL a 0, The minimum of the parabola is reached at

9d7

min cr 4dd 5

This value of Amin is higher than the critical loading X cr of the

corresponding centric plate, indicating that for small eccentricities

the degree of sensitivity of the postbuckling behavior is not very severe.
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The behavior of the imperfect plate (c 0) is best visualized by

using the auxiliary variable y = (B+ ). The equation for X becomes then:

d = :Y2 + 3d7 e- + [d5cr (d4  + 2d7e)c] - (dcr + d7e)E

The additional effects of the imperfection are seen to be as follows:

(i) A hyperbola which is mainly proportional to e is added to the

bifurcation parabola.

(ii) The X coordinate axis shifts c units to the right

(iii)The parabola translates downward by an amount which is essentially

proportional to c

Of the three, the last one is the least important and may be omitted for

sufficiently small . Indeed, for sufficiently small e the approximation

which preserves all the important features is:

A r'(1 - c/y) 1 (d4y2 + 3dey)cr d5 4 7

Figure 3 presents the equilibrium paths for a plate with the following

properties (corresponding to a plate for which test data is available):

= 0.5; A = 0.179; I = 0.694; e = 0.2

For this plate: A = 4.281. Also:cr

A' M 9.408

cr

min - 8.616

The equilibrium paths are shown in the figure for the following im-

perfections: c - 0.2(00 = -0.51); C = 0(0 - -0.71); e - -0.01(o - -0.72);

0
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E = -0.1( = -0.81). The bifurcation-type behavior for e = 0 and the post-

buckling unstable ',chavior for E = -0.01 are clearly seen. For the other

imperfections the equilibrium paths are stable over the entire range.

Several annular plates having similar configurations were tested

in the past few years [8,10,111. The results of the tests show a be-

havior which is very similar to theresults given here. In addition,

in some of the tests jump phenomenae occurred with sudden changes in the

measured rotations and subsequent stable behavior. This jump is very

well modeled by the interaction analysis presented here.

10. SUMMARY OF RESULTS

(1) The capabilities and potentialities of semi-inextensional plate

and shell models were demonstrated in the following:

(a) Development of the ordinary differential equation for

the semi-inextensional axisymmetric deformations of shells of revolution.

(b) Comparison of an approximate semi-inextensional model for

the annular plate with a corresponding (but more complex) extensional

model..

(2) A study of the interactions between stiffener eccentricities and

surface imperfections was initiated using simple models of the annular

plate.

(a) The appearnce of unstable postbuckling behavior and sen-

sitivity was noted and examined. The sensitivity and its corres-

ponding jump were restricted to a selected range of the parameters

_-AL-
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and was limited in magnitude. It is possible that many "small scale"

jump phenomenae which occur in tested stiffened structures are of

this type. As demonstrated here, these need not be dangerous but

their occurrence should be taken into consideration.

(b) The basic formulas for a more detailed study using a more

complex model were developed and presented in a manner which is

suitable for analysis (see Appendix).
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APPENDIX: Equations for a Three-Paramecer Semi-Inextensional Model

By introducing an additional rotational degree of freedom into the

semi-inextensional model, its capabilities can be greatly increased so

that even plates with smaller central openings (0 1) or heavier

rotational edge restraints (I = O) and higher) can be successfully treated

and greater accuracy .an be aoheved. he penalty is in the increased

arounL of al.gebraic crm-,e.,.'. ThL basIc equation,; are developed here

and brought tc a torn: whiri, c.-.n be i.reated by simple algebraic means.

The question -as to whetlhei it is woiLhwhile to investigare this

approach further, oi co uti1ie existing nonlinear programs (such as

BOSOR 5) instead, is Jett open.

The model is defiied by the two angular parameters ( in the

expression for the rotaton

and by !Ne displ-fcement ub c the inner edge of tha plate. Using (29),

(7), (b), the expressions for the strain measures are:

0
r

a Ub 1 ( )-1.r)24 - r) r- 2 2)

= -2 o 6 a 2 2a 212oa

K r = 1.a

e I , + 1Ke a 2 r+
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Introducing into equation (31) for the total potential and performing

the required integrations, the following expression for the total potential

V results:

2 6 + + +l-3o)W - n1v aC{-!-(l-vj6) + -(1-vP'1)4 1 (l)A4
T216 2 30 21 48 2 10 6 11 o

- L.c2w] + W][~ 422 2, - 1(1_1) ( 2_2)w _ w2ni}+
18 2 8  1l o 12 2 1lo

+ D[(I+v)( I-P2) 2 + 2(l+v)(i-P)42 (4i-4 o ) - (0i-4o)2 znp] +

+E{2( 12+I-o)2 + N + (-2+ l-!o)e

a2p[q- CI +4i 0o w] (A.2)

where:

2Ub 22

w = 2-1 + 1 + ,,0 + 1-(4,2-&')
a T'~ 'i 1 2 1 _o

The total potential can be now minimized with respect to the deformation

parameters ( 2; 1 ;w). The results ot this process lead, after some mani-

pulations to the following three equations for the parameters in terms

of the loading parameter A and Lhe geometry:

A) -~3  21 27321 31 223- 24 m + (i A -1 8A m-16A A M'Th$ + (2A-3Am$~~

$+ (6A-44AM) - + m+16A m-16
A

2Al1 m A m
+1 2 (-L + 6A m-3P )e$,c~ + 6 (L - 2w~)4 2(,- + 12(Alinv)e;(7-P'2 ) +

A A

A

+2(1-l A m)4" + 24mejA (A.3)
'1
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2 2325A( -1Am + 413 (2.+

2 (A-8Am ~ +A( 5  2 2 (A-6A Am)~ +-!(A 4 -l2A'm)~ 2

+~ ~ 2(3 1AAm~(-
2  + -8 ( 4  60i]e-02 + 6[A m(12+ _ +2]

10AA 2 A

3+ 1(~i A 1 0 +2IP l 6-i-)~e~~ 2 X+ J

3A A

+ 2[(l+v)(i-i. )+P' 11 2 + 2[(i+9)(I- i)+ PI ((-m) = +

(1-mA2 ) 1 + 24 ime]A (A.4)

and:

-- 1 i~l2A ~ 2 mie--U)= MX4 ) + I '-6A m), + -( i-12A m)( '_ o) + mA3 p 2 1  2- A

A
me- -

+ -e (A.5)

Here:

A', 1- v (I-jA) (1 = i....6)

m l-(. - 1n

AlIo, I C i the modi f ied moment of inertia of the r ing with r espect to

the midsurface of the plate, given by:

I = I + Ae 2 (i-n)
C

Other notations are as in the previous chapters. For example:

E1

- b2 
= 2 a/h etc.

2 2



Equat ions (A. 3) and (A.4) have been deti 'd by fi rst taking V, 1

and VO respectively, and( then eliminating by using (A.5) which has

been derived from V ,w. lIn this fashion the rotational parameters are

decoupled I rom u1_1 and ca.-n N, solved for separately. The general form

kit1 he equaLt imi i( s:

whore L, ind M. irc c.ubic and )Leai operators , resptectiveiy , in 1.and

11, nce, iis 10 ii eliminatet ',1-011 th, eqtions and arrive. at the

lip C(1,1 ion:

wlhit-!, jcs'' i-;L- the nter an] rolationsiiip between >)and , rrespective

ofl t Iui Illg. t 1,s .1 u.0 tic (()113LIO .11 Ii'

liltassnod"a Itr 1 (tartng ton ~ ;0 the corresponding

~- N.ti' n oI 01W- h1Ca e f otund C roy% (A.6) uwhi (At becomes a fourthi order

;eLlVVC'llU in tle V,,( tho LU.darmntal solutiOn is, the one starting from

0, '-,.t Cie cther -olultions can fie useful tor exploring additional

teac.uilIbr iuai b . anchos) For any poi o-(f GI ;r)he loading can be found

from k'A1). This Yields the equilibrium path which can be represented as

O( ) whecre Pis the rotation at any convenient point in the plate.

Mhe only mathematical tool needed i~s the solution of a fourth oider

polvnomial equation.
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Figure 1: Ce-rnctI ot Lhe Uiidt- :*~i' A:)m us.

Figurie 2: Dvfolr:l~L Ltfla and Ey-JiibrI IIIA.

Figure 3: Lqi i-l um PatI'.- tLi ;'. 11ccentrically Stiffened Plate.
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Figure 1: Geometry of the Undeformed Annulus.
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