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neutrality, and a flat radial profile of beam density are also assumed. Within these
limitations an exact analysis of the linearized Vlasov stability problem is carried out
in closed form. For each mode, the instability threshold, growth rate, and conditions
for oscillatory vs. pure growth are determined. For beams with a moderate return
current fraction, the hose, sausage and axial hollowing modes appear to be particularly
dangerous. ,
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RETURN-CURRENT-DRIVEN INSTABILITIES OF PROPAGATING ELECTRON BEAMS

I. Introduction

In recent years, there have been many investigations -7of the resistive

instabilities of a self-pinched relativistic electron bean propagating through a

collisional plasma. These instabilities are driven by two mechanisms: (i)

resistive phase lags due to magnetic diffusion and/or (ii) magnetic repulsion

between the beam current and the plasma return current. The first mechanism is

in some ways more delicate and is particularly sensitive to the details of a

theoretical model, since the destabilizing effect of resistive phase lags between

the perturbed beam current and the perturbed currents induced in the plasma can

be neutralized by the stabilizing effect of phase mixing among beam particles

with different betatron frequency.3,4,6,7 The distribution of betatron

frequencies depends on the degree of anharmonicity of the self-pinch, and

therefore on the radial profile of net current density .1 no(r); all particles have

the same betatron frequency if J (r) is flat. Thus it is important in treatingno

resistive phase lag effects to model the beam current profile J bo(r) and the

return current profile J (r) with appropriate rounded shapes and to includepo

phase mixing in a realistic way. 3'4'6'7 When this is done, the hose mode is

found to be unstable even if there is no equilibrium return current. However it

is widely believed that for typical rounded beam profiles such as the Bennett

profile none of the other modes are destabilized by resistive phase lag effects

alone when phase mixing is modeled realistically; these modes become unstable

only when the return current exceeds a threshold value.

The purpose of the present paper is to investigate the destabilizing effect

of plasna return current on a variety of beam modes with azimuthal mode

number 0 4 n 4 3 and radial mode number in the range 0 4 n < 3. We exclude the
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effect of magnetic phase lags (and considerably simplify the analysis) by

considering only frequencies in the range WTd << 1, where Td is the dipole

magnetic decay time. Instabilities in this frequency range, due entirely to

plasma return current, are not stabilized by phase mixing, and are only

moderately sensitive to the profile of J bo(r), as is shown in Ref. 8 for the

sausage mode (m = 0, n = 1). We consider here the simplest beam equilibrium

model, in which J (r) is flat. We also assume here that the conductivity of the.1 bo -

background plasma is high enough to assure space charge neutrality. Within these

constraints, we are able to formulate a Vlasov-llaxwell treatment of the

instabilities, and solve it in closed form.

The present paper is a direct extension of our previous work5 to a wider

selection of modes. Analysis of the higher modes considered here is very

complicated, but the present analysis is tremendously simplified by the

assumptions of charge neutrality and wTd << 1; otherwise, the equilibriun

considered is'similar to that of Ref. 5. With slight modifications, the results

of this paper can also be applied to ion beam transport in an inertial

conineinet fusion reactor vessel.

The outline of the paper is as follows. The equilibrium is specified in

* Sec. II. A normal mode treatment of the linearized Vlasov-11axwell stability

problen is formulated in Sec. III and the method of exact solution is outlined.

Tle dispersion relations for all unstable modes with 0 4 m 4 3, 14 m + n 4 3 are

calculated in Sec. IV in terms of the degree of current neutralization, and are

discussed with emphasis on instability thresholds and transitions between

oscillatory and purely-growing instability.



II. Equilibrium Model

We consider a self-pinched relativistic electron beam propagating through a

collision-dominated background plasma. Cylindrical polar coordinates

(r,e,z) are used, with the z axis along the axis of symmetry. Both the beam and

plasma, in equilibrium, are taken to be azimuthally symmetric (0/38 - 0),

infinitely long, and axially symmetric (3/3z - 0). There is no external magnetic

LI field, and we assume that the plasma conductivity a(r) is large enough to assure

space charge neutrality out to a radius R much larger than the beam radius

c R
This requires only a weak conductivity,

4 wo(r)Rb > c, 0 C r 4 Rb, (1a)

4w*(r)r > c, Rb 4 r 4 R , (Ib)

and is usually satisfied when a bean propagates into pre-ionizcd plasma, or even

into neutral gas of density > I torr (except at the beam head). We also assume

that

lbe Ib
v/2Yb_ 3 1/2 -2 << 1, (2)V/Y b ( b2 ) 17 (¥2-1) l k n

where V is Budker's parameter, Ib the bean current, -e and H the charge and mass

of the electron, c the speed of light in vacuo, and Y. the bean relativistic

factor. A beam satisfying Eq. (2) is paraxial, i.e. perpendicular

velocities v 1 are much smaller than axial velocities.

We consider the particular equilibrium distribution function
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n( b 6(H - 2) 6(p- bfbo H z wbM z YIob C) (3)

1
where H (12 c4 + c2 p 2 ) 2 is the particle energy, Pz Pz - eA (r)/c is the axial
canonical momentum, A (r) is the axial component of vector potential fron which

0

the equilibrium self-pinch field B,(r) is derived, (propep z ) is the

mechanical momentum, Yb is defined 9 by Yb z (1 + Pz/H c) , and nbo and y are

constants. For a paraxial beam, Y is only slightly larger than Yb" As a

consequence of (2), eA /C << p and the axial velocity v2 is nearly constant and
0

the same for all particles,

vz  0 nbC. (4)

We further assume that the equilibrium plasma return current J po(r) has the same

profile as the beam current J bo(r),

J (r) - - f Jbo(r), (5)

where the fractional current neutralization f is a constant with 0 4 f 4 1. Fron

(2), (3) and (5) it follows that the equilibrium beam density profile is

j3f n b,0 r < Rb

nbo(r).fdpf = bo 0 (6)o O , PRb < r,

where

2 2 c 2 _ -2 ( 7 )

is the beam radius squared,
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2 _1 2b2 2
2 2 6 (1 - f) 2wlnboe 2b 2 (1 - fyb1 (8)

is the betatron frequency squared, and w is the plasma frequency.
pb

The conductivity profile a(r) does not appear explicitly in either the

equilibrium or perturbation calculations in this paper, but it can be inferred

LI from conditions (1) and (5) that a(r) is relatively larRe and nearly independent

of r for 0 4 r < Rb, and then falls to a nuch smaller value consistent with (1)

for Rb < r < R.
-.

The properties of this equilibrium and related equilibria are discussed in

.more detail in Refs. 4 and 5.
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III. linearized Vlasov Analysis

As discussed in Sec. I, our aim in this paper is to determine the stability

properties of a number of modes, all of which (except for the hose mode) are

destabilized primarily by the presence of an equilibrium return current. To

eliminate the additional destabilizing (and complicating) effects of resistive

phase lags due to magnetic diffusion, we consider only modes that satisfy

1(,)1 "rd - w(O)Rb 2wI/2c < 1, (9)

where w is the eigenfrequency and Td is "dipole" magnetic decay time, which

actually is a roughly characteristic decay time for magnetic field patterns

corresponding to any of the first few perturbation modes. We adopt a norinal mode

approach in which any perturbed quantity *1(IL ,t) with azimuthal mode number m is

represented as

-(x't) *(r)expti(mO+kz-ut)], (10)

where k is the axial wavenumber. Introducing the variable4 ,5 T B t - Z/cbC, this

Fourier representation is rewritten as

* *1(X, t) - 0(r)exp[i(me-w.T-Qz/Bbc)], (11[)

where A S w - kObc is the shifted frequency "seen" by a beam particle (but not in
b

the sense of a Lorentz transformation).

Conditions (1) and (9) together indicate that c/w is long compared to the

beam radius

Iwl<< c/Rb. (12a)
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and the subsequent analysis clearly indicatis that when (2) is satisfied

IS1| few & wpb b << c/Rb (12b)

for all modes. It follows from (1) and (12a) that for r 4 Rb-

4io >> Iwl, (13)

which guarantees that the perturbed beam space charge field is also completely

neutralized by the plasma. In the context of (1), (2), (12), and (13), only

magnetic fields 1 in the (r,O) plane play any significant role in the

electrodynamics. These fields can be derived from the axial component A of the

perturbed vector potential, and Maxwell's equations reduce to Ampere's law

for A. Hloreover, (9) indicates that the perturbed plasma current can be

neglected, and Ampere's law thus reduces to

21d d n 4v(
( - - r r- - ) A(r) --- b(r) (14)

r

AA

where Jb(r) is the axial component of the perturbed beam current density.

Using the Fourier representation (11), the perturbed beam current J b(r) is

expressed as a moment of the perturbed beam distribution function

Jb(r) - - e expli(-mO + WT + QZ/Bbc)) f d3pvzfbl(ERrz), (15)

and fbl is formally evaluated, in standard Vlasov fashion, as an integral over

unperturbed electron trajectories,
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f -l eC c 3P fbo" (16)

In Eq. (16), the unperturbed particle trajectory is specified as a function of z,

withx 1  -xi(z-z), X -E (z-z) being the coordinates in the

(r,e) plane and velocity, at an earlier time, of a particle with coordinates and

velocity 3 ,v at z. It is assumed that ImS2 > 0. We note that B = V x A , and

use (2) and (4), from which it follows that v << , and that V and T are

essentially constant over a particle trajectory. We can then reduce Eqs. (14) -

(16) to the form

(I-f) d dr 2

r

= - (2/Rb) 6(r -Rb) A (Rb) + I (Rb, po ]

4Yb2 212 Q W 20 (R - r) (DI/ap2 (17a)
b (b ( IP 1) , ota

where I(r,p 1 ) is the orbit integral

I(r,p1 ) if 2 W(d /2r) fOd- A -,

A(r) exp[im(O 0) - iSIZ/8bC]

(17b)

and

0 (x) - ' x > 0 (18)o, x < 0

is the step function. We have introduced polar coordinates (p1,*) for momentum,

8



and have defined

2 2 2 2 2
p (r) Eb 1 YO 8 (Rb -r ).(19)

* When supplemented by the boundary conditionsi required at r 0 for cylindrical

symmetry,

[dA/dr] r- 0, m =0 (20a)

A(0) 0, M > I (20b)

and metallic wall boundary conditions at radius R c> R b

A(R ) 0, (20c)
C

Eqs. (17) completely specify the eigenvalue problem for frequency fl.

For the equilibrium under consideration, with J and J uniform out
bo p0

to r = Rb, the unperturbed electron orbits in the (r , 6) plane are ellipses, and

can be specified in the closed form

Pi Co p1  8i W 2a

* x ( ~z ) ~--cs*sn &.)+ r cos e Cos 8'(a
$ b C b

y()sn0sn 0)+ r sin e Co WZ) (21b)

Given the siiple orbits (21), exact solutions to Eqs. (17) and (20) are found in

the form of polynomials

9
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A(r) - rm  1 a r /R , 0 r 4 Rb, (22a)
j=0

n

A(r) = [In(r/R )/n(Rb/R a, r C R m 0,
C0O co

(22b)

2n 2m 2)-(m R 2mr - m  a
(r)R (Rb - aj, Rb r R ,m 1.

(22c)

The integer n is the radial mode number, and can take any value. The

coefficients a. are functions of fl as well as of the mode number (m,n). The

determination of the coefficients a and of the dispersion relation is a

straightforward but lengthy algebraic exercise, for which the degree of

complexity increases rapidly with increasing mode numbers.

As an example, we shall outline the solution for the case of the

axisymmetric modes with m = 0, n • 3. The eigenfunctions are of the form

3 2jr 2j
A(r) a r /R 2J , 0 r 4 Rb, (23a)

j=O

3
A(r) [Xn(r/R c)/n(P/Rc)] I aj, Rb 4 r R. (23b)

We first substitute (23a) and (21) into (17b) and evaluate the orbit

integral I in terms of 0 and the coefficients a J This part of the calculation

is tedious, but can be carried out in closed form. Next we substitute (23) into

(17a) and solve (17) inside the beam. Finally, we apply an appropriate boundary

condition at r - Rb, determined by multiplying Eq. (17a) by r and integrating

over R - c C r C R + c, with c 0. The result is a matrix equation of the
b b

f orm

10



xoo X0 X02  X03 ao

0 X11  X12  X13  a I

0 0 X2 2  X)2 3  a 2  i0 (24)

0 0 0 X33 a 3

with matrix elements

X00= [n(Rb/R)] , (25a)

X01 = )00 + 2 ( - 1), (25b)

X02 = XO0 + 4CI (6t2 + 1) - 4, (25c)

X = + 6 (120F,2 3 + 12C2 + 1) - 6, (25d)

XII = I - 1, (25e)

X12 = 24&LE29 (25f)

X13 = 1080t 1 2 &P3  
(25g)

22 (18& + 1) - 1, (25h)

23 - (9/5) (X X3 3) (251)

X33 ti(1200C2C3 + 48 2 + 1) - 1, (25j)

where the &'s are susceptibility functions, given by

12
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" - spbab( "4 . 1 Z), (26a)

t2 0 w 2 (02 - 16w 2) ', (26b)

3 . w 2 (n2 - 36W 2)-1  (26c)

According to Eq. (24), the dispersion relations for the modes with radial

mode number j are specified by the conditions

X =O, j- 1, 2, 3. (27)

Since Xjj is generally a polynomial in 02, modes occur in pairs + 11, and in

general there are several distinct pairs of modes with azimuthal and radial mode

numbers (m,j). Because of condition (9), we have effectively specialized to the

case w - 0; thus our "dispersion relation" specifies A as a function of the only

other free parameter, f. To find the eigenfunction for any mode, the matrix

equation (24) is solved for the aJ. using the previously determined value of n to

evaluate the matrix elements Xii .
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IV. Stability Analysis

A. Results

From Eqs. (24)-(27), the dispersion relations for the axisymmetric (m -

0) modes are

2 = - 2f (28)

for the m 0 0, n 1 1 sausage node,

-4 (1Of e - 1) 5 2 + fe (16 fe + 1) 0 (29)

for the m - 0, n - 2 hollowing node, and

(2 -2fe)( 2 _ 8 fe) ( 2 _18 fe + (-5 2 _ 8 fe ( 0 2 _18 fe

-2 2 2 2

+24f e 2  18 f ) + 300 f 2 0 (30)+2fe - e e .

for the m = 0, n 3 mode, where we have introduced the notation

f 1 - f, (31)

e

- W/pb Ob 2flfe/WOl (32)

In similar fashion, we have calculated the dispersion relations for the

modes (m-; n=O,1,2), (m-2; n=0,1) and (m=3,n=0). For convenience, we list all

of these results here:

(1, 0): _f (hose mode), (33)

18
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(1, 1): 4 (5fe 1 ) 9 2 + (9/4)f e2 0 0, (34)

(, 2): (2 2 9 fe) (2 - 225 f ) + 4 2 0, (35)

e

(2, 0): 2 "Q 2 = 4 e -1, (36)

t2

(2, 1): 2 f- 8f - 1, (37)

(3, 0): 4 Si 4 2(lOf - 1) 2 + 3 f (1 + 3f ) = 0. (38)

e e e

The dispersion relations, i.e. the growth rate Q and oscillation
i

frequency r as functions of f, are plotted in Fig. I for the m = 0 modes, inr

Fig. 2 for the m = 1 modes, and in Fig. 3 for the m = 2 and n f 3 modes, and will

be discussed in the next section.

14
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1.0 1 F -
(a) m 4/1

Q.
$1Q WpbI~b
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f

2
4(b) m 1

11

0..

020.4 0.6 0.8 1.0

Fig. 2 - Plots of normalized (a) growth rate sl and (b) shifted real
frequency 92 . versus f I(Eqs. (33) - (35)] for the m = 1 modes with
radial mode number n = 0 to 2.
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B. Discussion

As shown in Figs. 1-3, for any given mode there is a threshold

value f1 such that instability occurs for f > f In addition, each mode has a

second threshold f2 > f such that the instability is purely growing, i.e.
2 1

ReI = 0, if f > f2 . if f2 
= fl, the instability is always purely growing, but

if f2 > f1 the instability is oscillatory in the range f1 
< f < f 2 . A purely

growing instability mode, in the limit wrd << 1 which we have considered, may be

expected to be particularly dangerous to beam integrity. The values of

f and f2 are tabulated, for each of the modes in Table 1.

Among the m = 0 modes the n = 2 hollowing mode would appear to be

particularly dangerous because of its low instability threshold; however tile

instability is oscillatory except at a very high return cuirrent fraction,

f  0.95. The n = I sausage mode has a somewhat higher instability threshold,

f, = 0.5, but is purely growing whenever it is unstable, and has the largest

growth rate of any mode over the range 0.6 < f < 1. There are two distinct n = 3

branches, one of which is purely growing, but with the large instability

threshold f = 0.95, while the other is always oscillatory.

Among the m = I modes, the n = 0 hose mode (which has been studied more

extensively in Refs. 3-7) would appear to be by far the most dangerous. It is

unstable for any value of f > 0, is always purely growing (when W d << I and thus

resistive phase lag effects are neglected, as is done throughout this paper), and

has the largest growth rate of any m - I mode except at very large values of f.

The n - I and n = 2 modes are oscillatory up to large values of f. Both of these

modes turn on at f1 = 0.5, and have the same growth rate in the regime where both

are oscillatory.

The m - 2 modes are elliptical distortions which at large amplitude tend

to split the beam in two. Both the (m,n) - (2,0) and (2,1) modes are purely

18



growing whenever they are unstable, but the threshold for both modes is rather

high, fl = 0.75 and 0.87 respectively. The (m,n) = (3,0) filamentation mode, on

the other hand, turns on at the surprisingly low threshold fl = 0.53, but is

purely growing only at very large f.

Of all the modes studied, the dispersion properties would appear to

single out the hose as most dangerous, with two of the axisymnetric nodes, m - 0,

n - 1, 2, next. This is in accord with the conventional wisdom that hose is the

most dangerous mode. On the other hand, the hose mode in a well-prepared beam

must grow out of small-amplitude noise, whereas the axisymmetric modes nay be

initially excited at much larger amplitude, due to the violent pinch-down of the

beam head1 0', , or to the axisymmetric oscillations of a beam which is mismatched

at injection. Thus experimental study of all three of these modes, as well as

further theoretical investigation using simulation techniques to model the beam

realistically, would appear to be warranted.

19



Table I

Hode Numbers

m n fl f2

0 1 0.5 0.5

0 2 0.38 0.95

0 3 0.45 1

0 3 0.95 0.95

1 0 0 0

1 1 0.5 0.89

1 2 0.5 0.96

2 0 0.75 0.75

2 1 0.87 0.87

3 0 0.53 0.96

Threshold values of fractional current neutralization f for the various

modes: f > f1 is the condition for instability, and f > f is the condition for
2

pure growth.
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C. Concluding Remarks

In this paper we have presented a stability analysis of all of the first

nine modes (1 4 m + n < 3) of a beam propagating in a resistive plasma. The

results are based on an exact Vlasov analysis, which is carried out in closed

form. This is possible because of two principal restrictions: we considered

only beam equilibria in which Jbo (r) and J po(r) are flat, and we considered only

the case wTd << . These two restrictions are compatible with each other: in

the regime WTd << 1 the instability is driven only by the presence of an

equilibrium return current I * 0, and this mechanism is only moderately

sensitive to the profile J bo(r). The analysis is obviously incomplete. Uodes

with WTd I are also important, and because these modes are driven additionally

* iby resistive phase lags between perturbed beam current and perturbed plasma eddy

currents, they can in some cases become unstable at lower values of I and have

larger growth rates. However these modes are also sensitive to the stabilizing

effect of phase mixing among particles of different betatron frequency, and

therefore to the profiles of J (r) and J (r). Thus, if one is to treat thesebo po

instabilities over the full range of WTd, it is important to use realistic beam

profiles and not to use models that eliminate or misrepresent phase mixing. A

complete Vlasov analysis would of course be ideal, but no such analysis has been

presented to date for beams with rounded profiles. 12 Instead, several

phenomenological techniques have been developed to model phase mixing and beam

profile dependence of the hose 3 '4 '6 '7 and sausage 8'6 modes, but these techniques

have not been adapted to the higher modes discussed in this paper, as yet.

One other restriction of the present model should be mentioned. We have

implicitly assumed that the conductivity channel o(r) is pre-formed before the

arrival of the beam and is uninfluenced by the passage of the beam. In fact, for

a high-current beam injected into a neutral or weakly ionized gas, augmentation

21
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of the conductivity as a result of ionization and heating by the beam can have a

strong stabilizing effect, 6 and should be treated self-consistently with the beam

dynamics in these situations.
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