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MULTI-COMPONENT MODEL OF THE RESISTIVE HOSE INSTABILITY

I. Introduction

The resistive hose instabhility is a growing lateral distortion of an

energetic self-pinched heam propagating in a dense resistive plasma.
When there {s no significant equilibrium return curvent, the instahilfity
is driven hv a resistive lag of the magnetlc field in responding to
transverse displacements of the beam. The presence of return curreat
further destahilizes the beam hv magnetically repelling the displaced
heam from the axis.

Although the hose instahilitv has heen studied extensivelyl'g

» TMOSE
previous theoretical work 1s based on oversimplified models of beam
particle dynamics. Since the ninch force is anharmonic whenever the
radial profile of current density s rounded, particles have a spread of
betatron frequencies that introduces phase mixing and tends to damp hose
nscillations, Tn addition, the hetatron frequencv of a particle depends
on the extent and shape of its orbit, leading tn radiallv localized wave-

1,”

particle resonances, The earlv rigid heam hosc models and Yinetic

treatments assumineg helical particle orbits1’4

omitted phase mixing
entirelv, and as a result, these nodels overesrimated the degree of
fnstahiliry., The "spread-mass" model of Lees was a sftonificant
improvement; by introducing a realistic amount of nhase mixing in an
artificial way, it eave a reasonahle hose growth spectrum, even though
the model negzlected the correlation hetueen the betatron frequencv of
particles and their radial location.

Recentlv, thm and Tampe® develaped an "energyv-group" model that
exhihits radially localized resonances as well as nhase mixing, and here

we present an improved and refined version of that model. As in the !hm-

Tampe model, each heam slice [s represented by a superposition of rigid

Manuscript submitted December 17, 1981.




j f components with different outer radii, each of which responds
independently to the resultant transverse force acting on ft. Since the
beam response depends sensitively on the radial density profile of
componentg, we use a Vlasov analysis here to guide the choice of

component profiles. With an appropriate component shape, this "multi-

component” beam dynamics model accurately reproduces the localized
resonances and other analytic properties of a full Vlasov treatment,
while still being tractabhle by straightforward numerical methods.

The outline of the paper is as follows. 1In Sec. 11, we formulate

the Vlasov eigenvalue problem for the hose instability and determine the
analytic properties of the perturbed current J(r). The details are given
in Appendices A and B. In Sec. III, we use the milti-component model to

obtain an expression for J(r) and show that this form preserves the

important analytic properties of the Vlasov result. The method of

numerical solution for the dispersion relation and eigenfunctions is then
outlined. The results of extensive numerical calculations are given in
Sec. IV. We compare hose eigenfunctions and growth rates to earlier
models and discuss the sensitivitv of the growth rates to the equilibrium
return current fraction and the radial profile of conductivity. Finallv,
we mention work in progress that extends the range of applicahility of

the model.
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II. Hose FEigenvalue Problem

A. Assumptions and Rasic Equations

The equilibrium considered here is an axisymmetric self-pinched beam
of relativistic electrons moving in the positive z dAirection, with no
bulk rotation or externally-imposed fields, We make the "paraxial"
assumption that the transverse velocity of heam particles is small
compared with the parallel velocity v,. This assumption requires

that IInI <« IA’ where the net current 1, 1s the sum of the heam current

I, and plasma current Ip, and T, is the Alfven-Lawson current, given in

l/?‘Hc"lql-l. Here, M is the mass of beam

cgs units by T, = (Yz-l)
particles, q is the charge, and Y is the typical relativistic factor. It
follows that the beam radius a is small compared with the betatron
wavelength of beam particles XB = ﬂa(ZIA/IInI)I/Z. The background gas is
taken to he a stationary medium characterized by a conductivity

o(r) large enough to provide space charge neutrality, which requires
that c¢/(4n0) << a. The effects of collisions between heam particles and
background gas particles are ignored.

In the high-conductivity regime considered here, a non-rotating beam

has only an axial vector potential component A,, and all beam fields can

he derived from 1it:

Rg = - aAzlar, (1a)
-1

= laa /s, (1b)

I Y (1¢)

.z z L ]
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A, is itself determined by Ampere’s equation,

2

_Vl

Az - él (Jh + Jp). ()
Here, Jb is the z component of the heam current density, and the plasma
current density Jp in (2) 1s given hy aEz. For a paraxial heam in this
regime, transverse currents can he neglected as sources in the field
equations.

The equilibrium distribution function fy can be defined as any

function of the constants of particle motion, the particle enersyv

W= yMe? = (e2pep + 102, (1)
the azimithal angular momentum
Pe z tne, (4)
and the axial canonfcal monmentum
P Ep, +arg/e, (5)

where p = YMy is the particle momentum and Ay is the equilibrium A,.
Since we consider a non-rotating beam without external fields, we can
then take fn to he indenendent of Pe. To model a paraxfal, nearly-

monoenergetic heam, we assume that all particles have the same P, but

there 1s a snread in perrendicular energy




H =H - yMe, (6)

where

Ybuc2 ( Pfc2 + Mzcl‘)l/2 (7)

is the energy associated with P,. We therefore take f to have the form
fO(H,Pz) = FO(HL) G(Pz-Pb). (8)

It then follows from the paraxial approximation that v, is nearly
constant for all beam particles and approximately equal
to Bc = Pz/(YbM). For this distribution function, the equillbrium beam

current density is

2q8c f” ? FO(Hl)
J o N(r) =~ ap dH | e
b0 e ? U(r;Py) Lv (r3H Rl

(9

where the radial velocity v, = pr/(YH) is obtained as a function

of r, Hi’ and Pe fron (3)-(5), and the minimum perpendicular

energy U(r;Pe) in (9) is calculated from the requirement that v, be
real. Since all beam particles in this model have nearly the same axial
velocity, it is convenient to use z and f T Bct-z as independent
vartiables instead of z and t. Then { is a constant of the motion and
labels a co-moving slice of the beam, while z describes the time
variation in the particle reference frame.

In this paper we are primarily interested in developing an

eigenvalue treatment of the hose instahility. Since this approach is

5




possible only if the equilibrium is independent of ¢ and z, we require
that the beam radius a and the equilibrium beam and plasma densities
Jbo(r) and Jpo(r) are all independent of ¢ and z. These quantities are,
in fact, slowly varying except near the beanm headg'lo, which we do not
consider here. In addition, we must ignore the § and z dependences of
the conductivity o(r), which can result from heating and ionization by
the beam. Such o variations can have a significant effect when the beam-
generated conductivity is a large fraction of o, but this approximation
is appropriate for beams propagating in highly preionized channels. We
emphasize also that the multi-component model developed in Sec. IIIL is
not limited to axially uniform beams. A multi-conponent "simulation"
code, which explicitly retains all  and z dependences, has been
developed8 and will be reported in a separate paper.,

We formulate the hose eigenvalue problem by decomposing
perturbations into independent Fourier modes with azimuthal mode number

m={ and axial wave number k,. In terms of ¢ and z, the perturbed A, and

Jb have the form

A (r,5,2) A(r)
= exp(i8 - 1

. L
Jl(r’C’z) J(r)

Bec Bc s (10)

where @ = m~k28c is the frequency seen by beam particles, and w/(Bc) can
be thought of as a wave number for spatial oscillations in %Z. Fron

Ampere’s equation (2), the perturbed A, satisfies the linearized relation

d td _° 4mws(r) & _ 47 0
TFrac Tt 2 A - Je (11)

~

The perturbed beam current J is obtained from a standard Vlasov analysis,

6
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first integrating the linearized Vliasov equation along unperturbed
particle orbits and then integrating over the constants of the

motion Hl and Pe. The resu1t6 is

Sey = 208% T ap Tdu—-l—-ﬂ[lndﬁi(-u ?.)] (12)
* r Lo, TuTva am NE T e TRl

where
N 1 z ~ Q
I(r;H ,Pp) = 72 Ldz'A(r_i_) exp[i(eé_ -8) - 13—5(:'-:)]. (13)

In the orbit integral (13), r; and 9; specify the unperturbed
location at z’< z of a particle with r+(z) =r, 6+(z) = 0,

vr(z) = + |vr(z)1. and constants of motion Pe and Hi'

B. Particle Orbit Properties

Particle dynamics in the transverse plane is discussed at sonme
length in Appendix A. Here, we summarize the properties which influence
the analytic structure of the eigenfunctions and help to motivate the
multi-component formalism of Sec. III.

For paraxial beams, v, is approximated by

v (r;H ,Pg) = # (§3ﬁ)1/2 [Hl— U(r;Pe)]U2 , (14)
b
where
2
70 e () (15)
U(r;Py) =5 — - q
2] ZYbM r2 0

7
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is the effective notential that determines the transverse motion of a
particle with angular momentum PO' Using (14), the perpendicular enerov

can he expressed as

1 2
— + Y-
H = 3 YbMvr (r,Pe), (14)
which has the form of a particle Hamiltonian in a time-independent
axisvmmetric potential. Fach particle therefore executes periodic
oscillations In r while moving azimuthallv with an anpular velocitv

8 = Pel(Yerz). Fxcenpt in the special case wvhere the net current
densitv Jno(r) = an(r) + Jpo(r) is uniform, the effective potential ! is
anharmonic. Because of this anharmonicity, narticles in general have
precessing, unclosed orhits in the transverse nlane, and hoth the radial

oscillation frequency
Q =1 [f —_— (17)
and the average azimuthal frequencv

Q Pe rmax
L f (18)

b
r r lvrl

depend on H, and P, throush vr(r;H

L 0 Pe) and the orhit turaine points

L »
b . T 4 £ - : .
rmin(Hl’Pe) and rmax(HL’Pe) he orhits close in the r-08 plane onlv
when Qr/Qe is rational.
For particles confined near the center of the heam, it is possibhle

to calcnlate Qrand Qe in closed form. Tn this region, J o for an

unhollowed heam can be anproximated hv

8




Q% -t

o4

I o0 = 3o (1 - 2x%/ad), (19)

where a, is a radial scale length of the net current profile and in
typical beams is close to the beam radius a. To lowest order in

rzlai << 1, we then find that

W
Yh8a%
and
M, - Q_|P.I
Q.(H,,P.) ~ sgn(P )R (1 -~ ——0 0 3y (21)
g'MisFe 8% 72
AYhManQn

where the limiting azimuthal frequency is given by

2 _ 2uq8
00 '?;EE Jno(O)' (22)

The result that ﬂr > 296 as Pe + 0 is physically obvious because an
orbit which grazes the axis makes a complete radial oscillation while

6 changes by n. Similarly, for particles confined near the axis
with Hl + 0, the orbits approach closed ellipses with Qe + sgn(Pe)ﬂn
and ﬂr* 200. We note also from (20) and (21) that both Qr

and 06 decrease monotonically with H

l’
() ()
TR <0 - < 0, (?3)
3“1 Pe ’ a"l Pe

Numerical evaluation of Qr and 2, indicates that (23) holds for all r

0

when Jnn(r) is peaked on axis, not just for r <K a. Rowever, Qr

9
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depends on both H, and Pe when r/an is not small.
It is of interest also to characterize the class of beam particles

that have a particular oscillation frequency ﬂe, since these particles

are all resonant with a wave of frequency Q = Qe. Properties of these

particles can be calculated in closed form for the case

H, « qﬁAo(an) s (24)

which is equivalent to the particles being confined to r << a s where
(19) 1is valid and the effective potential U is nearly harmonic. We show

in Appendix A that when (24) holds, the equilibrium current density

profile of this class of particles is

. 2 1/2 . .

63050 1+ 2 gin” L T , 0 < ri< 8 R

0l0i¥ ™ ) ) 9 6

R (Re)-r
. =] ] B =2 2 =
83,(r30y) ={ 263,(0;2), 5 Ry < r* < Reay)

0, El(ne) <’

(25)

where i(ne), defined as the maximum radius accessible to any particle

with the specified value of Qe, is given in the small-orbit 1limit by

R (ag) = 3 (1-1241/9,) (26)

and occurs for particles with lPel = AYbM§290/9. which have orbits midway
between radial (Pe = 0) and circular (|P6| = 8YbM§290/9). The profile

(25) is shown in Fig. 1, and we note particularly that GJo(r;ﬂe) drops

10
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6J° ( I’; .ﬂ’)/aJo(o,ﬂe)

L | | T T
I | 1 l
0.2 0.4 0.6 0.8 1.0
r/R(0)

Fig. 1 — Equilibrium current density profile §Jo(r;29) of particles
with azimuthal frequency g, for the case with (¢ - Qp) € Qg
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discontinuously to zero at r = ;(99).

Numerical calculations for monotonically decreasing Jno(r) profiles
show that groups of particles with the same Qe have the qualitative
features of (25) and (26) even when r/an is not small. All such groups
have a hollow current density profile GJn(r;Q ) that vanishes

discontinuously at some outer radius i(ﬂe). This radius decreases

monotonically with Qe because the pinch force becomes weaker than that of
a harmonic potential as the radius increases, so that particles whose
orbits reach larger radii tend to have a smaller azimuthal frequency ﬂe.

The plot of i(ﬂe) in Fig. 2 for the case of a Bennett profile11

2,2 32
I o(r) =3 ((1+ r/a’ ) (27)
is typical, and we show in Appendix A that the curve approaches
Q(Qe) = 1,52 an90/|99| (28)

for “l > qBAo(an). Also, the particles with an azimuthal frequency Qe
whose orbits pass through E(ne) are found in peneral to follow orhits
that are intermediate between linear and circular. Since ® and |Qe|
normally have a one-to-one functional relationship, we can take Qe to bhe
a function of R and think of R as the independent variable characterizing
the class of particles with azimuthal frequency Qe(;). For later

reference, we note the inverses of (26) and (28):

Qg(R) = +2,(1 - R /3a ), R << a (29)

12




TR I ST AR T T

SRR b O Bl b

0,/9,
Fig. 2 — Maximum radius i(na) attained by particles in a

Bennett beam with azimuthal frequency Qg, shown by the solid
curve, Component radius R, (Q¢) is the dashed curve.
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Qg(R) = + 1,52 Ra /R, R >>a. (30)

C. Analytic Properties of J(r)
The periodicity of the particle orbits makes it possible to rewrite
the Vlasov orbit integral I in (13) as an integral over r over half of a

radial oscillation. The result, derived in Appendix B, is

r

max N
Soo. - dr’A(r”) cosd(r)cos¢(r”)
I(riH),Py) = -iBc [ W (e | tan(w(a.- WA
Thin r ] r
+ O(r-r*)sind(r)cosd(r’) + O(r’~r)siné(r’)cosd(r) ] , (31)

where ¢ is the phase shift along the orbit,

r 6(r';Pe)-Q
O(r;Hl,Pe) = [ dr T T Tal (32)
Tmin r

For clarity, the “l and Pe dependences of the orhit quantities

Q Qe, 6, and ¢ have been suppressed in (31) and (32).

Tmin® Tmax® Vre oo
Although (31) could be used in (12) to calculate J(r), we are interested
here in using the expression to examine the analytic propertlies of J(r).

The integrand of I is singular at the zeros of tan[ﬂ(ﬂe- 9)/ﬂrl.

i.e. for real ? and values of Qe(Hl,Pe) and Qr(Hl,Pe) that satisfy




Q= 96 + nﬂr (33)

4 for any integer n. The principal resonance with n = 0 normally gives the
strongest coupling because, according to (32), the variation of ¢ along
an orbit is a minimum for this case, and the integrand in (31) is least

oscillatory. We therefore consider strongly resonant modes with

-t

Re 25> Im Q and Re @ = ﬂe(i) for some R S a - A numerical evaluation

of (31) for realistic A confirms that the principal resonance is indeed

dominant for these modes. Other resonances, mainly n = 1, typically
contribute less than 10X to the magnitude of i, while the nonresonant
|) terms account for less than 2%. We are therefore justified in
- substituting t(ﬂe- 9)/9r for tan[n(ne- ﬂ)lﬂr] in the first term of (31)
and neglecting the nonresonant second and third terms. We also use (23)
to change variables from Hl to 99. These manipulations obviously

preserve the analytic character of I near the principal resonance. The

perturbed current (12) can then be written approximately as

| ] g R By arg
b J(r) =~ 2¢°8°yMc [ da, [ -

0 ° max(0,p)) (p,- P /%y~ B )!

/2

b 2p 2 ) ¥ 4

[

X ——

dH

Q)
L]
@D

| [Ar) + s 23— <], (34)
Pe 0

S g e

s ¥

where the quantities P+(r;ﬂe), given in Appendix A, are the maximum and
b minimum |Pg| values that formally give H 2 U(r;Q,) and an azimuthal

i frequency + ﬂe according to (15) and (21). The ﬂe integration range in

15

. . 3 . " e S D e . T s ere R
D e e T WKW L, . ) caa




'

(34) includes all positive ﬂe values of particles with orbits passing

through r, and

T

N -1 nax dr’;(r')
<A(r;ﬂe,Pe)> = 7 nrcos¢(t) { T;:?;=7T cosd(r”) (35)
min

is an appropriate orbit average of A(r) that depends on ﬂe and Po

through Toin® Tmax® Vp» and ¢é.

ma

Several analytic properties of S(r) are irmediately evident from
(34):

(1) In the special case FO(HL) = G(Hlf “b)’ vhere Hy is a constant,
the beam current density profile Jbo(r) is flat out to a maximum radius,
and the pinch potential is harmonic, provided that Jpo is also flat.

Then ﬂe is the same for all particles, and when Q * ﬂe, 3(:) becones
singular as (8 - Qe)-l at all values of r.
(i1) In the more physical case where FO(HL) is a non-singular

function of H the beam profile Jbo(r) is a smooth, rounded function,

l’
and normally Jnn(r) i1s likewise rounded. Then J(r) has a singularity

at ;(ﬂ) for real values of Q ¢ Qn'
J(r) = 1n [r - R(D] (36)

as r + i(ﬂ).

(111) As 9 ~+ 90, the singular point in 3(:) moves to r = 0, When
(34) is rewritten in terms of QS/Q, it becomes apparent that 3 depends on
r and @ only through r = r/ﬁ(n), and that the perturbed field equation

(11) reduces to




i

~2 ~
+ ATk 000) 4 . o, (37)

dr c
Thus the destabilizing contribution of the perturbed beam current
vanishes in the limit 9 » Qo, and the hose mode is damped.

If we write (34) in the form

Qe(ﬁ;r)
J(r) = [ da, 83(r;fy) (38)
0

to emphasize the contributions to 3 from groups of particles with a
common value of Qe, we see that Sj(r;ﬂe) vanishes at r = 0 and goes
discontinuously to zero at r = i(na), the location at which
P+(r;90) = P_(r;Q,). This discontinuity is responsible for the
logarithmic singularity of 3(r) at r = R(RQ).

In the next section, we use these properties of J to guide the

formulation of a macroscopic beam dynamics model.

17
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IIT. Multi-Component Formalism

A. Bean Dynamics Model

It is evident from the discussion in Sec. IIR that a heam can bhe
thought of as partitioned into groups of particles with the same value
of Qe. Each of these groups is localized within 0 { r £ ;(96), and all
particles in such a group are resonant with a wave of frequency R = Qe.
This radial localization leads to the singularity in S(r) at i(ﬂe) found
in Sec. TIC. A macroscopic beam dynamics model might therefore represent
the resonant structure correctly, provided that it localizes the part of
the beam resonant at frequency 2 within radius i(ﬂ).

Our approach 1is to represent the beam slice at axial location Z as a
superposition of components with different radii, each with an
equilibrium current density profile of the form

{ GJO(O;R)G(r/P), r <R
GJn(r;R) = (30)
n, r >R,
where 6(N) = |, The quantity R is used here to identify the component
with radius R, just as either ﬂe or R was used in Sec. II to identify the
group of particles with the same R,. The beam current Jbo(r) is the sum

)

of the component densities,

Jpn(r) = ‘{dR 83, (r;R). (40)

To treat the linearized beam response to an m = 1 wave of the form
(10), we specify that J(r) he the sum of the individual component

perturhed densities,

.
w *‘;\Q"’Y‘;Lst

RIS ST S
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I(e) = [ dR 83(r3R),
0

and we require that each component respond rigidly to the

linearized J x B force averaged over its cross section, so that
83(x3R) = = E(R) - 63 (r;R)
' ar T0°°

where E(R) is the amplitude of the Fourier-analyzed transverse
displacement. From Newton’s force law, we find after two integrations by
parts that

Y -~ dA

R
22 nq8 . dA A S 0
-Q"E(R) = ?;ﬁgfziy g dr r[GJn(r,R)(E; + r) + 8J(r;R) ET—].

R
SI(R) = 2x{ dr 83, (r;R)

0
is the component current. We note that the second bracketed term in (43)
represents the restoring force on the displaced component due to the
equilibrium field. Using (42), this term can be written
as -ﬂz(R)E(R), where

dAg 5

MGI(R) fdr r — dr 37 834(TiR) (45)

2
ﬂc(R)
is the natural oscillation frequencv of the component with radius R in
the equilibrium field. Fquation (43) can then be rewritten
R

- '}
({ dr rA(r) 3= 83, (r;R),

2 g 1
E(R) = —1!
ybHEI(R) QZ(R) -a

2
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which explicitly displays the resonance at QE(R) - 02. It is evident

that QC(R) plays a role similar to that of the individual particle
frequency 99(5), although we should récall that the component executes
linearly polarized simple harmonic oscillations with no azimuthal motion,
whereas individual particles follow complicated precessing orbits in the
transverse plane.

The Vlasov analysis of Sec. II shows that the group of particles
with a given value of Qe does not in fact respond rigidly to a transverse
force. Nonetheless, we can choose the component shape G(r/R) so that the
perturbed current density 63(r;R) of a component reproduces the
properties of the Viasov perturbed current contribution 63(r;9 de As
noted in Sec. IIC, 63(r;R) should be a continuous function on
0 { r < R, that vanishes smoothly at r = 00 and drops discontinuously to

zero at r = R, We choose the convenient mathematical form
L, 2
83,(r;R) = 83 (03R) (1 - r /RT) O(R - 1), 47)

which satisfies these requirements and yet allows the component profile
to be varied from a triangular shape to a step function by varying £ from
unity to infinity.

With this comnonent shape, (40) can be solved for the coefficient of

83
2
d”J aJ
1 b0 b0
835(M5R) = ¢ [r — - D 27 pup (48)

and the component current (44) is
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§I(R) = nszn(o;R) . (49)

L
2

Combining these expressions with (41). (42), and (46) then gives

- L d7J dJ
o (242)q8 -1 dr o . b
J(r) Yu | =gz [r— -1 —= g
b r R dr
R Y
X'TE-——L_-_E [ dr-r-t A(r”), (50)
Q°(r) - Q 0
c
where, from (45),
2 4mqB 2 1 ? ( et
@Ry = —22 = = [arr(1 -5 ) 3+ ) (51)
c Ych L R2 0 Rz b0 N
Comparing (51) with (22), we see that
2 2
a( =a,, (52)

independent of £. For real @ values less than the maximum ﬂc, the

resonant denominator in (50) can be represented near the singularity as

aa’

c
R - Rc(ﬂ)‘ ('EE- )R_Rc(g),

where Pc(ﬂ) is the radius of the component with Qca 1 and may be thought
of as the inverse function of (51). This pole in the integrand of (50)
leads to a logarithmic singularity in 3(r) at r = Rc(ﬂ), in agreement
with the Vlasov result,

To choose an appropriate value for the index £ in the component

profile (47), we examine the .J(r) expression (50) as 8 + Qn. Since
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90- QC(R) varles like R2 for small R, the resonant denominator in (50)

can he approximated for Q + QO by

We can then write (5N) in terms of r = r/Pc(Q) and R = R/PC(Q):

AR an[o;Rc(le

- 5
R2£+L

R s~
= [ dr r A(r’). (53
R"=1 0

N — 8

)

We note from (48) that for £ = 2, 6Jn(0;P) « R3 for small R, whereas for

any other value of £, GJn(n;R) « R, Consequently, as RC(Q) + 0, J() is

independent of Pc(ﬂ) when £ = 2 and becomes negligible compared with

1 d
R2(Q)  dr
c

1 d N
T E’F rA = (54)

[«N =N
a}

::.ID.
ladl
>
-

[}
|-
i

so that the A equation (11) takes the form of the Vlasov result (37).

?

For other values of %, J « R; (@) in the same limit. We thus conclude

that £ = 2 is the only physically acceptable choice.

with £ = 2, the multi-component expression (53) for 63 also shows
remarkabhle agreement with the Vlasov result in other respects. The
multi-component resonance location Rc(ﬂ) is compared with the Vlasov
resonance location 5(9) in Fig. 2. The two quantities agree to within

everywhere and to much greater accuracy for the large fraction of beam

particles with rmax/an < 2. In the limit Q » ﬁn, (51) gives

2,02
QC(P) = 90(1 - R /Ran) (55)

5%




for & = 2, in exact agreement with the Vlasov expression (29) for Qe(ﬁ).
In the opposite limit, @ + 0, the multi-component expression is

1/2

2 (R) = 2% aa R, (56)

the coefficient here agreeing with the Vlasov result (30) to within 5%.
In addition, a numerical evaluation of E(r) for the two models, using
realistic Jyq and A profiles in (12) and (50), shows agreement within 7%
in the perturbed current magnitude. This suggests that the multi-

g component model accurately represents the strength of resonances, as well

as their location and analytic form.

B. Calculation of Eigenmodes

We formulate a hose eigenvalue equation by substituting the multi-
component J expression (50) with £ = 2 into the m = 1 field equation

(11). The result 1is

d 1d N 4briwc °
drrar At T2 A
C
167g8 _ ; drR (d 1 Ypo 1 R 2 -
s 7—ﬁ%— r] 2 dr ¥ “dr ‘r=R 2 2 [ ar'r?® AGe®),  (5T) i
b r R 2(R) - % 0 .;
where, from (51), g
Ry - 898 L Fa (1 X ) (o - ) (58)
c Ych R2 0 R2 b0 p0’*

Boundary conditions are obtained from the requirement that
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L0 XY

P

AC0) = 0 (59)
for an m = | mode and from the far-field solution of (57)
Ael, (60)
r
It 1is

This eigenvalue problem can be solved for either w(®) or (w).
apparent from (10) that a wave with real Q and Im w > 0 has constant

amplitude at a given beam slice but grows spatially back from the beam
head (i.e. with increasing Z). Similarly, a mode with real

w grows with increasing z 1if Im Q > 0. We concentrate here on modes with

real Q because these modes show the effects of localized resonances most

clearly.

To solve the dispersion equation numerically we first rewrite (57)

as a homogeneous, fourth-order ordinary differential equation,

d 14 14d dr 4driw d o dar ,
H?E;*E(IE-P 2P)+ c2 a—[—f—z-(rE+ZI')]
dJ
_ 16mq8 1 (d 1 ""b0 T -
7 (& ¢ ) 5 =0, (61)

where

dr-e-2 A(r”). (62)

Ov—n

I(r) s —%
r

This definition of I and the two constraints on A, (59) and (60), give an

appropriate set of boundary conditions:
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o) =

r<(o) =
%ig w [7(n) =
%1@ - '(r) = 0.

We reduce (61) to a homogeneous matrix equation by representing the
derivatives by finite Aifferences on a nonlinear mesh, with grid points
clustered near the axis and any resonances. For real @, appropriate jump
conditions at resonance points are provided by local power series
solutions of (A1), Figenfrequencies are calculated by

specifying w or 1 and iteratively adjusting the other frequency until the
matrix determinant vanishes. The correspondine eigenfunctions are

calculated by the method of inverse interation.l2

C. Equilibrium Specification for Beams with Return Current

Although the dispersion equation (61) can be solved for any choice
of Jpo(r) and Jyn(r) that give a non-negative Qi, an arbitrarily chosen
Jpo may correspond to a physicallv unlikely distribution function. Here,
instead, we specify a Maxwell-Roltzmann Adistribution function,

J. ~(0) H
bn 1
= 5?7;ﬁE§Ei; exp(- - ), (64)

“b

Fa(H)

and also specify the conductivity profile o(r) and the effective net
current fractinn, defined as
o dA

f dr r2|
0

2nc
1

0
an ar 1o

f =
e

; (65)
b




The equilibrium electric field E,y = -BaAO/BC is taken to be independent
of r, which is a good approximation for r { a. The equilibrium beam

current expression (9) can be evaluated analytically in this case and

glves
Jpofr) = I 00 exp(qBAO/Hb). (66)
and substituting this expression into (65) gives

f (67)

2¢c
4= H.,
e qBIb b
an expression of the Bennett pinch conditionll. For a given I, the
effective net current f, depends only on the perpendicular temperature Hy
and can be specified independently of JpO' The equilibrium potential A,

is calculated by numerically integrating Ampere’s equation (2) in the

form

dAO
r

el

'Q-

1 4n
< = o) - arE, ], (68)

[=%

r

where Jyo is given by (66) and (67) as
2¢c
Jo(r) = J,(0) exp[ TI Ay(r) ], (69)
and E, is determined iteratively by requiring that

I, = 2n g dr r J, o (r). (70)
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This procedure yields a Bennett current profilell

2
r -2
Jpolr) = Iy 0(0) (1 + ? ) (71)

with a beam radius

Ib )1/2

a = (W (72)

either when E,q = O or when o has the same radial dependence as (71).

D. Comment on the "Energy-Group" Model
In Ref. 6 we used a multi-component model with a simple component

current density
GJo(r;R) = GJO(O;R) O(R-r), (73)

which corresponds to (47) with £ + ®, These components were referred to
as energy groups because each one represented the group of particles with
some particular value of perpendicular energy Hl' Unfortunately, the
present analysis shows that this component shape 1is incorrect. The

result of using (73) in the multi-component J expression (50) is

deo
dr °

3(r) - .48 ;(r)

M 2
Qc(r) Q

1
Yb r

5 (74)
Equation (74) gives a pole in J(r) at r = Rc(ﬂ), rather than the
logarithmic singularity found by the Vlasov analysis of Sec. II.

Substituting (74) into (l1) leads to a second-order dispersion relation
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E d 14 ° 4driwc(r) * 4nqB ;(r) 1 den
S LS pa(r) + 22200 A(r) = =21 ==, (75)
k \ dr r dr o2 Y Me ﬂz(r)- g2 r dr

which duplicates (45) in Ref. 6. Tn the limit Q » Qn, (75) can be put in

the form
i y 4 14 oo AmieRZ(@0(0) . _ s (™ a’
__':'—: r (r) + 9 A(r) - -2 J (n) —?- ’ (76)
dr r dr c l-1r n0 a”

where r = r/Rc(ﬂ), a, 1s the net current scale radius defined hy (15>,

and a 1s the analogous beam current radius. According to (76),

,, mRZ(Q) remalns constant as  + Qn. Since R:Z(Q) « (ﬂn- Q)-l, this model
predicts a pole in w for Q = Qn and an infinite growth rate Im w
. as Q » 90 from below. The correct result is that the wave is damped in
this 1limit.
This sensitivity of the solution to the component shape motivated

the Vlasov analysis of Sec. IT and the more careful choice of component

shape in Sec. IITA.
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IV. Results

We have numerically solved the multi-component hose eigenvalue
problem discussed in Sec. III for real @ and various choices of effective
net current fraction fe’ beam current profile Jbo(r), and conductivity

profile o(r). The results are discussed in this section.

A. Eigenfunctions
(1) Resonant eigenfunctions. In the usual case where the net
current density profile Jno(r) is bell-shaped and peaked on the axis,

ﬂc(R) also peaks on-axis and modes with real Q < @ are resonant at

0
r= Rc(ﬂ). A typical hose eigenfunction for such a mode is shown in
Fig. 3. As expected, there is a logarithmic singularity in the perturbed
current at r = RC(Q), and we note that the perturbation is essentially
confined within 0 < r < Rc' Varying 9 or fe changes R, and therefore the
width of these resonant eigenfunctions, but their shape is hardly
affected: If ; and 3 are plotted as functions of r/Rc, they are nearly
independent of 2 and fe so long as ﬂc is monotone decreasing with R.

The resonant structure of these eigenmodes, properly regarded as
internal disruptions localized within resonances, is ignored in the
earlier rigid-beam1’2 and spread-mass5 hose dynamics models, where the
perturbed current E(r) is taken to be simply a rigid displacement of the
entire beam.

(11) Doubly resonant eigenfunctions. When the radial profile of
Jpo(r) is narrower than that of Jbo(r) and f, is large enough, the net
current density Jno(r) can peak away from the axis. In this

case, Qc(R) also peaks off-axis, and a mode with real Q < max(ﬂc) is

resonant at two different radii that satisfy QC(R) = Q, We then find
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‘i Fig. 3 — (a) Real and imaginary parts of A(r) for a typical hose
eigenfunction with Q real. In this case, J,,o and o have Bennett
g profiles with radius a, and we have Q2/Q¢ = 0.8 and R, (Q)/a

=~ 0.7. (b) Real and imaginary parts of 3(!) for the same mode
as (a).
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that the perturbation is largely confined between the two resonant radii,
as shown in Fig, 4,

(1{11) Non-resonant eigenfunctions. Modes with 2 > ﬂo or with
significant Im Q are not resonant., We find then that the form of the
eigenfunctions 1s closer to that of a simple displacement of the heam,
where

S(r) « dJ, ,/dr.

(iv) Higher radial eigenmodes. F¥or any value of §l, there is an
infinite sequence of eigenmodes corresponding to increasing radial
quantum number.3 For beams with a Rennett profile and no return current,
we invariably have found these modes to be strongly damped. Farlier work
indicates that some of these modes may he unstahle for flat beam
profiles1 and for cases with a large return current fraction6’13, but we

have not examined thege cases.

R. Dispersion Characteristics
The eigenvalue equation (57) is conveniently put into dimensionless

form by introducing the scaled quantities r/a, wt

g» And 2/2,,s where

2
= 1 mo(0N)a
W32 an
Bc
is the decay time for dipole fieldss’6 and
92 . 2anan(n) -
no YbHc

is the value Qg would take in the absence of return current, given in

terms of the beam plasma frequency wn(r) by %-Bzw:(ﬂ). The resulting
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Fig. 4 — (a) Real and imaginary parts of A(r) for a hose eigen-
function with two resonance points and Q/Q¢g = 1.3. (b) Real

and imaginary parts of j(r) for the same mode as (a).
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eigenvalue problem is 1independent of a, B, Yb’ o(0), and Jhoe The
dispersion relation can therefore be quite generally expressed as a
functional relationship between wT, and Q/an, depending only on the
scaled quantities 0(r)/o(0), Jya(r)/Jpa(0), and Qc(t)/ﬂon. We present ;
our dispersion results in this form.
(1) No return current. The hose growth rate Im(wrd) and the
frequency Re(mtd) are plotted as the solid curves in Fig. 5 for the case
where Jyn(r) and o(r) have Bennett profiles of equal width. We note that
{ instability occurs oniy over the range 0 < Q/QOo < N,78, with the maximum

growth rate wr, = 0,65 occurring at 9/900 = (0,57, We note

d
i that w = 0 when 2 = 0, so0 that a beam displaced rigidly from the
conductivity channel axis is neutrally stable, reflecting the fact that
i there is no net force on the heam in the ahsence of nlasma current.
For 0 < Q/Qn < 1 the growth rate is determined by competition between the

resonant wave—particle coupling and phase mixing due to the hetatron

frequency spread. Fven though resonance effects are stronger

P

as 1 + Qn, the number of resonant particles, given approximately by (49),
decreases as Rc + 0, and for Q/QOo > 0,78 the damping dominates. A
: dispersion relation of this type leads to convective instability in the
i’ beam frames, i.e. a perturbation introduced at some noint along the heam
will grow as it propagates back in f but will eventually decay at any
given value of g,
This case has previously been studied using the energy-group model6
and the spread-mass nodels. An exact solution of the energy-proup
dispersion equation (75) gives a growth rate Im w(f}) that agrees well

with our presert result for Q/ﬂn0 { N.6, but continues to increase to a

pole at n/noo- 1, for reasons discussed in Sec. IIIN., However, the
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variational method used in Ref. 6 to approximately solve (75) reduces the
resonance strength and leads to the dashed curves in Fig. 5, which agree
well with the multi-component result. In the spread-mass model, each
slice of the beam is subdivided into rigid components which have density
profiles identical to the beam itself. The perturbed current is thus
constrained to be a rigid displacement of the slice as a whole, and there
is no correlation between the radial extent of a component and its
resonant frequency. The components carry eaqual fractions of the bheanm
current, but a realistic spread in their oscillation frequencies is
introduced by assigning the components different masses. For a beam with
a Rennett density profile, the resulting dispersion relation is identical
to the variational approximation nf the energv-group expression, plotted
in Fig. 5 as dashed curves, and it aprees remarkably well with our multi-
component result over the entire unstahle ranege. The reason for this
good agreement 1is that, for a Bennett profile with no return current, the
unstahle frequencies have resonant radii RC(Q)/a > 1, so that the
components which interact most stronglv with the wave are nearly as broad
as the spread-mass components. Consequently, the resonant components in
the two models respond similarly. For waves with Q/Qno ~ 1
and i/an<< 1, which have stronpger resonant effects, the two growth
spectra hecome quite different, even though the modes are damped and
therefore physically unimportant,

The growth spectra for both the spread-mass and multi-component
models are sensitive to the equilibrium beam density profile Tp0s and the
two models do not agree as well for other beam profiles as they do for

the Rennett profile. For a Gaussian profile
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Fig. 5 — Real eigenfrequencies Re w and growth rates Im
w for the hose modes with Q real, calculated for a Bennett beam.
The solid curves are obtained using the multi-component model;
dashed curves come from the spread-mass model or the variational
approximation to the energy-group model.




3y 0(0) = 3, (D) exp(~r’/a’) , (79)

the spread-mass formalism can be applied onlv if the conductivity has the

broadened form

2 2,2
o(r) = o(m Ly —exeCr fa ). (80)
a1 - exp(-r"/a™)

The growth spectrum from the multi-component treatment is shown for this
case as the solid curve in Fige A. The curve is more sharplv peaked near
the maximum growth rate than the Bennett result in Fig. 5 because there
are fewer particles with QC/an near 0 and 1, The corresponding spread-
mass result, plotted in Fig. 6 as a dashed curve, is broader than the
multi-component curve and is shifted to larger Q values since the mass
distribution in this case has more low-mass particles. The dotted curve
in Fip. 6 is the growth spectrum calculated from the multi-component
dispersion equation using (79) for Jpo and a similar Gaussian profile
for o, This is a more realistic conductivitv profile than (R0) for a
Gaussian bheam and gives a substantially higher maximum growth rate
hecause the wave-driven dinole return current is confined nearer the
axis. This sensitivity to the width of the conductivity channel is a
general feature of the hose instahility and is discussed subsequentlv.

(11) Effect of return current. The presence of eaquilibrium nlasma
current wvorsens the instahility by magnetically repelling the disnlaced
heam, and this repulsion is increased when a narrow ¢ channel confines
JpO and the perturbed plasma current near the axis. Figure 7 shows the
effect on the hose growth spectrum of a nonzero return current fraction

f = 1-f when J
e

r n and ¢ hoth have Bennett profiles with the same

b
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Fig. 6 — Hose growth rates for a beam with a Gaussian current
density profile. The multi-component model gives the dotted
curve for a Gaussian conductivity profile and the solid curve for
a broadened o profile. The dashed curve comes from the spread-
mass model, which required the broadened o profile.
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Fig. 7 — Hose growth rates for beams with different values of f,
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radius. The return current is seen to he the dominant destabilizing

factor when fr 2 0.3, and for these f, values the maximum growth rate

ey

increases approximately proportionally to f.» as expected for pure
magnetic repulsion.6 In this case, Im w > 0 even for & = 0, so that a
beam that 1s rigidly displaced from the conductivity channel axis is
pushed further away. This is an ahsolute instahility in the heam frame.

(i11) Narrow conductivity channel. A narrow conductivitv channel
can also substantially increase hose growth by preventing the perturbed
plasma current from following the beam distortion, even when there is no
equilibrium plasma current. The growth spectra in Fig. 8 are calculated
for beams with Jpn = 0 and a Bennett profile of o(r) with a radius

; different from that of the beam. We see a dAramatic increase in the

maximum growth rate when the ratio a of the conductivity radius to the

Jyo radius is less than unity. Rroadening the conductivity channel, so

that a > 1, has a stabilizing effect on hose modes, but the effect is
less pronounced than for narrow channels because ; is still confined
within RC(Q) and largely determines the radial profile of the plasma
current when ¢ is broad and Jpo = 0,

(iv) Return current and narrow conductivity channel. Figure 9 shows
; the growth spectra for a case with equilibrium return current fr = 0,25,
and several a values. As expected, the presence of return current and a
narrow conductivity channel act together to increase the growth rate even

more ranidly.

C. roncluding Remarks

We have developed a tractable model of the resistive hose

ingtability which retains many features of a full Vlasov treatment, and
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Fig. 8 — Hose growth rates for f, = 0 and different values of «
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Fig. 9 — Hose growth rates for f, = 0.25 and different values of a
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we have used the model to examine the dispersion relation and

Ty

eigenfunctions in a variety of cases. The rigid component dynamics used

here is particularly suited to m = ] perturbations like the hose
instahility, but with appropriate modifications this approach is
applicable to m = 0 beam modes and possibly to other resonant
instabilities of periodic systems,

We note that these hose stahility results are restricted to beams
propagating in a medium with a fixed conductivity profile. For the case
of intense beams propagating into initially un-ionized or weakly ionized
gas, the ionization and heating generated by the beam typically causes
the conductivity channel to follow beam displacements. Since this effect
= reduces the separation hetween the bheam and plasma currents, it is

stabftlizing. We have shown in the related case of the sausage

instability7 that this effect can be treated correctly only by including
conductivity generation consistently in the equilibrium as well as in the
perturbation, i.e. the equilibrium conductivity o(r,z) mist be allowed to
increase with . This self-consistent treatment of beam—generated
conductivity introduces non-ignorable { dependence and is thus beyond the
scope of the one—dimensional eigenvalue treatment developed in this
paper. However, we have develoned® a numerical treatment 1in which the
multi-component model is solved by following the evolution of an initial
perturbation in space and time, rather than hv Fourier—analvzing in 5

g and z. This approach allows us both to treat conductivitv generation

self-consistently and to include axial varfations in the equilibhrium beam

and return currents. Since we do not assume high conductivity or charge

neutrality in this time-dependent model, we can also treat the weakly-

pinched heam head. This work will he reported in a separate publication.
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It is also to be noted that in cases of very high beam current
density and low enough background gas density, such as in {on bheam
transport for inertial confinement fusion, heating of the background gas
can lead to significant hydrodynamic motfon of the gas.la This effect

should also be included self-consistently in a full treatment of hose

instability in such systems.
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Appendix A: Particle Orbit Properties

(1) Particle motion in the transverse plane

Nsings the definitions (3)-(5), the energy H of a particle in a

high-conductivity beam can he written in terms of the radial momentum

component p. and the canonical momentum components Pe and P, as

2

P
mz mel= [Pt + 2 p3+-—§ +(p,-3 Ao)z]}llz.
T

(A1)

Fquation (Al) may be regarded as an equation for pz as a function of r

and the three constants of motion. For a paraxial beam

with pi > pi + pg and v, ™ ¢

1/2,, 3 1

-2 -
11 << 1, = (=D e,

and from Ampere’s equation (2) we find
lqA Jel € 1qL, /e’ | << faT, /e | * vic = p_.
0 b A z

~

This allows us to rewrite (Al) in the approximate form

22 202,78 2Py
W [oghe™y™ + (o + == = = 4p) 1,

r

where

Ychz E (Picz + Mzcl')l/2

(A2)

(A3)

(A4)

(AS5)

is the energy associated with P,. Since Yhﬂcz is large compared with the
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energy in perpendicular motion and in A,, (A4) can be approximated by

2
P qP
2 1 2 0 z
R S T i A (46)

The radial velocity V.= pr/(yﬂ) = pr/(YbM) can then be written

2 2 )
v (r3H ,Pe) = —YbM [Hl - U(r,Pe)], (A7)
where
- 2
H 2 H -y Mo, (AR)

may be regarded as the energy in the transverse plane, and Ul is an

effective potential given hv

1 Pe
"(l‘;P ) = —2-_??" r—?' - qBAn(r). (AQ)

The complete particle dynamics thus reduces to motion in the transverse

plane subject to an effective central potential.

(11) Particle oscillation frequencies
S ince v2 is a function of r only, for a given Hl and Pe, particles
execute periodic radial oscillations while gyrating at an angular

velocity 6 = Pe/YbHrz. The characteristic frequencies are the radial

oscillation frequency

r
max
dr']-l (A10)

Q(H ,P) = [ f v




and the mean azimuthal frequency

r
ﬂr(nl,Pe)Pe max .
™, M 2
b l-min r 'vr'

ne(nl,ve) - (A1D)

where the turning points rmin(“l’PO) and rmax(nl’PO) are solutions of
v2(r;H,,P,) = 0 (A12)
r 18

such that H, > U(r;P,) for rmin< r < raxt I general, Qr/ﬂe is
irrational, and the orbits do not close. In the speclal case of a
harmonic potential, corresnonding to a uniform net current, these
frequencies are independent of "1 and Pe, and ﬂr = 296.

For particles confined near the axis, where the potential is nearly
harmonic, we can express r 4., To.., Qr’ and Qe in closed form. 1In this

limit, the net current can be expanded in the form
2
I o(r) = J ((MQA = 2r%/a ), (A13)

and Ap(r) can be written to the same accuracy as

2
2
Ay(r) ~ =23 (0) £(1 - 2: 5 ) (A14)
n

where a, is the radial scale length of the net current profile and we

assume




which holds for particles with

HJ. <4 qSAO(an) . (Al5b)
Using (Al4), we can reduce (Al0) and (All) to
é 2 2 2 2
3 r- + 2r r’ -
g = wg (1 - DX min )I/Z[K( _max __min )]—1 (A16)
T 0 2 2 2 2
2a 2a"=- r - 2r
n n max min
3
1 and
l
.£'- Q Qr anPe 21/2
F e ™. Y. M 2 2_ .2 2 1/2
L 0 '® rmin(zan “max Zrmin)
2 2 2 2
rmin- rmax rmax— tmin
x I , —: )s (A17)
2 2 2 2
r 2a - r - 2r
min n max min

where K(a) and N(a,B) are complete elliptic integrals of the first and

third kindsl?,

1
. dx
i K(a) = |
§ 0 [(l-xz)(l—axz)]l/z (A18)
: ~2(1-2a), a << 1
é
} and
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1
N(a,B) = [ dx
0 (l-sz)[(l-xz)(l-axz)]1/2

n 1 a
i-[l+(—;;—;;f7§ - l)'ia ] ’ a<c<1.
In (Al6) and (Al17) we have introduced the characteristic frequency

2mqB

- 1/2
90 = [ Ych ] ’

3 (0

and again LI

order in r, . /a,,

2 2. 2
Tmax “l Qn P 1/2
2 = 2 [l : (1 = 2 ) ]'
i v, MQ H. =
min b0 1

r

(A19)

(Hl’Pe) and rmax("l’PO) are defined by (Al2). To zeroth

(A20)

Using this approximation and the small argument expansions of K and N

in (AlR) and (A19), the orbit frequencies (A1) and (Al17) can be

rewritten as

M,
% = 2501 - 4y Ma2g 2
Yy 80"
and
3H - Q_ P
Q. = sgn(P,)Q (1-—1—0—9—).
9 8’0 iy Malg 2
Yb an (]

We see that Q. is the magnitude of ﬂe in the limit Hl* 0.

0
Tn the opposite limit

(A21)

o
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T ax fa’ > 1,

which is equivalent to
Hl >> qBAO(an) .
we can make the approximation

An(r) = 4c_1IInI ln(r/an)

(A23a)

(A23b)

over most of a particle orbit. Writing H, in terms of the outer turning

point ¢ (H ,0) of a particle with P_= 0, we then have
max L

8

2
n

N‘éﬁu

Hl- U(r,Pe) ybHa Qn ln[rmax(Hl,O)/r] —

and the orbit frequency expressions (Al0) and (All) reduce to

" a IPg! )
]

&= —am A e o®
2 max . 1°? h "Nn max 1?

and .

anno 'PGI

S U Y )
<] M 4
rmax(Hl’n) 2 Yh Qﬂanrmax("l’n)

where

(-?len X =V
min

(A24)

(A25)

(A26)




P

&e-_.'-\:ka‘- YT ISR )

*nax dx
GZ(Y) = vy GI(Y) I 2 2:1/2 °
Xoin x(-2x Inx -y )

Here, xgi,(y) and Xpax(Y) are the solutions of
- x21n x2 = y2. (A27)

(iii) Density of the group of particles with the same ﬂe

The group of particles with given 96 includes particles with angular
momentum Pe ranging from zero for orbits through the axis to some maximum
value for circular orbits. The orbit turning points likewise depend
on Pe, and in the small-orbit limit (Al5), we can analytically calculate
Thax @8 a function of Qe and Pe by combining (A20) and (A22). This

procedure indicates that all particles with frequency ne are confined to

the region 0 < r < i(ne), where
R 2(ay) = 3a2(1-12,1/9,) (A28)
] n 1 R ) R

Using this result, (A20) can be rewritten in the form

2
r E

max] - %iz[z +s + 201 +5 - 52)1/2, (A29)
rmin

where

~2
= 9|Pgl/(8Y, MR™Q) < 1

[=]
IA
wn
1]
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We note that only particles with S = 1/2 and hence IPgl = 4YbM§290/9,
pass through ﬁ, and the orbits of these particles are intermediate

between radial (Pe = ) and circular (|Pe| = BYbMEZQO/9). All other

~

particles have r < R.
max

In the opposite limit (A23), we can rewrite (A26) as

anﬂo 'Pel

r__ _(H,,P,) = e, ), (A30)
max" 1>"8 'Qe' 3 Yannanrmax(Hl’o)

where

Gy(y) = x () G, (y),s

with x .. again given by (A27). The largest radius for a given value

of Qe 1s found by numerically calculating the maximum G3(y). This gives
R(2y) = 1.52 anﬂnllnel . (A31)

For intermediate W, values, ﬁ(ﬁe) must be calculated numerically,
and the result for a heam with a Rennett profile (27) is shown in Fig.
2. We find for all R values that particle orbits with T oaxs E(Qe) are
intermediate between circular and linear orbits.,

When Jnn(r) is peaked on-axis, so that Qe is a monotonic function
of L for constant Pgs the equilibrium beam current density (9) can bhe
rewritten as

ne(ﬁ-r)
Jyolr) = 2 g df, 83,(r;2y), (A32)
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where

P

3N F.[0,(,,p)]
2qBc (M2¥ 1 ot"1'%g2" g
83 (r;n.) === [ 4p ' l - (A33)
0" "8 r Pmin 9 ane Pe|vr(r,H1,Pe)|

is the current density of particles with a given precession
frequency ﬂe. In (A33), Prax and P.,  are the maximum and
minimum Pe values of particles with precession frequencies equal
to ﬂe and orbits passing through r.
In the small-orbit limit (Al15), the density profile GJO(r;ﬂe) can be
calculated in closed form. To find the Py limits, we use (A22) to

rewrite the turning point condition (Al2) in the form

4 2 2,. Mol 22 1 Po
T Y, M%ge, (1- 5, ) =5 v M + 3 YlPgl = ———, = 0. (A34)
{ ZYbNr

We solve (A34) for |Pe|, and using (A28), we can write the solutions as

=2 2
R7(R) - ¢
1 2 8 1/2
Py(rifg) = 3 W Mra, [1+(» — )] . (A35)

Since |Pg| rust be positive, we take P .. = P, and P 4 = max(0,P ),

noting that P . in (A33) 1is zero for
2 8 ~2
r >-§ R (ﬂe). (A36)
For the Maxwell-Boltzmann distribution (64), we also have

Fo(“l) - Fn(ﬂ) = Jbo(ﬂ)/(2wvbﬂq8cﬂb) , (A37)
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to lowest order in rz/ai. The GJO(r;ﬂa) expression (A33) can then be
written
(0 "+ 4P

168 Tbo
% nax(0,p) (P~ Py)

0
, (A38)
T2 - p )12

GJn(r;ﬂ ) =

which gives

2 1/2
. 2 . -1f1 r 2,82
GJn(O,Q )[1+ £ sin (—8' TZ———Z ], OS r S 7)‘ R (ﬂe)
R7(Rg)~ 1

6J0(r;9 ) = GJO(O;Q ), 5

0, ﬁz(ne) < 2,

(A39)

{
' where GJO(O;Q ) = BBJbO(O)/(3ﬂn). The profile (A39) is shown in Fig,
1. The discontinuity in 6Jn that occurs at the outer radius R is a

general feature that has important consequences on the analytic structure

of the eigenmodes.

At 20 dne 4T ol

A L

by
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Appendix B: Evaluation of the Vlasov Time Integral

In the Vlasov perturbed current expression (12), the accumulated

Ga oM

effect of the wave on particles with some given "1 and Pe is expressed in

terms of the time integral

—N

I(r;nl,Pe) = %—E dz A(r+) exp[i(ét -9) - rr (z°- z)]. (R1)

:

Here, z = Bct is a measure of propagation time, and r” and 6“ are the
unperturbed radial location and azimuthal angle at time z° < z of
particles with the specified H, and Py that reach the point (r,8) at time
z. The + subscript indicates the sign of the radial velocity v, at time
zZ.

To put (Bl) into a more useable form, we consider the change along

the particle trajectories of the quantities
~ z ~
It(r,z) = I[rt(z)] exp[i¢t(z)] = {ﬂ?z‘ A(ti) exp(i¢£) . (B2)

Here, the phase angle ¢+ is defined by

0,(2) = 8,(») - 5= =, (33)

and all orbit quantities are understood to depend on "l and Pe. Since v,

and 0 are functions of r only for these particles, we can readily

relate I+(r) to the values at the previous turning points:

~ - r
I,(r) exp(19,) = L(r ) exp(147, ) + [ dI* exp(14]) (Réa)

T
min
r

min
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IS IS r
I_(r) exp(1¢) = I_(r . ) exp(i¢_ ) - [ dr° exp(1¢)), (B4b)

r
max

where r ;. and r . are the orbit turning points, and we have introduced

the compact notatiom

T
+ -
buin = 4 (Tygy) = 00 =/ m [o¢e) - 2] , (BSa)
Tain
¢ = ¢ (r ) =¢_(r) +} de” [.G(r’) - ] (B5b)
max - max - r |vr(r‘)| s
max
and
drs = (r )l BeA(r®) . (B5¢)

We eljininatc ¢_ from (B4) by noting first that

¢,(r) - ¢ - [o_Ce) = oy D] (86)

min

The relative phase between ¢+ and ¢_ 1s fixed by taking the phase angles

, 8o that ¢_(rmin) - ¢+ =

min = ¢m1n' We then rewrite

to be equal at r ;.

(B6) as
$_(r) = 2¢ , = ¢.(r) (87)

and substitute this expression for ¢_ in (B4).

h+ _A A- =A
The turning point values 1 ain - I+(rmin) and Imax s I-(tmax) are

determined by evaluating the full change in I+ between turning points:
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r
max
1y 4 + _t+ - . .
Imaxexp(1¢max) Iminexp(i¢min) { ar exp(10+) (R8a)
min
a_ a_ + Tmax
I exp(10,, ) - I~ exp[t(20 , - ¢ O] = { drexp[1(2¢ , - 7))
min (RRb)

-~
-

Since the continuity of particle orbits gives Imin = Imin E Imin and

I . I~ =TI ___, (B9) can be gsolved for I and 1 :
max max max min max
|
' - D+pxp(-iA¢) + D_exp(144)
I = (R9a)
| min exp(iA¢) — exp(-14¢)
. D, +D_
= 9
Imax exp(1A¢) - exp(-14¢) ° (39b)
where
r
max
| n, = [ ar‘exp[+ 1(e; - ¢, )]
e Tmin
;; and
3
A
. r
X max Q-9
) = . dr” &0r’y - - 8
: 8¢ = 9oy ~ min / Iv_(r)I [6¢e*) - a] == Q
H r r r
min

We subgtitute (B9) into (B4) to obtain expressions for I+(r) in

terms only of orbit integrals from ry,y, tor £ Trax ° Suppressing the

superfluous + subscript on ¢, we find

57

- mre = e

C e
4
{
i
ri
&

e s i3 s e i .
T RN e
i Y 2a .. . & N :

TR b 0~ B S BRI St 0w




v

T ————

~ r
I(r) = | artexp[1(¢°- ¢)]

r
max

r

max

[ dr-{exp[1(e”= ¢ - 8¢)] + exp[-1(¢°+ ¢ - 89)]} (B10a)
r

min

1
+ 21 sin(A{)_

and

r

- max
I_(r) =] driexp[-1(¢’- ¢))

r
min

r
g l) max
+ 5 sitj;?AM { dr-{exp[1(¢7+ ¢)] + exp[-1(¢"- ®)]}. (B10b)
min

Since I(r) =% [I+(r) + I_(r)], we can combine these I, expressions into

f(t) -% | ar‘{exp[i sgn(r-r’) (¢°- $ ]

- -s-fn_t—AT)- [exp(-18¢)cos($”~ ¢) + cos(¢”+ ¢ - a®)]} . (B11)

When the exponentials and cosines in (Bll) are expanded, some

cancellations occur, and we obtain the more compact form

- Tmax dr* -
I(r) = -i8c [ DT A(r”)
Tmin T
cosgcos g’ + O(r-r*)sin¢cos ¢’ + e(r‘-r)ainQ‘cosO] , (B12)

tan(A¢)
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where © is the unit step function and (B5c) has been substituted

3 for dI“. This form of I can conveniently be used either to evaluate

J(r) numerically or to investigate its analytic properties. |

59




References

1. M. N. Rosenbluth, Phys. Fluide 3, 932 (1960).

2. E. P. Lee and L. D. Pearlstein, Phys. Fluids 16, 904 (1973).

3. S. Weinberg, J. Math, Phys. 5, 1371 (1964).

4. S. Weinberg, J. Math, Phys. 8, 614 (1967).

5. E. P. Lee, Phys. Fluids 21, 1327 (1978).

6. H. S. Uhm and M. Lampe, Phys. Fluids 23, 1574 (1980).

7. M. Lampe, W. M. Sharp, G. Joyce, R. F. Hubbard, and H. S. Uhm, in
Proceedings of The Fourth International Conference on High Power
Electron and Ton Beam Research and Technology, Ecole Polytechnique,
Palaiseau, France, June 1981.

8. R. F. Hubbard, G. Joyce, M. Lampe, W. M. Sharp, and S. P. Slinker,
Bull. Am. Phys. Soc. 26, 915 (1981).

9. W. M. Sharp and M. Lampe, Phys. Fluids 23, 2383 (1980).

10. E. P. Lee, Lawrence Livernmore National Laboratory Report UCID-18768
(1980).

11. W. H. Bennett, Phys. Rev. 45, 890 (1934).

12, J. H. Wilkinson, The Algebraic Eigenvalue Problem (Clarendon Press,
Oxford, 1965), p. 322.

13, H. S. Uhm and Y. Lampe, Phys. Fluids 24, 1553 (1981).

14, D. G. Colombant, S. A. Goldstein, and D. tlosher, Phys. Rev. Lett.
45, 1253 (1980).

15 M. Abramowitz and I. A, Stegun, Eds., Handbook of Mathematical

Functions (National Bureau of Standards, Washington, D.C., 1967),

pp. 589-607.

60




Yy

1.

3.

4,

5.

6.

7.

8.

DISTRIBUTION LIST

Commander
Naval Sea Systems Command
Department of the Navy
Washington, D.C. 20363
Attn: NAVSEA 03H (Dr. C. F. Sharn)

Central Intelligence Agency

P.0O. Box 1925

Washington, D.C. 20013
Attn: Dr. C. Miller/OSI

Air Force Weapons Laboratory

Kirtland Air Force Base

Albuquerque, New Mexico 87117
Attn: Lt. Col. J. H. Havey

U. S. Army Ballistics Research Laboratory
Aberdeen Proving Ground, Maryland 21005
Attn: Dr. D. Eccleshall (DRXBR-BM)

Ballistic Missile Defense Advanced Technology Center
P.O. Box 1500
Huntsville, Alabama 35807

Attn: Dr. L. Havard (BMDSATC-1)

B-K Dynamics, Inc.

15825 Shady Grove Road

Re~kville, Maryland 20850
Attn: Mr. I. Kuhn

Intelcom Rad Tech.

P.0. Box 81087

San Diego, California 92138
Attn: Mr. W. Selph

Lawrence Livermore National Laboratory
University of California
Livermore, California 94550
Attn: Dr. R. J. Briggs
Dr. T. Fessenden
Dr. E. P. lee
Dr. F. Chambers
Dr. S. Yu
Dr. James W.-K. Mark, L-477
Dr. W. Fauley
Dr. H. L. Buchanon
Dr. J. Masamitsu
Dr. W. Barletta

61




o

9.

10,

11.

12.

13.

14.

15.

16.

Mission Research Corporation
735 State Street
Santa Barbara, California 93102
Attn: Dr. C. Longmire
Dr. N. Carron

National Bureau of Standards
Gaithersburg, Maryland 20760
Attn: Dr. Mark Wilson

Science Applications, Inc.
1200 Prospect Street
La Jolla, California 92037
Acttn: Dr. M. P. Fricke
Dr. W. A. Woolson

Science Applicatiomns, Inc.
5 Palo Alto Square, Suite 200
Palo Alto, California 94304
Attn: Dr. R. R. Johnston
Dr. Leon Feinstein

Science Applications, Inc.

1651 01d Meadow Road

McLean, Virginia 22101
Attn: Mr. W. Chadsey

Science Applications, Inc.

8201 Capwell Drive

Oakland, California 94621
Attn: Dr. J. E. Reaugh

Naval Surface Weapons Center Detachment
White Oak Laboratory
Silver Spring, Maryland 20910
Attn: Mr. R. J. Biegalski
Dr. R. Cawley
Dr. J. W. Forbes
Dr. D. L. Love
Dr. C. M. Huddleston
Dr. G. E. Hudson
Mr. W. M. Hinckley
Mr. N. E. Scofield
Dr. E. C. Whitman
Dr. M. H. Cha
Dr. H. S. Uhm
Dr. R. Fiorito

C. S. Draper Laboratories
Cambridge, Massachusetts 02139
Attn: Dr. E. Olsson
Dr. L. Matson

62

* ey
s




& ¥f

RIS

Lty oz e

LS v it Wi

17.

18.

19.

20.

21.

22.

M.1.T. Lincoln Laboratories

P.0. Box 73

Lexington, Massachusetts
Attn: Dr. J. Salah

02173

Physical Dynamics, Inc.

P.O. Box 1883

La Jolla, California 92038
Attn: Dr. K. Brueckner

Office of Naval Research
Department of the Navy
Arlington, Virginia 22217
Attn: Dr. W. J. Condell (Code 421)

Avco Everett Research Laboratory
2385 Revere Beach Pkwy
Everett, Massachusetts
Attn: Dr. R. Patrick
Dr. Dennis Reilly
Dr. D. H. Douglas-Hamilton

02149

Defense Technical Information Center
Cameron Station

5010 Duke Street

Alexandria, VA 22314 (2 copies)

Naval Research Laboratory
Washington, D.C. 20375
Attn:

M. Lampe - Code 4792 (50 copies)
M. Friedman - Code 4700.1
J« R. Greig - Code 4763
I. M. Vitkovitsky - Code 4770
Jo B. Aviles - Code 4665
M. Haftel - Code 4665
T. Coffey - Code 4000
Superintendent, Plasma Physics Div.
P. Sprangle -~ Code 4790
Library - Code 2628 (20 copies)
A. Ali - Code 4700-1
D. Book Code 4040
J. Boris - Code 4040
I. Haber - Code 4790
B. Hui - Code 4790
S. Kainer - Code 4790
G. Joyce - Code 4790
D. Murphy -~ Code 4763
A. Robson - Code 4760
D. Colombant ~ Code 4790
M. Picone - Code 4040
M. Raleigh - Code 4760
R. Pechacek - Code 4763

63

Y Sl S Y iy

AR o R e

- Code 4700 (26 copies)

- i

L e e

P T

e s v




23.

24.

25.

26.

27.

28.

29.

30.

31.

Defense Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, VA 22209
Attn: Dr. J. Mangano
Dr. J. Bayless

JAYCOR
5705A General Washington Drive
Alexandria, VA 22312
Attn: Dr, D. Tidman
Dr. R. Hubbard
Dr. J. Guillory
Dr. S. Slinker

JAYCOR
Naval Research Laboratory
Washington, D.C. 20375
Attn: Dr. R. Fernsler - Code 4763
Dr. S. Goldstein - Code 4770

SAI
Naval Research Laboratory
Washington, D.C. 20375
Attn: A. Drobot - Code 4790
W. Sharp - Code 4790

Physics International, Inc.
2700 Merced Street
San Leandro, CA.

Attn: Dr. E. Goldman

Mission Research Corp.
1400 San Mateo, S.E.
Albuquerque, NM 87108

Attn: Dr. Brendan Godfrey

Princeton University
Plasma Phvsics Laboratory
Princeton, NJ 08540

Attn: Dr. Francis Perkins, Jr.

McDonnell Douglas Research Laboratories
12pte 223, Bldg. 33, Level 45
Box 516
St. Louis, MO 63166
Attn: Dr. Michael Greenspan

Cornell University
Ithaca, NY 14853
Attn: Prof. David Hammer

iR ALt T SIS




32.

33.

34.

35.

36.

37.

38.

39.

e et T

+ 40.

oy

Sandia Laboratories
Albuquerque, NM 87185
Attn: Dr. Bruce Miller
Dr. Barbara Epstein
Dr. John Freeman

University of California
Physics Department
Irvine, CA 92717

Attn: Dr. Gregory Benford

Beers Associates Inc.

Att: Dr. Douglas Strickland
P.0. Box 2549

Reston Va. 22090

Air Force Weapons Laboratory

Kirtland Air Force Base

Albuquerque, NM 87117

Attn:

D. Straw (AFWL/NTYP)
R. Lemke (AFWL/NTYP)
C. Clark (AFWL/NTYP)
W. Baker (AFWL/NTYP)

R&D Assoclates
P.0. Box 9695
Marina del Rey, CA 90291

Pulse Sciences, Inc.
1615 Broadway - Suite 610
Oakland, CA 94612

Attn: Dr. Sidney Putman

Los Alamos National Scientific Laboratory
P.0. Box 1663
Los Alamos, NM 87545
Attn: Dr. L. Thode
Dr. A. B. Newberger, X-3, MS-608
Dr. M. A, Mostrom, MS-608
Dr. T. P. Starke
Dr. H. Dogliani

Western Research Corp
8616 Commerce Ave.
San Diego, CA 92121
Attn: Dr. Frank Felber

Dr. J. M. Dolique

Laboratoire de Physique des Plasmas
Universite’ de Grenoble I

B.P. 53X

38041 Grenoble Cedex

FRANCE

65

R T




S g

e G ot agi R A

41'

‘.2-

43,

44,

45,

46.

47.

CEN Saclay
D.P.C. Bab 22
B.P. No. 2
91191 Gif-sur-Yvette
FRANCE
Attn: Dr. Babuel-Peyrissac

University of Maryland
Physics Department
College Park, MD 20742
Attn: Dr. Y. C. Lee
Dr. C. Grebogi

Rutherford Laboratory
Chilton, Didcot
Oxon 0X11 OQX
United Kingdom

Attn: Dr. D. V. Bugg
Karacsony Fanos
Center for Theoret. Physics
University of Cluj
3.400 CLUJ-NAPOCA .
ROMANIA

Maxwell Laboratories, Inc.
8835 Balboa Ave.
San Diego, CA 92123

Attn: Dr. Nino Pereira

Fraunhofer-Gesellschaft
Institut fur Naturwissenschaftlich-Technische Trendanalysen (INT)
Appelsgarten 2
5350 Euskirchen/Rhld.
West~Germany
Attn: Dr. A. Knoth

Dr. A.” S. Paithankar

Bhabha Atomic Research Centre
Electronics & Instrumentation Group,
Plasma Physics Section

PRIP Shed. Trombay

Bombay-400 085. INDIA




