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FOREWORD

Equilibrium and stability properties of an intense electron ring located at
the midplane of an externally applied mirror field are investigated within the
framework of the linearized Vlasov-Maxwell equations, including the important
influence of equilibrium self fields and an applied field ngt in the toroidal
direction. It is assumed that the ring is thin and that v/y, << 1, where v is
Budker's parameter and y,.mc2 is the characteristic electron -energy. Equilibrium
and stability properties are calculated for the choice of equilibrium distribution
function in which all electrons have the same value of energy in a frame of
reference rotating with angular velocity w, in the minor cross section of the
ring, and a Lorentzian distribution in canOnical angular momentum P,. Negative-
mass and resistive-wall stability properties are calculated, and a “closed
dispersion relation is obtained for the case where the ring is located inside a
toroidal conductor with finite resistivity and minor radius a. much less than
the major radius R,. One of the most important features of tﬁe stability analysis
is that the negative-mass instability in a high-current ring can be stabilized
by equilibrium self-field effects in circumstances where the self fields are
sufficiently intense. Moreover, a modest spread A in canonical angular momentum
can stabilize the resistive-wall instability.

‘ﬁ'}m M /%ﬁw
IRA M. BLATSTEIN
By direction
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INTRODUCTION

There is considerable recent interest in the equilibrium and sta-

bility properties of intense relativistic electron rings with applications
that include high-~current betatron accelerators.1-4 In a conventional
betatron accelerator, a toroidal electron ring is confined in a mirror

or betatron magnetic field. Moreover, the beam density and current is

limited by the strength of the betatron magnetic field. In the modified

betatron accelerator,l’z however, an additional confining magnetic field

R L imsd e

ext

Boe is applied in the toroidal direction, thereby considerably increasing

the limiting beam current and density. In the present article, we make

use of the Vlasov-Maxwell equations to investigate the equlibrium and sta- i

bility ptopertiess-lo of an intense relativistic electron ring confined in

a modified betatron field cogfiguration,l’2 including the important influ-

ext
oe ’ i

The analysis is carried out for an electron ring located at the midplane of

ence of equilibrium self-field effects and the toroidal magnetic field B

an externally applied mirror field. The positive ions form an immobile
(mi + =) background that provides partial charge neutralization. In addi-
tion, it is assumed that the electron ring has minor dimensions much smaller
than the major radius Ro (Fig. 1). It is also assumed that v/yb << 1,
where v 1s Budker's parameter and mecz is the characteristic electron
energy associated with the toroidal motionm.

Equilibriumand stability properties are calculated for the specific
choice of the equilibrium electron distribution function [Eq. (13)]
B RpA S(H - wP, ~ jme?)

2 2 2
27 Y2 [(Pe - Po) + A}

0
fb(H’PO’PS) =
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where H is the energy, Pe is the canonical angular momentum in the azimuthal

direction, P, = PP, ~ & e92/2c is the canonical angular momentum in the

¢
small cross section of the torus, Ro is the major radius of the ring, and
ﬁb’ A, Po, oy and Y are constants. Although H and Pe are exact single-par-
tical invariants for the equilibrium configuration ifllustrated in Fig. 1,
P° is an approximate invariant whenever the toroidal field is sufficieatly
strong [Eq. (8)] and the electron ring has circular cross section (Appendix

A) with

n --% and a =5} .

ext
0z (r'Z)](RO’O)

of the electron ring are calculated in Section II. One

Here n = -{r{3/3r)tnB is the external field index. Equili- -

brium propert1e58’9
of the most important features of the equilibrium analysis is that the max-
imum electron density trapped in the ring can be greatly emhanced by the
toroidal magnetic field [Eqs. (43) and (44)]. Moreover, the rotation fre-
quency u, in the minor cross section of the ring plays an important role in
determining detailed equilibrium properties.

The formal electromagnetic stability analysis is carried out in Section
III within the framework of the linearized Vliasov-Maxwell equations. Neg-

5-7,10

ative-mass and resistive-wall stability properties are calculated

for eigenfrequency w near harmonics of the cyclotron frequency w

/v

cz eng:t(RO’o)
puc associated with the axial magnetic field, i.e., w = .- The

resulting dispersion relation in Eq. (77) is obtained analytically for a
relativistic electron ring located inside a toroidal conductor with finite
resistivity and. minor radius a,. Equation (77) is one of the main results

of this paper and can be used to investigate stability properties for a

broad range of physical parameters.
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Negative-mass stability propertiess_7’lo

are investigated in Section
IV, assuming a perfectly conducting wall but including the important influy-

ence of equilibrium self fields. Introducing the parameter [Eq. (64)]

2,2 2
us= ch/(lls - I/Yb ’

)

we find that [Bq. (88)]

v mRoc 2
0 <y ¢ — g
Y

is a necessary and sufficient condition for instability. Here, g is a geo-

metric factor with g = (1 + 22nac/a) for a > a and g = 4/)5

= 212 + @ /D8Y - (1 - D] s the

for a_ = a,
n c

2
vhere Jo(xOn) = 0. Moreover,

8
radial betatron frequency-squared for a circular beam with a = b and n = 1/2,
m;b = éwﬁbezlybm is the relativistic plasma frequency-squared, and f is the

fractional charge neutralization. Evidently, from Eqs. (64) and (88),

equilibrium self fields can have a large influence on stability behavior.

Moreover, the negative-mass instability can be completely stabilized by a

sufficiently large spread 4 in canonical angular momentum Pe.

It is also important to note that u < 0 is a sufficient condition for sta-
bility (Section 1IV) even with zero spread in canonical angular momentum
(A = 0). The condition u < 0 can be satisfied provided the equilibrium

gelf fields are sufficiently strong in absolute intensity. For example, if

ﬁ = 0, then the sufficient condition for stability (u <0) and existence of
a confined equilibrium [Eq. (44)] can be expressed as 1 < uéb&ﬁwzz <1+
wzeIZt%z.

Although a perfect conducting wall is a reasonable assumption in many
experiments, we expect a significant modification of stability behavior
when a small amount of resistivity is introduced into the wall, e.g., to

stabilize the transverse precession in the minor cross section of the ring,

7

LR N
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In this regard, in Section V, we investigate the resistive-wall instabilitys

assuming that u < 0 and the negative-mass instability is abseat. It is
shown that the resistive~wall instability can also be stabilized by a modest

spread A in the canonical angular momentum.

i )

kot
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EQUILIBRIUM CONFIGURATION AND BASIC ASSUMPTIONS

A. Basic Assumptions

The equilibrium configuration is illustrated in Fig. 1. It consists
of a relativistic electron ring located at the midplane of an applied
ext a ext A
focussing (mirror) field BOr (t,z),gr + B, (r,z)gz. In additionm,

the electron ring is located inside a toroidal conductor with minor

radius ac.Theapplied toroidal magnetic field ngtge, where
R
ext 0

together with the mirror field act to confine the ring both'axially
and radially. Here, %r’ ée! and %z are unit vectors in the r-, 6-,
and z-directions, respectively. The equilibrium radius of the ring is
dencted by RO’ and the minor dimensions of the ring are denoted

by 2a (radial dimension) and 2b (axial dimension). In addition to the
cylindrical polar coordinates (r,8,z), we also introduce the toroidal

polar coordinate system (p,9,9) illustrated in Fig. 1 and defined by

T - R0 = ¢' = pcostd ,
2

z2 = p3ind ,

.where p is measured from the equilibrium radius Ro. The electrons
composing the ring undergo a large orbit gyration in the external
mirror field with characteristic mean azimuthal velocity Vg = Bbc in
the positive 68-direction. The associated ring current, which is in the
negative 8-direction, produces a self-magnetic field Eg(f) that

threads the ring in the sense indicated in Fig. 1. This self-magnetic

field acts + a focuss  'g fiald which tends to cunfine the ring electrons
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both axially and radially. The electron ring is assumed to be

partially charge neutralized by a positive ion background. The excess
electrons form a potential well for the ions. For the electrons,
however , the self-electric field is defocussing, i.e., in the direction
' of increasing the minor dimensions of the ring.

To make the theoretical analysis tractable, we make the following
simplifying assumptions in describing the electron ring equilibrium by
the steady~state Vlasov-Maxwell equations.8’9

(a) The positive ions form an immobile (mi + ®) partially neutralizing

background. The equilibrium jon density ng(t,z) and electron density

ng(r,z) are assumed to be related by

Qe,2) = £2r,2) , (3)

ni(

where £ = const. is the fractional charge neutralization.
{(b) The minor dimensions of the ring are much smaller than its

major radius, i.e.,
a,b << Ro . (4)

To further simplify the analysis we also assume that the minor cross

section of the ring is circular with
‘a=b, (5)

which is consistent (strictly speaking) provided the external field

index n satisfies

n=1/2, (6)

where n = -[ralnBS:t(r,z)lar](Ro’o).
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(d) Consistent with Eq. (4), it is also assumed that the

transverse (r,z) kinetic energy of an electron is small in comparison

with the characteristic azimuthal energy mecz, i.e.,

1 2 2 2
Zme (pr + Pz) <« YpRE ‘ 7

where Py v meBbc is the characteristic azimuthal momentum.
(e) The maximum spread in canonical angular momentum éPe is

assumed to be small with |6Pe| << ypm, cRy and

v™5%% B, |P
2 2,1/2 .
Here, p; = (pr + Pz) is the characteristic transverse (r,z)
momentum, pe » ybmsbc is the characteristic azimuthal momentum,
5 - next % o peXt - _
and Be z BOe (RO’O) and Bz BOz (RO,O). Moreover, SPS z Pe Po, where
Pe is the canonical angular momentum, andPO = const. is the average

canonical angular momentum of the electrons composing the ring. As
shown in Appendix A, the inequality in Eq. (8) (which is satisfied

provided the spread in canonical angular momentum ¢P, is sufficiently

8
small and/or the toroidal field ﬁe is sufficiently strong), together
with Egqs. (5) and (6) are sufficient to assure that the canonical
angular momentum Po - PPy = (eﬁe/2c)o2 defined in the small cross-

section of the torus is a good approximate invariant.

(f) It is further assumed that

—_— —— —— =— << ], (9

where v = (Ne/ZﬂRo)(eZ/mcz) is Budker's parameter, Ne is the total
number of electrons in the ring, and ez/mc2 is the classical electron

radius. While Eq. (9) assures that the equilibrium self fields

Eg s zgz, B;z, and B

or 2re weak in absolute intensity (in comparison

11
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with BS:t). depending on the beam density we will find that the

self-field gradients can be large and have a correspondingly
large influence on particle orbits in the equilibrium field

configuration.8’9

B. Self-Consistent Vliasov Equilibrium

For azimuthally symmetric equilibria (3/36 = 0) with both r and
z dependence, there are two exact single-particle constants of the motion.

These are the total energy R,

H= (mzcl' + cz,gz)l/:Z - epy(r,2) , (10)
and the canonical angular momentum Pe,
e .0 i ‘
pe = t[Pe — Ae(rsz)] » (11) 1

where 2= ymy is the mechanical momentum, ¢o(r,z) is the

equilibrium electrostatic potential, -e is the electron charge, ¢ is

the speed of light in vacuo, m is the electron rest mass, and Ag(r,z) =
AS:t(r,z) + A;e(r,z) is the 6-component of the vector potential

for the to:al'(external plus self) equilibrium magnetic field. Without
loss of generality, we assume ¢0(R0,0) = ASB(RO,O) = 0 in Eqs. (10)

and (11). Within the context of Egqs. (3) - (9), it is shown in
[ ]

e 2 2
Po-ppo-—-B

4
2¢ “gf (12)

in the plane perpendicular to the toroidal magnetic field ngt is an

approximate single-particle invariant for a thin circular beam with a = b
and n = 1/2. Here, Py is the mechanical momentum in the $-direction

[Fig. 1], and 92 = (r ~ Ro)2 + 22 is defined in Eq. (2). 1In obtaining

12

anCiatn - SUNURUSRIrREe ~ = T N PUPER
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Eq. (12), the toroidal magnetic field ngt = iaRO/r has been

approximated as uniform over the minor cross section of the ring.
Any distribution function fg that is a function only of the single-
particle constants of the motion in the equilibrium field configuration

satisfies the steady-state (3/3t = 0) Vlasov equation. For present

purposes, we consider the electron distribution function specified by

ﬁbRoA §(H - wbP° - ?mcz)
miym (P, - PO 442 ] @3
Yp 9 0

0
fb(H’PO’Pe)

where ﬁb - ng(RU.O) is the electron density at the equilibrium
radius (r,z) = (RO,O), wy = const. is the angular velocity of mean
rotation in the ¢~direction, A is the characteristic spread in the canonical

angular momentum P_, and ¥ is a constant.

e’

The equilibrium Poisson equation can be expressed as

2
) 3 g
=T =+ 5 |¢,(r,2)
( 3T =~ ar 322> 0

' 3 0
= 4ne(l f)[d P fb(H’PQ’Pe) .

LR

(14)

Furthermore, the 6-component of the z x Eg(ﬁ) Maxwell equation can be

expressed as

2
a_13 3__|,8
(ar rac " 2) Agg(Ts2)

9z
(15)
dre [ 3 0
- fd P ve fb(H’pO’Pe) .
2,22.~-1/2
where Vo " (pe/n)(l +p /m°c®) is the azimuthal electron velocity.

Consistent with the thin ring approximation [Eq. (4)] is the

requirement that the r-z kinetic energy be small in comparison with

the effective azimuthal energy [Eq. (7))
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P 2)1/2
ye(r,z)mc2 - mzc4 + cz {;Q +'§ Ag(r.z)} , (16)
defined for pi = pi + p: = 0 and Pe = PO’ and that the spread in

canonical angular momentum be small with [GPB] = IPe = Pyl << y,m8, cRy.

2

Taylor expanding for small values of pi + P, and GPG =P - Pg, we

L)

find that the total energy H defined in Eq. (10) can be approximated by7_10

2, 2
pr+pz

2ye(r.z)m

H= + ye(r,z)mc2 - e¢o(r,z)
an
Vg(r.z)

+ =0 (5B) +

2
2 2
Vg (r,2)ur
where the mean azimuthal velocity of an electron fluid element Vg(r,z)

1 is defined by

| Vi) = (v )/ (faptd)
(18)

= [(By/2) + (e/)AY(r,2))/ Ly, (x,2)m]

For future reference, we define the characteristic azimuthal energy mecz

of a beam electron by

yyme’ = ye(Ro,O)mcz ) " 19)
and choose
eB
z 2

Ph*2c R

(20)
0 1
Ae(Ro,O) =3 BzRO »

s . gpext
where Bz E BOz (RO,O).

il il i
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The mean equilibrium radius RO of the ring is effectively

determined from the conditiona’9

2
[mc 'g—rye(r,z) - e g—t ¢0(r,z)] (R 0) " 0. (21)

‘Haking use of Eqs. (16) and (21), we obtain8'9

22 0 0

where Bb H Vg(RO,O)/c, Eg(r,z) = -3¢o/ar is the radial self electric
field and Bg(r,z) = (llr)(alar)(rAg) is the axial magnetic field.
Equation (22) is simply a statement of radial force balance on an
electron fluid element at (r,z) = (RO,O). Due to the symmetry of the
equilibrium configuration (Fig. 1), it is clear that at the midplane
(z = 0), the axial electric }ield and the radial magnetic field are

identically zero. We therefore note that

3 3
vl (r,z)] =0 = {— ¢ (r,Z)] (23)
{Bz 2] (R0’0> 3z "0 (Ro’o)
.2 2
[ °a Ye(r,z)] =0 = [_a_a_ ¢0(r,z)] . (24)
9raz (Ro'°) araz <R0’°)

Making use of Eqs. (20) - (24), the expression for the total energy H
in Eq. (17) can be further simplified by Taylor expanding the expressions
for ye(r,z), ¢o(r,2z), etc., about (r,z) = (RO,O). Introducing the
radial betatron frequency w, defined by

2
2 1 1|3 2 _
Nt me [arz (Yemc e¢o)} (RODO) ’ (25)

and the axial betatron frequency W,

2
2 1l 13 2
w, = =—|—— (y,mc - ed,) s (26)
z me[azz 8 0 ] (Ry,0)

15
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we Taylor expand Eq. (17) about (r,z) = (RO,O) for a thin ring,

retaining terms to quadratic order in r' = ¢ - Ro and z. This gives7-lo

p2 + p2
2 T Z r'
B Y B¢ + 2me + . (1 RO )‘SPe

(ep )2 (27)

+ Tez- +3 ybm(wzr'z + uzzz) ,

2v3mR r z

p0
where Weg is the relativistic electron cyclotron frequency in the
axial magnetic field

&,

Yez T YR ’ (28)
and B, = Byx (Ry,0). Making use of Eqs. (16), (25), and (26), and the
expressions for the equilibrium potentials given in Eqs. (A.6) and
(A.9), we find that wi and mi can be expressed as

2 2 2 b
wp = ugy (L= m) +ar, 2 (82 - (-0, (29)
and
2 2 2 a 2
w, = w0 + wpb e [Bb - (1-8)1 , (30)

0 2 .2
where Bb - Ve(RO,O)/c, b énnb- /me is the relativistic plasma

frequency-squared, ﬁb = ng(RO,O) is the beam density at (r,z) = (RO,O),

and
r 3 ext
BT Temt, > ar Doz (5@ ' (L
802 (r,2)

(Ry»0)
is the externmal field index.

In the remainder of this article, the equilibrium and stability
analysis is restricted to circumstances where the characteristic

spread A in canonical angular momentum P, is sufficiently small that

e

16
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2 Y 2
b << y ow a ;:: » Ypmw aRy . (32)

Within the context of Eq. (32), the 6P, contributions in Eq. (27)

are negligibly small in comparison with the final term, and the

T Y P SV SO

. total energy H can be approximated by :

2 2
p_+p
H= ybmc2 + -%;—;r£-+ % ybm(wrr'2 + mizz) . (33)
b

Referring to Egqs. (12), (13), and (33), and making use of the toroidal

polar coordinate system (p,%,8) defined in Eq. (2) and Fig. 1, the {
combination H - mbP° can then be expressed as 1
2
H- wP, =yme? + o+ y(c',2) (34)
“Fe b Zme wirs, ’
2

where pf = pp

in a frame of reference rotating with angular velocity w, = comst.

+ (po - meubp)z is the transverse momentum-squared

about the toroidal axis, the envelope function y(r',z) is defined by
1 -;l_ 2|2 22
pw(r',z) 3 ybm(ﬂrr + Q2 ), (35)

where r' = r - Rg, and 62 and §2 are defined by
T z

22 2 2
Qr T Uyeq “p + We o

(36)
" . 2 2
Qz = e T Y + Wz o
where w: and mi are defined in Eqs. (29) and (30), and
eB
i (37)
ch mec

is the relativistic cyclotron frequency in the applied toroidal magnetic

17
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field B, 3;“(&0 0). Substituting Eqs. (34) and (35) into Eq. (13)
and evaluating the electron density profile n:(r,z) = fd3pf°
we find
r.2 z2
‘ nb(r z) = n.bU - + =3 > (38)
a b
1/2 1/2

where a = [2(} - Yb)c /ybﬁzl and b = [2(y - Yb)c /ybn 1'%, and U(x)
is the Heaviside step function defined by
1, x>0,
U(x) =
0o, x< 0.

Note from Eq. (38) that the electron density is constant (ﬁb) inside
the beam cross section r'’/a’ + zz/b2 < 1, and identically zero outside.
As indicated earlier in this section and in Appendix A, P° is a

good invariant (strictly speaking) provided Eq. (8) is satisfied and

provided the beam is circular with a = b and n = 1/2. From Egs.

; 2 2 2 22 a2 2
(29), (30), and (36), we therefore find W= w, = wg and Q_ Qz =.QB
where
2_.1 2 1 2.2 _ ,,_
wg T F 0., +3 mpb[Bb (1-£)] , (39)
and
2 _ 2 2
Ty = wpuce ~ up + ug - (o
Moreover, the minor radius of the ring is given by
a=b =[2G - ypiialt? (41)
For existence of the equilibrium, both y > Y and ng > 0 are required.
The condition 92 > 0 can be expressed in the equivalent form [Egqs. (39)

8

and (40))
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*

where the frequencies w,_ are defined by

b
2 2 1/2
+ _ Yo 2w, 2“‘p_b 2
mb 5 1+ 11+ < "3 (l-f—Bb) . (43)
w w
ch ch

The requirement that the radical in Eq. (43) be real determines the

2

maximum gllowable equilibrium beam density for given values of f, Bb’

w_ _, and w__. For example, 1if £ = 0, then

cz cé
2
2w
pb 2 2
7 < chz + weg (44)
b
is required for existence of the equilibrium. For wie >> uzz,

Eq. (44) is identical to the result obtained by Sprangle and
Kape:anakosl within the context of a model that examines the stability
of single-~particle orbits.

Finally, we conclude th;s section by noting that Eqs. (13), (32),
(34), and (35) can be used to evaluate a variety of equilibrium

8,9 for a circular beam with a = b and n = 1/2. For example,

properties
0 3 0[30
the mean rotational velocity Ve = (fd pv¢fb)/(‘d pfy) of an electron

fluid element about the toroidal axis is given by
0
Vo WP » (45)

where the rotation frequency wy is restricted to the range in Eq. (42).
Moreover, it can be shown that the equilibrium pressure tensor in the
(p,O) plane perpendicular to the 6-direction is isotropic with the
perpendicular pressure Pg(p) = ng(o)TE(p) given by

- o2 + (o, - v mu)’
0 0 ) ¢ b 0
n (p)Ti(p) = 2n [ dP.LP.Lr dp £,
b 0 - O Zme b

19
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where 12(9) is the effective transverse temperature profile. Defining

me T, , 47)

- 1 22 1
T, 'z-ybmﬂaa =3

and sybstituting Eq. (13) into Eq. (46) gives
) = 1,Q - 9%/ad) , (48)

for 0 < p < a. In Eq. (47), r., is the characteristic thermal

L
Larmor radius of the ring electrons in the azimuthal magnetic field ie.

Making use of Eq. (47) to eliminate , in Eq. (40) in favor of r

B8 L’
we solve Eq. (40) for the rotation frequency w, and obtain
2 2 nl/2
Y- Yeo zwcz 2m2b 2 er
=By Tl (L 5E R -8 - (F) :
Y8 “co
(49)

which relates w, to the Larmor radius r,. The two signs (*) in Eq. (49)

b L
represent fast (+) and slow (-) rotational equilibria. In order for
the equilibrium to exist, the ratio ZrL/a in Eq. (49) is restricted

to the range

2 2 2
2r 2w 2w
L - —BB (5 - ¢ -g2) 452
(L) c1-Ra-t-8)+%=. (50)
“ecs “co
20
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LINEARIZED VLASOV-MAXWELL EQUATIONS

In this section, we make use of the linearized Vlasov-Maxwell

equations to investigate stability properties of the

ﬂequilibtium ring configuration discussed in Sec. II. In the stability

analysis, a normal-mode approach is adopted im which all perturbed

quantities are assumed to vary according to

Su(x,t) = S (x)exp(-iuwt)

= §P(plexp[i(28 - wt)] ,

2]1/2

[(x - Ro)z + z , and 3/3¢ = 0 is assumed

where Imy > 0, p
(Fig. 1). Here, u'is the complex oscillation frequency and ¢ is the
toroidal harmonic number. Integrating from t' = -» to t' = t and
neglecting initial perturbations, we find that the perturbed
distribution function can be expressed as Gfb(g,g,t) = Gfb(é,g)exp(-iwt),

where

0
G%b(f’e) = ej.e dr exp(-iwt)
(51)

ol ' l _, o ' 3 0 ' '
x {65(5 ) +oy X §B(x )} . ;é? fb(gg ')

In Eq. (51), t = t' - ¢, 6%(&) and Gé(g) are the perturbed electro-
magnetic field amplitudes, and the particle trajectories §'(t') and g'(t')
satisfy dk'ldt' = g' and de'/dt' = -e[E0 + x' x Eo/c] with "initial"

conditions 5’(t' =t) = x and x'(t' = t) = v. The Maxwell equations

for 6%(5) and 6%(&) are given by
Vxéﬁai—usé (52)
c 3

A 4n 2 iw 2
v x 6B = e §3 - . §E » (53)

21
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where ¢ - Gé = 0 and

v . sg = 4nép . (54)

In Eqs. (53) and (54) the perturbed current and charge densities

" are defined by

3G = -efd3p Y 6%, . (55)

66(5) = -efd3p GEb , (56)

where v= g/ym. Taking the curl of Eq. (52) and making use of Egs.

(53) and (54), we obtain

2 1
2w o ” iw .2
(‘7 + ?> 6E = 4 (Vép -3 6,&) , (57) .

which is the form of Maxwell's equations used in the present

stability analysis.

For present purposes, we consider 3/3¢ = 0 wave perturbations with

polarization
2? (x) = ¢E,(p,0)g, + szp(o,e)gp
- ) e <+ P
exp (izB)[GEe(p):e ébp(p)sp] , (5%)
GB (x) = GBQ(p,e):Q = exp (129)63¢(9)5°,

where ee, e and 5@ are unit vectors in the 9~,p~ and ¢~directions, res-
N N

_pectively (Fig. 1). Approximating ig/r = iz/Ro = ik, it is straightfor-

ward to show from the ¢-component of Eq. (52) and the p~component of Eg.

(53) that 63 (p) can be expressed as

cs()-—m-—ssecw——s“ E (o) , (59)
2 -
1 w_ ic 3 Qwi
- - 68, ©) - 2253 (o)
wZ/CZkZ -1 [ Zkz w Bo ]
22
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where the perturbed current éJp is related to <SB(;> and GED by -ikip, =
(lm/c)GJp - (iu/c)éﬁp. We also assume that the toroidal conductor

(radiusp = ac) has large aspect ratio with

a, << Ro. (60)

Taking the 6~component of Eq. (57), we obtain the eigenvalue equation

for sie,

) .
13 3 (e _2)|sE = 5 - w7
[p A Rr +(C2 k )]sze 4 (1k8 % 53,) » (61)

where k = IIRO, and we have approximated Vz = VE - 9.2/r2 = p'l(a/ap) x
(3/3p) - kz in Eq. (61). It is further assumed that Rew = nr satisfies

Q v chz, and that the waves are far removed from resonance with the

r
transverse (r,z) motion, withlo
+ 2 :
w.
(—:u‘;——)-l e (62)
9 Cez 0

where wi are the characteristic (r',z') orbit oscillation frequencies
about (r,z) = (Rp,0) {Eq. (43) and Appendix B]. To lowest order,
consistent with Eq. (62), it is shown in Appendix B that the azimuthal

orbit is described by [Eq. (B.14)]
2
' - -
] ] +_(“cz usPe/ymeo)t R (63)

where t = t' - ¢,

w2
c2 1
= 2 - 2° (64)
WB Yb
2 2 2 2
and wg = wcz/2 + (mprZ)[Bb (1-f)] for a circular beam with a = b and
ns=1/2.

From Eqs. (51), (58), and (59), we note that

23
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v' x 6BGx")
GE(§)+__-E—§_

\J

a v -
= axp (ue')[sze(p') +-2 (i:‘g §E,(p") +— 6E (o' ))] g, (6

- Yo [1c 3 o
+ exp (19-9')[620(9') - (c SE, (") +—6E (! ))]

ke . Whn = s e

c \w 3p' '?P

Estimating the size of terms proportional to dhp and aéte/ap' in Eq. (65),
and making use of the assumption that the wave perturbations are far re-
moved from resonance with the transverse (r', z') motion [Eq. (62) and

Appendix B], it is straightforward to show that the terms proportiomal to

aéhe/ap' and éfp in Eq. (65) can be neglected in comparison with éfeée.

Moreover, making use of afg(H, P Pe)/ape = veafg/aﬂ + rafglaPe, we find

o’
that Sfb(z, g) in Eq. (51) can be approximated by

0
of 0 N
iy = b ' ' ' ' -
éfb(ﬁ’g) es;; exp (129)-0 dr(Ro + p'cos¢ )GEe(p ) exp [12(® 9) iwt]

0 (66)
3fb 0] -
+ e 7y exp (1263/- dtvéGEe(o') exp [12(8' - 8) - {fwt],

where 8'(t) is defined in Eq. (63), and use has been made of the
0
fact that afb/ape aqd afg/au are independent of t'. 1In Eq. (66),

it follows from Eq. (63) that vé

; To simplify Eq. (66), we approximate Ry + p'cose’ = RO to lowest

order, and Taylor expand Gﬁe(p°) = 6%9(9) + [asﬁe(p)/ap](p' -p) + ...

- ' ' - 2
(R0 + p'cosd )(mcz u6Pe/yme°).

locally about p' = p. For present purposes, we also approximate
GEe(p’) = GEe(p), which is a good approximation provided £, << a

} (Eqs. (49) and (50)]. Carrying out the t' integration in Eq. (66)

I then gives

[
i
|

24
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Gfb(é’g) = ieexp\iuﬁ)*rﬁ(o)ko

20 ) 3
[ape + (g, ~ u8P/YmRy) Ty
x

(w - lmcz + luGPe/meRg)
To complete the description, we evaluate 4ﬂ(ik5; - iugﬁe/cz) =
-4neikf d3p6?b(l - wpe/czkyuo on the right-hand side of Eq. (61). To
the required accuracy, (1 - mpe/czkym) can be approximated in the inte-
grand by (1 - wBb/ck) - wéPe/czkymeo, where w = lwcz - kwczRO = kac is
assumed. Making use of Egqs. (56), (61) and (67) then gives the eigenvalue

equation
2 ) &P
13 3 w 2 A 2 4 3 w ) _ w 8
== —+]5-k SE )=41re26£(p)‘/-dp 1 -
[p 3 ° 3 (cz )] e C ) " w Y uRC
0 fo
be .\ ) GPe 3 b (68)
-2 6 - -2
3P cz 2/3H
G meRO
X 2 .

w - zmcz + luGPG/meRO

Paralleling the analysis in Ref. 10, the integral contribution

3p ces 3fg/3H gives surface-charge contributions on

proportional to fd
the right-hand side of Eq. (68) proportional to Bng(o)/ao = -ﬁbd(p-a)

[Eq. (38)]. Although this surface-charge contribution can be

.retained in a self-consistent manner, for present purposes we neglect

the term proportional to afg/aa in Eq. (68) and retain only the negative-
mass _and resistive wall effects associated with afg/ape. This is a

”
valid approximation provided the beam density w;b

Integrating over afg/ape, Eq. (68) then reduces to

satisties Zq. (44).

POV S U
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2 X, (W)
13 . @8 o 2)]5' - b _ -
[p 2 ° % +( cz k Ee(o) a2 U (a p)GEe(p) , (69)'

where the susceptibility xb(m) is defined by
2 2

wlw - )
Xy @) = - “pb 3 [u(} - Bbﬁt) +—5 c2z ] ’
W=t + ilukAl/meRO) ek

for the choice of equilibrium distribution function fg in Eq. (13). Since

w = zwcz = kac is assumed, the square-bracket factor in the preceding ex-
pression for xb(w) can be approximated by u(l - 8:) - u/Y: and the suscep-
tibility reduces to the approximate expression
2:2
m k a /Yb

Xb(w) = -y 5 - (70)
(w - wcz + iIukAl/meRo)

For the choice of fg in Eq. (13), we note from Eq. (38) that the density
profile ng(o) = ﬁbU(a -p) is constant in the beam interior. Here, U(a - p) =
+]1 for p < a and U(a - p) = 0 for p > a, so that the contribution on the
right-hand side of Eq. (69) corresponds to a body-charge perturbation.

Of course, the eigenvalue equation (69) must be solved subject to the
appropriate boundary conditions. At the beam boundary p = a, these condi-
tions are that éfe(p)'and 35%6(9)/30 be continuous. At the conducting wall
(p = a, > a), we assume that the wall has finite conductivity o. The boun-

dary condition at the wall can then be approximated byll

-~ “'6 -~
GEe(ac) -3 (1 -1) GBO(ac)

=%i2a + [—- 6E (o)] s,

26
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In obtaining Y. 7. . tes been made of Eq. (39) on the vacuum sicde

- e
(where 6Jp = 0) of the conduzting wall, and we have approximated ( uz/czk")’

2,22-1_ .22
(1 - 0 /c"kY) = Bbe for w = lwcz ksbc. In Eq. (71)

§ = of (2mwa) 2 72

is the skin depth in the wall.

Equation (69) can be further simplified for ]xbl ~1landw = o =

kmczRo. In this case,

2 2 2

k2 e Y. Lta 1,
c2 RZYZ
0'b

which is consistent with Eq. (62). Equation (69) can then be approximated by

[oi%;pg—p+rz] SE (o) = 0, 0O<po<a, (73)
and
13 3 .2
paoc>3‘,61~:9(o) o, a<pzsa , (74)
where
1%a? = x, (@) (75)

and xb(m) is defined in Eq. (70). The physically acceptable solutions
to Eqs. (73) and (74) with Gﬁe(o) and asﬁe/ao continuous at p = a

are given by

AJQ(TQ) » 0 <$p<a
SE, (o) = (76)
T
| ﬁ(Ta)[l+TaJo(Ta) P.na , ac<p ¢ a
where Jo(x) is the Bessel function of the first kind of order zero, ;
and J6(x) - dJo(x)/dx. Enforcing Eq. (76) at the conducting wall *

o= a, gives the required dispersion relation |

27
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a
Jo(T®) - 1y (T [!.n = -3 (+) f;c B:Y:] -0, 7
where use has been made of Jl(x) = -be(x).
Equation (77) is a transcendental equation for the complex
eigenfrequency w and must be solved numerically in the general case.

There are two limiting regimes, however, where Eq. (77) can be
simplified analytically.

2
(a) ac >> a or Bby§6 >> ac: There is a large temptation to Taylor

expand Eq. (77) for

|7} %a% << 1. (78)
To lowest order this gives ﬁhe approximate dispersiom relation
a
1,22 Tey_ & a2.2lap . 79
1-7Ta [(1+22na ) Y (1+1) By Yy (79)

From Eq. (79), it is evident that Eq. (78) is a valid approximation

only if

a 2.2

1 e\ &
(1 + 2tn < ) . (1+1) 8oy

>>1 ) (80)
4

{s satisfied. Equation (80) typically requires a large conducting wall

2.2 -
radius a >> a, or BbeG>>-ac in order for the inequality to be satis

fied. Making use of Egqs. {(70) and (75), the dispersion relation in Eq.

{(79) reduces to

2
(= 2w, * i]ukA|/meR0)
8l)
wz kzaz a 5 2 2 (
1 b Tey_ S .
- - zu.ly—z-—— [(1 + 2n 7 ) a (1+1) Bbe]
b
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s ! f,
Equation (77) also supports solutions with |T;“a“ 2 1 when the

inequality in Eq. (80) is satisfied. Making use of Eq.

-
P

that the dispersion relation in Eq. (77) can be approximated by

Jl(Ta) =0,

2

which gives 1232 = )
In

n'th zero of Jl(x) = 0. Making use of Egs. (70),

we obtain the dispersion relation

2
(v - 0, + ?IukAl/ymeo)

22,2

k"a"/y
= -uwzb ‘*—3——2 Sy n=1,2,...
P A
1n

where Jl(xln) =0,

(75), and (82),

(80), we find

(82)

, n=1,2,... where Jl(kln) = 0 and Aln is the

(83)

Equation (83) is really an extension of the dispersion relatiocn

2

(81) from the regime {T]zaz << 1 to the regime ]T]Za 3 1. What is most

important to note is that Eq. (83) is independent of wall resistivity,

whereas Eq. (81) is not. Moreover, the characteristic growth rate Qi =

Ims obtained from Eq. (81) is larger than that obtained from Eq. (83).

Indeed the mode is rapidly stabilized for increasing Ain.

22, 2 2
(b) a_=a and Bbeo << a_. In circumstances where BbeG << a, and

- the beanm fadius 1s approximately equal to the conducting wall radius a = a_»

the coefficient of Jl(Ta) in Eq. (77) 4is algebraically small, and the dis-

persion relation (77) can be approximated by

which has solutions Tzaz = xgn, n=1,2,..., where AOn is the n'th

zero of Jo(xon) = 0. Making use of Egs. (70), (75), and (84), the

dispersion relation (84) gives
29
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2
(w - lmcz + i]ukbl/ymeo)

22 (85)

.~ el KR a=1,2 ...
““pb ZXZ
v 0n
where Jo(xon) = 0. The most unstable solution associated with Eq.
(85) is the fundamental mode with n = 1. As in Eq. (83), the growth
rate Imw decreases rapidly for increasing Agn. Comparing Eqs. (81)

and (85), we note that placing the conducting wall radius (ac) near

the beam radius (a) significantly reduces the growth rate.

30
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NEGATIVE-MASS INSTABILITY

We now make use of the dispersion relactions (81) and (853)
derived in Sec. III to determine negative-mass stability properties
for the case where the wall is perfectly conducting with § = 0.

Introducing the geometric factor

a
(1 + 2&n ;c_) ’ for a > a,
g= (86)
4 -
xz R for ac = a,
On

2

2, 2 2 2 N
czRo/c ) = k /Yb for w = fw__,

and approximating kz - wzlcz = k2(1 - cz

the dispersion relations (81) and (85) can be expressed as

2
(0 = 2w, + ilpkAl/ymeo) .

(87)

b
Solving Eq. (87) for w, we find that the necessary and sufficient

condition for instability (Imy > 0) is that
v mkoc 2 )
Ocu<y\s /¥ (88)

where v = (ﬁbnaz)(ez/mcz) is Budker's parameter for the beam, and

g is defined in Eq. (86). When the inequalities in Eq. (88) are
g = I

are given by

(89)

where k = I/RO.
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The stability results in Eqs. (87) - (89) can be investigated

in various regimes of experimental interest. It is interesting to

note from Eq. (87) that a sufficient condition for stability (Imw < 0) is

2
W

v-—;z—1—2<0, (90)
NB Yb

2_ 2 2 '
where wg = ucz/2 + (mib/z)[Bb - (1-f)]. For £ = 0, the condition u < 0
[Eq. (90)] and condition for existence of confined equilibria [Eq. (44)]

can be expressed as

w b Ceo
L <1+ . (51)
Ybmcz 2“’cz

Evidently, for f = 0, the inequality in Eq. (91) can be satisfied pro-
ided wib/w:z is sufficientiy large. That is, the negative-mass instabi-
lity can be completely stabilized for A = 0 provided equilibrium self-
field effects are sufficiently stromng.

The regime where u > 0 is perhaps of more practical-interest.
In this case, making use of Eqs. (87) and (88), the instability

is completely stabilized whenever the inequality

) |
A v -4
> —— . (9 2)
(*b“‘“b“%) Yy (wgsg)

is satisfied. It is evident from Eqs. (86) and (92) that the instability

is most difficult to stabilize when a > a and the geometric factor g
is large. Even in this case, however, only a modest spread A in
canonical angular momentum is required for stabilization. As a

<< landy =1 - 1/Y§ =8

numerical example, consider the case where wsb/wiz

For v/yb = 1/20, g = 5, Y " 5, and Bb = 1, Eq. (92) predicts stability

for (A/mesbcko) > 1/10.

32
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RESISTIVE WALL INST:ATLITY

In this section, we consider the dispersion relation (77) and its
limicing versions [e.g., Eq. (81)] in circumstances where wall resistivity
effects (as measured by G/ac) play an important role. In this regard,
since a spread 4 in canonical angular momentum has a stabilizing

influence, we first consider the most unstable case with

A=0, ' (93)
and 52 kzaz

72 {w - 20 )2

b c

We further consider circumstances where

u<o, (95)

and therefore the negative-mass instability is absent (Sec. IV). i

Assuming weak dissipation in Eq. (77) with B§Y§5/3c<< 1, the real oscil-

lation frequency Qr = Rew is determined from

, ,
c 16 ,22
3o(T® - J;(Ta) (P.n =. 7;:%%)‘ 0, (96)

and the growth rate Qi = Tmw is determined from

1346 22
" 73 Ty,
Q = 3 - (97)
CTa) - 3t 218 22\ 2
E Eo(Ta) Jl(Ta)(zn " 3 acebe)] agr Ta
F
]
]

wvhere Ta in Eq. (97) solves Eq. (96), and we have neglected the (slow)
variation of § with Q_. We now consider Eqs. (77), (96), and (97)

in various limiting regimes.

33
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(a) a = a and &4 = 0: For Biy§6<< 3. and beam radius equal to the

conducting wall radius (a = ac), Eq. (96) reduces approximately to
JO(T;) = 0. Making use of Eqs. (94) and (95), the real frequency Qt
is given by [Eq. (85)],

nl‘-l -+h‘l1/2—L—_n n=1,2,..., (98)
0

= - ! -
where Jo(xon) 0. Moreover, making use of a_ = a, Bbybé << a, an{ xJO(x)

—Jl(x), Eq. (97) reduces to

138 Ta 22
‘ By = 2a_Tara/on, BpYp ‘

(99)

186 2.2
] a, (Qr - 2wc23be !

and the slow-wave (lower) branch in Eq. (98) corresponds to instability

(Qi > 0) with growth rate

w . ka
o, = 2 &l 2R aa,, (100)
2a bb )\Onyb

(b) a_ > a and A = 0: For B:YgG << a, large conducting wall radius

(ac >> a), and {T]zaz 2 1, Eq. (96) reduces approximately to Jl(Ta) = 0,

and the real oscillation frequency ar is given by [Eq. (83)]

- - 1/2 _p..__
@, - fw,) = £|u] s (101)

1 b
where Jl(xh) = 0, and use has been made of A = 0 and y < 0. To the

accuracy of Eq. (97), we then find
a, = 0, (102)

for [leaz 2 1.
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On the ovtver tal, for a, >» a, the dispersion velation

22
also supports sclutions with IT:"a' << 1. 1Ir this cs
reduces to Eqs. (79) and (81l), which has solutions (for &

22
‘and BbeG << ac).

w_, ka a 1/2
- - 1/2 “pb <
(e, - 2w_,) = £|u] v, (1 + 200 < ) ,
and .
18 .2 Z(Qr B lwcz)
T R c\
c <1 + 28—
a
As in Eq. (97), the lower branch in Eq. (102) is unstable with grow
rate

138,22, 1/2 “pp*® 1
T IS ) R

ZYb a 1/2
1l + 2¢n e

Comparing Eqs. (100) and (105), it is clear that the resistive-wall

instability exhibits the strongest growth when a. a.

(e) a, >>a and 4 # 0:

a spread 4 in canonical angular momentum on the resistive wall instabilicy,

we consider the regime where [T[zaz << 1 and make use of Egqs. (79) and
(81) to investigate stability properties for y < 0O and A ¥ O.
Expanding Eq. (81) for small BiYgdlac << 1, we determine Qr = Rew and
Qi = Imw to be given by
| Iu]llzm bka a, 1/2

Qr - lwcz = - “___3?;2—_' <} + 2&n :—) ' (106)

: 1Y% xa )
8, = %a—jé*f: pba 7z - iiﬁ; , (107)

2\’b(l + Zln—a—}

N

for the uanstable branch with Ims = > 0. From Eq. (107),

i

3s

L

To illustrate the stabilizing influence of

(103)

(104)

th

(105)
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we find that the resistive wall instability is completely stabilized

by a small spread A in canonical angular momentum satisfying
: 2 2,22
( A )2 1 ¢? b BpYp
Y, 08, ¢ 16 _ 2 a_ \’
b™p %o % Jule?{1+ 20 =

Of course, Eq. (107) reduces to Eq. (105) in the limit 4 + O.

(108)
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CONCLUSIONS

In this paper we have investigated the equilibrium and stability
properties of a relativistic electron ring within the framework of the
‘linearized Vlasov-Maxwell equations. The analysis was carried out for
perturbations about an electron ring located at the midplane of an ex-~
ternally applied mirror field combined with an applied toroidal field
Bgzt. Equilibrium and stability properties were calculated in Sections
II ~ V for an equilibrium distribution function which incorporates a
spread in canonical angular momentum Pe {Eq. (13)]. Equilibrium proper-
ties were calculatgd in Section II, and one of the most important features
of the equilibrium analysis is that the maximum beam density confined in
the modified betatron field éonfiguration can be greatly enhanced by the
toroidal magnetic field BS:: [Eqs. (43) and (44)). Moreover, the rota-
tion frequency wy in the minor cross section of the ring plays an impor-
tant role in determining detailed equilibrium properties.

The formal electromagnetic stability analysis was carried out in
Section III, and stability properties were calculated for eigenfrequency
w near harmonics of wcz' A closed dispersion relation {Eq. (77)] was ob-
tained assuming that the electron ring is located inside a toroidal comn-
ductor with finite resistivity and minor radius a_ << Ro. Negative-mass
stability properties were investigated in Section IV for zero resistivity,
i;cluding the important influence of equilibrium self fields. For a low-
density ring, a modest spread A in canonical angular momentum stabilizes
the negative-mass instability. In a ".gh-density ring with £ = 0, however,

if the self fields are sufficiently strong, the negative-mass instability can

be be completely stabilized by equilibrium self-field effects [Eq. (21)].

37




[

NSWC TR 81-389

The stabilizing influence of equilibrium self fields on the negative-mass

instability is an important new feature for stable operation of high-current
modified betatron accelerators. The resistive-wall instability was exam-
ined in Section V. It was shown that resistive-wall instability can also

be stabilized by a modest spread A in canonical angular momentum
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APPENDIX A

DERIVATION OF APPROXIMATE INVARIANT P, = CONST. FOR A CIRCULAR
v

BEAM WITH a = b AND n = 1/2

In this Appendix, we make use of the single-particle equations

of motion in the equilibrium field configuration and the assumptions

outlined in Sec. 11 to determine the conditions where

~

1% 2
l’«,'*op0 2 ¢ P (A.1)

is a good approximate invariant. Here, (p,®,9) is the toroidal
polar coordinate system defined in Fig. 1 and Eq. (2).

In (r,9,2z) coordinates, the radial and axial equations of
motion can be expressed as

v

P
878 0.1 o 1 0
b_ - =F o= -e(E) +2v,8) -2y ), (A.2)
and
. R A% B § 0_1 0
b, Fz e(Ez + > vtBe " veBr) . (A.23)
0 0
Here, Er = -a¢o(r,z)/8r and Ez - -a¢o(r,z)/az are the radial and

axial self electric field components determined from the equilibrium

0 ext ext . .S

electrostatic potential QO(r z), and B_ =By + 0 (3/32)(A Aoe)
0 ext - ext AS
and B, Boz + BO: (3/3r)[r(A °e)] are the radial and

axial components of the total (applied plus self) equilibrium
magnetic field. The quantity Ag(r,z) Aggt s is the g-coxmponent
of the equilibrium vector potential. Making use of the assumptions
enumerated in Eqs. (3), (4), (5), (7), and (9), and considering

'2 2
density and current profiles of the form nb(r z) = ng 5-2—- + 4‘—2~> and
a

éb 2 2

' 2 b
(r zZ) = Jo I+ 54), where r' = r - Ro, it is straightforward to
b

- e,

T e e e A e e e
| . Lo R ~ SRR P R TIN v BN S L '
L.-- o a)
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show to the accuracy required in the present analysis that the equilibrium

potentials and field components can be approximated in the ring interior

(r - R°| = |r'| 5 aand 2| g b) bys"9

P

ED = ~4re(1-D)n, 2, (A.4)
0.. - -2
Ez dne(l f)ﬁb progi i (A.5)
4 = 3 bre(1-f) -n"—b wr'? + a2?y (a.6)
and
0 R R a_ z
B = -nB_ — = 4neR.B —_——, (A.7)
T z RO 0 bnb a+b Ro
0 a ~ b '
Bz = Bz - nBz Ro + éneRoBb b a+b RO , . (A.8)
0
e-RA(R00)+RBr
+-% (l—n)'ﬁzr'2 +'% nﬁzzz (A.9)
+‘% AneROBb n:b (br + azz) .
3 = et = o9 )
where r' = r -~ RO B s 02 (R0 Q), ub nb(R ,0), B Ve(Ro,O)/c.
and n = -[ralnnext

(z, z)/ar](Ro 0) is the external field index. Moreover,

from Eq. (1), the applied toroidal field can be approximated by

SN PSS | S0y

B = 8, (1 - r'/Ry) (A.10)

Py

in the ring interior. . 3
We make use of Eqs. (A.2) and (A.3) and Eqs. (A.4) - (A.10) to

form the difference product

PN
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eB
zp. - T'p, = (zvz + r'vr)

b-a '
a+hb r

+ 4me2(l - )8, z

(A.11)

v,
) 2 -~ b-a
T Ame BBy oy T

where small terms of cubic and higher order (zr'vr, r'zvr. etc.) have

been neglected in Eq. (A.11). Note that the self-field contributions

in Eq. (A.ll) vanish identically for a circular beam with a = b.

In the final term in Eq. (A.ll), we express Py = Pe/r + (e/c)Ag(r,z) =
0

PO/r + (e/c)Ae(r,z) + SPe/r, where GPe =P

e
of P, = (1/2)(e§z/c)R§ and Ag(Ro,O) - izRO/Z. Neglecting terms of

- PO’ and make use

cubic order and higher, and assuming a circular beam with a = b, Eq. (A.ll)

can be approximated by
eB

zﬁr -r'p, = - (zvz + ')

PURPPRPEEI

Strictly speaking, a circular beam with a = b requires external field

(2 - 1) —z I’z (A.12) |
+ v n - —— e— A.l
9 < R, i
&P
%% ]
+ zve 2 . j
Ro o
1
s
!

index n = 1/2, so trat Eq. (A.12) reduces to s

. (A.13)

AL RO Y S Lo co e o
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Comparing the two terms on the right-hand side of Eq. (A.13), and

estimating z ~ r' ~ a, AR A P*/me’ and YRV v eBzRo/c, we find

r
that the 6Pe contribution in Eq. (A.13) is negligibly small whenever

the inequality

(6%, % [ (A.14)
—_— << — , .
Yy®ycRg B, |Pg

is satisfied [Eq. (8)]). Within the context of Eq. (A.1l4), Eq. (A.13)

can be approximated by

d 1
at Fo "t (’%'2'?")'0’ (4.15)

which is the required result. Here, p2 = r'z + z2 = (r - Ro)2 + z2, and

Py is the ¢~ component of mechanical momentum in the toroidal polar

coordinate system (p,$,0) illustrated in Fig. 1.

A-4

odtinink -
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APPENDIX B

ELECTRON TRAJECTORIES IN THE EQUILIBRIUM FIELD CONFIGURATION

In this Appendix, we determine the electron orbits in the
equilibrium configuration described self-consisteantly by Eq. (13)
in Sec. 1II and Appendix A. For a circular beam with a = b and n = 1/2,

we express the Hamiltonian H in Eq. (27) as

- 2,1 1 2 . 2
He=ypue +3°32 Zyb [(P 2 bm“cez )+ (Pz+"iybmwcer )71
(B.1)
(GP ) 2
+ 3 2 (1 -r /RO)(GP Y+ 2 Y pfwg (r' + 2' ) .
2Zv,=Ry

where (P;, Pz) are the transverse canonical momenta in the toroidal Bg

field,

1
Pr o= Pt Sy o

(B.2)

Py = by~ Svyme,
2

wg = wiz/2 + (mibIZ)[S: - (1-f)] is the betatron frequency defined in

Eq. (39), and weg ™ eie/ybmc and w__ = eiz/ybmc. The "primed" orbits

cz
(r',z'.e',p;,p;,pé) in Eq. (B.l) pass through the phase space poiant
(xr - 0’ 2,0,p..5P ,pej at time t' = t. Moreover, p; = ybmv{ and

pz = ybmv for the nonrelativistic transverse motion described by Eq.

(B.1). From Eq. (B.1l), Hamilton'’s equations of motion (d/dt')(aﬁlaP;)

= -3H/3r', (d/dt’)(aﬂlaPz') = - 3H/3z' and d6'/de' = BH/QPQ, give

2 ’ 5P
47! dz* 2
me dt'z + Yy ™eode’ + Dez R.o - meda (8.3)
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2
4"z dr' 2,
ybm ;:TE -ybmmce Frrie ybmmBz . (B.4)
4P
de' - ¢! 8
" Yz 1 = + . (B.5)

3.2
0 chmeRO

Simplifying Eqs. (B.3) and (B.4) gives the coupled oscillator equations

2 ' w
d e o2 o —S2 s )0, (B.6)
3 cd dt 8 2 e
de YpmgRo
2 ;
d ' ar’ 2.0, :
2 2 +u g o tugz' = 0. (B.7) ;
Introducing
W
n' = (r' - —‘:;— 6Pe> + iz', (B.8)
Yp™35Ro ’

Eqs. (B.6) and (B.7) can be combined to give

2.
. (- J d ] 2 LI
—dt'z nt+tiwg g t wgn 0, (B.9)
which can be integrated to give
+ -
1 - s
n n,exp(iw 1) + n_exp(iwt) , (B.10)

where 1t = t' - ¢, n, are constant complex amplitudes, and the

frequencies w: are defined by Eq. (43)],

" 4w2 1/2
t _ _c6 8
-—-—2 b [1 + ~5 . (B.11)
Weg

Note from Eqs. (B.8) and (B.10) that the (r',z') motion is biharmonic

in w: and u;, and that r' and z' can be expressed as




e
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(]
' - ;z 6Py + (ilcosm:r + tlcosw;r)
(S ’
(B.12) ‘
- (2lsinm:t'+ tlsinw 1) ,
z' = (;;cosuzt + tlcosm;r) ]
(B.13)

at -+ an -
+ (fisinut + Blsing T)

The oscillation amplitudes %, and 2, of course can be determined

from the boundary condition that the particle trajectories (t',z',p;,p;)

pass through (r-Ro,z,pr,pz) at T = t' - t = 0, For a thin ring with

a << R;, we note that |t|, [2}} << Ry
Substituting Eq. (B.12) into Eq. (B.5) and integrating with respect

to t', we obtain

2
' = -
8 8 + (mcz uGPe/meRo)r

(B.14)
+ (small oscillations),
where y is defined by
wz
c2z 1
wg 108

In'Eq. (B.14), the small oscillatory terms (of order a/Ro) are biharmonic
in wi and make negligibly small contrit itions in the frequency regime
considered in the stability analysis ir Sec. III. Depending on the

sign of Bg - (1-£f) and the size of Y, and ”pb/“cz’ we note from

Eq. (B.15) that u can assume large positive or negative values.
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