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FOREWORD

Equilibrium and stability properties of an intense electron ring located at
the midplane of an externally applied mirror field are investigated within the
framework of the linearized Vlasov-Maxwell equations, including the important

influence of equilibrium self fields and an applied field Bext in the toroidaloe
direction. It is assumed that the ring is thin and that << 1, where v is
Budker's parameter and Ybmc2 is the characteristic electron energy. Equilibrium

and stability properties are calculated for the choice of equilibrium distribution
function in which all electrons have the same value of energy in a frame of
reference rotating with angular velocity w, in the minor cross section of the
ring, and a Lorentzian distribution in canonical angular momentum P8. Negative-
mass and resistive-wall stability properties are calculated, and a closed
dispersion relation is obtained for the case where the ring is located inside a
toroidal conductor with finite resistivity and minor radius a much less than
the major radius Ro. One of the most important features of te stability analysis
is that the negative-mass instability in a high-current ring can be stabilized
by equilibrium self-field effects in circumstances where the self fields are
sufficiently intense. Moreover, a modest spread A in canonical angular momentum
can stabilize the resistive-wall instability.

IRA M. BLATSTEIN
By direction
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INTRODUCTION

There is considerable recent interest in the equilibrium and sta-

bility properties of intense relativistic electron rings with applications
1-4

that include high-current betatron accelerators. In a conventional

betatron accelerator, a toroidal electron ring is confined in a mirror

or betatron magnetic field. Moreover, the beam density and current is

limited by the strength of the betatron magnetic field. In the modified

betatron accelerator,1,2 however, an additional confining magnetic field
Bext
B08  is applied in the toroidal direction, thereby considerably increasing

the limiting beam current and density. In the present article, we make

use of the Vlasov-Maxwell equations to investigate the equlibrium and sta-

bility properties5-10 of an intense relativistic electron ring confined in

a modified betatron field configuration, 1,2 including the important influ-

-ext
ence of equilibrium self-field effects and the toroidal magnetic field B08x

The analysis is carried out for an electron ring located at the midplane of

an externally applied mirror field. The positive ions form an immobile

(m+ ) background that provides partial charge neutralization. In addi-

tion, it is assumed that the electron ring has minor dimensions much smaller

than the major radius R0 (Fig. 1). It is also assumed that V/yb << 1,
2

where v is Budker's parameter and ybmc is the characteristic electron

energy associated with the toroidal motion.

Equilibrium and stability properties are calculated for the specific

choice of the equilibrium electron distribution function (Eq. (13)]

f0(H'P p ) f R 0_ A 6(H - WbP , - mc )

272 bm[(PG - P0) 2 + 2

5
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where H is the energy, P8 is the canonical angular momentum in the azimuthal

2
direction, P Pp - eb o /2c is the canonical angular momentum in the

small cross section of the torus, R0 is the major radius of the ring, and

f, a, PO, % and y are constants. Although H and P8 are exact single-par-

tical invariants for the equilibrium configuration illustrated in Fig. 1,

P is an approximate invariant whenever the toroidal field is sufficiently

strong [Eq. (8)] and the electron ring has circular cross section (Appendix

A) with

n- and a-b.

Here n - -(r(3/ar)fnBo t(rtz)](R 0)is the external field index. Equili-

brium properties of the electron ring are calculated in Section II. One

of the most important features of the equilibrium analysis is that the max-

imum electron density trapped in the ring can be greatly enhanced by the

toroidal magnetic field (Eqs. (43) and (44)]. Moreover, the rotation fre-

quency ub in the minor cross section of the ring plays an important role in

determining detailed equilibrium properties.

The formal electromagnetic stability analysis is carried out in Section

III within the framework of the linearized Vlasov-Maxwell equations. Neg-

ative-mass and resistive-wall stability properties5- 7 ,10 are calculated

for eigenfrequency w near harmonics of the cyclotron frequency W - eB 0 (%,O)

/Ybmc associated with the axial magnetic field, i.e., w = tcz" The

resulting dispersion relation in Eq. (77) is obtained analytically for a

relativistic electron ring located inside a toroidal conductor with finite

resistivity and.minor radius a c . Equation (77) is one of the main results

of this paper and can be used to investigate stability properties for a

broad range of physical parameters.

6
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Negative-mass stability properties5 -7,10 are investigated in Section

IV, assuming a perfectly conducting wall but including the important influ-

ence of equilibrium self fields. Introducing the parameter (Eq. (64)]

U 2 2 -/y2
Bcz 1 /b

we find that [Eq. (88)]

0 < tmo
Yb \ V 7/

is a necessary and sufficient condition for instability. Here, g is a geo-

metric factor with g - (1 + 21na /a) for a >> a and g 4/X2  for a a,
C c n c

whee J(A~) =0.2 2 2 2 ]i h
where J0 (IN) 0. Moreover, w = W /2 + (wb/2)[0b - (1 - f) is the

radial betatron frequency-squared for a circular beam with a = b and n - 1/2,

22
W Pb =4 e /yb m is the relativistic plasma frequency-squared, and f is the

fractional charge neutralization. Evidently, from Eqs. (64) and (88),

equilibrium self fields can have a large influence on stability behavior.

Moreover, the negative-mass instability can be completely stabilized by a

sufficiently large spread a in canonical angular momentum P8.

It is also important to note that u < 0 is a sufficient condition for sta-

bility (Section IV) even with zero spread in canonical angular momentum

(A 0). The condition U < 0 can be satisfied provided the equilibrium

self fields are Sufficiently strong in absolute intensity. For example, if

f - 0, then the sufficient condition for stability (V < O) and existence of

a confined equilibrium (Eq. (44)1 can be expressed as 1 < I bb w2  < 1 +

2 2

Althougha perfect conducting wall is a reasonable assumption in many

experiments, we expect a significant modification of stability behavior

when a small amount of resistivity is introduced into the wall, e.g., to

stabilize the transverse precession in the minor cross section of the ring.

7
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5

In this regard, in Section V, we investigate the resistive-wall instability

assuming that U < 0 and the negative-mass instability is absent. It is

shown that the resistive-wall instability can also be stabilized by a modest

spread A in the canonical angular momentum.

8



NSWC TR 81-389

EQUILIBRIUM CONFIGURATION AND BASIC ASSMIPTIONS

A. Basic Assumptions

The equilibrium configuration is illustrated in Fig. 1. It consists

of a relativistic electron ring located at the midplane of an applied

focussing (mirror) field Bext BeXt(r,z)kz. In addition,
rOr (r'z)kr + Oz

the electron ring is located inside a toroidal conductor with minor

ext
radius ac. Theapplied toroidal magnetic field 08 Ae' wherex - (1

Bext 11 Re(i
Oe e -r

together with the mirror field act to confine the ring both axially

and radially. Here, r, ke: and &z are unit vectors in the r-, 6-,

and z-directions, respectively. The equilibrium radius of the ring is

denoted by R0 , and the minor dimensions of the ring are denoted

by 2a (radial dimension) and 2b (axial dimension). In addition to the

cylindrical polar coordinates (r,B,z), we also introduce the toroidal

polar coordinate system (p,0,8) illustrated in Fig. 1 and defined by

r - Ro = r' - pcoso

(2)

z - psint

.where p is measured from the equilibrium radius R0 . The electrons

composing the ring undergo a large orbit gyration in the external

mirror field with characteristic mean azimuthal velocity V8  c in

the positive 6-direction. The associated ring current, which is in the

negative e-direction, produces a self-magnetic field 0 that

threads the ring in the sense indicated in Fig. 1. This self-magnetic

field acts a focusq ,g field which tends to confine the ring electrons

9
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both axially and radially. The electron ring is assumed to be

partially charge neutralized by a positive ion background. The excess

electrons form a potential well for the ions. For the electrons,

however, the self-electric field is defocussing, i.e., in the direction

of increasing the minor dimensions of the ring.

To make the theoretical analysis tractable, we make the following

simplifying assumptions in describing the electron ring equilibrium by

the steady-state Vlasov-Maxwell equations.
8 ,9

(a) The positive ions form an immobile (mi - -) partially neutralizing

0background. The equilibrium ion density ni(r,z) and electron density

n 0(r,z) are assumed to be related by

n0(rz) - fn0 (r,z) , (3)

where f - const. is the fractional charge neutralization.

(b) The minor dimensions of the ring are much smaller than its

major radius, i.e.,

a,b << R0  (4)

To further simplify the analysis we also assume that the minor cross

section of the ring is circular with

a - b, (5)

which is consistent (strictly speaking) provided the external field

index n satisfies

0 - 1/2, (6)

where n -- rains (rz)/Ian
Oz (Ro,0)"

10
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(d) Consistent with Eq. (4), it is also assumed that the

transverse (r,z) kinetic energy of an electron is small in comparison
2

with the characteristic azimuthal energy Ybmc , i.e.,

1 2 2 2

2Ybm (Pr + Pz) << Yb
m c  (7)

where p Y bmo c is the characteristic azimuthal momentum.

(e) The maximum spread in canonical angular momentum 6P6 is

assumed to be small with I6PeI << YbmsbcR0 and

16pa0  (8)
bmabCR0 <Bz Pe

2 2 1/2
Here, p, (p + p.) is the characteristic transverse (r,z)

momentum, p8  ybmsbc is the characteristic azimuthal momentum,

ad Bext Bext
SB 0  (RO) and z Oz (R0 ,O). Moreover, eP Pe - P0, where

Pe is the canonical angular momentum, and P0 = const. is the average

canonical angular momentum of the electrons composing the ring. As

shown in Appendix A, the inequality in Eq. (8) (which is satisfied

provided the spread in canonical angular momentum 6P8 is sufficiently

small and/or the toroidal field B is sufficiently strong), together

with Eqs. (5) and (6) are sufficient to assure that the canonical

angular momentum P0 M - (eB8/2c)p defined in the small cross-

section of the torus is a good approximate invariant.

(f) It is further assumed that

N e2N e e << (9)

Yb 2wR% mc2 Yb

where - (Ne/2R 0)(e 2/mc 
2) is Budker's parameter, Ne is the total

number of electrons in the ring, and e 2/mc2 is the classical electron

radius. While Eq. (9) assures that the equilibrium self fields

E ;,B', and B; are weak in absolute intensity (in comparison
11
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with B t), depending on the beam density we will find that the

self-field gradients can be large and have a correspondingly

large influence on particle orbits in the equilibrium field

configuration. 8,9

B. Self-Consistent Vlasov Equilibrium

For azimuthally symetric equilibria (3/e8 0) with both r and

z dependence, there are two exact single-particle constants of the motion.

These are the total energy H,

H (m2c 4 + c 2R2 ) - e0(r,z) , (10)

and the canonical angular momentum P.,

Pe " ripe - -C , C11)

where - my is the mechanical momentum, *0 (r,z) is the

equilibrium electrostatic potential, -e is the electron charge, c is

the speed of light in vacuo, m is the electron rest mass, and A (r,z) -

ext As(~)i h ftevco
A (r,z) + A8e(rz) is the 0-component of the vector potential

for the total (external plus self) equilibrium magnetic field. Without

loss of generality, we assume #o(R 0 ,0) - A0s (R0,0) - 0 in Eqs. (10)

and (11). Within the context of Eqs. (3) - (9), it is shown in

Appendix A that the canonical angular momentum P

• M 2(12)0C "p's - BOO

_ext
in the plane perpendicular to the toroidal magnetic field B is an0e

approximate single-particle invariant for a thin circular beam with a - b

and n - 1/2. Here, pO is the mechanical momentum in the O-direction

[Fig. 1], and o2 , (r - %)2 + z2 is defined in Eq. (2). In obtaining

12
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Eq. (12), the toroidal magnetic field B06 W BRo0/r has been

approximated as uniform over the minor cross section of the ring.

Any distribution function f0 that is a function only of the single-
b

particle constants of the motion in the equilibrium field configuration

satisfies the steady-state (D/t - 0) Vlasov equation. For present

purposes, we consider the electron distribution function specified by

f2R__ s 6 (H - W b P - jm c 
2

-bCP e ... 2.2 (13)
27 2b m  (P0 - P0 ) +A2

where & " n(%,0) is the electron density at the equilibrium

radius (r,z) - (Ro,0), wb - const. is the angular velocity of mean

rotation in the 9-direction, a is the characteristic spread in the canonical

angular momentum P8, and j is a constant.

The equilibrium Poisson equation can be expressed as

Furtermrethe e-component of the V x B(x) Maxwell equation can be

expressed as

"r r r 2 o(r'z)

(14)

-r- d 3  p f 0(HPP

Furthermore, the + - /mn )-i/ of the s a xwut l equton caeloiy

where v as

Consistent with the thin ring approximation [Eq. (4)] is the

requirement that the r-: kinetic energy be small in conparison with

the effective azimuthal energy [Eq. (7)]

13
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(r,z)mc - m2c4 + c 2  +±A (rz) (16)

2,2 ,2 2 an
defined for pe. pr + p z a 0'and P. P0 and that the spread in

canonical angular momentum be small with 16Pl - - 0eel " YbmbcRO.

Taylor expanding for small values of p 2 + p2 and SP, P P0, we
r z7-

find that the total energy H defined in Eq. (10) can be approximated by
7 1 0

2 2

H- 2(r,z) m + Y 6 (r,z)mc - e,0 (r,z)

V0 (r,z) 2 (17)

+ (6P ) + (6P)

r a 2y3 (r,z)mr2

a 0where the mean azimuthal velocity of an electron fluid element V (rz)

is defined by

V 0(r,z) - (fd 3 pv f0 )/Cfd 3pf 0

0 ,z)/[y8(~z~m)(18)4

- [(P0/r) + (e/c)A8 (r,z)]/[y0(r,z)m]

2

For future reference, we define the characteristic 
azimuthal energy Ybmc

of a beam electron by

YbMC 2 ye(R 0,0)mc , (19)

and choose

eB 2

(20)
0 1

A8(R0'0) " 7 BZRo

where - B extR0,0).

14
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The mean equilibrium radius R0 of the ring is effectively

determined from the condition
8 '9

I 2 Y ( r z ) - 0 ](r,z (R0 0) - 0. (21)

Making use of Eqs. (16) and (21), we obtain
8'9

220

mbm bc 2/R - e[r 0,0) + BbB0(ROO)] (22)

where 8b - V0(R0 ,0)/c, E 0(rz) - -aO0 /Zr is the radial self electric

field and B 0(r,z) - (l/r)(/ar)(rA ) is the axial magnetic field.
z n

Equation (22) is simply a statement of radial force balance on an

electron fluid element at (r,z) - (R0 ,0). Due to the symmetry of the

equilibrium configuration (Fig. 1), it is clear that at the midplane

(z - 0), the axial electric field and the radial magnetic field are

identically zero. Ie therefore note that

e (z) , 0 (R0 ,0) (23)

2 (r,z) 0 o 2 0 (r,z) (24)
(R0,0) ; z )(R0 ,0)

Making use of Eqs. (20) - (24), the expression for the total energy H

in Eq. (17) can be further simplified by Taylor expanding the expressions

for y8 (r,z), ¢ 0 (r,z), .etc., about (rz) - (R0 ,0). Intzoducing the

radial betatron frequency w r defined by

2 1 r2 2
W a -- _ (-Ymc -e 0) (R0 ,) , (25)

and the axial betatron frequency wz,

2 (1 2
2 lp (Yemc. , (26)z Yb e0)j (R0 ,0)

15



NSWC TR 81-389

we Taylor expand Eq. (17) about (r,z) - (R0 ,0) for a thin ring,

retaining terms to quadratic order in r' - r - R0 and z. This gives 7-1 0

2 2

2 + +  W 1 - r'Y bm c2  2yb a cz R0 ) P

b 0

(pe)2 1 2r2 2 2 (27)

23 22 z
2yb mRj

where w cz is the relativistic electron cyclotron frequency in the

axial magnetic field

eB= , (28)
ci Ybmc

andz = Bx t (%, 0 ). Making use of Eqs. (16), (25), and (26), and the

expressions for the equilibrium potentials given in Eqs. (A.6) and

2 "2
(A.9), we find that wr and wz can be expressed as

2 2 p 2 bt 2a--

-2 z(1 - n) + w[b S2 - (l-f)] , (29)

and
2 2 a 2 b a 2

Wz cz W pb a+b b- (l-f) (30)

where B- V 04(ROb)/c, W 2 4r 2/Y m is the relativistic plasmawhr b = V (R,)c pb fb-

0frequency-squared, fb - %(R 0 0) is the beam density at (r,z) - (R0,0),

and
r _ ext.

a ext (r B0  (r,z) (31)B~o x(r ,z) 3 r O (Ro ,O )

is the external field index.

In the remainder of this article, the equilibrium and stability

analysis is restricted to circumstances where the characteristic

spread A in canonical angular momentum P8 is sufficiently small that

16
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2 Wr 2

Y b U r8 a ' Yb MraR0 . (32)
cz

Within the context of Eq. (32), the 6P contributions in Eq. (27)e
are negligibly small in comparison with the final term, and the

total energy H can be approximated by

2 2
2 Ybmc+ br + Ybm(w 2 r'2 + W2z22 ) (33)

R-fbc 2-ybm 2 b r z

Referring to Eqs. (12), (13), and (33), and making use of the toroidal

polar coordinate system (p,0,8) defined in Eq. (2) and Fig. 1, the

combination H -wbPO can then be expressed as

2
2 PJ

WbP - bc + T- + *(r',z) , (34)

2 2b
where p 2 + (p -(PO2 is the transverse momentum-squared

in a frame of reference rotating with angular velocity wb - const.

about the toroidal axis, the envelope function (r',z) is defined by

i 1 2r  21Qz2 ) (5

r', = b(222 + (35)

-2 -
where r' - r - RO, and P*r and z are defined byil z

a2 2~ 2
0r wbwce - b + w

(36)

=WbW 2 2

Z = mbce - wb mz'

2 2
where wr and wz are defined in Eqs. (29) and (30), and

W - (37)
-ce Ybmc

is the relativistic cyclotron frequency in the applied toroidal magnetic

17
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Be U Boet(%,O). Substituting Eqs. (34) and (35) into Eq. (13)
00

and evaluating the electron density profile n (r,z) - d 3pfb0

we find

. 2 . 2 2 2 . 2 ,(38)

where a - [2(j - yb)c1//br 1 2 and b [ (2(Q - /b)C/Y j11 2 ", and U(x)

is the Heaviside step function defined by

1, x>O,

Note from Eq. (38) that the electron density is constant (fib) inside

the beam cross section r' 2/a2 + z 2/b2 < 1, and identically zero outside.

As indicated earlier in this section and in Appendix A, P is a

good invariant (strictly speaking) provided Eq. (8) is satisfied and

provided the beam is circular with a - b ind n = 1/2. From Eqs.
2 = w2 nf2 r2 = 2 2

(29), (30), and (36), we therefore find wr B and 62 - . B

where

2 1 2 +12 22 cz 12 W pb[0 - (1-f)] , (39)

and

2 2+ 2 (40)''cB -% W"

Moreover, the minor radius of the ring is given by

2 2. 1,/2
a - b - [2(5, - Yb)c /Yb (41)

For existence of the equilibrium, both 9> Y and Q > 0 are required.
b B

The condition n2 > 0 can be expressed in the equivalent form [Eqs. (39)

and (40)1

W W+ (42)b <  b < b'

18
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where the frequencies wb are defined by

±( 2w 2  2w 2  211/2
c± - _+ c, 2 (l-f-b) " (43)

The requirement that the radical in Eq. (43) be real determines the

maximum allowable equilibrium beam density for given values of f, Bb,

WCz, and wce" For example, if f - 0, then

-- b < 2w 2  + 2 (44)
2 cz ce

Yb

is required for existence of the equilibrium. For w2  >> 2
ce CZ'

Eq. (44) is identical to the result obtained by Sprangle and

Kapetanakos within the context of a model that examines the stability

of single-particle orbits.

Finally, we conclude this section by noting that Eqs. (13), (32),

(34), and (35) can be used to evaluate a variety of equilibrium

properties8'9 for a circular beam with a - b and n 1 1/2. For example,

the mean rotational velocity V0- (Id3pvf)/(fd3pf0) of an electron

fluid element about the toroidal axis is given by0I
V0 ab (45)

where the rotation frequency wb is restricted to the range in Eq. (42).

Moreover, it can be shown that the equilibrium pressure tensor in the

(p,€) plane perpendicular to the 8-direction is isotropic with the

0 0 0
perpendicular pressure PO(P) - %(p)TO(p) given by

0 0 P + (p0 - Yb b) mow b 0
nb ( p ) T O (0 )  2vf dpj±Jp dp8  fb '

(46)

19 '
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where TO(p) is the effective transverse temperature profile. Defining

-1 2 1 2 2(
T -2ybmba Yb cerL , (47)

and substituting Eq. (13) into Eq. (46) gives

0 2 2
TO(p) L(i - p /a ) (48)

for 0 < p < a. In Eq. (47), rL is the characteristic thermal

Larmor radius of the ring electrons in the azimuthal magnetic field B

Making use of Eq. (47) to eliminate 0 in Eq. (40) in favor of rL,

we solve Eq. (40) for the rotation frequency wb and obtain

4-t- 2 b a

w e w e e ( 4 9 )

which relates wb to the Larmor radius rL. The two signs (±) in Eq. (49)

represent fast (+) and slow (-) rotational equilibria. In order for

the equilibrium to exist, the ratio 2rL/a in Eq. (49) is restricted

to the range

L ( f 2 + cz (50)a 2 8 b~ 2W e ce

20



NSWC TR 81-389

LINEARIZED VLASOV-1LAXWELL EQUATIONS

In this section, we make use of the linearized Vlasov-Maxwell

equations to investigate stability properties of the

equilibrium ring configuration discussed in Sec. II. In the stability

analysis, a normal-mode approach is adopted in which all perturbed

quantities are assumed to vary according to

~p(~t) -6,j)exp(-iwt)

- WP)exp[i(4 - Wt)]

where Imw 0 0, P [(r - R) 2 + z2]1/2 , and a/ a - 0 is assumed

(Fig. 1). Here, w is the complex oscillation frequency and Z is the

toroidal harmonic number. Integrating from t' - - to t' - t and

neglecting initial perturbations, we find that the perturbed

distribution function can be expressed as 6fb(xP,t) = ofb( ,)exp(-iwt),

where
0

6- eJ dT exp(-iwT)

(51)
X 6(x') + V , ^ }

In Eq. (51), 'r t' - t, (; ) and & ( ) are the perturbed electro-

magnetic field amplitudes, and the particle trajectories '(t') and v ')

satisfy dZ'/dt' v ,' and dk'/dt' = -e[ 0 + V' x 0/c] with "initial"

conditions x' (t' t) - and v'(t' - t) - Z. The Maxwell equations

for 6E() and SB(Z) are given by

Sx - - , (52)c

.L 6 
(53)

2i
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where V * tS - 0 and

v • 6i - . (54)

In Eqs. (53) and (54) the perturbed current and charge densities

are defined by

- -efd3p b ,c-

.3 Si(5

( - -efd 3p Sb , (56)

where v - k/ym. Taking the curl of Eq. (52) and making use of E.s.

(53) and (54), we obtain

which is the form of Maxwell's equations used in the present

stability analysis.

For present purposes, we consider a/a 0 wave perturbations with

polarization

sE (x) -dE (p,B)e + 6E (0 ,B)

- exp (ie)[ze ()& + 6o(p)& ] , (59)

6B Wx) 6B (p,e)e. exp (ile)SB Wpe,

where -  ead are unit vectors in the e-,p- and t-directions, res-

pectively (Fig. 1). Approximating il/r = iz/R 0 W ik, it is straightfor-

ward to show from the 0-component of Eq. (52) and the p-component of Eq.

(53) that 6B (p) can be expressed as

- ic akc^&B (p) - -- Sa (p) + 6E (p) (59)0 Wo 0 P

w w2/c2k 2 - 1 c'k 2  w 10 ck' p
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where the perturbed curr-nt 6J is related to 6B and 6E by -I-
p P

(41r/c)6J - (iw/c)6EP, We also assume that the toroidal conductor

(radius p- a c ) has large aspect ratio with

a << R0. (60)

Taking the e-component of Eq. (57), we obtain the eigenvalue equation

for 6E.,

4, (W L-6) (61)

where k I t/R, and we have approximated V2 7 2 - L2 2 -l /ap) x

(pa/ap) - k2 in Eq. (61). It is further assumed that Rew - 0r satisfies

r~Zr Lw and that the waves are far removed from resonance with the

transverse (r,z) motion, with
1 0

2 2
__1_>>_T a (62)

where w are the characteristic (r',z') orbit oscillation frequencies

about (r,z) - (Ro,0) [Eq. (43) and Appendix B]. To lowest order,

consistent with Eq. (62), it is shown in Appendix B that the azimuthal

orbit is described by [Eq. (B.14)]

2
e' 8+ (W - U6PO/TbMRo ) T (63)

where T - t,

2
cz 1 (64)

2 2

andw 2 ." 2 /2 + (w 2b/2)[ - (1-f)] for a circular beam with a - b and

n - 1/2.

From Eqs. (51), (58), and (59), we note that
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C

+p X

ic

ve wi a

+ ep (i~e') Wp) - 7 -r )' + -a W"

Estimating the size of terms proportional to 6E P and 3CE 8 /a' in Eq. (65),

and making use of the assumption that the wave perturbations are far re-

moved from resonance with the transverse (r', z') motion [Eq. (62) and

Appendix B], it is straightforward to show that the terms proportional to

36E /ap' and SE in Eq. (65) can be neglected in comparison with eE

Moreover, making use of afO(H,, p P Vape = v af° /aH + r~fO/aP,, we find

that 6fb(x, P) in Eq. (51) can be approximated by

af 0 0
-e - exp (iW) dt(R 0 + p'coso')6E (p') exp [ii(O' - 8) - iwT]

0 (66)

+ e- -exp (iie), dTv'SEe(P') exp [ii(6' - 8) - iWT],

where e'(-) is defined in Eq. (63), and use has been made of the

0 0fact that afb/aP and af°/aH are independent of t'. In Eq. (66),

it follows from Eq. (63) that v, - (R0 + p'cos¢')(wc z - ;lp /ybmR0).

To simplify Eq. (66), we approximate R + p'cos' = R0 to lowest

order, and Taylor expand 6E8(pw) - 6i + [a6iE(p)/ap](P' - 0) +

locally about p' - p. For present purposes, we also approximate

6E8 (p') - 6SE() , which is a good approximation provided rL << a

(Eqs. (49) and (50)]. Carrying out the t' integration in Eq. (66)

then gives

24
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f (x,) = ieexoi.9- (o)R 0

(67)'
Bf ~ 0

Pe+ ( cz -16 BP/yb mRo 0 --
(W - twcz + t6P /Y(mR 2

To complete the description, we evaluate 47(ik6; iwrJ 6/C 2)

-47reikf d 3 pAb (I - Wp 8/C 2kym) on the right-hand side of Eq. (61). To

the required accuracy, (1 - ,p 6/C 2 kym) can be approximated in the inte-

grand by (1 - O b /ck) - w6P e/C 2 kybmR0, where w = Xw cz - kw cz R0  k kb c is

assumed. Making use of Eqs. (56), (61) and (67) then gives the eigenvalue

equation

2~~ ~ 2) S

ap -p (C1 k2  A a(p) = 4re2 e(, dp P -1 c ck y mR0 C

ape+ (cz - 2 --- H

,. 
2

W- L + 6P/Yb mR

Paralleling the analysis in Ref. 10, the integral contribution

3. 2

the right-hand side of Eq. (68) proportiona Lo nide(P)/ao E -(

[Eq. (38) ]. Although this surface-charge contribution can be

retained in a self-consistent manner, for present purposes we neglect

the term proportional to afb0°/aH in Eq. (68) and retain only the negative-

2

valid approximation provided the beam densiiy wpe satisf-es Sq. (44).

Integrating over af0/ Me, Eq. (68) then reduces to

25
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L - k e() - U (a - P)SEe(o) (69)
p P cb2  a 2 b

where the susceptibility Xb( ) is defined by

W2 k2P.2 W w(W LWpbK w. c
Xb(w) - 2 [U 2 - b _) + 2 2

(W - zI C + ilufl~/YU) Le k.1

for the choice of equilibrium distribution function f; in Eq. (13). Since

W £cz = kBbc is assumed, the square-bracket factor in the preceding ex-

pression for xb(w) can be approximated by .(l Bb) - U/Yb2 and the suscep-

tibility reduces to the approximate expression

2 2 "2 2

Xb(w) -U pb b (70)
(W L- cz + iiuk"I/Y bmRO)

For the choice of f in Eq. (13), we note from Eq. (38) that the density
b

profile nb(P) - & U(a -p) is constant in the beam interior. Here, U(a - p)

+1 for p < a and U(a - P) - 0 for p > a, so that the contribution on the

right-hand side of Eq. (69) corresponds to a body-charge perturbation.

Of course, the eigenvalue equation (69) must be solved subject to the

appropriate boundary conditions. At the beam boundary p - a, these condi-

tions are that 6Ee(p) and 36Ee (p)/3p be continuous. At the conducting wall

•(p - ac > a), we assume that the wall has finite conductivity a. The boun-

dary condition at the wall can then be approximated by11

("ea) =- 1-i)6(a )

6 2 Y2 (1 + . ]) (71)
b~yb(l + i) [ 6E (P)] (71)
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In obtainini -.. . b . -.- of Eq. (59) on the vacu.um -i&-

2 92
(where 6J = 0) of tile Lonliu I-tg wall, and we have approximated ( ,/k)

- C 2 k 1 Yb for w = u Z = k C. In Eq. (71)
bbcz b

6 "c/(2rw) I ' 2  (2
• (72)

is the skin depth in the wall.

Equation (69) can be further simplified for JXbI 1 and w u cz -

kwzR0  In this case,

(k2.c
2 R 2-2

0OYb

which is consistent with Eq. (62). Equation (69) can then be approximated by

E I a P + T E (P) 0, < 0 < a, (73)

and

1 p 6Ee (P) - 0 a < p < ac (74)O BOP~p 8- c

where

T 2a - Xb(W )  (75)

and Xb(w) is defined in Eq. (70). The physically acceptable solutions

to Eqs. (73) and (74) with 6E (o) and a6E /aO continuous at p , a

are given by

AJ0 (Tp) , 0 < p < a

6E (P) - JO(Ta) (76)

{4,(Ta) 1+ TaJ(-- - Ln2' , a <p< ac
0-a) alc

where J0 (x) is the Bessel function of the first kind of order zero,

and J6(x) 0 dJ0(x)/dx. Enforcing Eq. (76) at the conducting wall

p - ac gives the required dispersion relation

I7
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y/q. a~c -1 (1)6 221
JO(Ta - Jl(T3  1a T 2 a b~b " 0 , (77)

19 C. b]

where use has been made of J1(x) - -xJ;(x).

Equation (77) is a transcendental equation for the complex

eigenfrequency w and must be solved numerically in the general case.

There are two limiting regimes, however, where Eq. (77) can be

simplified analytically.

( >ar 2 2 a: There is a large temptation to Taylor

expand Eq. (77) for

1T12a a 1. (78)

To lowest order this gives the approximate dispersion relation

1 2 a2 aB 2a(
Ta [1+ 21n - - (l+i)) -bV 0 . (79)

From Eq. (79), it is evident that Eq. (78) is a valid approximation

only if

-11 + U.n a (li) 22 (80

is satisfied. Equation (80) typically requires a large conducting wall22I

radius a >> a, or 2y26 >>a in order for the inequality to be satis-rdua c  bb a

fied. Making use of Eqs. (70) and (75), the dispersion relation in Eq.

(79) reduces to

(W -Wcz 
+ ijkA l/YbmRO) 2

2 22 2

4 2 1 + U~na a by]"- k 2 71 +2n - (l+i)bb•

b C
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Equation (77) also supports solutions with ITj2a2 > 1 when the

inequality in Eq. (80) is satisfied. Making use of Eq. (80), we find

that the dispersion relation in Eq. (77) can be approximated by

JI(Ta) - , (82)

which gives T2a2 0 12  n - 1,2,... where Jl(X 0 and X is the
in 1 1nin

n'th zero of Jl(x) - 0. Making use of Eqs. (70), (75), and (82),

we obtain the dispersion relation

(W - 1 z + iI )jkI/ybRO)2

2 2 2 (83)

2 a• pb X 2 , n 12..

in

where Jl(Ain) 0 .

Equation (83) is really an extension of the dispersion relation

(81) from the regime TJ 2a2 << 1 to the regime ITj 2 a 2 1. What is most

important to note is that Eq. (83) is independent of wall resistivity,

whereas Eq. (81) is not. Moreover, the characteristic growth rate 0.

Imw obtained from Eq. (81) is larger than that obtained from Eq. (83).

Indeed the mode is rapidly stabilized for increasing X2 n2.2 2 < n

(b) ac a a and bYbo 2 ac. In circumstances where BbYb 8  a and

the beam radius is approximately equal to the conducting wall radius a 2 ac ,

the coefficient of J (Ta) in Eq. (77) is algebraically small, and the dis-

persion relation (77) can be approximated by

J0 (Ta) - 0 , (84)

which has solutions Ta On n - 1,2,..., where X On is the n'th

zero of J0(A0) 0. Making use of Eqs. (70), (75), and (84), the

0 On

dispersion relation (84) gives

29
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= cz + i ukAI MR0)

2 2 (85)

fJW=pb 2  - 1,2 ...

7bXOU

where J 0(Xo) o 0. The most unstable solution associated with Eq.

(85) is the fundamental mode with n a 1. As in Eq. (83), the growth

rate 1mw decreases rapidly for increasing XO n Comparing Eqs. (81)

and (85), we note that placing the conducting wall radius (a ) near

the beam radius (a) significantly reduces the growth rate.

3
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NEGATIVE-MASS INSTA.BILITY

We now make use of the dispersion relations (81) a:id (85)

derived in Sec. III to determine negative-mass stability properties

for the case where the wall is perfectly conducting with 6 = 0.

Introducing the geometric factor

+ 2n , for a >> a

9 =(86)

2 • for ac a

2' IOn

2 2 2 22 22

and approximating k -u2/c 2 , k2l2(1 - WR0/c ) k /yb for w zw

the dispersion relations (81) and (85) can be expressed as

(W - LW cz + i pk j/yb R0
)

(87)

2 k2a2 g
U-JWpb 2 4

Yb

Solving Eq. (87) for w, we find that the necessary and sufficient

condition for instability (Im, > 0) is that

0 < 9 Pc~

Yb (88)

where v - ( Xa)(e 2/mc 2) is Budker's parameter for the beam, and

g is defined in Eq. (86). When the inequalities in Eq. (88) are

satisfied, the real frequency :Zr Rew and growth rate Q, Imw

are given by

n r =  1 WC 'z

(89)1/
S R0 mR0 c '

where k = L/R'.
%f 3 1 '
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The stability results in Eqs. (87) - (89) can be investigated

in various regimes of experimental interest. It is interesting to

note from Eq. (87) that a sufficient condition for stability (Imw < 0) is
2
cz 1S2 2 <  ,(90)

2 2 <0,
1 Yb

where w2 a W z/2 + (wb /2)[b - (-f)]. For f - 0, the condition u < 0

[Eq. (90)1 and condition for existence of confined equilibria (Eq. (44)]

can be expressed as

2 2

22 w * < 1 2- (91)2 2 2w2"
Ybwcz cz

.Evidently, for f - 0, the inequality in Eq. (91) can be satisfied pro-
2 /2

ided w /W is sufficiently large. That is, the negative-mass instabi-
pb cz

lity can be completely stabilized for A - 0 provided equilibrium self-

field effects are sufficiently strong.

The regime where M > 0 is perhaps of more practical interest.

In this case, making use of Eqs. (87) and (88), the instability

is completely stabilized whenever the inequality

> _-- V (92)•Ro 282)

(TbmbcRO) b (UYbb b

is satisfied. It is evident from Eqs. (86) and (92) that the instability

is most difficult to stabilize when ac >> a and the geometric factor g

is large. Even in this case, however, only a modest spread A in

canonical angular momentum is required for stabilization. As a
2 2 2 2

numerical example, consider the case where wpb/W 2 << 1 and i 1 - 1/yb
pbcz b b

For v/yb - 1/20, g - 5, Yb 5, and Ob 1, Eq. (92) predicts stability

for (tA/ybm3bcR 0 ) > 1/10.

32
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RESISTIVE WAL. INST-BhLITY

In this section, we consider the dispersion relation (77) and its

limicing versions [e.g., Eq. (81)] in circumstances where wall resistivity

effects (as measured by 6/a c ) play an important role. In this regard,

since a spread A in canonical angular momentum has a stabilizing

influence, we first consider the most unstable case with

A- 0 , (93)

and .2 22
T2a2 w kab
Ta "2 -2 " (94)

Yb - cz

We further consider circumstances where

< 0 ,(95)

and therefore the negative-mass instability is absent (Sec. IV).

Assuming weak dissipation in Eq. (77) with 5bb 6/a < 1, the real oscil-

lation frequency S r, Rew is determined fromr

30 (Ta) - Jl(Ta) (n a a (96)

and the growth rate S1 1mw is determined from

J _2 a J (T a) 6 2 Y

c (97)11 2 2
; a - J' (Ta) n -- ii -y Ta

ar a( % b a_

where Ta in Eq. (97) solves Eq. (96), and we have neglected the (slow)

variation of 6 with Q. We now consider Eqs. (77), (96), and (97)

in various limiting regimes.
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(a) ac - a and a - 0: For 2y2 6<< ac, and beam radius equal to the

conducting wall radius (a ac ), Eq. (96) reduces approximately to

J0 (T) - 0. Making use of Eqs. (94) and (95), the real frequency r

is given by [Eq. (85)],

a - 1 - "± 1 /2  ab 1,2,..., (98)r, onb'

2 2
where J (X ) - 0. Moreover, making use of a - a, 8 Y 6 << a and xJ'(x)

0 on c b b c -0

-JI(x), Eq. (97) reduces to

I 6 Ta 2 2
" 2 ac ara/ao r Bb'b

16 
2 2 

(99)

i (r Cz2 2. .2 a rbb
c

and the slow-wave (lower) branch in Eq. (98) corresponds to instabil.ity

(a > 0) with growth rate

I IT 2ml 2 w a n- 1,2,... (10)

c AOn b

22(b) a c >> a and a - 0: For byb 6 << ac, large conducting wall radius

(a >> a), and IT12a 2 > 1, Eq. (96) reduces approximately to J1 (Ta) - 0,

and the real oscillation frequency n r is given by [Eq. (83)]

(ar" -  1 " J- IV)1/2 upb-k" (101)
r c2 ln1b0

where Jl(n 0, and use has been made of a - 0 and < 0. To the

accuracy of Eq. (97), we then find

-0, (102)

for ITI 1 1.
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On the ot -', for a >. a, the di ,sr,> , on r , :
C

also supports swIuri .ith IT2a 2 1. Ir this ca .

reduces to Eqs. (79) and (81), which has solutions (for t = 0
B2 2

and bb << a)

/1/2
1/ Wpka ac

r cz 2Cb

and

2b2br c (104)
c 1 + 2 kn-

As in Eq. (97), the lower branch in Eq. (102) is unstable with growth

rate

1 1_32_2 /2 I ob kab 2y b a 1/2 "(105)

Comparing Eqs. (100) and (105), it is clear that the resistive-wall

instability exhibits the strongest growth when ac a.

(c) a >> a and A # 0: To illustrate the stabilizing influence of

a spread & in canonical angular momentum on the resistive wall instability,

we consider the regime where ITI2a 2 << 1 and make use of Eqs. (79) and

(81) to investigate stability properties for U < 0 and A # 0.

Expanding Eq. (81) for small 5 2bYb2a << 1, we determine Q Rew and

= 1mw to be given by

1/2Wpbka / /2

nr - c 2c = -b- + 2Un , (106)r z 2Yb a

1. 2 2 ]uill/2wbka -

_6ibb a 2  " R ' (107)
c 2Yb( + 2Zrk-=~)b ( a Y1 ~

for the unstable branch with Imw - 2. > 0. From Eq. (107),

35
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we find that the resistive wall instability is completely stabilized

by a small spread A in canonical angular momentum satisfying
2 2 22

R0)2 16 2 W pbna 0byb (108)(bm.brRY 16 ac 2 u 2( a 2 c

Of course, Eq. (107) reduces to Eq. (105) in the limit A - 0.
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CONCLUSIONS

In this paper we have investigated the equilibrium and stability

properties of a relativistic electron ring within the framework of the

'linearized Vlasov-Maxwell equations. The analysis was carried out for

perturbations about an electron ring located at the midplane of an ex-

ternally applied mirror field combined with an applied toroidal field

B 00. Equilibrium and stability properties were calculated in Sections

II - V for an equilibrium distribution function which incorporates a

spread in canonical angular momentum P (Eq. (13)]. Equilibrium proper-

ties were calculated in Section II, and one of the most important features

of the equilibrium analysis is that the maximum beam density confined in

the modified betatron field configuration can be greatly enhanced by the

toroidal magnetic field ext [Eqs. (43) and (44)). Moreover, the rota-

tion frequency w in the minor cross section of the ring plays an impor-

tant role in determining detailed equilibrium properties.

The formal electromagnetic stability analysis was carried out in

Section III, and stability properties were calculated for eigenfrequency

w near harmonics of wcz" A closed dispersion relation [Eq. (77)] was ob-

tained assuming that the electron ring is located inside a toroidal con-

ductor with finite resistivity and minor radius a << R0 . Negative-mass
c 0

stability properties were investigated in Section IV for zero resistivity,

including the important influence of equilibrium self fields. For a low-

density ring, a modest spread a in canonical angular momentum stabilizes

the negative-mass instability. In a gh-density ring with f - 0, however,

if the self fields are sufficiently strong, the negative-mass instability can

be be completely stabilized by equilibrium self-field effects [Eq. (2l)].

4 37
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The stabilizing influence of equilibrium self fields on the negative-mass

instability is an important new feature for stable operation of high-current

modified betatron accelerators. The resistive-wall instability was exam-

ined in Section V. It was shown that resistive-wall instability can also

be stabilized by a modest spread A in canonical angular momentum
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APPENDIX A

DERIVATION OF APPROXIMATE INVARIANT P. - CONST. FOR A CIRCULAR

BEAM WITH a - b AND n - 1/2

In this Appendix, we make use of the single-particle equations

of motion in the equilibrium field configuration and the assumptions

outlined in Sec. Il to determine the conditions where

1 eB8 2
POa opt -c-P (A.1)

is a good approximate invariant. Here, (p,0,9) is the toroidal

polar coordinate system defined in Fig. 1 and Eq. (2).

in (r,8,z) coordinates, the radial and axial equations of

motion can be expressed as

vep 0ra-e +-!vB 0  1 v )(A.2)
re( C z c 9

and

W F MeE+!vBO -1 v B 0 ) (A.3)

Here, E" - 0(rz)far and E a -a%0(rz)/3z are the radial and

axial self electric field components determined from the equilibrium

0 ext a-ext selectrostatic potential 00 (r,z), and B .0 r + B Or (/z)(A 0  + Aoet' r O r + OBr._(/)-AeX+ )

0 ext s -l(ext sand B -BO + B - r Car)[r(A + A )] are the radial and2 Oz 0: 0 Oe

axial components of the total (applied plus self) equilibrium

0 ext smagnetic field. The quantity A (r,z) - A08  + A66 is the 8-component

of the equilibrium vector potential. Making use of the assumptions

enumerated in Eqs. (3), (4), (5), (7), and (9), and considering

density and current profiles of the form a(r,z) - nr' + and

J((r, + , where r' - r - RO , it is straightforward to

A-I

irw _1
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show to the accuracy required in the present analysis that the equilibrium

potentials and field components can be approximated in the ring interior

(Ir - R I Ir'l c a and IzI b) by8'9

Er - -4ve(l-f)hb -b r' (A.4)

o . -4w(l-f) , (A.5)

0 - 41e(l-f) - (br' + az) , (A.6)

and

oB r - a 4 (A.7)
zr z% _ eRoBbb aibR 0

0 . rAb r'

B - - nB - +41r bR r' (A-8)
B~z z 3-n z  +O 4eob b a+b R0  68

0 0rA°  R0Ae(R,0)+ R 0 zr'

+ 1 (1-n)B r'2 + n z 2 (A.9)2 z 2 z

+ 1 4wR br 2 +a2)2~ 4 eRBb- ~br +a )

where r' r - %.B z (0:. r - % 0). Bb -Ve3nO)/c'

and n - -[rZlnB ext:(r'z)/ar O is the external field index. Moreover,

from Eq. (1), the applied toroidal field can be approximated by

B (l - r'/R) (A.10)

in the ring interior.

We make use of Eqs. (A.2) and (A.3) and Eqs. (A.4) - (A.10) to

form the difference product

A-2
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eB0  rv

'.J. &JLa + b

(A.11)

+ zve (L - e9S+ 2n a' z r'

where small terms of cubic and higher order (zr'v r r 2v r etc.) have

been neglected in Eq. (A.11). Note that the self-field contributions

in Eq. (A.11) vanish identically for a circular beam with a - b.

In the final term in Eq. (A-11), we express p. W P /r + (e/c)A 0(r,z)-
8 8

0P 0/r + (e/c)Aj(r ,z) + SP/,where SP, - Pe - PO, and make use

of P 0 - (1/2)(eB3Z/c)% and AO(R 0 ) z R 0!/. Neglecting terms of

cubic order and higher, and assuming a circular beam with a b, Eq. (A.11)

can be approximated by

2j r (zv+ r'v)
4rr' ~T z r

(v n - 1) - -(A-12)
V8  c cR

+ zv '-
82
R6

Strictly speaking, a circular beam with a b requires external field

index a -1/2, so th~at Eq. (A.12) reduces to

eB~ 6?

R0

A-3
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Comparing the two terms on the right-hand side of Eq. (A.13), and

estimating z , r' %, a, v z  PI/Ybm' and Ybmve % eBz%/c, we find

that the 6P contribution in Eq. (A.13) is negligibly small whenever

the inequality

j~pel(A.14)

bcRO z PG

is satisfied [Eq. (8)]. Within the context of Eq. (A.14), Eq. (A.13)

can be approximated by

0 - pM L P a - (A.15)

which is the required result. Here, 2 - r'2 + z2 (r - R) 2 + z2 and

pO is the 4- component of mechanical momentum in the toroidal polar

coordinate system (p,0,6) illustrated in Fig. 1.

A-4
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A.PPEIX B

ELECTRON TRAJECTORIES IN THE EQUILIBRIUM FIELD CONFIGURATION

In this Appendix, we determine the electron orbits in the

equilibrium configuration described self-consistently by Eq. (13)

in Sec. II and Appendix A. For a circular beam with a - b and n - 1/2,

we express the Hamiltonian H in Eq. (27) as

2 1 __1 1)2 + (P,+ 1  mW r,) 2
YbmC + 2b '(P bW z) + z+e2Yb ce

+ Op---)2 + (1 - r'/Ro)(6Pe) + Ybm(r '  2 + z(.
3 2 Wcz - T - +w2ybmR0

where (P', PF) are the transverse canonical momenta in the toroidal B 0
r z~

field,

p- ,l ,

r pr-'-yb"c4 Z

(B.2)

P;P ;_n:2ybmwcar'

W2 . cZ/2 + (W2pb/2 )[0b2 - (1-f)] is the betatron frequency defined in

Eq. (39), and wce a ese/Ybmc and wcz - eBz/Ybmc. The "primed" orbits

(r',z',',p,p,p) in Eq. (B.1) pass through the phase space point

(r - R0, Z,8Spr~pzpe) at time t' - t. Moreover, r - Yb
mv

r and

P- YbmVz for the nonrelativistic transverse motion described by Eq.

(B.1). From Eq. (B.1), Hamilton's equations of motion (d/dt')(3H/BP')
r

- -3H/3r', (d/dt')(8H/3P ')-- lH/az' and do'/dt' -3H/P 8 , give

Ybm d2r' + czd + r' z--2O - ybmo2r, 9 (B.3)

B-i
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0~z_.'  dr ' 2
Yb a dt2 bM " ce 77 YbmB'O z (B.4)

d-o+ e + (B.5)
dt cz 10 W cz3bm 2

Simplifying Eqs. (1.3) and (B.4) gives the coupled oscillator equations

d 2 r ' - W dz' +- 2 2r SP - 0 , (B.6)

d 2  ce dt' a 2bB

d _2 + dr" + Wz2 -0 (B.7)
dr'2  ce dt'

Introducing

T' I cz 6P + iz" (B.8)

Ybm"Ro

Eqs. (B.6) and (B.7) can be combined to give

dd2  d 2

dt- ' 2  n + ' + , n =  0 (B .9)

which can be integrated to give

n' n n 4exp(i +T) + nexp(iwr) , (B.10)

where T - t' - t, n+ are constant complex amplitudes, and the

frequencies wb are defined by Eq. (43)],

2 (1.11t -W ce + -4 -a ( B. 1)
Wce

Note from Eqs. (B.8) and (B.10) that the (r',z') motion is biharmonic

in W+ and wb and that r' and z' can be expressed as
b b

B-2

expresedIa
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r m- 6P + (R1o''~ + 'cs''
2 a ++ -- b_ + 'coswi )

Yb M ORO(B.12)

-(1sint + 1Vsin'T)

- (.Cow + 'osw;-r)

K- (?swbT +

(B.13)

+ (t.sinwr + -'iWb

The oscillation amplitudes t1 and ; of course can be determined

from the boundary condition that the particle trajectories (r',z',p',p')
r pz

pass through (r-RZ*pr9pz) at T - t' - t - 0. For a thin ring with

a << R0 , we note that It+I, 12+l_ << R.

Substituting Eq. (B.12) into Eq. (B.5) and integrating with respect

to t', we obtain

6' = e + (W - P/"bmRO)T

(B. 14)

+ (small oscillations),

where U is defined by

2
cz 1= 2 2 •(3.15)

2
YS b

In Eq. (B.14), the small oscillatory terms (of order aIR 0) are biharmonic

in w± and make negligibly small contri itions in the frequency regime

considered in the stability analysis in Sec. III. Depending on the

sign of b - (1-f) and the size of Yb and wpbf/cz we note from

Eq. (B.15) that U can assume large positive or negative values.

B-3/B-4
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