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ABSTRACT

The field equation for meridionally inextensional axisymmetric

deformations of shells of revolution is developed and applied to the

postbuckling analysis of simply-supported imperfect annular plates sub-

jected to compressive edge loads.

The semi-inextensional model is then

compared with the usual extensional model by using an emergy approach

with two and three deformation parameters.

The method is used to analyse the postbuckling behavior of an imperfect

annular plate with an eccentric interior edge stiffener. The results show

that although either imperfection or eccentricity lead to stable behavior,

their combination may introduce unstable imperfection-sensitive behavior

in some cases.
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1. INTRODUCTION

The postbuckling deformations of many plates and shells exhibit rather
large rotations and curvature changes while the midsurface extensional
strains have a rather limited influence on the deformation patterns. This
type of behavior is related to the so-called "small-strain-finite-rotation"
theory of plates and shells which assumes that the equations can be linearized
in the extensional strains but not in the rotations (and displacements).

In many practical applications it has been observed that the incremental
extensional strains during the post-buckling deformation process are

sufficiently small and over most of the shell (or plate) so that the de-

formation could presumably be approximated by an inextensional model
which eliminates the incremental extensions completely. However, attempts
to do so have been found to be not entirely satisfactory because of two
main reasons:

(a) The need for the existence of localised regions of high strain
gradients in order to account for the boundary conditions and for the

internal compatibility of the shell deformation pattern. A good

example is the diamond pattern of the buckled very thin cylindrical

shell which requires significant strain gradients along its creases and

corners where the Gaussian Curvature of the surface undergoes large changes.
(b) In some cases the inextensional deformation has a definite

directional pattern. That is, the incremental deformations are virtually

. inextensional in one direction at each point, while having a substantial

extensional component in the direction orthogonal to it. Quite a few




postbuckling patterns possess this property. To cite a few examples, the
strong postbuckling of thin plates in shear, of thin shells of revolution
in twist, of cylindrical shells and of annular plates in axisymmetric
compression, are all of this type.

For the latter class of structures, semi-inextensional models can be
postulated. By doing so, the postbuckling analysis can be simplified both
by decreasing the number of variables and by a priori taking into account
the observed deformation patterns. In some other cases, a combination of
semi-inextensionality plus localised areas of high strain gradients may
be useful.

Some of the features of semi-inextensional plate models will be
exemplified in this study by considering the axisymmetric postbuckling
behavior of an imperfect annular plate. In addition, the study will
include an examination of the interaction of shape imperfections and
boundary eccentricities. This might be of some use to the understanding
of this complex phenomenon in more complicated structures.

The problem of the axisymmetric postbuckling behavior of annular plates
has been considered in the past by several investigators [(7,9,10,11.12,15]
with the clamped external boundary being the more popular case. Treatment
consigted of solving the axisymmetric Von-Karman plate equations by using
eith series expansion techniques or especially devised numerical methods.
In recentyears, general and special purpose computer codes were utilised
too. These methods have their advantages in accuracy but suffer from
the drawback of being difficult to use for overall design data or for the

evaluation of trends.




The approximate analytical approach prsented here for the evaluation

of simply suported annular plates under compressive edge loads is based
on experimental observations both for its basic assumption of radial
inextensionality and for its choice of deformation model. The semi-
inextensionality assumption is used for deriving the differential equa-
tion for the large rotations of shells and annular plates, whereas the
deformation model is combined with an energy approach to produce a simple
approximate model of post-buckling behavior. It is believed that this
and similar approaches are suitable for engineering estimates and as
necessary adjuncts to testing programs.

Observations made during a recent testing program [8,p.19; 10] on
simply supported annular plates have demonstrated that as high post~
buckling loads were reached, plates with free internal edges or with weak
rings tended to deform into snapes which were close to shallow cones.
Marked deviations appeared onlv if the stiffening rings at the interior
edge were relatively heavy. A similar mode of behavior- although with a
different loading case - was noted in the study of shallow conical springs
by Almen and Laszlo in 1936 and later by Wempner [2] and by Schmidt and
Wempner [3]. This observation will be subsequently used in the determina-

tion of the initial deformation model.




2. PLATE MODEL, GEOMETRY AND KINEMATICS

Let (r,z,9) be a cylindrical coordinate system in space, to which an
annular plate or shell is referred (see Fig, 1). The interior boundary of
the plate (r=b) may be stiffened by an eccentric ring. Compressive radial
forces P (per unit length)are applied to the exterior boundary (r=a).

The initial configuration of the imperfect plate is that of a very
shallow shell of revolution, with QO(r) being the angle between the
normal to the surface and the positive direction of the z axis. (Note:
the magnitude of ¢o in Fig. 1 18 exaggerated.) Length measure along
the plate midsur:.ace in the r-z plane is denoted by s and its local
radius of curvature bv r . Obviously, the following two relationships

¢
hold:

1L __o =
= = and dr = cos¢ _ds 1)

The plate deforms from its initial configuration into another shell
of revolution with length measure s'. The radial displacement of a
material point on the plate midsurface is denoted by u (Fig. 2). The
angle between the normal t> the deformed plate and the 2z axis is denoted
by ¢ , and the radius of curvature of the deformed plate midsurface is
r$. The following relationships hold:
%; = %%7 dr' = costds’

Note that primes relate to the deformed configuration (except for ¢

which is measured in the deformed configuration),




An expression for the meridional strain €. can be derived directly

from Fig. 2:
ds'cos¢ = ds cos¢0 + du

or, in view of (1):

coag
o du o
e T -+ dr)

cosd 1 (2)

See also equation (15) in Ref. [1].
The radial displacement can be calculated from (2) as follows:

7

PN
u = !l(] + ,,r)COSQ c(sqyo]ds + uo 3)

/

The circumferential strain €4 is obtained directly from its definition

€ -

€p = ufr 4)
These also lead to the strain compatibility equation:
(1 + 7 )Ycos¢ - cosd =-g—(re ) (5)
Y ‘o ds ¢

Bending strains should be derived in principle from the usual Kirchoff-~
Love assumptions of transversely rigid shells. There is no final agreement
on the '"'proper" form to be used. Strict applicationof the K.L. hypothesis

leads to a formula of the type:

Kia (L +2) Gy - £5) (6a)

Here ¢ is an extensional strain and R 1is a radius of curvature.

On the other hand, an alternate definition




1
3 (6b)

K= (1 +e)%7 -

is widely used. It has also been shown to have a wide range of validity
in small and large strain analysis (14, p. 94]. Their difference is the
quantity €/R. Fortunately, in this study the strains are small and,
moreover, the imperfect undeformed plate is almost flat so that R 1is
very large. Hence, the difference is quite negligible, and the second
definition will be adopted for convenience. This leads to the following

expressions for the bending strains:

de
\ K = éil. g.'p_ - __2= d -
Kr T ds (ds') ds E§(¢ ¢o) (7
sing¢
. rtu sing, _ o_1 -
Ky = = (H_u ) - r(sind> sin¢ ) (8)

This is also the form adopted (as an approximation!) by Reissner in his
nonlinear theory of shells of revolution [1, eqmns. 17,18].

From equations (3), (4), (7), (8) it follows that all the extensional
and bending strains have been expressed in terms €. ¢ and the constant

of integration u -

3. EQUILIBRIUM EQUATIONS

Equilibrium is considered in the deformed (prime) configuration. The
force resultant vector acting on the cross section r' = ¢ can be cecomposed
into elther tangential (N;) and transverse (Q') or radial (H') and axial (V')

resultants respectively. These are related by the equations (see Fig. 2):




V! = N;sin¢ + Q'cos¢ 9)
H = N;cos¢ - Q'sing (10)

Axial equilibrium requires that V' = 0, so that N; can be expressed in
terms of Q' as follows:

N; = «Q'cotd (11)

The second equilibrium equation is in the radial direction and yields

the expression:

d

(B'r') = Né

~ !
5

=9

Now, H' can be eliminated from the equations by using the expression

for N; and substituting:

\i
LI ] - 1 : = - L
H Q'cot¢cosd - Q'sing sing

so that the equilibrium equation becomes

d _Q'r' .
a5 sing) T Ng = O (12)

In many applications stress resultants defined per units of length of

the undeformed shell cross sections are of advantage, especially in conjuntion

with constitutive laws. These are defined by:

r' r' r' ds'

o e [ N = = N' . —— r ., 2 —e—— N' o 8 —— M
Q r Qs Nr r Nr s M= T Mr 3 Ng ds Ne 3 My ds Me
Then the force equilibrium equation reduces to
d Or -
dalotng) * Mo = O (13)




The equation of moment equilibrium in the prime configuration is that of

a shell of revolution:

4

. - [} b
r (l'M;) Mar'cos¢ r'r&Q'

¢
or:

teosd = 'Q!

4 ey -
() -y

ds
Passing again to the scress resultants per unit undeformed length,
the following results:

\i

d . ds
= -={ 1~} Y- 0% = = c
ds(er, M cost e 140 (l+tr)rQ (14)

Hence, ali the equations ot equilibrium are reducible to the single

equation:
o
¢ (de L &, N. =0 (15)

Note that all the varviaoles are measured now with tespect to the geometry

of the undeformed configuration.

4. CONSTITUTIVE LAWS

It will be assumed that the stress restltants per unit undeformed length

are related to the strain measures by the usual Hooke's law. This, plus
the other assumptions of the Kirchhoff-Love hypothesis lead to the

commonly used constitutive laws of plate and shell theory:




oW
- + E - ———
Mr D(Kr er) T3
r
W
Me = --D(Ke + \)Kr) = - ?K—e
(16)
_ _ oW
Nr = C(er + vee) = 5E
T
aW
Ne = C(ee + ver) = SE;
with
3 2
C = Eh - : D = ——-.ﬂ—.——. = 1]?_2 C
1% 12(1-v?)
The strain energy function, per unit area of the undeformed reference
surface is also given in its common separated form
W= —Q(g" + et 2ve € ) + R(1(2 + KZ + 29K K.) (17)
2% r J r 8 25 6 r €

Here the shear terms have been deleted because of the axisymmetry. Re-
garding the magnitudes of the gtrains, equation (17) should be valid for
the same range of (small) strains for which Hooke's Law is valid. For

larger strains, more refined forms for the strain energy (or else, other

constitutive laws) ought to be used.

5. APPROXIMATIONS (GENERAL CONSIDERATIONS)

There are several approximations and simplifications to the nonlinear
expressions obtained above., These are related, as is usual in plate and

shell theory, to four distinct properties of any given shell problem:




(a) Constitutive laws and the magnitude of the strains. Here, the small
strain approximation, which is usually made, is valid for most engineering
materials in the elastic (and low plastic) range.

(b) Particular geometry. Here, it may be assumed that the initial imperfec-
tion ¢o is sufficiently small so that the approximation dr % ds can be
(carefully!) introduced where appropriate.

(¢) Restrictions on the magnitude of the rotation. Here, the quadratic
approximation can be introduced for Cos$ (to within 0.4% for ¢ < 30°) and

the linear (to within 4.5% for ¢ < 30°) or cubic (to within .07% for ¢ < 30°).
approximations introduced for sing.

(d) Assumptions based on the estimated mode of behavior. Here, the semi-
inextensional approximation may be introduced by taking Er - 0. This
assumption must be justified by apostaxiori comparisons with more complete
solutions or with experimental observations. It should be noted here, though,
that this is not the only possible approximation. For example, the methods
of references four and thriteen which omit or replace terms in the elastic
strain energy function have heen used with a varying amount of success for
the study of thelarge deflection of plates.

The present study makes selective use of the first three approximations,
with the intention of developing and examining the fourth, e.g. the semi~
inextensional assumption.

Some examples of the uses of approximations (a), (b) and (c¢) are as

follows:
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Using assumption (b) and (c), the expression for u becomes

u = I}(l+£r)cos¢ - cos¢o]dr = }1(1— %¢2)er + %{¢§—¢2)]dr + 0(¢")

(3a)
The expression for €, in terms of u and ¢ is:
- du g 2u 1.2 2

€, 1+ i )cos¢osec¢ 1 P + 2(¢ ¢°) + ... (2a)
whereas the compatibility equation reduces to:

d_. = - 1 2y, i 2 _a2 I

Toreg) =(L - 3¢5+ 2ol -0%) + 0(¢") (5a)
Using (a) and (b), the expression for the meridional bending strain is:

K = g—(¢-¢ ) (7a)

Y dr o

Using (a) and (b), the curvature compatibility equation reduces to:

d . B .
dr(rﬂg\ = com,bKr

Introduction of the quadratic approximation (¢) for cos¢ yilelds further:

d _ _ 1.2 5
dr(rKe) =1 §¢ )Kr + 0(¢>)

This equation {s of the same order of accuracy as the cubic approximation for
K , together with (b):

™y = (0 - 0) - F (03 - o) + 0(6%) (8a)

For most purposes the linear approximation is sufficient:
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e = ¢ - &+ 0037 (8b)
so that:

d
E(rKe ) Kr

6. SEMI-INEXTENSIONAL AXISYMMETRIC SHELL AND PLATE ANALYSIS

In this model, the radial strains are omitted in the shell analysis
in comparison with the circumferential strains and the rotations (whose
magnitudes are not restricted).

Differentiation of the equilibrium equation (15) while making use of
(2), (4) and (16), and putting s 0 throughout, yields the expression:

4.

- (
M ) - cosdM,.
{d [dS r . ‘]} + C(cosd - cosd ) =
t sin¢ ] °

Making further use of (16) and also of (7) and (8) leads to a fourth order

differentzial equation in %:

r { d¢
d (1 d.p_ 24 4 oy _ cosp - si
ds ”rES{sm L dsUfds ~ Y= ) r (sin¢ Sm%) *
do ]‘
+\’ I-P- (Cosd - cos» i - == (cos¢ - costb )y =0
S - //
Noting that for thin plates and shells % >>1, the omission of the term
d¢ h
with VEQ in comparison with the last term is justified, ylelding the

simplified form:

o ”rg_ 2 Pg;w-%)] S SOEE (o105 — stng ) }n L2 copcony ) =
. J

sin
\ ? h2

(18)
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The last equation describes the axisymmetric semi-inextensional
deformations of shells of revolution in general. The input into the equa-
tion is the initial shape [r(s) and ¢0(s)] and appropriate boundary
conditions. The result would be ¢ (s) which expresses the angular
coordinate of the deformed shell interms of the Lagrangian variable s.

The other terms which complete the description of the deformed configuration

are

[=4
i

{(coss - cos¢o)ds

<
I

J(sine - sine )ds
o

where u and v are the radial and axial displacements respectively.
The bending strains (Kr:KQ) and extensional strain €q can then be calculated
from (7), (8) and (4), tihus tacilitating the calculation ofthe moments

(Mr; Me), force resultant Ne, and shearing force Qr' The meridional stress

resultant Nr can be calculated from:

Nr = - QrCot¢

(The constitutive laws cannot be applied for the calculation of Nr because
of the meridional inextensionality assumption). Note that for ¢ = 0, Nr
cannot be calculated in a direct fashion because of the apparent singularity,

but lim N_ does exist, as will be seen later
¢0
The imperfect annular plate is included in the broader class of "shallow

initial configurations" defined by approximation (b). Replacing ds with dr,

the result is:
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g ﬂ‘r _.‘.i_{ 1 ] (r Eg (¢- ¢o)] - Lot (sin¢ - sind)o,‘z}} -

dr dr ) sin¢ dr r
- l% (cos¢ - cos¢p_.) =0 (19)
h o

Here, also, the following can be used (if desired):
A

i
s ng)

4
09

N

1
Qosé, 1- E-qb v 1

The latter approximations do not lead to any obvious advantage unless the
deformed configuration is shallow too, in which case an expansion of the
trigonometric terms up to quadratic (or cubic) terms in ¢ would make the
equation more "manageable" from a mathematical point of view. In such a

case, the use of a new variable

and expansions in 8 may be of advantage.

Equations (18) and (19) can be cast into algebraic forms by using the

new variable y = sin¢, Then:
1
cosp = (l—yz)2
1
d L q-H2dy
ds @ -y ds
1

Coty = y il - y3H?

v
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and so forth. This form is particularly suited to uses of the equations

in conjunction with standard numerical programs for solving ordinary
differential equations.
Methodology:

While further analysis of the semi-inextensional differential
equation may be rewarding in itself,the purpose of comparing this model
with the more complete (and more complex) extensional model, can be
achieved by far simpler means which should offer their own rewards.

At the first stage of the investigation, simle deformation patterns
will be used in order to compare the regular plate model (which includes
the effects of er> with the semi~inextensional model. The theorem of
the minimum of thz total potential will be utilized to obtain the
response of the plate to compressive edge forces within the assumed de-
formation modes. At this stage the inner edge of the plate will be
free. The initial imperrection of the plate will be in the form of a
very shallow cone wirh a constant ¢o. The fact that this is actually
the governing imperfection of the simply supported annular plate has been
borne out by experiments (8, Figs. 9b, 17a, 17b],

The comparison between the two models should provide an indication
of the adequacy of the semi-inextensional model, since a three parameter
extensional model will be compared with a two parameter semli-inextensional
model. The comparison will concentrate on the region of the buckling point
itself. The reason is that the semi-inextensional model should have its

greatest difficulties and inaccuracies as ¢,¢0+0.
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A three parameter more complex semi-inextensional model will also be
presented (see Appendix). It will not be investigated in detail since it
has been argued that only the simplest nontrivial models should be
investigated by analvtical tools and more complex models are, in many
cages, inferior to direct numerical procedures. This point ig left open.

At the next stage, the effects of an interior edge beam will be incorporated
into the semi-inextensional analysis. This should facilitate the study of
the comparative roles and interactions of the edge beam eccentricity e
and the initial imperfection ¢0. The possibility tha; the interaction
can cause essential changes in the response will be looked into. The
fact that an eccentrically stiffened imperfect plate can be imperfection

sengitive has been verified experimentally.

7. Three-Parameter Extensional Model

Consider a displacement fleld of the form:

u=u + ru
0

L
(20)

¢ =05 - 9,

where ¢° 1 the initial imperfection and u s ul; °1 are constant de-
formation parameters to be determined by minimizing the total potential.

The deformation pattern assumes that the dominant post-buckling mode is that
of a shallow cone. This has been well-correlated with experiments on annular
plates [8, p. 19 and figs. 9b, 1l7a, 17b]. Using the quadratic approximations
for the variousstrain measures and applying equations (2a), (4), (7), (8b),

the following expressions result:




-17~

™
]

1,2 .2

Also:

K =0

[

1
K r(°1 ¢o)
The total elastic potential of the systen is:
g 2 2,2 b 242
- 2
v nng(Kr+Ke+2vKrKe)rdr + ncg(sr+ee+2veree)rdr + 21raPua 21)
where u, = u(r=a) and P is positive in compression.

introducing the values of €3 Fgs Kr; K., the result for V is:

e)
Vv = nD(¢l—®0)2£n(a/b)+ nC %{az—bz)[ul+ %{¢i—¢§)]2 + [ugln(a/b) +

+ Zuoul(a-b) + %ui(az—bz)] + 2v[u1 + %{¢i-¢§)][uo(a-b) + % ul(az-bz)}}

+ 2maP (uo+aul) (22)

The total potential can be now minimized with respect to the
parameters u ul, ¢l, leading to three simultaneous equations in the
H
parameters. These can be brought,after some manipulations and an elimina-

tion procegs, to the following cubic equation for ¢1:
= = = — o=
wl 81“’1 ¢0,) = 8,(e7-07)0, (23)

where the loading parameter ) and modified rotations Si are given by:
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Also:
g = gl(u) - -2[(1-2‘-u)lnu+(l+v)(1—u)]2,nu
1-u24v (1-1) 2+ (1+u) 2nu
L =6(1=v) (1-u?) [1-u+ (L) 2nn]
gyu) = 2
1-b44v (1-u) S+ (1+1) 2nu
U = b/a

For a given loading A, geometrical ratio u and imperfection 30,
the equation can be easily solved for ;1. Once ;1 is known, the displace-

ment parameters u and u, can be easlly calculated. These are given by:

1
E; - g3(si-$;) + g, (24)
Ei = 35(51—33) + ggh (25)
where:

1 . 2

83 % 2 (1-v)(1-u9)
= -

84 12

11 1
gy = K[T)(l—l‘) + 7 (1+)2np)

- L —tow
B¢ 125 L ¥ Tooyaeyy !

[
[ ]

- (1) 0y -~ (A+) (A-~u)
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The special case 5; = 0 is that of the perfect plate. The equation

for ¢l breaks down into the straight line 5i = 0 which describes the

prebuckling behavior and the parabolic "equilibrium path":
Yegym gy

which describes the postbuckling behavior of the plate. The intersection

is at

where der is the critical (buckling) loading parameter. The equilibrium
paths of the imperfect plate are cubic parébolas. These parabolas approach
the two curve system of the perfect piate as 5; » 0. Also, for a given
¢0, the two curves approach each other for $i>>3;. This signifies the fact
that for very large displacements the initial imperfection is not too
important.

Considering now the radial displacements, it is convenient to refer
to the displacement at a given point. The inner edge displacement ub=u(r=b)
i chosen because of the direct connection between this displacement and
the circumferential stress level at the inner edge. An expression for G£

is:
uy = (gy + ugg) (62-02) + (g +ugy)h (26)

Another expression can be obtained by eliminating (5}-33) through

the use of the equation of the cubic parabola. This yields:
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g ¢, gatug
- _ 21 1 "o, _ 3 5 _ . _
w = 5 (g3+ug5)( o ) - ( = 8, ugG)A Q27

The equilibrium path of the perfect plate $; = 0 consists of two straight

lines: the prebuckling line

-
w = (g4+ug6)A

and the postbuckling line

8, &g
= g; (g3+ug5) ~ (- 2

U,

[

- g, “ug )\
? 4 6

The two lines intaersect at the buckling point, where
w, (A=ryy ) = g = (Bpriegdey

Note that the radial motion reverses its direction at the buckling
point. It is inward up to the point and outward thereafcer.

Again, the equilibrium path of the imperfect plate provides a smooth
trangition between the pre~ and post-buckling regions, approaching the
straight line of the perfect plate for \/»Acr.

The fact that the high postbuckling curve of the plate approaches a
straight line was observed experimentally (8], [10], where the use of the
two asymptotic straight lines for the experimental determination of the
critical load led to satisfactory results [10], This agrees quite well
with the results of this section and indicates that the three parameter
model is sufficient to indicate the main features of the deformation
prccess., As will be seen later, the model gives also surprisingly good

gquantitative predictions of the buckling point over & wide range of the

geometrical parameter,




8. Radially Inextensional Model with an

Eccentrically Reinforced Edge

The condition of radial inextensionality imposes a relationship
between the rotations and radial displacement. For a quadratic approx-

imation of the cosine function the relationship is:
1,2 .2
u = ub - Efb(¢ —¢o)dr (28)

Hence:

N Lt 242 '
eq = Flu - F/(63-¢2)dr] (29)
b

The expressions for Kr and Ke in terms of the rotations remain as
before (7a, 8b).

It is assumed that an eccentric ring with area A moment of inertia
I and eccentricity e (with respect to the plate center line) is attached
to the inner boundary of the plate at r=b. Positive eccentricity is
defined such that positive rotations at r=b would cause outward motion
of the extreme fibers of the ring (Fig. 1). Under these conditions,

the circumferential strain in the ring is given by:

€ =8 .
oR r

[oa o)

[u, + 6-¢),2] (30)

where z 1is the axial coordinate in the ring (positive in the e direction).

The radial variations within the ring are omitted in the analysis, for
simplicity.

The inclusion of the ring in the analysis, while not important for the

comparison with the extensional model, offers the capability for investigating



h—-—-——-—____a.._..____.

a—

22—

the interaction of boundary eccentricities with geometrical imperfections
and their combined effect on the post buckling behavior,

The total potential of the system of a radially inextensional annular
ring with an eccentric stiffening ring along the interior boundary of the

plate becomes:

a a
- T2 or2am 2 [{.2
\Y nC | rt(7 dr + nD ! (Ke+Kr+2vKrKe)rdt + “Eb’JEGRdA +2Pnaua
b b A
a r a
1 L 5 | 1
- .0 I £ - 24l 2 f g (4 2 = - 2
3 lo-5 . G @o)dr] dr+nD,; tl57(e ¢0)] + =2 (4-o )0+
b b b r
w2 om0 )2 imdr v TE {1e-0 )2 + [u +(p=¢ ), e]?A)
r dr-7 o ' b " To'b Yy o’b
LS .
+ ZnaP[ub - 5 f(¢‘—®3)dr] (31)
2] o

Here A 1is thae cross sectional area of the ring, and 1 1is the moment
of imertia v 1 ives ect te a radial axis through its centroid,
sequel, ¢° will be taken to be that of a shallow cone. This form of
imperfection, as noted before, is common and has been chierved experi-
mentallv,
(a) Two Parameter Model with a Free Edge
Tnis is the simplest medel possible. The deformed shape is
also taken to be that of a2 shallow cone. It is similar to the
three parameter mndel discussed above, but needs only two

parameters for its description. The parameters are:

o = ¢l = constant and u . (32)




—23=

Also, I = A = 0 are taken in the analysis for the free edge. The form
of the strain energy simplifies to:

a3 1 5 N 1
- .. _ L _42 Lo 4 y2
V = nC é r[ub 5 (r=b) (62 ¢o)] dr + 7D ) r(¢1 ¢ )2dr +

(33)
+ 21aPlu, = %{b-a)(¢f-¢§>]

or

Yoy - (J—u+qfnp)(29~)(¢2—¢2) + R -au41-2020n0) (0% -42) 2
wa’C ‘ a T a Lo 8 g " g 17
he ) Z u '
I an(cl—: ¥ o+ h* ) b__ %kl—p)(¢2-¢2)] (34)
12a? Lo 6a2 Lo

The total potential can now be minimized with respect to (ub/a) and ¢l.

This results in the following equations for Ei and Eg:

4
v, = £ (3, -¢ f.(85-¢2)9. li
e, = fL(‘L'”o) ~ 2<¢l—¢0)¢l (35)
N . d ~2_‘.: ¢ )
u, - f3(¢l »0) + fit (36)
where:
_ Q-
fl L-l-.nu
£ = 6(1=p) "+ 3(L-1?)knu
2 u~l-vnu
£ = b'l"u\?,nb
3 Zinu
_ 1
Yt T 12t
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An alternate expression for ;b is obtained by eliminating (Ef—?[g):

f f, ¢,~¢ £
-2 2y - GE- g (37)
2 1 2

The similarity in form betwaen the 3 parameter extensional model
and 2 parameter semi-inextensional model is self evident. Also obvious is
the fact that the semi-inextensional model requires a smaller number of
parameters for the @ame (rotational) mode shape than the extensional model.
The rest of the analysis follows along the same lines of the 3 parameter
model, with the “f" funcrions replacing the "g" functions and with gs and

93 deleted. The buckling load is given by

The prebuckling line ror the radial displacements in the perfect

plate is

and chat of the postbuckling line is:

R A B |
RN N
2 2

1n Table 1, values of the buckling parameter Ac are given using:
(a) theoretical (exact) calculations (b) three-parameter extensional model
and (c) two-parameter semi-inextensional model. Also given are the other

coefficients of the postbuckling equilibrium paths.
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Table 1: Comparative Values of Acr and Coefficients

u 0.2 0.3 0.4 0.5 0.6
(a) A 3.55 3.11 2,77 2.45 2.30
theor
y o= . . 2,75 2.5 2.
(b)r, =8 3.68 3.10 1 35
, . 2,65 A .
() _pee~fy| 320 2.88 2.49 2.35
®) e, L _.857 ~.621 -.436 -.291  -.180
) £, -.982  -.688 471 -.309 -.187
o

The table shows rthat the extensional model gives somewhat better
predictions for the buckling parameters for small . This difference
disappears for increasing » and both models yield very good predictions.
Even for u = 0.2, which is a4 rather extreme case, Pinext is within 10% of
the exact value.

From a theoretical point of view, the inextensional model is not
expected to vield accurate results for ¢-0 since the in-plane extensions
are dominant in this range of the deformation process - and these are not
accurately described by the model. Accuracy is expected to improve with
increasing ¢. Hence, the good results near ¢= 0 are quite satisfying and
are good indications ot the overall capability of the model even at extreme
cases.

(b) Two Parameter Model with an Eccentric Stiffening Ring
The relative succesas of the simpler semi-inextensional model in the

case of the free inner boundary, makes it the model of choice for the more

complex case of the eccentrically stiffenedplate, where both imperfections
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and eccentricity interact. Lt should be stated, though, that the use of
a two parameter model restricts the analysis to relatively weak rings.
The reason 1s that the ring provides some restraint against rotation for
the inner edge. The rotational restraint of a heavy ring is sufficiently
close to the clamped edse condition, so that the "cone approximation" can-
not adequately represent the bent shape of the plate, and a minimum of
three parameters would be needed. For the basic equations for this more
complex analysis, see Appondix,

Introduction of the assumed derormation axode into the more complete
form ot the total potential and ditterentiation with respect to ¢l and ub,

lead to the tollowinz equations:

% -3 )4 2 (35 43 )8 .+ e = (eto
¢ wo)[J3+d6e +(3w17¢0)ed2 + (¢l+¢°)¢ld4] = (e+¢ld5) A (38)
7 -1 (3 -3 Ve l_g2 ,
a - (T'{“ lZwl—éso)e + wl-—cpo)d2~».1 (39)
1 ' :
where:
re - é(l"‘ 12—)
A= Toh
5. ke
h
3 = 2
¢ = b ?
dl = A - Ny
dz = 6(1l-p+utnp)
d3 = (I - inu)dl
. Q. oy 2o e
d4 33 ~bu+l-24 Lm.)dl 5 d2
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dg = a-u)(A-1) - o

4 = - lzféu

6 A
~ EI
I=%
~ _a
T 2%

If A =1 = 0 are introduced here, the equations for the free edge
result. The effects of the ring are twofold: Increases in the area A
and moment ot inertia 1 of the ring cause a corresponding increase in
the effective stitfness of the reinforced plate through their effects
on the coetticients, eapecially, d3 and dl. However, these do not lend
to qualitative chanpes in the behavior of the plate. On the other hand,
the addition of the eccentricity leads to the appearance of new terms
in the equarions. The combination of eccentricity and initial imper-

fection introduces nevw modes of behavior which did not exist inthe

centric plate. This will be studied in more detail in the sequel.

8. BUCKLING, POST BUCKLING AND SENSITIVITY OF ECCENTRLCALLY

STIFFENED, IMPERFECT ANNULAR PLATES.

The investigation is carried out based on the semi-inextensional model

with two parameters, assuming axisymmetric behavior.

As is well known, the perfect annular plate has a stable initial post-

buckling behavior and is not imperfection sensitive., The addition of either

an accentric stiffening ring or an initial imperfection does not change
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the stability of the behavior of the plate. The structural problem,
though, is changed in either case from a bifurcation problem plus postbuck-
ling to that of a nonlinear behavior problem with the external compressive
load increasing monotonously with the deformation.

However, the situation is changed when both imperfection and eccen-
tricity occur simultaneously. It can be shown that for some values of the
imperfection and eccentricity paramaters, the structure can buckle (that is,
it has a bifurcation point). Furthermore, this point is unstable and is
imperfection sensitive for a limited value of the imperfections to one side

\ of it. This mode of behavior should be anticipated i{f it is recalled that
the eccentricity reduces the order of the nonlinearity from the cubic to ;
the quadratic [l1] and that structures with quadratic nonlinearities are
usually imperfection-sensitive (the difterent behavior of frames from that
of beams is a common exarple).

To examine this mode of behavior wichin the scope ot the simplified
model, it is convenient to rewrite the equations by introducing the

variable and "equivalent imperfection" as follows:

8=_-<T ‘_=—+
b ; ¢o

i o e (40)

o

5

The equation for the quilibrium path A = A(8) becomes then:

- 2 < . 52 o 2 8_
A(B+e) = [d48 +3(d7e + d4;)6 + (dse + 4d7ee + 2d4€ + d3)]d 1)

5
with:
d d
ad -4 ny —u2)—L
. d., d2 ds 31 + 2uing u)d:
d, = d, - 2= (d, +d,)
8 6 d5 2 7

L“—-—-—-——.—___—._._.J i L o
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Note that for 0- u - 1, all the coefficients (dl"'d8) are greater
than zero.
When the "equivalent imperfection" ¢ vanishes, the equation reduces

to a bifurcation problem with the two branches
8 = 0 (prebuckling)

and

=L (ap” + 34,82+ 4% +dy)  (postbuckling) 42)
d5 7 8 3
The "bucklinp Load" *'_ _ is the intersection of the two lines and
(&
is given bhy:
w2 tg v den 43)
cr ds 3 8 -

The formila holds also tur e = O when it represents the 'true” buckling
load ey Of the corresponding centrically stiffened plate. It should
be stressed again, though, that its validity is restricted to weakly
stiffened plates. When the stiffener is relatively heavy, an additiomal
term in the rperesentation for ¢ is needed and the two parameter model
would tend to exaggerate the buckling load.

Wnen € # 0, the postbuckling parabola crosses the 8=0 axis at
a positive slope. Thls rmplies that the buckling point is unstable and

the load decreases for B 0. The minimum of the parabola is reached at

*min cr 4d,d_ ©

This value of A is higher than the critical loading xcr of the

in

corresponding centric plate, indicating that for small eccentricities

the degree of sensitivity of the postbuckling behavior is not very severe.
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The behavior of the imperfect plate (¢ ¥ 0) is best visualized by

using the auxiliary variable ¥ = (B4+e). The equation for A becomes then:

= 2 o ! - . — 1 by _e_
dSA dx2 + 3d,ey + [dsxcr (d4e + 2d7e)e] (dskcr + d7ee)Y

The additional effects of the imperfection are seen to be as follows:
(i) A hyperbola which is mainly proportional to € is added to the
bifurcation parabola.

(ii) The X coordinate axis shifts € units to the right

(iii)The parabola translates downward by an amount which is essentially
‘ proportional to ¢
0f the three, the last one is the least important and may be omitted for
sufficiently small . 1Indeed, for sufficiently small € the approximation
which preserves all the important features is:
A=A (L= e/y) + 2 (d,v? + 3d.ey)
cr d5 4 7
Figure 3 presents the equilibrium paths for a plate with the following

properties (corresponding to a plate for which test data is available):
p=0.5; A=0.179; T = 0.69%; e = 0.2
For this plate: Acr = 4,281. Also:

' =
A er 9.408

Apin = 8.616

The equilibrium paths are shown in the figure for the following im-

perfections: € = o.z(Xo = -0.51); € = 0(30 - -0.71); € = -0.01(30 - -0.72);
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g = —0.l($; = -0.8l). The bifurcation-type behavior for ¢ = 0 and the post-

buckling unstable "“chavior for € = -0,01 are clearly seen. For the other

imperfections the equilibrium paths are stable over the entire range.
Several annular plates having similar configurations were tested

in the past few years [8,10,11]. The results of the tests show a be-

havior which is very similar to theresults given here, In addition,

in some of the tests jump phenomenae occurred with sudden changes in the

measured rotations and subsequent stable behavior. This jump is very

well modeled by the interaction analysis presented here.

10. SUMMARY OF RESULTS

(1) The capabilities and potentialities of semi-inextensional plate
and shell models were demonstrated in the following:
(a) Development of the ordinary differential equation for
the semi-inextensional axisymmetric deformations of shells of revolution.
(b) Comparison of an approximate semi-inextensional model for

the annular plate with a corresponding (but more complex) extensional

model.

(2) A study of the interactions between stiffener eccentricities and
surface imperfections was initiated using simple models of the annular
plate.

(a) The appearance of unstable postbuckling behavior and sen-
sitivity was noted and examined. The sensitivity and its corres~

ponding jump were restricted to a selected range of the parameters
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and was limited in magnitude. It is possible that many "small scale

jump phenomenae which occur 1In tested stiffened structures are of
this type. As demonstrated here, these need not be dangerous but
their occurrence should be taken into consideration.

(b) The basic formulas for a more detailed study using a more
complex model were developed and presented in a manner which is

suitable for analysis (see Appendix).




~-33-

APPENDIX: Equations for a Three—-Paramecter Semi-Inextensional Model

R e S bt e R

By introducing an additional rotational degree of freedom into the
semi-inextensional model, its capabilities can be greatly increased so
that even plates with smaller central openings (C - . -+ 1) or heavier
rotational edge restraiats (TA= 0(1l) and higher) can be successfully treated
and greater accuracy can be achieved. The penalty 1s in the increased
amount of algebraic cemplex.uty. The basic equations are developed here
and brought tc a form which can be treated by simple algebraic means.

The guestion as to whether 1t is woithwhile to investigare this
approach further, or o utilize existing nonlirear programs (such as
BOSOR 5) instead, is lett open.

The model is defined by the two angular parameters (¢1;¢2) in the

expression for the rotat.on

P = i>,L *pQ(r/a)

and Ly the displacement b, ot the wnper edge of the platre. Using (29),

(7), (8b), the exprezsions tor the strain measures are:

e, 0

€y = g—;w;‘l + 3020+ uls b, + w(8]-02)] - %@%g - 54,5,5) - -;-(¢i-¢f))
K: = ¢2/a

Ke - %¢2 * %(¢l-¢o)
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Introducing into equation (31) for the total potential and performing
the required integrations, the following expression for the total potential
V results:

_z___eu_l__sa L o N 20542 9.2 _oayvrl 2_42y_
T = alClap(1-u®) oy + 35(1-u%) 036, + T5(1-u"05(567-202) + (1-u%) [g4,6¢7-¢2)

1 2 1 2 2,242 _i 2 428 _ .2
- —-—18¢2w] + 8(1—u )[(¢l 0)° - 2¢1¢2w] 2(l u)(¢>l ¢o)w welnul +
25 42 - - - 2
+ DL(IHY) (1-12) 63 + 2(14v) (1-1) 0, (=8 ) = (¢;~0_ )% tnu] +
1 -6 )2 _ 2,3} _
+ bE{l(u¢2+¢1 $)° + [uy + (uby+o, ¢o)eJ A}

2ol 2 252

2%1
where:

"o, 13,0 2 242
w = 2;— +3uTey o 0.6, F u(¢1“?o)

The total potential can be now minimized with respect to the deformation

parameters (¢2;¢ ;w). The results of this process lead, after some mani-

1

pulations to the following three equations for the parameters in terms

of the loading parameter A and the geometry:

2
(SAg-6A,A m)¢2 + (—A ~18A,m-16A, A m\EY + (24,-36A,A

v vy
5% m)¢2(¢1 ¢°)

172

A
e T - 20T (52-32 2 3y252
+(12u° A 72A1A2m)¢2¢1 + (6A2 144Alm)¢1(®1 ¢°) + (G;Aj—um-*-l6A3m-l6p )e¢2

2Alum Aym
+12(—=— + 6A m—3u )e¢2¢1 + 60——— - 2u2)e¢2(¢1 ¢) + 12(A; m-u)e(¢ ) +
A A
A m -
v2u(2- ~1yes. L(81705) + 20(2+v) (1-1) wuT T3, + 2(T ~inu) (3,-6,) = [(1-6A,m)3,
A
#2(1-128,m)§, + 24me] (A.3)
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mAy o _ _ mA, -
+ 8(— -vj)e¢2(¢l-¢o) + 12(12mA1—u)ue(T¢.§-$‘§) + 6(— -2u2)e¢1(¢1-—¢0) +

2oa ~8a2mi3 4 b0a o vy _ = 2.2 3,0 1942 2

- - 2 8 1) 3, 1, 27T
+ 2(A,~18A A,m), ($2-42) + [3A3m(6+i) 6ulued? + 6[A m(12+ K) bu?)ued, 6, +

3A 1
' |
g 2 27 1% _ - iy - _2__ - - |
+ 2[ (V) (1-u%)+u IC]¢2 + 20(1+9) (1-w)+ uI _1(¢, $,) [3(1 AmA3)¢2 + |
(1~mA2)E§1 + 24ume]X (A.4)
] \ and:
o = Lo tta e e Leoe =< 1. —_ mue—
u, = mh -+ 6(,. 4_\}1&1)‘2 + 2(\. 6A2m)p2¢l + 2(11 12Alm)(¢1 ¢o) + —~—¢K ) +
me ~ -—
+ :"((31"(:'0) (A.5)
A
Here!
f
| A= 1= (1-9R) (i =1....6)

-

w = %-Z-(Z - fou)

Mlso, I is the modified moment of inertia of the r ing with r espect to
¢

!
[ ’ the midsurface of the plate, given by:
L =1L+ Ae? (1-m)
Other notations are as in the previous chapters.

¢2 = 0, a/h  etc.

For example:
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Equations (A.3) and (A.4) have been derived by first taking V,&i

and V,&Q respectively, and then eliminating Gb by using (A.5) which has

been derived {rom Vy,w. In this fashion the rotational parameters are

decoupled from ﬁb and can be solved tor separately. The general form

of the equittoas is:

- - . ‘—' T . Y
LoGoaan ) s M, i) (1= 1.2)

where Li and M. arc cubic and Vinear operators, respectively, in ¢2
i

trom the equations and arrive at the

and ¢, .
1
flence, 11 s pensible to eliminate

single eqraiiou:

N e A M R T T (4.6)

whivch desribes the interoal relationship between §) and ;l, irrespective

ol the Joadii,. it 15 4 gquatic equation in (;_,::l).
Usine assumed values 1ox m](sLuxLiug (rom ?l =;n), the corresponding
<olutions tor p, cen be found from (A.6) which becomes a fourth orxder

solvnemial in the p,(the tundamental solutien is the one startiny from

.y = 0, hat the cther ~clutions can be uselul lor exploring additional
coutlibrium b.anches).  For any pai: of (I&;;l) the loading can be found
from (A.2). This vields the equilibrium path which can be represented as

= ,(Sé) where :P is the rotation at any convenient point in the plate.
e only mathematical tool needed is the solution of a fourth oirder

polvoomial equation.
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Figure 2: Deformation and Equilibrium.

H'r'de-

d (H'r)deds’
ds




. Pa?
A D
e = 0.2
L= 0.5
A= 0.179

X‘s
0 65 l

€=-01 xs
L7
b= ; ‘ ‘ ' -
- " - I 0 1, - = 2
fs"\p‘ qa;

viooee B Lquilibrium Taths yor an Lecentrically Suiffened Plate.

TRy







