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MULTI-COMPONENT MODEL OF THE RESISTIVE HOSE INSTABILITY

1. Introduction

The resistive hose instability is a growing lateral distortion of an

energetic self-pinched beam propagating In a dense resistive plasma.

WThen there is no significant equIlibrium return current, the instability

is driven hv a resistive lag of the magnetic field in responding to

transverse displacements of the beam. The presence of retturn cuirrent

ftirther destabiliz.es the bean by magnetically repelling the displaced

bean from the axis.

Although the hose instability has been studied extenisively n os t

Drevinus theoretical work is based on oversimplifiled models of beam

particle dyn-amics. Since the !)Inch force is anharnonic whenever the

radial profile of current densty ts rounded, particles have a spread of

hetatron frequtencies that introduces phase mixing and tends to damp hose

oscillations. Tn addition, the betatron frequiency of a particle depends

on the extent and shape of Itq orbit, leading to radially localizpd wave-

particle resonances. The early rigid bean hose models 'l and 1,inetilc

treatments assitminq helical particle orbits3'4 onitted phase mixinR

entirely, and as a result, these models overestimated the degree of

Instability. The "spread-mass" model of Lees was a signiFicant

improvement; by introdutcing a realistic amount of nhase mixing in an

artificial way, it eave a reasonable hose growth Rpectrium, oven though

the model neglected the correlation bhetvunen the betatron frequency of

particles and their radial location.

Recentlv, l~hm and Lane 6 developed an "energy-group" model that

exhibits radially localized resonances as well as nhase mixingp, and here

we present an improved and reFined version of that model. As in the TUhm-

Lampe model, each beam slice Is represented by a superposition of rigtid
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components with different outer radii, each of which responds

independently to the resultant transverse force acting on it. Since the

beam response depends sensitively on the radial density profile of

components, we use a Vlasov analysis here to guide the choice of

component profiles. With an appropriate component shape, this "multi-

component" beam dynamics model accurately reproduces the localized

resonances and other analytic properties of a full Vlasov treatment,

while still being tractable by straightforward numerical methods.

The outline of the paper is as follows. In Sec. IT, we formulate

the Vlasov elgenvalue problem for the hose instability and determine the

analytic properties of the perturbed current 3(r). The details are given

in Appendices A and B. In Sec. III, we use the nulti-component model to

obtain an expression for J(r) and show that this form preserves the

important analytic properties of the Vlasov result. The method of

numerical solution for the dispersion relation and eigenfunctions is then

outlined. The results of extensive numerical calculations are given in

Sec. IV. We compare hose eigenfunctions and growth rates to earlier

models and discuss the sensitivity of the growth rates to the equilibrium

return current fraction and the radial profile of conductivity. inallv,

we mention work in progress that extends the range of applicability of

the model.

k .. i



I[. Nose KFienvalue Problem

A. Assumptions and Basic Equations

The equilibrium considered here is an axisymetric self-pinched beam

of relativistic electrons moving in the positive z direction, with no

bulk rotation or externally-imposed fields. We make the "paraxial"

assumption that the transverse velocity of beam particles is small

compared with the parallel velocity vz. This assumption requires

that InI << I A' where the net current In is the sum of the beam current

I, and plasma current Tp, and IA is the Alfven-Lawson current, Riven in

cgs units by TA (y 2-1) 1/2cI Iq 1. Here, M is the mass of beam

particles, q is the charge, and y is the typical relativistic factor. It

follows that the beam radius a is small compared with the betatron

wavelength of beam particles X 0 .a(21A/ITn1 ) 1/ 2" The background gas is

taken to he a stationary medium characterized by a conductivity

o(r) large enox:gh to provide space charge neutrality, which requires

that c/(4w0) << a. The effects of collisions between beam particles and

background gas particles are ignored.

In the high-conductivity regime considered here, a non-rotating beam

has only an axial vector potential component Az, and all beam fields can

he derived from it:

Re = - Az /3r, (la)

S r-1 aA /ae, (Ib)r 2

r. = -c-l A /3t. (Ic)
z z

- -2 LIi . . .. .' :- - - m ..... ; -
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Az is itself determined by Ampere's equation,

2 A(

-Vi A;,
= -- (Jb + i "

I c b P

Here, Jb is the z component of the beam current density, and the plasrma

current density ,T in (2) is Riven by aE7 .  For a paraxial beam in this
Tp

regime, transverse corrents can he neglected as sources in the Field

equations.

The equilibrium distribution function fn can be defined as any

Function of the constants of particle motion, the particle energv

H YTc 2-- (c2 0.2 + -f2c 4 )1/, (3)

the azimthal angular momentum

p = rT, (4)

anA the axial canonical nonentum

P , P + qA 0/c (5

where Yftv is the Particle monentum and A0 is the equilibrium A .

qince we consider a non-rotating beam without external fields, we can

then take fn to he indenendent of Pe. To model a paraxial, nearly-

monoenergettc beam, we assume that all particles have the same Pz but

there is a snread in perpendticlar energy

4I



i, H - YbHC2, (6)

where

Ybtc ( P2c2 + I? c4)1/2  (7)

is the energy associated with Pz" We therefore take fo to have the form

f0(H,P) F0 (H11) (P z-Pb). (8)

It then follows from the paratdal approximation that v. is nearly

constant for all beam particles and approximately equal

to ac - P z/(Yb H). For this distribution function, the equilibrium beam

current density is

(rg " F o(Hi)
Jb(r) -r - dP f  dH1  ; , (9)

bO r 40 0U(r;Pe0) 1 Vr (rHipPei

where the radial velocity v = pr /(01) is obtained as a function

of r, Hi, and P0 fromi (3)-(5), and the minimum perpendicular

energy U(r;P 0) in (9) is calculated from the requirement that vr be

real. Since all beam particles in this model have nearly the same axial

velocity, it is convenient to use z and O -ct-z as independent

variables instead of z and t. Then C is a constant of the motion and

labels a co-moving slice of the beam, while z describes the time

variation in the particle reference frame.

In this paper we are primarily interested in developing an

eigenvalue treatment of the hose instability. Since this approach is

_ ." . , , . _ , • . . ," 5



possible only if the equilibrium is independent of € and z, we require

that the beam radius a and the equilibrium beam and plasma densities

JbO(r) and Jp0 (r) are all independent of C and z. These quantities are,

in fact, slowly varying except near the beam head9' , which we do not

consider here. In addition, we must ignore the and z dependences of

the conductivity o(r), which can result from heating and ionization by

the beam. Such a variations can have a significant effect when the beam-

generated conductivity is a large fraction of a, but this approximation

is appropriate for beams propagating in highly preionized channels. We

emphasize also that the multi-component model developed in Sec. IlI is

not limited to axially uniform beams. A multi-conponent "simulation"

code, which explicitly retains all ; and z dependences, has been

developed 8 and will be reported in a separate paper.

We formulate the hose eigenvalue problem by decomposing

perturbations into independent Fourier modes with azimuthal mode number

m=1 and axial wave number kz. In terms of C and z, the perturbed Az and

b have the form

A 1(r, ,z A(r) -

[ 1=1 ( exp(i8 - i-z- 1-- z), (10)J(r - c - c
J1 r,;,z)JiJ3r)]

where 0 2 w-k Bc is the frequency seen by beam particles, and w/(Bc) canz

be thought of as a wave number for spatial oscillations in ;. From

Ampere's equation (2), the perturbed Az satisfies the linearized relation

d Id 4d1io(r)A 4.A
;i- - - A J.(11)dr rdr 2 c

c

The perturbed beam current is obtained from a standard Vlasov analysis,

6



first integrating the linearized Vlasov equation alofg unperturbed

particle orbits and then integrating over the constants of the

motion Hand P.. The result6 is

2gdPe1Lfd(r +-" ui; (2

r -0 U r L

where

1
I~~11 0  f ~ dz'A(r ) exp[i(O e ) - i-(z'-).(3

In the orbit integral (13), r4and 0e' specify the unperturbed

location at z'< z of a particle with r (z) - r, 8z)- e,

V r(z) t Ivr (z)I, and constants of motion P6 and H.*

B. Particle Orbit Properties

Particle dynamics in the transverse plane is discussed at some

length in Appendix A. Here, we summarize the properties which influence

the analytic structure of the eigenfunctions and help to motivate the

multi-component formalism of Sec. III.

For paraxial beams, vr is approximated by

v (r;Hi,,pe + 2 2)1/2 [Hi1 U(r; P W/1 2 
,(14)

Yb

where

U1(r;P 0 ) 2 0j- - qpA 0(r (15)
b r2



is the effective Potential that determines the transverse motion of a

particle with angular momentum P. Using (14), the Perpendicular enerqv

can he expressed as

21 YhHVr2 + !T(r;P),()

which has the form of a parti~cle Hamiltonian in a time-independent

axisvmmetric potential.. E~ach particle therefore executes periodic

oscillations in r while moving azimitially withi an anp,,ilar velocity

8 6 /(Y Mr 2. Except In the special case 'oherv the net current

density 7n (r) i n(r) + J PO(r) Is utniform, the effective potential !T 1r,

anharmnonic. Because of this anharmonicitv, Particles in g-eneral havfe

precessing, uinclosedI orbits in the transverse nlann, and botli the radifil

oscillation frequency

r

if ma - (17)
r r mn IVrI

and the average azimuthal frequency

max

> r9mm n r (IgI

r 1mi (H 11P86 and r max (11 Lp P 6). The orbits close in the r-8 pline only

when S1r/Q ( is rational.

For parti~cles confined near the center of the beam, it is possible

to calciilate Q and S1 in closed Form. Tin this region, Jn for Anr 8 n

unhallowed beam can be approximated by

R 8



Jn(r) - Jo(0) (1 - 2r2/a2), (19)

where an is a radial scale length of the net current profile and in

typical beams is close to the beam radius a. To lowest order in

r 2/a2 < 1, we then find thatn

3H

'P )  - 2% ( a() (2n)

and

(HiP O? - sgn(P )Q,(1 I 4b 0 2  , (21)
en 4 YhMa n n

where the limiting azimuthal frequency is given by

a2 .2wqB (0). (22)
0 ' bM nO

The result that r + 2 0 as Po + 0 is physically obvious because anr

orbit which grazes the axis makes a complete radial oscillation while

0 changes by w. Similarly, for particles confined near the axis

with HI + 0, the orbits approach closed ellipses with 0 + sgn(PoA

and nr + 20. We note also from (20) and (21) that both fr

and 0 decrease monotonically with HIP

1 8

Numerical evaluation of fl and A0 indicates that (23) holds for all r
r8

when JnP(r) is peaked on axis, not just for r << an. Rowever, Qr

9



depends on both H and P0 when r/an is not small.

It is of interest also to characterize the class of beam particles

that have a particular oscillation frequency S0, since these particles

are all resonant with a wave of frequency 9 - %" Properties of these

particles can be calculated in closed form for the case

Hi << qA 0 (an) , (24)

which is equivalent to the particles being confined to r << an, where

(19) is valid and the effective potential U is nearly harmonic. We show

in Appendix A that when (24) holds, the equilibrium current density

profile of this class of particles is

-2 1( r 2  1/2 8 -2( )

SJO(O;Q ) [+ 1 sin-' 0 < r2<i)_r

0- 2 -r8-

6J0 (r;Q ) 26J0(O;11o), 8 2() < r (

0 ,iR2(Q < r2,

(25)

where R(a), defined as the maximum radius accessible to any particle

with the specified value of S169 is given in the small-orbit limit by

-2 2R () 3a n (1IIa 0 /90) (26)

and occurs for particles with IP0 1 = 4 YbMiR2g/9 , which have orbits midway

between radial (P0 - 0) and circular (IP01 - 8Yb R a0/9). The profile

(25) is shown in Fig. 1, and we note particularly that 6J0 (r;Sl) drops

10
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discontinuously to zero at r =

Numerical calculations for monotonically decreasing Jno(r) profiles

show that groups of particles with the same a have the qualitative
8

features of (25) and (26) even when r/an is not small. All such groups

have a hollow current density profile 6Jn(r;% e ) that vanishes

discontinuouslv at some outer radius P(n ). This radius decreases

monotonically with 9 6 because the pinch force becomes weaker than that of

a harmonic potential as the radius increases, so that particles whose

orbits reach larger radii tend to have a smaller azimithal frequency %*.

The plot of W(a) in Fig. 2 for the case of a Bennett profile
11

Jn(r) = J n(O)(I+ r2 /a2n )-2 (27)

is typical, and we show in Appendix A that the curve approaches

R(D = 1.52 anfO/Iael (28)

for R1 >> qOA 0 (a ). Also, the particles with an azimuthal frequency Q

whose orbits pass through W(Q e ) are found in general to follow orbits

that are intermediate between linear and circular. gince R and 19e8

normally have a one-to-one functional relationship, we can take le to be

a function of R and think of R as the independent variable characterizing

the class of particles with azimuthal frequency Q.(P) For later

reference, we note the inverses of (26) and (28):

+ = %(1 - 2 /3a) R << an  (29)

12
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Fig. 2 - Maximum radius R(fl9 ) attained by particles in a
Bennett beam with azimuthal frequency 10, shown by the solid
curve. Component radius R. (120) is the dashed curve.
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A(R) - + 1. 52 A a /, >> a *(0

C. Analytic Properties of 3(r)

The periodicity of the particle orbits makes it possible to rewrite

the 17lasov orbit integral ; in (13) as an integral over r over half of a

radial oscillation. The result, derived in Appendix B, is

r

I~;11 f0 ma xi~ f rA(r') [cos*(r)cos#(r')1(rH11P 0 -- io r in IV r W) tanlw(Q - Ai)/IA

+ 0(r-r')sin*(r)cos(r') + 0(r'-r)sinf(r')cos*(r) ],(1

where # is the phase shift along the orbit,

.j) = r ;v(r; 
32

rn r

and 0 is the step function,

01, X <O.

For clarity, the H1 and P0 dependences of the orbit quantities

rmin, rmaxg vrt ro Sle 0, and * have been suppressed in (11) and (32).

Although (31) could be used in (12) to calculate 3(r), we are interested

here in using the expression to examine the analytic properties of 3(r).

The Integrand of iIis singular at the zeros of tantw(A - QO/fl 1,

i.e. for real $I and values of 11e(Hipe) and 0 r (H.1 ,P ) that satisfy

14



a- a 6+ nor (33)

f or any integer n. The principal resonance with n - 0 normally gives the

strongest coupling because, according to (32), the variation of # along

an orbit is a minimum for this case, and the integrand in (31) is least

oscillatory. We therefore consider strongly resonant modes with

Re 11 >> Im 0- and Re 0 - %0(R) for some R < a.. A numerical evaluation

of (31) for realistic A confirms that the principal resonance is indeed

dominant for these modes. Other resonances, mainly n - 1, typically

contribute less than 10% to the magnitude of I, while the nonresonant

terms account for less than 2%. We are therefore justified in

substituting v(Q0- Q)/Qr for tan[w(%0- A)/ r ] in the first term of (31)

and neglecting the nonresonant second and third terms. We also use (23)

to change variables from H to 00.  These manipulations obviously
8

preserve the analytic character of I near the principal resonance. The

perturbed current (12) can then be written approximately as

Sn(R-r) P+ dP
J(r) - 2q2 2bMC f d/ f

0 max(0,P_) (P+- Pe)/2 (P0
- P)2

f~-[()+ o <; >] ,(34)

where the quantities P+(r;g0), given in Appendix A, are the maximum and

minimum IP8 1 values that formally give H, _ U(r;% 0) and an azimuthal

frequency + 0 according to (15) and (21). The %0 integration range in

15j



(34) includes all positive Qe values of particles with orbits passing

through r, and

r
rMax dr , o r3

<A(r;1o Po)> w - n cos#(r) f droArr( 5Iv cosr3r)(r')l
rri

is an appropriate orbit average of A(r) that depends on 90 and P0

through rmin, rmax, vr, and *.

Reveral analytic properties of 3(r) are immediately evident from

(34):

(i) In the special case F0 (H1 ) 1 6(H1- Hb), where Rb is a constant,

the beam current density profile Jbo(r) is flat out to a maximum radius,

and the pinch potential is harmonic, provided that iO is also flat.

Then 10 is the same for all particles, and when 9 + Q,, 3(r) becomes

singular as (QI - a )- 1 at all values of r.

(ii) In the more physical case where FO(1 ) is a non-singular

function of H,, the beam profile JbO(r) is a smooth, rounded function,

and normally Jnn(r) is likewise rounded. Then 3(r) has a singularity

at R(Q) for real values of 0 < S1,

3(r) - ln [r - R(fS] (36)

as r + R(n).

(iii) As a + Q), the singular point in 3(r) moves to r - 0. When

(34) is rewritten In terms of io/A, It becomes apparent that 3 depends on

r and 9 only through r E r/R(fl), and that the perturbed field equation

(11) reduces to

16



d_ 1 d. 
.-R 2r A + 4Wi R 2 O(0) A-0. (37)

dr r dr c

Thus the destabilizing contribution of the perturbed beam current

vanishes in the limit 0 + go$ and the hose mode is damped.

If we write (34) in the form

Se(R-r)
J(r) - f dge 6J(r;Qe) (38)

0

to emphasize the contributions to J from groups of particles with a

common value of Q., we see that 6J(r;Q) vanishes at r - 0 and goes

discontinuously to zero at r = R(Q), the location at which

p+(r;i,) = P_(r;Qe). This discontinuity is responsible for the

logarithmic singularity of J(r) at r =

In the next section, we use these properties of J to guide the

formulation of a macroscopic beam dynamics model.

17
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III. tulti-Component Formalism

A. Bean Dynamics fiodel

It is evident from the discussion in Sec. IIB that a beam can be

thought of as partitioned into groups of particles with the same value

of OW Each of these groups is localized within 0 < r < R(%) , and all

particles in such a group are resonant with a wave of frequency 9 - Il.

This radial localization leads to the singularity in J(r) at R(0 ) found

in Sec. IIC. A macroscopic beam dynamics model might therefore represent

the resonant structure correctly, provided that it localizes the part of

the beam resonant at frequency 9 within radius R().

Our approach is to represent the beam slice at axial location € as a

superposition of components with different radii, each with an

equilibrium current density profile of the form

n8r J (f;R)O(r/P), 
r < P

n, r > R,

where n(n) = 1. The quantity R is used here to identify the component

with radius R, just as either Qe or W was used in Sec. II to identify the

group of particles with the same e. The beam current JbO(r) is the sum

of the component densities,

Jbfl(r) - f dR 6J n (r;R). (40)
0

To treat the linearized beam response to an m - I wave of the form

(10), we specify that T(r) he the sum of the individual component

perturbed densities,

18



3(r) f dR 6J3(r;R), (41)

and we require that each component respond rigidly to the

linearized J x R force averaged over its cross section, so that

6j(r;R) & (R) - 6J (r;P) (42)

where i(R) is the amplitude of the Fourier-analyzed transverse

displacement. From Newton's force law, we find after two integrations by

parts that

- q Y 5 R dA +r A +dA~;R n]
(r;+ (43r)R

where
R

61(R) - 2irf dr T6J0)(r;'R) (44)

is the component current. We note that the second bracketed term in (43)

represents the restoring force on the displaced component due to the

equilibrium field. Using (42), this term can be written

2
as -0 (R)&(Rt), where

2 7gB dA a
S(R) - fdr r - - jn (r;R) (45)
c Yb M8I(R) d r Tr

is the natural oscillation frequency of the component with radius R in

the equilibrium field. 1rquation (43) can then be rewritten

~(R Ti3 2(; -~2 f dr rA(r) j 6. 6(r;R), (46)
2 ar 0

19



2 2which explicitly displays the resonance at 1 (R) - A It is evidentc

that fl (R) plays a role similar to that of the individual particlec

frequency 0 (R), although we should recall that the component executes

linearly polarized simple harmonic oscillations with no azimuthal motion,

whereas individual particles follow complicated precessing orbits in the

transverse plane.

The Vlasov analysis of Sec. II shows that the group of particles

with a given value of 0 does not in fact respond rigidly to a transverse

force. Nonetheless, we can choose the component shape G(r/R) so that the

perturbed current density 6J(r;R) of a component reproduces the

properties of the Vlasov perturbed current contribution 6J(r;0). As

noted in 9ec. TIC, 6J(r;R) should be a'continuous function on

0 < r < R, that vanishes smoothly at r = 0 and drops discontinuously to

zero at r = R. We choose the convenient mathematical form

6J0(r;R) = 6Jo(O;R) (1 - r I/R) O(R - r), (47)

which satisfies these requirements and yet allows the component profile

to be varied from a triangular shape to a step function by varying L from

unity to infinity.

With this component shape, (40) can be solved for the coefficient of

Sint

6J0(n R) 1[r ho (-1) dJbo
Sdr

2 R

and the component current (44) is

20



61(R) WR6 ' J(O;R) .(49)

Combining these expressions with (41). (42), and (46) then gives

2
-(1+2)q 0 rp-1 f dR [r d L b0dbO

3(r) r R 21+2 r 2 -(i dr 'r-R

2 2  f dr'r' AWr), (50)

where, from (45),

2(R . 4Tw8 JL+2 1 'R
f() - dr r~l - L- ) (i+1(1

YhMc R 0

Comparing (51) with (22), we see that

)2 0)- 2(52)
c 0

independent of it. For real S1 values less than the maximum A c the

resonant denominator in (5n) can be represented near the singularity as

2

rR-P.()R(R (a)
C

where P (1)) in the radius of the component with 0 - nl and may be thought
c c

of as the inverse function of (51). This pole in the integrand of (50)

leads to a logarithmic singularity in 3(r) at r - R (0), In agreement

with the Vlasov result.

To choose an appropriate value for the index X in the component

profile (47), we examine the .T(r) expression (50) as 9 + Since

21



9 0- 0 (R) varies like R2 for small R, the resonant denominator in (50)
0 c

can be approximated for 11 + S1 by

1 d 2  "

We can then write (5()) in terms of r : r/P () and R/P (f0):
c c

J(r) - (g+4)gB an - S.g-1 [ JO;Rc (Ql)R R

YbH _a r f -- f dir Ar). (53)
Yh Q2R 3(Q) - P2+ P-i1 00 C r

We note from (48) that for X = 2, 6Jn(n;P) a P for small R, whereas for

any other value of X, SJO(O;R) a R. Consequently, as P (QZ) + 0, J(r) isC

independent of R (SO when I = 2 and becomes negligible compared withC

d 1 d A 1 d 1d
_rA = T j Tr - rA, (54)dr r dr R2(a -7 -

R 01) dr r dr

so that the A equation (11) takes the form of the Vlasov result (37).

For other values of X ,T P C-(S) in the same limit. We thus conclude
c

that I = 2 is the only physically acceptable choice.

With t = 2, the multi-component expression (53) for 6,; also shows

remarkable agreement with the Vlasov result in other respects. The

multi-component resonance location R (Sl) is compared with the Vlasov
c

resonance location R(Q) in Fig. 2. The two quantities agree to within 5%

everywhere and to much greater accuracy for the large fraction of beam

particles with r /a < 2. En the limit Q + 6 n (51) givesmax n

c = - R2 /sa 2) (55)
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for I - 2, in exact agreement with the Vlasov expression (29) for 9 (R).

In the opposite limit, Q + 0, the multi-component expression is

a (R) = 21/2 0 a n/R, (56)

the coefficient here agreeing with the Vlasov result (30) to within 5%.

In addition, a numerical evaluation of J(r) for the two models, using

realistic Jb0 and A profiles in (12) and (50), shows agreement within 7%

in the perturbed current magnitude. This suggests that the multi-

component model accurately represents the strength of resonances, as well

as their location and analytic form.

B. Calculation of Eigenmodes

We formulate a hose eigenvalue equation by substituting the multi-

component J expression (50) with £ 2 into the m I 2 field equation

(11). The result is

d I d + 4viworA + -- A
dr r r 2

c

16 ,dR d 1 dJb1
-b r -4 dr r dr )r=R 2 2 f dr r A(r), (57)

Yb'llc r R a (R) - 2 0
c

where, from (51),

2
. - f dr r - L j -J ). (58)

Yb c  R2  0 R 2

Boundary conditions are obtained from the requirement that
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(O)- 0 (59)

for an m I l mode and from the far-field solution of (57)

A r1 (60)r

This elgenvalue problem can be solved for either w(O) or O(w). It is

apparent from (10) that a wave with real 0 and Im w > 0 has constant

amplitude at a given beam slice but grows spatially back from the beam

head (i.e. with increasing C). Similarly, a mode with real

w grows with increasing z if Im Q > 0. We concentrate here on modes with

real & because these modes show the effects of localized resonances most

clearly.

To solve the dispersion equation numerically we first rewrite (57)

as a homogeneous, fourth-order ordinary differential equation,

d 1 d 1 d (r d+ 2r) 4riw d 2(rdr 2 r
dr r dr r dr + 2 dr dr

c r

16wd ( d do _ _r O, (61)
Y 14c r2  dr r dr 02(r ) _ g2

c

where

~ 1 r

r(r) 2 f dr'r 2 A(r'). (62)
r 0

This definition of r and the two constraints on A, (59) and (60), give an

appropriate set of boundary conditions:
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r(o) - n
r-(n) - o

i -(r) 0 (63)

iT r"(r) = 0.

We reduce (61) to a homogeneous matrix equation by representing the

derivatives by finite differences on a nonlinear mesh, with grid points

clustered near the axis and any resonances. For real SI, appropriate jump

conditions at resonance points are provided by local power series

solutions of (61). Figenfrequencies are calculated by

specifying W or 9 and iteratively adjusting the other frequency until the

matrix determinant vanishes. The corresponding eigenfunctions are

calculated by the method of inverse interation.
12

C. Equilibrium Specification for Reams with Return Current

Although the dispersion equation (61) can be solved for any choice

of Jpo(r) and JbO(r) that give a non-negative SR2, an arbitrarily chosen

JbO may correspond to a physically unlikely distribution function. Here,

instead, we specify a Maxwell-Roltzmann distribution function,

Jbo( 0 )

0 bnl0  exp( 1 (64)(n ; ) - .,hqc - . ),(4
I 21TYbMqBc1.1,

and also specify the conductivity profile o(r) and the effective net

current fraction, defined as

2wc 2 21Jb dA O

f 2 dr r dA0  (65)

b
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The equilibrium electric field EzO -OaAo/3 is taken to be independent

of r, which is a good approximation for r < a. The equilibrium beam

current expression (9) can be evaluated analytically in this case and

gives

JbO(r) = JbO(0) exp(qOA0/Hb), (66)

and substituting this expression into (65) gives

f --c -bH (67)
e qIbb

an expression of the Bennett pinch condition'1 . For a given Ib, the

effective net current fe depends only on the perpendicular temperature '1b

and can be specified independently of Jp0" The equilibrium potential A0

is calculated by numerically integrating Ampere's equation (2) in the

form

1 d A0 4w J0( ) ]
r dr rr - Lb(r) - a(r)Ez0 (68)

where JbO is given by (66) and (67) as

Jb0(r) = JbQ(0) exp[ 2c Ab(r)]. (69)

and EzO is determined iteratively by requiring that

- 2w f dr r JbO(r). (70)

0
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This procedure yields a Bennett current profile
1 1

2 -

JbO(r) - (bo(0 ) ( + )-2 (71)
a

with a beam radius

a b (- b )1/2 (72)
-'bO(0 )

either when EzO = 0 or when a has the same radial dependence as (71).

D. Comment on the "Energy-Group" Model

In Ref. 6 we used a multi-component model with a simple component

current density

610(r;R) - 6J0(0;R) O(R-r), (73)

which corresponds to (47) with I + -. These components were referred to

as energy groups because each one represented the group of particles with

some particular value of perpendicular energy H1. Unfortunately, the

present analysis shows that this component shape is incorrect. The

result of using (73) in the multi-component J expression (50) is

J(r) q A(r) I dJb(74)
ybM 02 (r) _ .2 r dr

c

Equation (74) gives a pole in J(r) at r - R (fi), rather than thec

logarithmic singularity found by the Vlasov analysis of Sec. II.

Substituting (74) into (11) leads to a second-order dispersion relation
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- dJd Id + 4viwa(r) A(r) I 7bn
- - - r;r);() sq (5
dr rdr r 2 r bMC fl2 (r) f2 r dr

which duplicates (45) in Pef. 6. In the limit fl + n , (75) can be put in

the form

d - 4wiwP2 (0)0(-) Jb (O)a 2

d_ 1 d c 4__)_ b4 n
rA(r) + 2A(r) - - ( (76)2 ;2 n) )

dr r dr c 1-r nO a

where r r/R(c ), an is the net current scale radius defined by (15,

and a is the analogous beam current radius. According to (76),

WR 2(0) remains constant as n * %. + qnce R-2c M ( 0 - Q) ml this model

predicts a pole in w for 1 - O and an infinite growth rate Im w

as Q + S 0 from below. The correct result is that the wave is damped in

this limit.

This sensitivity of the solution to the component shape motivated

the Vlasov analysis of Sec. IT and the more careful choice of component

shape in Sec. IIIA.
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IV. Results

We have numerically solved the multi-component hose eigenvalue

problem discussed in Sec. III for real 9 and various choices of effective

net current fraction fe' beam current profile JbO(r), and conductivity

profile O(r). The results are discussed in this section.

A. Eigenfunctions

(i) Resonant eigenfunctions. In the usual case where the net

current density profile Jn0 (r) is bell-shaped and peaked on the axis,

1c (R) also peaks on-axis and modes with real Q < Q0 are resonant at

r - Rc (9). A typical hose eigenfunction for such a mode is shown in

Fig. 3. As expected, there is a logarithmic singularity in the perturbed

current at r - Rc (9), and we note that the perturbation is essentially

confined within 0 < r < R . Varying 9 or f changes Rc and therefore thec e

width of these resonant eigenfunctions, but their shape is hardly

affected: If A and J are plotted as functions of r/Rc, they are nearly

independent of 9 and f so long as Q is monotone decreasing with R.
e c

The resonant structure of these eigenmodes, properly regarded as

internal disruptions localized within resonances, is ignored in the

earlier rigid-beam' 2 and spread-mass5 hose dynamics models, where the

perturbed current J(r) is taken to be simply a rigid displacement of the

entire beam.

(ii) Doubly resonant eigenfunctions. When the radial profile of

Jp0 (r) is narrower than that of JbO(r) and fe is large enough, the net

current density Jn0 (r) can peak away from the axis. In this

case, Ac (R) also peaks off-axis, and a mode with real 9 < max(Oc) is

resonant at two different radii that satisfy Sc(R) S1. We then find
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0 1 2

n/a

Fig. 3 - (a) Real and imaginary parts of A(r) for a typical hose
eigenfunction with 12 real. In this case, JbO and a have Bennett
profiles with radius a, and we have 92/n 0 = 0.8 and R. (12)/a

-0.7. (b) Real and imaginary parts of J(r) for the same mode
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that the perturbation is largely confined between the two resonant radii,

as shown in Fig. 4.

(iii) Non-resonant eigenfunctions. Modes with Q fl0 or with

significant Tm n are not resonant. We find then that the form of the

eigenfunctions is closer to that of a simple displacement of the beam,

where

J(r) dJbo/dr.

(iv) Higher radial eigennodes. Wor any value of 11, there is an

infinite sequence of eigennodes corresponding to increasing radial

quantum number.3 ror beams with a Bennett profile and no return current,

we invariably have found these modes to be strongly damped. rarlier work

indicates that some of these modes may he unstable for flat beam

profilesI and for cases with a large return current fraction6' 13, but we

have not examined these cases.

R. Dispersion Characteristics

The eigenvalue equation (57) is conveniently put into dimensionless

form by introducing the scaled quantities r/a, wTd, and fl/% 0, where

1 iro(f)a 2

Td - 2 (77)
d 2 Oc2

is the decay time for dipole fields 5,6 and

2wqBJ b(n (7R)
nn ybt C

2
is the value 0 would take in the absence of return current, given in

terms of the beam plasma frequency w (r) by _1 B w2(n). The resulting
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elgenvalue problem is independent of a, B, yb' o(O), and JbO" The

dispersion relation can therefore be quite generally expressed as a

functional relationship between wTd and Q/ 0 , depending only on the

scaled quantities a(r)/o(O), JbO(r)/Jbn(0), and 0l (r)/%0o. We present

our dispersion results in this form.

(1) No return current. The hose growth rate Im(wTd) and the

frequency Re(wrd) are plotted as the solid curves in Fig. 5 for the case

where Jbo(r) and o(r) have Bennett profiles of equal width. We note that

instability occurs only over the range 0 < (lon < 0.7R, with the maximum

growth rate wTd = 0.65 occurring at Q/0 0.57. We note

that w - n when a - n, so that a beam displaced rigidly from the

conductivity channel axis is neutrally stable, reflecting the fact that

there is no net force on the beam in the absence of plasma current.

For n < / < I the growth rate is determined by competition between the

resonant wave-particle coupling and phase mixing due to the betatron

frequency spread. Fven though resonance effects are stronger

as fl + a%, the number of resonant particles, given approximately by (49),

decreases as R + 0, and for 9/9onl > 0.78 the dampine dominates. Ac 0

dispersion relation of this type leads to convective instability in the

beam frame 5, i.e. a perturbation introduced at some noint along the beam

will grow as it propagates back in 4 but will eventually decay at any

given value of i.

This case has previously been studied using the energy-group model6

and the spread-mass model5 . An exact solution of the energv-Rroup

dispersion equation (75) gives a growth rate In w(Q) that agrees well

with our presert result for f/l% 0 n 0.6, but continues to increase to a

pole at fl/ 0= 1, for reasons discussed in qec. IIn. Rowever, the
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variational method used in Ref. 6 to approximately solve (75) reduces the

resonance strength and leads to the dashed curves in Fig. 5, which agree

well with the multi-component result. In the spread-mass model, each

slice of the beam is subdivided into rigid components which have density

profiles identical to the beam itself. The perturbed current is thus

constrained to he a rigid displacement of the slice as a whole, and there

is no correlation between the radial extent of a component and its

resonant frequency. The components carry eaual fractions of the beam

current, but a realistic spread in their oscillation frequencies is

introduced by assigning the components different masses. For a beam with

a Bennett density profile, the resulting dispersion relation is identical

to the variationa] approximation of the energv-groun expression, plotted

in Fig. 5 as dashed curves, and it agrees remarkably well with our multi-

component result over the entire unstable range. The reason for this

good agreement is that, for a Bennett profile with no return current, the

unstable frequencies have resonant radii R (S)/a > 1, so that thec

components which interact most strongly with the wave are nearly as broad

as the spread-mass components. Consequently, the resonant components in

the two models respond similarly. For waves with Q/2 o~ I

and R/a << 1, which have stronger resonant effects, the two growthn

spectra become quite different, even though the modes are damped and

therefore physically unimportant.

The growth spectra for both the spread-mass and multi-component

models are sensitive to the equilibrium beam density profile JbO, and the

two models do not agree as well for other beam profiles as they do for

the Bennett profile. For a raussian profile
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00

Fig. 5 - Real eigenfrequencies Re w and growth rates Tm
~1 w for the hose modes with S?1 real, calculated for a Bennett beam.

The solid curves are obtained using the multi-component model;
dashed curves come from the spread-mass model or the variational

approximation to the energy-group model.
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Jbo(r) =bO) exp(-r /a ) , (79)

the spread-mass formalism can be applied only if the conductivity has the

broadened form

2 "2

o(r) = o()K- 22p(-r (R)

a 1 -exp(-r /a2)

The growth spectrum from the multi-component treatment is shown for this

case as the solid curve in Fig. A. The curve is more sharply peaked near

the maximum growth rate than the Bennett result in Fig. 9 because there

are fewer Particles with Qc /S0 near n and 1. The corresponding spread-

mass result, plotted in Fig. 6 as a dashed curve, is broader than the

multi-component curve and is shifted to larger S1 values since the mass

distribution in this case has more low-mass particles. The dotted curve

in vipg. 6 is the growth spectrum calculated from the multi-component

dispersion equation using (79) for J bo and a similar Gaussian profile

for a. Tlis is a more realistic conductivity profile than (P0) For a

Gaussian beam and gives a substantially higher maximum growth rate

because the wave-driven dipole return current is confined nearer the

axis. This sensitivity to the width of the conductivity channel is a

general feature of the hose instablity and Is discussed subsequently.

(ii) Effect of return current. The presence of eaullibrium plasma

current worsens the Instability by manneticallv repelling the displaced

beam, and this repulsion is Increased when a narrow a channel confines

J.O and the perturbed plasma current near the axis. l'igure 7 shows the

effect on the hose Rrowth spectrum of a nonzero return current fraction

f 1-f when J and a both have Bennett profiles with the sameir e Jbo
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0 0.2 0.4 0.6 0.8 1.0
nInoo

Fig. 6 - Hose growth rates for a beam with a Gaussian current
density profile. The multi-component model gives the dotted
curve for a Gaussian conductivity profile and the solid curve for
a broadened a profile. The dashed curve comes from the spread-
mass model, which required the broadened a profile.
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Fig. 7 - Hose growth rates for beams with different values of fr
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radius. The return current is seen to be the dominant destabilizing

factor when fr > 0.3, and for these fr values the maximum growth rate

increases approximately proportionally to fr' as expected for pure

magnetic repulsion. 6  In this case, im w > 0 even for n - 0, so that a

beam that is rigidly displaced from the conductivity channel axis is

pushed further away. This is an absolute instability in the beam frame.

(iii) Narrow conductivity channel. A narrow conductivity channel

can also substantially increase hose growth by preventing the perturbed

plasma current from following the beam distortion, even when there is no

equilibrium plasma current. The growth spectra in Fig. 8 are calculated

for beams with J pn - 0 and a Bennett profile of a(r) with a radius

different from that of the beam. We see a dramatic increase in the

maximum growth rate when the ratio a of the conductivity radius to the

JbO radius is less than unity. roadening the conductivity channel, so

that a > 1, has a stabilizing effect on hose modes, but the effect is

less pronounced than for narrow channels because A is still confined

within R (Q) and largely determines the radial profile of the plasmac

current when a is broad and Jpn = 0.

(iv) Return current and narrow conductivity channel. Figire 9 shows

the growth spectra for a case with equilibrium return current f - 0.25,

and several a valuies. As expected, the presence of return current and a

narrow conductivitv channel act together to increase the growth rate even

more rapidly.

C. roncluding Remarks

We have developed a tractable model of the resistive hose

instability which retains many features of a full Vlasov treatment, and
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Fig. 8- Hose growth rates for fr =0 and different values of a
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Fig. 9 - Howe growth rates for f. - 0.25 and different values of a
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we have used the model to examine the dispersion relation and

eigenfunctions in a variety of cases. The rigid component dynamics used

here is particularly suited to m - I perturbations like the hose

instability, but with appropriate modifications this approach is

applicable to m = 0 beam modes and possibly to other resonant

instabilities of periodic systems.

We note that these hose stability results are restricted to beams

propagatinR in a medium with a Fixed conductivity profile. Vor the case

of intense beams propagating into initially un-ionized or weakly ionized

gas, the ionization and heating generated by the beam typically causes

the conductivity channel to follow beam displacements. Since this effect

reduces the separation between the beam and plasma currents, it is

stabilizing. We have shown in the related case of the sausage

instability7 that this effect can be treated correctly only by including

conductivity generation consistently in the equilibrium as well as in the

perturbation, i.e. the equilibrium conductivity o(r,i) mist be allowed to

increase with . This self-consistent treatment of beam-generated

conductivity introduces non-ignorable dependence and is thus beyond the

scope of the one-dimensional eigenvalue treatment developed in this

paper. However, we have develoned a numerical treatment in which the

multi-component model is solved by following the evolution of an initial

perturbation in space and time, rather than by Fourier-analyzing in

4 and z. This approach allows us both to treat conductivity generation

self-consistently and to include axial variations in the enuilibrium beam

and return currents. Since we do not assume high conductivity or charge

neutrality in this time-dependent model, we can also treat the weakly-

pinched beam head. This work will be reported in a separate publication.
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It is also to be noted that in cases of very high beam current

density and low enough background gas density, such as in ion beam

transport for inertial confinement fusion, heating of the background gas

can lead to significant hydrodynamic motion of the gas. 14 This effect

should also be included self-consistently in a full treatment of hose

instability in such systems.
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Appendix A: Particle Orbit Properties

(i) Particle motion in the transverse plane

TYsings the definitions (3)-(5), the energy 9 of a particle in a

high-conductivity beam can he written in terms of the radial momentum

component Pr and the canonical momentum components V. and Pz as

2 Vc {~ 4 Pe+~ (P- A0)2 }1 /2. (Al)R -- rIc2-  {tc 4 + c2 [ 132+ --6 + (P - A c )1l2(I
r

2
Equation (AI) may be regarded as an equation for pr as a function of r

and the three constants of motion. Por a paraxial beam

2 2 2
with p > > Pr + p and vz  c,

II << I = M/ 31q-l (A2)

and from Ampere's equation (2) we find

IqA /cl Ih/C 21 << InTl/C21, Y4c P." (A3)

This allows us to rewrite (AI) in the approximate form

22p )2 +:8 "pz0)1/(M
R - [(YbMc 2 ) 2 + c2(Pr + 2 A0 )] 1 1 2  (A4)

r 2

where

2 = (p2;c2 + M2C4)1 / 2  (A5)

ThMc (Pcz 2)/

is the energy associated with Pz Since yhlc 2 is large compared with the
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energy in perpendicular motion and in A(, (A4) can he approximated by

2

bI c2 + 1 (2 +P qPA. (M)2 r r Ybmc

The radial velocityv - p /(yT) pr/(Yb1) can then he written

2 [p i - 1(r;P,)] ,  (A7)

where

.-- 14 - Yb Mc2 , (AS)

may be regarded as the energy in the transverse plane, and 17 is an

effective potential given by

P2

T(r;P 6 ) -- - qAn (r). (AQ)2Nb r

The complete particle dynamics thus reduces to notion in the transverse

plane subject to an effective central potential.

(ii) Particle oscillation frequencies

2
,qnce v2 is a function of r only for a given H and P particles

execute periodic radial oscillations while gyrating at an angular

2velocity T 0 /Y bTlr . The characteristic frequencies are the radial

oscillation frequency

r
rmax dr ]-1 (AIn)
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and the mean azimuthal frequency

S1 " 1pe P0 r max dr
(H1,IP 8  WYhM r 2v (All)

where the turning points rmin (Hi,1P 0) and r ma(H 11 P ) are solutions of

v2( r;Hie 0 (Al2)

such that H1I > 11(r;P) for rmin( r < r ma* In general, A r' /n0i

irrational, and the orbits do not close. In the special case of a

harmonic potential, corresponding to a uniform net current, these

frequencies are independent of IRIand P., and S~ - 2e.

For particles confined near the axis, where the potential is nearly

harmonic, we can express rmin, rmax,1 rv and il in closed form. In this

limit, the net current can be expanded In the form

J n0(r)w O ~0 )(1 - 2r 2/a n), (A13)

and A0)(r) can be written to the same accuracy as

YO() -2 1 J 0) r (--.),(A14)
c n 2a

n

where an is the radial scale length of the net current profile and we

assume

rn a «12,< (Al5a)
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which holds for particles with

H << qOA (a). (Al5b)

Using (A14), we can reduce (AlO) and (All) to

r2 + 2 2 -r2

a r wo ( - mx 2in )1/2 [K(_ max 2rn 2 -- ) (A16)
2a n 2a n _rmax _rmin

and

9 a P 21/2

e ir% 0 bM r 2  (2a 2 _ r 2  _ 2r 2  )1/2
mini n max mini

2 2 2 2
rmin- ma~x rmax -rmi[ Al

rmin na-r max mi

where K(ct) and 11(a,O) are complete elliptic integrals of the first and

third kinds'5

dx

0 (- (-X (A18)

and
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11(aB) Idx
o (1-OX )[(1-X2(.x)]f (Al 9)

In (A16) and (AM7 we have introduced the characteristic frequency

0- YbMc n'

and again r mi (H1,SP e) and r mx(F V P d are defined by (A12). To zeroth

order in rmax fant

r 222

Using this approximation and the small argument expansions of IC and HI

In (AIR) and XA19), the orbit frequencies (A16) and (A17) can be

rewritten as

3H!

r 0 y~l 2 2(22(( - (A21)

b nf

and

sgn(P0 %(I -3T 1 - %i1pe1(A2

We see that 0 is the magnitude of 9in the limit 0 .

Tn the opposite limit

49



2r /a2 >> (A23a)
max n

which is equivalent to

14-T >> qSA0 (a) , (A23b)

we can make the approximation

Ao(r) - 4c-l1 In In(r/a n )

over most of a particle orbit. Writing R i in terms of the outer turning

point r max(MO) of a particle with P6
f= 0, we then have

(2 2 ,0[rm (,0)/r] 21 (A24)

1- U ) - banmaxV2Vax 2r '

and the orbit frequency expressions (AIO) and (All) reduce to

an 0  Y P 
(A?5)

2 max(1'~n V h 0 nrmax(H ,)

and

an 0  l 0

:1 6l r( 1  ) "2rmax (H.L 2( hHn a n r max (1 IA6

where

X) max dx x ]-1

- min(-x 2 In x- 2/
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x
max

G2 (y) y G 1 (y) f x( 2 dx
Xmin x(-2x2in x - y

Here, xmin(y) and xmax(y) are the solutions of

x2ln x2 . y2. (A27)

(iii) Density of the group of particles with the same 0

The group of particles with given R includes particles with angular

momentum Pa ranging from zero for orbits through the axis to some maximum

value for circular orbits. The orbit turning points likewise depend

on P, and in the small-orbit limit (A15), we can analytically calculate

rmax as a function of 9, and P0 by combining (A20) and (A22). This

procedure indicates that all particles with frequency 12 are confined to

the region 0 < r < R(Q), where

2 ( 3a 2(l-I01 /%) . (A28)

Using this result, (A20) can be rewritten in the form

max] 2 [22 + S + 2(1+S - 2S2)1/2],(A9r2 9
[ in

mi

where

91Pe 1/(8YbMR2f 0) 1
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We note that only particles with S - 1/2 and hence IP e I 4y b 0/9 ,

pass through R, and the orbits of these particles are intermediate

between radial (P- = 0) and circular ([P0 1 - RybMR 0/9). All other

particles have r < R.

In the opposite limit (A23), we can rewrite (A26) as

ann0 Io

r (4P)= - (Afln)
maxVi,0)= i 0 61 YbMSnanrmax(HLO)

where

3(y) max(Y) 02 (y),

with xmax again given by (A27). The largest radius for a given value

of n0 is found by numerically calculating the maximum r'3 (y). This gives

R(n 0 ) 1.52 a/n R 0IRof (A31)

For intermediate 11 values, i(PC) must be calculated numerically,

and the result for a beam with a Rennett profile (27) is shown in Fig.

2. We find for all R values that particle orbits with r maxw 1(n) are

intermediate between circular and linear orbits.

When Jno(r) is peaked on-axis, so that n is a monotonic function

of 11 for constant P., the equilibrium beam current density (9) can be

rewritten as

n(R-r)

J(r) -2 f dl 6J (r;) (A32)
0
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where

2gk P max OH 9eP ]
J0(r% 8 r f Pe a- IV v(r;P )Ie (A33)

mine

is the current density of particles with a given precession

frequency Q.. In (A33), Pmax and Pmin are the maximum and

minimum IP0values of particles with precession frequencies equal

to Q0and orbits passing through r.

In the small-orbit limit (AI5), the density profile 6J 0 (r;A e) can be

calculated in closed form. To find the P elimits, we use (A22) to

rewrite the turning point condition (A12) in the form

4 2 2l 1 2 1- A
3 4 fl a- i 2 2 + I P1 A42 2y b Mr

We salve (A34) for IP1 anti using (AM~, we can write the solutions as

P r;S YbTMr S1 [I + (A 2 _)1/2] (A35)

*Since IP8 I ust be positive, we take Pma P and Pmin -max(A,P.),

*noting that Pmin in (A33) is zero for

r 2>.R( ) (A36)

* For the Maxwell-Boltzmann distribution (64), we also have

F~ ~ 0 (HI, ?00 hOn/2y~~)b (A37)
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2 2
to lowest order in r /a n. The VJ0 (r; $ 8) expression (A33) can then be

written

.J(. 160 1 bO (0 ) dP 0  ('

which gives

6JA (O; S1 ) [+. sin- 8 2 2)1' r (

8! rW2 8 2 -2
6Jn0(r; e) 6 0 (nl; ae)9 e) < r <

-2 2

Th Rrfl is < r

where U 0 (O;Q O n 0/Nn Th rfle(3)i shown in Fig'.

1. The discontinuity in 6J 0that occurs at the outer radius W isa

general feature that has important consequences on the analytic structure

of the eigenmodes.
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Appendix B: Evaluation of the Vlasov Time Integral

In the Vlasov perturbed current expression (12), the accumulated

eifect of the wave on particles with some given R1 and P6 is expressed in

terms of the time integral

I(r;R ,P 6 ) M 1 - e) dz- c --0]. 0)

Here, z - Bct is a measure of propagation time, and r' and 6' are the

unperturbed radial location and azimuthal angle at time z' < z of

particles with the specified H 1 and P6 that reach the point (r,O) at time

z. The + subscript indicates the sign of the radial velocity vr at time

Z.

To put (BI) into a more useable form, we consider the change along

the particle trajectories of the quantities

z

I+(rz) - I[r+(z)I expti#+(z)] f dz' A(r') exp(i*) .(B12)

Here, the phase angle #+ is defined by

¢(z) -+(z) - Z, 03)

and all orbit quantities are understood to depend on HI and P.0 Since vr

and ; are functions of r only for these particles, we can readily

relate I +(r) to the values at the previous turning points:

* + r
1+(r) exp(i#+) - 1+(r I) exp(i¢min) + f dr' exp(i*) (M4a)

rmin
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A A r

) 1(r) exp(i#_) - i(r a exp(i* #a) f dr' exp(i#'), (B4b)
max

where rmi and rmax are the orbit turning points, and we have introduced

the comipact notation

+ r( *()- dr [') n
mi - mmr +( f v [(rr' - (B5a)

r r

*ma t(ra) - f(r) +f -j----'-%. -;(r')-a 0] (B5b)
rm rr

and

dr'
d IVr (r')I- OcAr) .(B5c)

We elfininatc 0from (B4) by noting first that

++*(r) [f0(r) - #0(rn)in (B6)

The relative phase between *and 0_ is fixed by taking the phase angles

to be equal at rin so that 0(r) + We then rewrite

(B6) asmi)-Oi 

in

2() 2*min- #4-(r) (17)

and substitute this expression for 0in (14).

The turning point values I rm ) and I -EI(rma) are
min + in maxma

determined by evaluating the full change in 1I+ between turning points:
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! I
r+ xp tI +  "+ m x

iIexp(i eXp(i n = f drexp(i-i) i )(Ra)
max ax 'i rmin

r
* A ma x

Im nexp(i n - exp[i(2 n )] f f dr'exp[i(2* 1n  *;)].
rmin (Rb)

Since the continuity of particle orbits gives I -in I min and
A + A A A A

'max =max .- max' (B9) can be solved for Imin and Imax

+ +exp(-i4) Dex(iA) (Rta)

min= exp(iA#) - exp(-iA#)

+ 
(qb)

max exp(iA*) - exp(-iAO)

where

r
max

1+ S dr'exp[± i(#+ - +min)1
ri

and

r
+ ma dr' [ (r')-]- w .

A# - #m -mLn "f Iv(r*)I
r in r r

We substitute (39) into (4) to obtain expressions for I+(r) in

terms only of orbit integrals from rmun to r < rmx S .uppressing the

superfluous + subscript on #, we find
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r
I +r) f drexpji(* *)

rm

max

1 max drilexp[i(*- - A+)] + exp[-i(#'+ # A*)]} (BlOa)
21T sin(A*) rmin

and

r
A max

f() dr'exp[-i(#'- *)]
rmn

r

+ exp(-iA) fma dr~{exp[i$f-+ f)] + exp[-i($'- )].(BlOb)
21 sin(AO rmin

Since i1) (r) + i-r)], we can combine these ^ + expressions into

r

1(r) -- m I dr~lexp[i sgn(r-r') (#-*)
rmn

[ exp(-iAf)cos( '- *) + cos(*'+ *-(B11)

When the exponentials and cosines in (B1L) are expanded, some

cancellations occur, and we obtain the more compact form

A rma
1() i~c ma dr' Ar

f IV (r')I W

x [CSO*+ G(r-r')sincos#' + e(r'-r)sin#'cos#] ,(B12)

tan( A#)
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where 0 is the unit step function and (B5c) has been substituted

for dr'. This form of I can conveniently be used either to evaluate

J(r) numerically or to investigate its analytic properties.
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