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Weak convergence of a Bayesian nonparametric 1
estimator of the survival function under progressive 4
censoring
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Abstract |
‘h nonparametric Bayesian estimator F of the survival function
F constructed from time-sequential progressively censored observations
is found to subsume several estimatorsof F utilized in practice. Weal:
convergence of ?l is developed and the limiting process is found to

coincide with that obtained when complete response profiles of the

sapple are available, leading to suitabie application of F o with consequent

reductions in costs and time and withoul loss of asymptotic accuracy.
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§1. INTRODUCTION/SUMMARY.

The basic formulation of the problem proposed here has been
introduced and studied from a Bayesian viewpaint in [51. It involves
consideration of a set of independent random 1ifetimes Xl""’xn vhich
may be deterred from complete observation due to censoring on the right
by another set of independent variables Yl""’Yn' Thus the observable

set of data is {(Z;,8;): 1 <1 <n} where for each 1< <n,

(1.1) Z; = X5 A Y, and ¢&; = 0 or 1 according as X; > Y, or aat.

This is the commonly called random censorship model which has
received considerable attention among researchers in the past several
years. However, as has been observed in [5] there is a broad class of
experiments pertaining to clinical trials and reliability in which the
Zi are observed sequentially and cost and/or time considerations often
entail termination of experimentation before all Zi have been observed.
For example a study may be curtailed at the k = k{n)th smallest order

statistic Z,.y, 1 < k < n and then, in effect, the investigator has
(k)> = =% =

at his disposal only the data

(1.2) {(z(i),s:f): 151 kg with 5

j= 1 or 0 according as Z(i)

is a true lifetime or censoring time.

Statistical procedures based on data of the type (1.2) are
referred to as progressively censored schemes (Sen et. al (1973, 1978)).
Thus jinstead of prolonged observational periods until responses from
the entire sample have been recorded, experimentation may be ceased at
an appropriate intermediate stage with an attendant desirable reduction

in costs and time.
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In { 5] the Bayes estimator Fk(n) of the survival function
(1.3) F(t) = P[X1 > t|Fl, t >0

has been obtained from the data (1.2), under squared-errvor loss when [
a Dirichlet process prior. We have noted there that Ek(n) yields as
special cases, the Fercuson (19Y73) estimator of F whenever all

X ,Xn are observable; the usual empirical survival function of

IEREE

X ,X_and the estimators given by Kaplan and Meier (1958) and

ELEERL™
Susarla and Van Ryzin (1976). Our objective in this paper is the in-
vestigation of the weak convergence of Ek(n)‘

We shall show here that the process {na(ﬁk(n)(t)—F(t)):
0<t<T}, T<e~ has exactly the same asymptotic properties as the
process {n%(?n(t)~r(t): 0 <t< T} provided
lim inf n‘]k(n) > l—P[‘Z1 > T|F1 and the sequences {X;: is> 1},

{Yi’ i > 1} being each independent and identically distribuied (iid)
and independent of each other. 1In view of this it is not unreasonable

in practice to terminate experimentation at the k(n)th stage when

n_lk(n) is close to unity. For example if k(n) = n-c log n with

follovs

¢ > 0 large, substantial savings in time and cost can be afforded witheut

sacrifice of asymptotic accuracy yielding a very cost-effective procedure

especially when per unit observational costs are prohibitively high.

The substantive material of the paper appears in the next two
sections. Section 2 introduces some notation and assumptions together
with a discussion of our estimator and special cases of it. The proof
of the weak convergence is detailed in Section 3 and we make a fow

concluding remarks in the final section.




§2. Preliminaries

Consider n(z 1) units under surveillance for which we record
either the time to decrement (survival time) X or its competing cen-
soring time Y upto and including the kn—th response, kn € {1,...,n}.
Suppose the survival distribution F of X 1is a Dirichlet process
with parameter measure o on the Borel subsets of the positive real
line R = (0,~) and, given F, the survival times Xl""’xn are
iid with distribution function (d.f.) (1-F). Furthermore, when the
corresponding censoring times Yl""’Yn are iid with continuous right
df G on (0,~) and independent of (F’Xl""’xn)’ we have demonstrated
in [ 51 that under wecighted squared-error loss the Bayes estimator

~

Fi of the survival curve F of (1.3) can be written

n
(2.1) rkn(t) = Bn(t)wn(t)
where
ey w fnot \r N
(2.2) B (t) = alt) * Wy (0) + (nk)iZep ) > o
«(0) + n
k + . [Z(j) < t,ﬁj = 0]
(2.3) u(t) = alZg)) * M (Z(5)) + (nky) + 1

J=1 “(Z(j)) + N:(Z(j)) + (n'kn)

I2 < tl
k -
“(Z(kn)) + (n—kn) ( n)

Q(Z(kn))

with the abbreviation «(u) = a(u,») and
k

n
(2.4) N;(t) = f (25 > t

Jj=1




%
z

with [A} denoting the indicator of theset A. Ye shall assurie throughout
that «(T) >0 and G(T) > 0 where 0 < T <« 1is fixed.
The estimator (2.1) may be regarded as a natural extension of
an estimator of F(t) obtained by Susarla and Van Ryzin (1976) when
the complete data set {(Zi,si): 1 < i <n} is available. Indced
(2.1) yields this estimator by setting k” = n. On the other hand if
there are no observed censoring times in the data {(Z(i),a:): 1<ic< kn}
(2.1) reduces to
sy ey ¢RI E kg > E ) ¢ (k)

a(U) +n (I(Z(kn))

which in turn we may view as a generalization of Ferguson's (1973) estirator

+
at) + N (t) .
s o= L when censoring is absent and k_= n. The Ferguson estimator
a(0) + n
reduces to the empirical survival function (of Xl""’xn) in the

Timit as  «(0) » 0, while (2.1) for t < Z(P
n
estimator (that is (2.1) with ky = n) yields the product-limit estimator

) and the Susarle-Van Ryzin

of Kaplan and Meier (1958), which itself reduces to the empirical survival
function in the absence of censoring. e thus notice that several
estimators of tiie survival curve that have found favor in a wide variety

of practical situations have a common (hitherto unborn) progenitor - the

estimator Fk of (2.1).
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§3. MHeak convergence of F, .
n 1
,, -
The strategy here is to express n'2(Fk -F) in a more tractable 1
n

form in which its behavior will be made transparent from the scparate

behavior of Bn and Nn. We begin with Bn. Define

1 0
)

(3.1) Hn(t) =n i

[Zj > t], H(t) = PfZ1 > t|F1 = F(t)G(t).

Then from (2.4) N:(t) = {an(t)-(n-kn)}l_Z(k ) > t1 and in conjunction
n
with (2.2) this yields ]

(3.2) B, (£)-H(t) = -(a(0) + n}™ An(H, (£)-H(E))-nb ()17, y < ¢
n

-a(0,t)}. $

Hriting “'“T for the sup-norm on (0,T1 we get
SHIL < B T T
(3.3) I8, -l < {a(0) + m) 7 nfi -1l + n[z(kn) < T1+ a(0,T)1.

In the sequel we shall repeatedly use Lhe fact that LHn—HﬁT = op(n—ﬁ)

if g <%. Thus with g <% we will also have from (3.3)

(3.4) B, ~Hii = o, (n™")

once we demonstrate

3.5 - 1=o0 (n" :

(3.5) P[Z(kn) < TIF1 = 0 (n""), whatever &

Now assume that the sequence of stopping numbers {kn: n> 1}

satisfies

. (3.6) y = Vim inf n"h > 1-H(T), with v € (0,11,
e o st i . ...




Then there exists an integer "o (depending on vy and  H(T)) such

that n_lkn > L{y + 1-H(T)} whenever n > nO. Hence with n >n

0

PLZ(, y < TIFD < PLI-H (T)-(1-1(T)) > 5(v-(1-H(T)))|F 1.

kn)

We bound this right hand side probability by using the Bernstein inequality
(see Hoeffding (1963)), whence

s S T i e el i

(3.7) PLZ(y y < TIF) < exp(-iny-(1-H(T))}?)
n

and now (3.5) obtains, whatever B8.
To handle Hn we have to work much harder. (In what follows ]
we use 1’_1 to denote the reciprocal of the function f rather than

its inverse.) First write (2.3) in the form

- 0L(Z(kn)) * (n'kn) n 1
(3.8) Nn = wn,lwn’z, where Nn,Z(t) = élz ) .
(k,)
Then since «{u) is nonincreasing in  u, we obtain
. -1
g =1
<17 < Tlna °(T),
12 ) |
which in turn yields, in view of (3.5)
(3.9) Il”’wn,Z”T = op(n_B), whatever B8. 3
Now introduce
~ -1 n ~ _ |
(3.10) M (t) =n"" ] [Z; < t,85 = 015 H(t) = P[Z) < t,6; = O|F]. ¥

J=1
Then from (2.3), (3.1) and (3.8) we can express

1
&
i’




i it s

/ K At
n -1 o~
] (3.11) ol () =0 [ g1+ (alx) + ni (%)) L (x).
i 0
2 j-1 ¥
)J ('1) N T
50 e
0 «~x <1 in the integrand we rewrite (3.1) as

On utilizing the expansion pa(1 + x) = x + x

! (3.12) q ”n,l(t) = Kn,l(t) + Kn,z(t).

Since both «(x), Hn(x) are nonincreasing in x, we get on simplification

ot R b e e s e e e

r H(T)
i Ky, Zﬂrj —~-—H~“~—“f —f
’ {fa(T)nH (T)F" {a(T)+nl (T)-1)

which in conjunction with the fact that ﬁn(T) = H(T) + op(n'ﬁ) (with
L g < 1) yields

(3.13) ”Kn,ZHT = op(n_ﬁ), whenever g < 4.

~ t 1
Now observe that H of (3.10) can alsov be written [ F(x)}{-dG(x)} ‘
0 ~
and thoreTore, whonever H(t) ~ 0, é{ {&TG—l(t)} e H'](t)dH(t). Honeo p
from (3.12)
_1 Z(kn)/\t _1 ~ t _1 ~
(3.14) K (t)4. G 7(t) = n [ {a(x) +nt_(x)} 7dil (x) - [ H ~(x)di(x)
s 0 n n 0
t 1 1 O {
- . N Loy i (x
é IZ(kn) > x](n{a{x) + an(x)} H *(x))d n‘x)
t . t 4
+ [ H O (x)diH (x) - H(x)} -~ [ [Z k) < x ™ (x)4H (%)
0 n 0 ( n n

- Kn,3(t) ¥ Kn,4(t) * Kn,5(t)'

We first dispose of K_ 4 and K. .. By noting that H'l(x) is non-

decreasing in x and performing an integration-by-parts, we casily obtain




. S PO
K, gl < 2 12 (T)AR -l

i

~ A

and in view of the fact that Wil -fit, = op(n—B), g <L

(3.15) “Kn,4”T = op(n'g), whenever g < L.

Also hKn,SuT < H‘l(T)ﬂh(1)lZ(kn) < T1, which gives, using (3.5),
(3.16) ”Kn,SHT = op(n—ﬁ), whatever 8.

-1

T
Finally, HKn,B”T < é [n{a(x) + an(x)} - H 1(x)}[dHn(x)

1ﬂ'n(T){a(o) +nfH - Wi

< {(a(T) + nlt (T)H(T))"
which leads to

(3.17) IK o =0 (n"®), whenever ¢ < 1.

Thus collecting our results (3.9) and (3.13) through (3.17), we finally

obtain for (3.8)
= T -f
(3.18) l'm,wn -pn G “T = op(n ), whenever g < %,

Y2 )

We are now in position to express nz(FP -F} in a governable form.
n

Write

1

~ . -1
(3.19) (F, -F) ann-HG

i

1, gy _e-)
(B,~H)G™ + (W -G™")B. .

2
On employing the expansion eX =1+ x+ %T-ec. where ¢ lies between

0 and x, we can write




wn-(;'l = 6 1, H_ 1 61y + 1 67 1S, 2 ¢ 12, and so from (3.19)

we have

3;.1’é(ﬁk “F) - n‘é(Bn-H)G'1 - 2 T ¢ Ny 6y

T
< % npa Wopn 67102 & 0B MU tp, Wopa 67167 H(T) ,
-2 K I T n oI n T T )
i
- %
which in view of (3.4) and (3.18) is op(n %)y, for some @ < %. This ;
1A
reduces consideration of weak convergence of n‘(Fk -F) to that of
n
% -1 Y =1yl
(3.20) n (Bn—H)G + n?(n W %2 6 YHG
In (3.20) we can further replace Hn by Hn 1 in view of ,
> ;
(3.9). The final simiplifcation is obtained by writing (see 3.14), 1
-1 RS P by
(3.21) M 1(t)-.~,., G (t) = {é My (x)d;ln(x)- (j) () dH(x) ) + Cn(t) ;
anw .
t LZ(P )2 X e (%) . t(? (k) < X | }
vhere C](t) e B dfn x) - [- kn) 70 dil (x) 1
: 0 H ()fe(x) + nh (x) 0 n(x)
u(O)H (1) H'(T)
But JiC & e L V4 < Tj —=--- » and again
YT Medm e n my oK) T ()

HCnHT = op(n'ﬂ), whenever g < %. Thus the woak convergence of

{n’z(ﬁk (t)-F(t)): t ¢ 10,T)} ds tantamount to that of
n

t t
1 -1 T O TS Y
(3.22) nAB, ()-H(L)IE " (t) + n¥g (j) Wl (j) W™ dH)

which is precisely the final reduction obtained by Susarla and Van Ryzin

(1978). We must however emphasize here that the interval endpoint T

is restricted through (3.6). As noted earlier the estimator Fk
n




10

reduces to that studied by Susarla and Van Ryzin (1976, 1978) when

kn = n, in which situation (3.6) degenerates to the condition H(T) » O

that they imposed.
The analysis of the process (3.22) has been dealt with in Susarla

and Van Ryzin (1978) and Breslow and Crowley (1974). He therefore state
our results for F, in
Kn

Theorew: Suppose Fk is defined by (2.1)-(2.4) and the sequence
n
{kn: n - 1} satisfics (3.6). Assume F(t), G(t) continuous on

! ~
[0,T1. Then the process {nz(Fk (t)-F(t)): t e [(0,T1} converges weakly
n

to a Gaussian process

1 2

U= -1+ [ 1 %di + 17 lg + § w2
0 0

where P,Q are thewselves mean zero Gaussian processes with acovariaiice

structure given for s <« t, by

Cov(l(s), P(t))
Cov(G(s), Q(t))
Cov(P(s), Q(t))

H(L)(I—H(s))
Mi(s)(1-fi(t)) *
f(s)-i(t) (1-11(s))

1

N

Cov(Q(s), P(t)) = Ti(s)H(t).
Indeed U has mean zero and covariance given for s <t by #
3
ey 2211 E
Cov(U(s), U(t)) = -F(s)i(t) [ W "F “dF. !
0 §
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§4. Concluding Remarks.

In this paper we have assumed the censoring variables Yl""’Yn
to be iid. Under appropriate conditions our results can be extended o
the case where the Yi's have different distributions. In addition

to the weak convergence result for {Fk : n > 1} one can demonstrate
n
the uniform strong consistency and uniform mean-square consistency of

{F n > 1} as a estimator of F on [0,TI.

e
n
Finally confidence bands for {F(t): t € [0,TIY can be calculated

in terms of {Fk (t): te (0,71} wusing the distribution of the Timiting
n

process {U{t): t € 10,71} of our Theorem. Note that the process

J(F (L) - F
{ni(mkﬂgﬂ{-_rffg?

7 ) :t € {0,Ti} converges weakly to a time-transformed
F(t

Brownian motion.
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