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The development of a predictive method for determining the
steady inviscid aerodynamic behavior of ballistic projectiles
throughout the transonic range is reported. The development. has
been directed toward establishing the theoretical capability for
predicting the static stability characteristics of both the stan-
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nonaxicymmetric boattail shapes under study by the U.S. Army.
The theoretical procedure employs the classical transcnic equi-
valence rule together with a new loading calcularion method which
is based on apparent wmass concepts and makes use of the nonlinear
equivalence rule flow solutions. Theoretical results for surface
pressures, loadings, and static aerodynamic characteristics are
presented throughout the transonic range for a variety of projec-
riles. Comparisons are made both with other theoretical methods
as well as with experimental results and verify the accuracy of
the procedure. Future extension and application of the overall
procedure to missile stability and performance is suggested and
discussed.x;\
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S INTRODUCTION :

Current projectiles used by the Army are generally slender, spin-stabil-
ized bodies of revolucion. The boattail :onfiguration which has beccme the
standard is a conical shape with a relatively shallow cone angle v(5-10°).

The primary purpose of any boattail is to increase the projecctile range by
reducing drag from what it would be without boattailing and with the projec-
tile afterbody a straight cylindrical shape¢ (Fig. 1). While a drag reduc-
tion is effectively accomplished, mainly through the reduction in base area, a
subsequent detrimental result of such a geometric change is the creation of

a negative lift on the beoattail. This tends to increase even further the

:LJ* destabilizing pitching moment, which already exists due to positive lift om X
éE% .. the nose, and consequently acts to reduce additionally the gyroscopic sta- f
bility of the projectile. At flight speeds within the transonic range, which [
.LLJ usually occur near ballistic trajectory apex, the negative loading on the
1__; boattail is strongly augmented due to the appearance and movement of shock
o waves on the aft portion of the boattil. This results in a rapid peaking at

N flight Mach numbers just below one in the destabilizing pitching moment as
well as a similar behavior in other aerodynamic characteristics. Insofar as .., A
the aerodynamic derivatives are concerned, this nonlinear behavior due to ¢ Eq P
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shock formation and motion is the dominant fluid dynamic characteristic of e H

S ballistic projectile flows in the transonic speed regime. Lo VW ,“-
82 03 09 070 NoL WARS 1982 1) |

8 TN I1-199 U . L
. A 1. 3

.-...4 - - . ‘.. < o e SRS i Trekh el . e o '\ ?!

'Am ‘I’J



In this regard, and as noted previously¥ the relative simplicity of
basic projectile shapes - which typically consist of an ogive nose followed
by a straight cylindrical section and a conical boattail - is deceptive.
This is so because the locations where these sections join normally have
discontinuities in surface slope and/or curvature; and it is precisely these
Ui discontinuities which induce the shock patterns and subsequent sensitive
‘= aerodynamic behavior in the transonic range,

In 4n effort to reduce the adverse transonic behavior of ballistic
projectiles, the Army has recently investigated experimentally’ a series of
nonaxisymmetric boattail shapes. Scme of these nonstandard shapes were found
to improve significantly the projectile aerodynamic characteristics over
those of the conical configuration. In particular, it was found that both
increased gyroscopic and dynamic stability and decreased drag could be
attained simulvaneously, so that {or the first time projectile designs were .
k- feasible which not only provide increased range over the standard boattail
shapes but alsce improvea stability.

R —

The present work describes the development of a theoretical method for

' predicti the transonic static aerodynamic characteristics of these projec~ -
tiles. The objective has been the enablement of a rational modeling of the
aerodvanmic effects of incorporating different axisymmetric and nonaxisym-
metri. boattail geometries into ballistic projectile design with a view
toward optimizing the aerodynamic performance of these shapes. The theo-
retical analysis for determining the nonlinear three-dimensional projectile
flow fields is based on the classical transonic equivalence rule (TER); and
employs finite-difference successive line over-relaxation (SLOR) solutions
of the axisymmetric transonic small-disturbance potential equation for the
outer nonlinear flow region, and finite-element solutions of the cross
flow Laplace equation to determine the nonaxisymmetric inner flow region. .

L

A new loading calculation method which is based on apparent mass .
concepts and which makes use of nonlincar equivalence rule flow solutions is
used to predict the static aerodynamic coefficients. Theoretical results
for surface pressures, loadings and static aerodynamic coefficients are ) 1
presented for a variety of projectiles with different boattail geometries

at Mach numbers throughout the transcnic range. Comparisons are made -,
insofar as possible with both other thecretical mcthods and experimental ¥
results. ! i
t
. i
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ANALYSLS - :
T E
GENERAL CRAT
The most notable feature of tianmsonic flow past typical ballistic _— : I
projectiles is the formation and movement as a function of oncoming Mach e

number of a variety of shock waves both on the surface an in the flow field
of these coufigurations. This is clearly evident in shadowgraphs such as -
those shown in Figure 2, which illustrate the characteristic shock formation W
and movement on such shapes as the Mach number increases beyond subcritical.

5
S
3

. ey

]
—y
L

]
.

é I-200 "I
»

e e s L et B W G PRt IR £ A I PR 8 2 s et ¢ -t

i

© e et vl

PRI PP " e

|




The result of the rapid formation and movement of shock waves on the
aerodynamic characteristics of typical projectiles in the transonic repime
ie a sharp peaking in their behavior in the vicinity of M_=1. As indicated
in the sketches in Figure 3, both the overturning pitching moment coefficient
and drag strongly exhibit this behavior. With regard to pitching moment, the
sketch in Figure 3 displaying a typical projectile shock pattern illustrates
clearly why this occurs. At angle of attack, the shock positions on the
windward surface are displaced farther aft than on the leeward side, resulting
in a strong negative loading at those axial locations. Both shock strengths
and negative loading are strongest by a considerable amount for the toattail
shock., As the Mach number increases and the bosttail shock moves further
aft, both the strength of the negative loading and its moment arm from the
center of mass cf the projectile increase, and result in a peak pitching
moment occurring just prior to the shock moving off the boattial. This
inevitably occurs at a Mach number just below onc. As the Mach number
increases beyond that value, the destabilizing pitching moment decrceases
rapidly and usually smoothly, and then eventually plateaus as the Mach number
increases further supersovnically.

BASIC EQUATIONS AND BOUNDARY CONDITIONS

The coordinate system employed in the analysis is a body-fixed Cartesian

system with origin at the nose of the configuration, and orientation such

- that the x axis is directed downstream and conincident with the longitudinal

body axis, and the v axis to the right facing forward, and the = axis

- directed vertically upward, as illustrated in Figure 4. The oncoming frec-
stream may be inclined in pitch to the & axis at some arbitrarv smail augle,
o, but sideslip has not been consideved. The flow is assumed to be inviscid
- and steady, and the confipurations sufficiently slender and smooth that the
resulting flow field is irrotational and adequately treated by small-distur-
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bance theory. Accordingly, a disturbance velocity potential ¢ can be
] defined by:~
- ¢(x,v,z) = Umflx + uz 4+ ¢(x,y,2)] (1)
4 - where ¢ is the total velocity potential, U represents the freestream
:- velocity, % is the body length, and the coordinates (x,y,z) have been nondi-
N menticnalized by kL. The governiug partial diffcrential equation for ¢,
- appropriate for the low-lift slender configurations ccnsidered, is given by:
- 2 o 1.2 2
- ME o+ + ¢ = -2 = MU+ 2
: _ A-M)e, +o +a = o [2 ol 1)¢x] )
-
F - We note that the quadratic terms ($°+¢2), which usually appear™®™ within N
. the bracket on the right-hand side {o Zccount for situations where the 1ift -
i. is significant, are of higher order and negligible for the thickness-dominated e
sitvations of interest here. For the body-fixed coordinate system shewn )
- in Figure 4, the expression for the pressure coefficient is given by: 0
\I‘L_______
i p-p,, ,
- C =——— = -2(¢_*at ) = ($2+¢2) 3 ——
P 2 X Z v z -
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In general, the boundary conditions to be satisfied comsist of: (1) far-ijeld
conditions appropriate to the behavior of the flow far removed from the body
in either a free-air flow or in a wind tumnel enviromment; (2) the body
surface condition that the velocity component normal to the body surface be
zero at the body; and (3) shock wave conditions to be applied at any shock
surface appearing in the flow, such that the potential is continuous through
the shock and the velocity components satisfy the small disturbance approxi-
mation to the Rankine~Hugoniot conditions at the location of the shock. These
requirements lead for slender shapes to the following condition on ¢ for
free-air flows:

¢(=) = 0 (4)
+ + i+ = =
[nl QnB) nz‘y n3¢z]body [(nl + 0“3) * qnlbody 0 )
0 nsbock =0,

{[(l—Mi) - MO+ 210D+ 67D + l[¢§U} (6)

shock =

where n = inl + jngy + kn3 is the unit normal to the body surface, (nl’“z’“j)
are the direction cosines of n with respect to the (x,y,z) axes and the
symbols [[ ] and < > signify the difference and the mean, respectively, of
the enclosed quantity on the two sides of the shock surface.

TRANSONIC EGQUIVALENCE RULE FOR THICKNESS DOMINATED FLOWS

The transonic equivalence rule (TER) was developed initially in the forw,
now known as the cla.:i:al or thickness-dominated limit, by Oswatitseh®” for
thin nonlifting wings, and extended later to moderately lifting wings® and
slender configurations of arbitrary cross section3. Subsequent extensions
of the rule™>» to include situations where the lift is significant both
Tevealed ivs dependence on 1lift as well as clarified the classical limit
and range of validity. In esserce, the rule provides the basis for greatly
simplifying the calculation of transonic flows past a special but aero-
dynamically important class of three-dimensional configurations. It accom-
rlishes this by recognizing that the structure of transonic flows past
slendcr shapes in the vicinity of M = 1 consists of two distinct but
coupled domains whose governing equations and boundary conditions are siguif-
icantly easier to solve than the original equations, Equations (2} and {(4)-
(6). For flows at low to moderate lift conditiens, such as those typical
for stable projectile flight, the solution demains consist of an inner region
governing by & linear equation, the same as in slender-body theory, and an
outer nonlinea. region consisting of the axisymmetric flow about an "equiva-
lent" nonlifting body of revolution having the same longitudinal distribution
of cross-sectional area.

The theoretical essentials of the equivalence rule for thickness-domi-
nated flows past slender configuraitons are illustrated in Figure 4, which
displays the decomposition of the flow into its first~order inner and outer
components, and the resulting uniformly valid composite solution; that is

% =9,

2,a N ¢2,t t ¢2,w - ¢2,B e

. (7)
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Here each component of ¢ has the meaning indicated in Figure 4. The first-
order 1lift (¢2,a)’ thickness (¢2,t)> and rotation (¢; ) inner solutions
describe, respectively, the translating, expanding and rotating cross
section in the y,z plane, and satisfy the two-dimensicnal Laplace equation

gZyy + $9pp = 0] (8)

together with the no-flow boundary condition in the v,z plane at the body
surface at each x station. The first-order outer solution, by satisfies the
axisymmetric transonic small-disturbance equation:
~- M2 + + - 2 2 )
=MD (op),  + () % (LX) (op) = IMI(v+ 1) Cop )?/2] (9)
subject to an ianer boundary condition determined by the "equivalent" body

singularity source distribution., This, in turn, is determined by the outer
behavior (¢2 B) of the inner solution:
3

Lin(r(eg),) = Lin vley 0y (+ 0y ) = x(oy ), =870/ Q0)

where S(x) is the equivalent body cross-sectional area nondimensionalized
by ¢¢. and the effects of lift and roration are recognized to be small in
comparison to thickness effects, so that their contribution to the outer
flow is of a higher order. Shock conditions appropriate to the outer
flow are given by:

Toplgpoe = O

{r[l -MZ =ML (v D<ep 21002 1+ 10 (rr;«B_L,)”n} 0 (11)

shock =

The final boundary condition for the outer j-oblem relates to conditions
representative of the flow far from the configuration. For free-air flows

at infinity this is given by Equation (4). Appropriate asymptotic conditions
for a bounded free-air domain or a tunnel environment are discussed in the
following section.

Higher order TER solutions for thickness-dominated flows bevond the
first—-order terms indicated in Equations (7)-(11) can be determined syste-
matically by the methods described in References 4 and 5. These consist of
a doubly infinite coupled series o. inner and outer solutions. In general,
the higher order inner solutions se.isfy a Poisson equation in the crossflow
plane, with the right~hand side a known function of lower order inmer solu-
tions and satisfy a linear equation with nonconstant coefficients dependent
on the first-order outer (¢p) solution. For the results presented here,
only the first-order components are employed.

OUTER FLOW SOLUTION
The method employed to determine the ocuter flow component, ¢p, satisfying

Equations (9)-(11) is a finite-difference SLOR procedure using Murman-Cole
type~dependent difference operators!®32, To realize the calculation, we have




employed the following fully conservative form of Equation (9):

[n(K¢X - qx/‘)]x + [nqn]” = 0 (12)
where
“n) = (A7)0 00r) K= (=N /GeM) (1), no= M Yyl x (13)

and 1 signities the thickness ratio of the equivalent body. The finite-
difference form ¢f the equation actually solved is that suggested by
Jameson!? in terms of a correction potential, Additionally, a pseudotime
term of the form —s(é\.t/Ax)LthL was added to enhance stability and speed
convergence. The inner boundary condition, Fquation (10), becomes

[Edp)
N’

llm(ﬂcn) =3

n=>0
where S5(x) - S(x)/1°.

For free-air flows, since the boundaries of the computational mesh
employed are at a finite rather than infinite distance from the origin, a
more accurate representation of the far-field potential which reflects its
asymptotic behavior should be employed rather than Equation (4). These
conditions depend, of course, upon the freec-stream Mach number and arc
different for subsonic, sonic, and supersonic oncoming conditions. The
appropriate boundary conditions emploved on the computational domain at the
upstream, lateral, and downstream boundaries are given in detail in
Reference 14 and are summarized in Figure 5, where both the inner an outer
conditions are provided.

Verification of the accuracy and versatility of the outer flow solution
procedure has been made by extensive comparisons with data. These results
are reported in Reference 14 and cover a variety of different body shapes
at Mach numbers throughout and beyend the tramsonic range. The coirvesponding
comparisons with data taken Jn conventional ventilated transonic tunnels
indicated excellent agreement.

INNER FLOW SOLUTION

The determination ol the inner flow problem consists of solving the
crossflow Laplace Equation (8) for the three first-order inner components,
P2 ¢2,t and ¢2,m, corresponding to the vertical translation, expansion,
and rotaticn, respectively, of the projectile cross section in the y,z plane.
The component ¢2,8 in Equation (7) represents the outer behavior of tha ianer
solution, and for the thickness~dominated flows condsidered here is given
¢nalytically by [see Eq. (10)]

2.8 2. ‘mx (15)

For the axisymmetric portion of the projectile, the three inmner solu-
tions can be determined analytically, and are
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= 88(x) | sin
f 2.4 = = . (16)
| )
‘ o S'(x -
Yoo T inr (17)
= 0 (18)

Along the nonaxisymmetric boattail, general analytic expressions cannot be
given for tvpical cross-sectional shapes of interest to this study. Those
shapes comprise a general class ol contour: formed by N(N > 3) equal-length,
flat-sided segments separated by N equal-anple circular arc segments, and

are formed by cutting planes acting on the axisymmetric projectile becattail.
Those cutting planes are inclined at a small angle to the main projectile
axis, and result in flat surfaces being formed longitudinally on the boattail.
In general, these cutting planes wmay also rotate about the projectile axis

as they proceed downstream so as to provide twist to the cut surface and
thereby prevent projectile despinning. Figure 6 provides an illustration

of two such boattail shapes formed by employing three and four cutting planes.
For these shapes, thie basic axisymmetric boattail was cyliandrical rather than
conical, the cutting planes were not rotated, and the cutting plane angles
and axial starting locations were chosen such that the cutting planes meet

at the boattail end and result in an inscribed triangle and square, respec-
tively.

The computational method employed to determine the inner flow solutions ]
is a Iinite-elemert procedure. The procedure uses the Galerkin method ot
weighted residuals and employs isoparametric quadrilateral elements with
quadratic shape furnctions of the serendipity type. The linear, symmetric
matrix equations that result from discretization of the Laplace equation are
solved directly using Gaussian elimination. The body surface boundary
conditions for each of the three inner computational prcblems are summarized
in Figure 7. 1In the computational procedure they are implemented via a
Neumann (flux) condition. On the outer boundary of the finite element mesh,
Neumann conditions are alsc employed for each of the component problems, as
this was found to be wuch more convenient and of essentially equal accuracy
as the corresponding Dirichlet conditions. A typical finite element mesh
empleoyed for these calculations is illustrated in Figure 8. That figure
displays the mesh for a body formed by three cutting planes acting on a
circular cross section such that a sectored triangular shape results in which
the circular arc segments subtend 30° angles. The mesh shown consists of
six rings extending radially outward from the body surface and having 12

L2 Ad el bed hed e e B B BN B e
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-,

' quadrilateral elements per ring. The radial spacing of the rings is geomet~

- rical, and for the mesh jllustrated here the spacing ratio was 1l.4. u
Iq

- A series of numerical experiments were performed in order to examine iy

- inner solution accuracy as a function of mesh parameters, viz. number of

rings, number of elements per ring, radial mesh spacing ratio, and outer
B boundary location. The results indicated that mesh configurations similar
1 to that shown in Figure 8 were adequate with regard to both number of rings
- and elements pertr ring, provided that the cut2r boundary was located at
approximately 8 body radii and that radial mesh spacing near the body surface :
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was slightly more compact than that shown in the figure. A geometric ratio
of 2.0 was found to be satisfacrory.

Figure 9 provides an indication of the typical accuracy of the finite-
element solver when applied to one of the three component inner problems.
Displayed are the surface velocity components for the contraction problem
for the 306° sectored triangular cross section showr previously in Figure 8.
The predicted velocities shown are adjusted to be relative to the local body
surface, and thus should be entirely tangential to the local surface. The
particular contraction problem solved here was for a unit contraction of the
flat segrents (¢, = dF/dx = -1) and with the circular arc segments stationary
(¢ = dR/dx = 0). The surface velocity vectors are shown at the surface node
po?nt locations. As can be seen, the velocity vectors on both the flat and
circular segments ares indeed essentially tangential to the local surface.

At the junctions of the flat and circular segments, two vectors are indicated
since for those points a velocity vector can be predicted employing values of
the potential associated either with the element lying on the circular
segment or the adjacent element lying on the flat segment. Potential theory
is in fact discontinuous at those locations; and although velocities exactly
at those corner points are never used or required in any of the calculations
performed here, it is nevertheless instructive to observe the behavior of the
finite-element solver at those singular points. As is evident from the
results shown in Figure 9, the solver provides both the correct trend (high
magnitude) and direction (tangential tc the surface) of the sclution behavior
at those locations. From additional numerical experiments involving both an
examination of surface pressuces in the vicinity of these points, as well as
contour integrals of surface velecity and potential about the entire cross
section (in order to determine apparent mass coefficients, see section follow-
ing. we have verified that the finite-element solver is capable of adequately
resolving the flow behavior in the vicinity of the corners and providing
rapid and accurate solutions for all the inner problems for the geometries

of interest here.

LOADING CALCULATIONS

The objective of the development and application ot the TER procedure
to ballistic projectiles was to provide the means for determining the 3-D
tranconic flow fields about these shapes and, subsequently, the surface
pressures and the resultant steady aerodynamic forces and momenis. Since
the primary utility of the present predictive method to projectile applica-
tions, however, is in the accurate determination of those static aerodynamic
characteristics, the calculatrion and subsequent integration of surface
pressures predicted via the TER method over the entire projectile is an
undesirable intermediate, computationally-expensive step. Consistent with
the order of arcuracy of the present flow solution, it is possible to
formulate a procedure based on the TER solution and slender body theory which
avoids that step and provides the axial loading distribution directly.

This procedure, known us the method of appareant masses!®, relates the
kinetic energy of the fluid per unit axial length to contour integrals
involving various crossflow velocity poetentials describing the translation,
rotation, etc.,, of the cross section and their normal gradients on the local
surface. These contour integrals are relatable to the apparent mass coeffi-
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cients of the configuration cross section; and with those coefficients in
hand, the determination of the lateral force and moment distributions is
direct.

The utility of the apparent mass method is in the determination of
stability derivatives, both static and dvnamic, for slender configuratiorns.
The method has been successfully employed in the past in a wide number of
aerodynamic applicationsl%, particularly for missile configurations. A
detailed formulation of the method for combined upwash, side-wash, and roll
including derivations of all the important static and dynamic stability
derivatives is provided in Reference 19. Such previous applications of the
method have focused exclusively in the subsonic and supersonic regimes
where the governing small-disturbance potential equations are linear. Since
slender body theory is equally valid throughout the transonic regime as well,
and in fact underlies the basis of TER method, application of the apparent
mass method at transonic spzeds is certainly feasible. However, a well-known
result of the classical TER mﬂthodjﬁ, and actually verified by experiment
for certain classes of aerodynanic configurations3, is that the loading
distributions and hence the lateral forces and moments are irdependent of
oncoming Mach number. This, of course, is not the case for typical projec-
tiles, as noted in Figure 3. The reasoun for this discrepancy lies not in
an overall breakdowm of the TER procedure, but rather in the failure to take
into account locally the large axial gradients which occur in the vicinity
of shock waves located on the body surface. These large gradients locally
violate the moderate axial gradient hypothesis inherent in the apparent mass
method.

Because of the deficiency of the procedure for applications at transonic
speeds is associated primarily with the behavior of the axial velocity compo-
nent in the vicinity of shock waves, we have postulated and successfully
tested the following modification of the classical apparent mass method:

(1) correct the axial velocity in the classical apparent mass formulation by
replacing the free-stream velccity by the local axial velocity, and (2)

apply a similar correction to the lateral velocities. Here, the axial pertur-

bation velocity component to be added locally to the free-stream velocity can

be considered as provided by the TER composite solution Equation (7). However,

since the effect we are attempting to correct for is a transonic one due to

nonlinear Mach number dependent variations in the vicinity of shock waves, aad

since the two-dimensional crossflow solutions contained in Equation (7) are
independent of Mm, it is sufficienz v cousider the local axial velocity as
augmented by the equivalent body perturbation axial velocity alore, viz.

Vx = 1+ ¢B (19)
X

In order to implement these ideas, consider the normal force loading
distribution dCy/dx for combined angle of attack, a, sideslip, B, and roll
Tate, p, of a typical ballistic projectile. (Although ve have not considered
sideslip in our derivatione of the TER method, it would be a straightforward
extension to do so.) The transonically corrected classical loading distribu-
tion!® is given by:
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— = o= [M,.v. + s+ M - roo+ S . 20
o 2 {\x T vy P MV el s pIMp v N, gl (2O
: where
[ n
» = - ) —1 it
liJ <I 1 on b
J
.
Vo= 1+ 222
X ! B )
= . B
v = ) (23)
X
v, = a(l + b ) (245
P )x

Here, the M,, are apparent mass coefficients determined from the following
inner flow svblution representation (sece Fig. 4)

R M A T (25)
2 2 2,

where ¢1,55 represent crossflow potentials for unit horizontal and vertical
translation, respectively, of the cross section, qj represents the potential
for unit angular velocity of the cross section about the leongitudinal axis,
Vi, V2, are the transonically corrected sidewash and upwash, and the normal
force coefficient is defined by

(26)

Thus, for a projectile having a conical boattail for which the apparent

mass coefficients are known analvrically (MJ] = Moy = "R, Myo = Myy = Mj3 =0),
at zero sidewash (Ff = 0) and rell rate (p = 0), the normal force loading
distribution is given by

I dCN } ( \2 ; N

: N, .y 4 Ly R 2

_ R R R lR | (27) 4
x x| max ‘

Corresponding results for the static normal force and overturning pitching
moment coefficients CNu'Cmu are found frem




where Xem is the overturning moment zenter and the pitching woment is
defined as positive nose-up.

In general, for the nonaxisymmetric cross sections such as those of
interest heve, the apparent mass cocetficients cannot be determined analy-
tically and must be found numerically.,  The finite-element solver described
in the previcus scction preovides o convenient meauns of readily dotermining
these coetTjojent=.  Coascquentdy, although both Inner and outer TER selution
procedures are necessary to determine the projectile leoading distribution,
viz. the finite—-clement inner solver to calculate the apparent mass coclffi-
cients ot the projectile cross soction, and the SLOR solver te calcoulate the
axisymmetric nonlinear transonic flows past the equivalent body of revolution,
the determination of the detailed surface pressures and their integration
aver the body surtace is avoided.

\

In order te test the loading procedure, we have applied the methed to
a variety of different prejectiles having both axisvmmetric and nonaxisym-
metric boattail geometvies at Mach numbers throughout the transonic range.
In the following section, we provide some typical results of such calcu-
lations, topether with comparisons with other theoretical methods and data.

RESULT S

bk end dwed deed By N B I oW

i 2

To examine the applicability of the transenic equivalence rule for
determining transomic flows past ballistic projectiles, as well as to test
the validity and accuracy of the proposed nonlinear loading procedure, wve
have applied these procedures to predict the surface pressures, loading
- distributions, and static aerodynamic cocfficients of a variety of different
projectiles at flow conditions throughout the transonic range. In the
following sections, we provide some selected results typical of the projec-
tile calculations that were performed. Comparisons with data and as far as
possible with other theoretical methods are provided,
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! insofar as the basic validity and range of accuracy cof the TER method -
§ * for predicting transonic tlow fields pazt slender bedies are concerned, '
; extensive comparisons of TER results w'th data have been made and are
: provided in Reference 17. 1In that study, experimental results and TER

: -~ , theory were compared for hody surface pressures obtained in conventijonal
. . transonic tumnels for a number of different axisymmetric and nonaxisymmetric
; - shapes. The configurations included both smooth bodies as well as projectile-

like discontinuous slope shapes. Those results, which also incorporated wind
»

tunnel interference effects, provide the most extensive comparison of the
i - classical equivalence rule with experiment. They indicate good agreement
! with data, including the region near shock waves, at oncoming Mach numbers

throughout and beyond the transonic regime for low to mederate angles of ]
attack. N

Here, we provide some further results for specific projectile shapes.
. In Figure 10 we have exhibited TER results for the surface pressure coeffi-
) cient on a secant ogive nose, straight cylindrical midbouy, and 7° conical
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boattail projectile at M = 0.94 and a = 4%, These results display typical
axial and azimuthal surface pressure variatious characsteristic of transonic
flows past standard ballistic projectile shapes. The most notable feature

of the results in Figure 10 is the prominent expansion and compression spikces
in the vicinity of the nose/midbody and midbody/boattail junctures; and are
associated with the acceleration and deceleration of the flow in those
regions where the surface geometry is discontinuous.

The TER results display the surface pressurc along longitudinal ravs
at the windward, leeward, and midbudy azimucthal positions. For this axisym-
metric boattail projectile shape, the inner flow solutions are provided
analytically everywhere by Equations (16)-(18). The outer flow equivalent
body finite-difference solution used in these results employed an (x,r) mesh
density of 14040 points with 100 equally spaced pnints on the pody. Tae ¥
grid as well as the x grid ahead and tehind the body were expanded using a
grid ratio of 1.2:1. The x mesh extended 2 tody lenpths ahead of the mnose
and 2 body lengths behind the tail of the body, and the location of the first
radial grid line was at ¥ = 1/2. The r mesh extended laterally to 5 body
lengths. This grid was the standard one emploved iu determining all of the
equivalent body solutions reported here.

Also shown in Figure 10 are Reklis's'® three-dimensional transonic small-
disturbance results for pressures along the windward ray. The agreement
between the two theoretical methods is quite good everywhere, with the only
exception being some minor disagreement in the pressure spike regions near
the nose/midbudy and midbedy/boartail juncticns. At those locacions, the
TER results predict a slightly higher and eailier expansion. However, it is
probable that even these slipht discrepancies are attributable to different
grid densities and/or boundary condition treatment in those locations rather
than from the difference in the level-of-approximation of the two methads,

LOADING DISTRIBUTIONS

In order to check and verify the proposcd locading calculation method
for applications to ballistic projectiles, we have employed it to predict ]
loadings on a number of different projectile shapes for which results from !
other theoretical methods are available. Figure 11 presents a comparison
of results for the normal force distribution on am idcalized 5.6 caliber
length M549 projecrile at M = 0.95 and 2 = 1°. For these comparisons, the
geometry of the actual projectile shape has been simplified by considering
the nose as sharp, by neglecting the rotating bands, and by simulating the k
afterbody wake geometry by extending the conical boattail beyond the actual
projectile length.

R

In addition to the present method, results from the three--dimensional
rransonic small-disturbance (3-D TSD) procedure of Reklis), from three-
Jimensional Fuler equations calculations!? | and from slender body theory
are provided in the figure. Oun the ogive nose, the present method and the
Euler equation result compare quite closely, and are only moderately
removed from the slender body result. However, the 3-D TSD results predict
a noticeably higher loading. On the cylindrical midbody, the present method L
indicates a slight positive loading at points beyond the immediate vicinity K
of the oglve/midbody juncture; whereas, the Euler results predict a negative

|
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loading over the majority of the cylindrical midbody, and the 3-D TSD results
show essentialiy no loading at all. The slender body loading along that
unchanging cylindrical cross section 1is, of course, zero.

As the discontinuity in surface slope at the midbody/boattail juncture
is approached and passed, the present method displays first a large positive
then negative loading spike corresponding to the rapid flow expansion and
compression at the location. Downstream of that junction, the present theory
displays another sharp spike, due to the boattail shock. Once beyond the
boattail shock, the present method essentially provides the slender body
result. Along the boattail, the corresponding 3-D TSD result displays no
expansion spikes at the boattail junction. However, similar to the present
theory, that result does indicate the same strong downward loading Spike
on the main boattail section due to the boattail shock, although that peak
is displzced slightly rearward irom the present theory prediction. With
regard to the Euler equation prediciton on the boattail, a positive loading
is indicated just beyond the boattail juncture and then an increasing nega-
tive loading on the remainder of the boattail. 1In the calculation, the
boattail was extended to x/D = 6.5 at which point for numerical convenience
a spherical cap was added to close the body. That spherical cap, which was
located sufficiently far downstream so as not to influence the solution on
the actual projectile, locally induces a sharp discontinuous behavior which
is to be disregarded. At first glance, the Euler result appears to be quite
different from the present theory and the 3-D TSD result over the major
portion of the boattail. That is in fact not the case since the Euler
prediction was carried out on a much coarser computational grid than both
the present meithod aud the 3-D TSD calculation., That has resulted in a
broad smearing of the bcattail shock, and it is felt that increasing the
grid density would result in good correspondence between the Euler result
and the present method. 1In particular, we observe that as in the present
result, a positive expansion loading exists in the Euler prediction near the
boattail junction. Finally, with regard to the overall agreement evident
from this comparison, we note that the present loading method is able to
capture all of the critical features of the loading behavior for this typical
projectile geometry as predicted by other more accurate but computationally
far more expensive procedures.

In Figure 12, we present an additional loading comparison between the
present method and Euler equation solutions!?, These are intended to
illustrate the loading behavior both as a function of Mach number throughout
the transonic range and also for extremes of projectile geometry. That
figure provides a comparison of the normal force distribution on a slender
12 caliber iength projectile having a 5 caliber cylinder midbody, and 2
caliber 10° conical boattail. For the Euler calculations, a small spherical
cap was added at the base of the projectile, while for the present method,
the conical base was extended downstream, Results are displayed for
M_=0.75, 0.90, 0.95 at a = 1°, As with the vesults of Figure 11, the
present method and the Euler predictions are essentially identical on the
ogive nose for all thrse Mach numbers. On the cylindrical midbody, the
comparison is alsc quite good at all Mach numbers for points ahead of the
vicinity of the wmidbody/boattail junction. Near that junction, as well as
onr the boattail, some disagreement occurs. At Mw = 0.75, both methods
indicate first a rapid positive then negative loading near the boattail
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junciion, with the loading remaining negative but gradually recovering toward
zero along the boattail. At M_ = 0.90, the present method essentially
accentuates that bechavior, while the Euler result indicates instead a

rapid negative then positive loading near the boattail junciton, and then

an increasing negative loading algong the boattail. This behavior of the
Euler result is very similar to that in Figure 11, and reflects again a
broad shock smearing due to gria coarseness.

Consequently, based on these and other related comparisons, we have
concluded that the proposed transonically-corrected loading method is able
to capture the primary nonlinear inviscid transonic effects which exist on
typical ballistic projectiles.

STATIC AERGDYNAMIC COEFFICIENTS FOR VARIOUS BOATTAIL PROJECTILES

The ultimate objective of the development of the TER solution procedure
and the transonically modified loading method is in the prediction of the
static aerodynamic coefficients of various boattail ballistic projectiles.
In Figures 13-19 we provide results of the application of these procedures
to a variety of different projectile shapes at conditions throughout the
transonic regime.

Figure 13 exhibits a comparison of results from the present theory with
3-D TSD results and some limited data! for the variation of the overturning
pitching moment coefficient C; with oncoming Mach number M for an idealized
M349 projectile having various ‘concial boattail lengths. For both theoretical
results, the actual nose was replaced by a sharp one of equal length, the
rotating bands were neglected so that the cylindrical midbody was smooth,
and the afterbody wake geometry was simulated by extending the conical
boattail downstream. Three different boattail lengths on the basic projec-
tile shape were considered, i.e., ‘bt = 0.579, 0.437, and 0.242, with tt
longest being that of the actual projectile. For the comparisons at
Ypr = 0.579, indicated as solid lines, both theoretical methods display
essentially identical variation with M_ and peak Cp value, but with the
3-1 TSD results displaced forward in M_ by approximately 0.05. The range
data indicate a slightly higher peak value, occuring at the same Mach number
predicted by the present method.

The variation of the theoretical solutions for the two shorter bhoattails
is noteworthy. Those results predict the occurrence of lower and earlier
peaks in C, with decreasing boattail length. This is consistent with both
experimentaf findings and the fact that as the boattail length decreases
the shock in that region will move off the boattail and into the wake at a
lower Mach number. Additionally, there will exist a geometrically shorter
moment arm for the negative Joading created by the shock to act upon, thereby
reducing the peak overturning moment. With regard to the comparisons between
the two theoretical methods for the shorter hoattail length, at Ry, = 0,437
the prediction of peak Cma is again quite close, with the present theotry
peak displaced rearward in M_. At fpy = 0.242, however, in addition to the
rearward displacement of peak C values, the present method predicts a
somewhat lower peak value as well. Without further details about the 3-D
TSD results, it is difficult to identify precisely the cause of disagree-




ments.

Clearly,

however, both the variation trends and the general levels

of the results are in quite reasonable agreement.

To examine the effect of various idealizations of projectile geometry

that were made to facilitate some of these initial conditionmns,
performed several parametric studies involving the independent
selected projectile geometrv parameters. These have primarily
investigating the idealizations of afterbody wake geometry and

Figure 14 provides the effect of differen

we have
varjation of
involved
approximation

t nose and

afterbody wake geometry on the

variation of Cm with M

for the idealized

M549 projectile, for which results for the shafp nose, and conical wake
geometry model were presented previously in Figure 13,
results include the following geometry combinations:
drical wake, (ii) sharp nose, conical wake,
and (iv) blunt nose with fuze, conical wake. Limited range data! are also
presented for the actual projectile. We note that the difference between
the cylindrical and conical wake model results in the largest change in Cp
with the continuous conical wake model most certainly being the more accurate
simulation of the actual afterbody wake flow rather than the discontinuous
cylindrical model. The shift in peak C, location and the change to z more
peaky behavior in the vicinity of the maxxmum resulting from the change
from cylindrical te conical wake modzl confirms this, and exhibits excellent
agreement with the range data. The addition of the blurt nose to the
- conical wake model projectile results in an upward shift in magnitude of Cm
bui no esseniial difference in trend {rom ithe sharp nose result, and LUHLJ.lluEb
to bring the theoretical prediction in closer accord with the data near
the maximum. The final addition of the fuze geometry to the blunt nose
results in a similar but smaller change. The importance of modeling as much
- as possible of the geometric detail oi the actual projectile, however, is
clear.

The four theoretical
(i) sharp ncse, cvlin-

' of nose goemetry, although a preliminary investigation of bore rider influence
has also been made.
l (iii) blunt nose, conical wake,

In Figure 15, we present a similar comparison of theoretical results
and range data for Cmu versus M for a T388 projectile20. That standard
projectile has a 5.58 caliber overall length, 2.90 caliber ogive nose, and
0.59 caliber conical boattail with 7°37' boattail angle. Theoretical
. predictions are presented based on a (i) sharp nose, cylindrical wake, (ii)
sharp nose, conical wake, and (iii) blunt nose, conical wake. As with the
M549 projectile, the change from cylindrical to conical wake model brings

ae the predicted results into almost exact agreement with the range data.
Addition of the blunt nose in the theoretical calculation for this projectile
- . results in a downward shift in C 1level, oppogite to that of the M549, and

S . A a ;
indicating the interdependence of these geometric changes.

In Figure 16, we provide the final comparison between the present

theory and range data for a standard conical boattail projectile. That
. figure compares theoretical results with both range and tunnel data?l for an
improved 5"/54 projectile. This projectile is 5.20 calibers in length, with
a 2.75 caliber ogive nose, and 1 caliber conical boattail with 7,5° boattail
angle. The theoretical calculations exhibited are based on a conical after-
body wake model and blunt nose with fuze geometry included. Exhibited in
the figure is the Cp versus M_ variation from M = 0.5 to 2.0, demonstrating
the capability of the method throughout and beyond the transonic regime.
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We note thot the theoretical results agree very well for both overall trend
and location of the peak pitching moment, with the magnitude and the predicted
result being slightly higher throughcut the entire range than the data
indicate,.

For this projectile, we performed several additional calculations to
determine whether wind tunnel interference effects were present in the data.
accordingly, we determined the TER eyuivalent body outer flow solution subject
to both a solid and various porous wall boundary conditions. These calcula-
tions were performed at Mach numbers at and in the vicinity of the Cy peak.
All of these calculations resulted in indiscernible changes from the free air
result provided in Figure 16. We conclude that the discrepancy in C level
is most likely due to the midbody waisting on the actual projectile? , which
was not modeled in the theoretical calculations.

In the next three figures, Figures 17-19, we present results which
demonstrate the capability of the present predictive method to treat a
variety of different projectile boattail shapes, both axisymmetric and non-
axisymmetric. Figure 17 presents the predicted variation of Cp with M, for
the four different boattail shape projectiles shown previously in Figures 1
and 6, plus an additional conical boattail projectile with shorter boattail
(2p = 0.5) length. A4ll of these projecrviles have a 5 caliber overall length
and identical 2 caliber sharp ogive nose geometry. Consequently, the results
presented illustrate, in adesign sense, the effect on C; of varying the boat-
tail shape through a wide range of geometries. We note fhat the 1 caliber
conical boattail projectile exhibits the highest CmQ and thus is the worst
choice from a stability design criterion. Decreasing ithe conical boattail '
length to 0.5 calibers improves the situation somewhat, but not significantly
The square boattail further improves the situation, but the triangular boat- )
tail, of these four shapes, provides the best result for minimum peak Cmg®
These results are in direct correspondence with the experimental results of
Reference 2. Although the cylindrical boattail exhibits the lowest peak C, , .
its high drag and consequent low range make it an undesirable candidate shape. {

In Figure 18, we present the corresponding results for the normal force
coefficient CNQ for these same five shapes. We note the prediction that the
longer conical boattail has the lowest lift of all the projectiles, due to
the strong negai ve loading on the boattail section.

In Figure 19, we exhibit the surface pressure drag coefficient variation
with M_ for these same projectiles. This calculated drag represents the wave
drag of these various shapes. In order to determine the total inviscid drag,

. those results must be augmented by the base pressure drag. This could be
! done within the frazmework of the present computational procedure either
' from a correlation of base pressure drag and inviscid base pressure, or
; through a boundary layer/wake computation coupled to the inviscid fiow
‘8 prediction. The point of presenting these results is to indicate the means
| for a first-order approximation of the projectile drag is feasible with the
i present theoretical procedure.

Finally, we note the computational efficiency of the present method.
A complete calculation (TER calculation plus loading determination) requires .
less than 30 seconds CPU time on a CDC 7600 for a typical projectile at a ;
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specified M_. As a typical example, regard to the theoretical predictions of
Cmo’ Cn,.» and Cp provided in Figures 17 through 19 involving the 5 different
boattaif projectiles., The separate points on each of the curves indicate the
individual calculations made and total 110 separate TER and loading solutions.
Computational time for all of these cases was less than 30 minutes of CDC 7600
CPU time.

POTENTIAL APPLICATION TO MISSILES AT HIGH ANGLE OF ATTACK

In this section, we point out the potential utility of the concepts and
procedures developed here to applications involving current missile configura-
tions and requirements. In the current applications of the TER procedure to
ballistic projectiles, attention was focused on the low to moderate lift situ-
ation (thickness-dominated flows). This was done because that 1lift range is
the necessary operating regime for these shapes, since current ballistic
projectiles are spin stabilized and have no means (no lifing surfaces) of
recovering from 2 high angle of attack condition. For applications to present-~

£ Bd el B R B9

w design missiles, however, which often employ both canard and tail surfaces, the
control situation is quite different and the operation requirements imposed
- usually require capability of operating at high angle of attack. Under such

conditions, the primary nonlinear effects?? arise from compressibility etfects
and the various vortical flows (nose, canard, afterbody, and tail vortex
systems) generated by different segments of the missile surface. At transonic
i conditions, both of these nmonlinear effects can be treated by employing the
a= lift~-dominated limiting form the TER. TFigure 20 provides an illustration
of the application of the TER to such configurations at high angle of attack
transonic conditions; together with the decomposition of the flow into its
various inner and outer compoments. In thai illustraticn, for clarity of
presentation, we have omitted indicating the nose and afterbody vortices,
. and have only shown the canard trailing vortices. 1ln the actual TER appli-
cation and calculation, all of these vortical flows would be accounted for.
A\l
As shown in Figure 20, the various component problems in the inner region

R ye—— i ——

E' now consist of both vertical and horizontal translation of the cross section

- corresponding to upwash and sidewash, the crossflow vortical flow field con-
sisting of all vortices generated upstream of a particular longitudinal station,

3 - and the familiar thickness problem, whereas the outer flow now consists of

.. axial flow past both an equivalent source and doublet distribution in which

the scurce distribution consists of the equivalent area source distribution
- augmented by additional source-like terms due to the axial and spanwise litt
! distribution®.

Although the outer problem is now three-dimensional, the TER provides a

3 ' means for solution that is nevertheless significantly simpler than solving the !'5“
- full nonlinear three-dimensional flow problem past the actual configuration. y
_ In light of the success of the TER method for ballistic projectile applications,
. 3- it is felt that the potential of the method for providing an accurate and com-
H . putationally-efficient solution to the tramsonic high angle of attack slender
: - missile problem is high.
: 3_ CONCLUDING REMARKS £
| . The development of a theoretical predictive method for determining the E,A
é i steady inviscid aerodynamic behavior of ballistic projectiles throughout the i'fﬂ
-~ f
. . I~-215
11
-

R C LS B BT P PE WL SN

PYE LN 7Y ~-’«J:ﬂul\-rn.wrn:.:w;w:uﬁ-ui he




transonic regime is described. The emphasis of the work was directed toward
establishing the capability for investigating the now standard conical boat-
tail projectiles as well as a variety of new shapes characteristic of the non-
axisymmetric boattail projectiles under current study by the U.S. Army. The
final objective is the development of a rational modeling procedure for the
investigation of the transonic aerodynamic effects of incorporating different
boattail and bedy geometries into ballistic projectile design, with a view
toward optimizing the aerodynamic performance of these shapes, such as
increasing range and/or payload while simultaneously avoiding stability
problems.

The theoretical analysis is based on the transonic equivalence rule (TER)
and includes a finite-difference SLOR procedure for determining the nonlinear
axisymmetric outer (far field) flow about the "equivalent" body of revolution,
and a two~dimensional finite-element solver for providing general solutions to
the inner (vear field) cross-flow problem for the arbitrary geometries charac-
teristic of the new boattail projectiles. The ultimate utility of the predic-
tive method is in the accurate determination of the static aerodynamic charac-
teristics of these projectiles, specifically the lift and destabilizing pitch-
ing moment. Toward that end, a new nonlinear loading calculation procedure
which incorporates transonic effects has been formulated and tested. The
technique is based on apparent mass concepts and employs the finite—-element
inner crossflow solver to determine the appropriate apparent mass coefficients
and uses the nonlinear outer TER solution for the axisymmetric flow about the
equivalent body to account for nonlinear effects due to shock waves.

Results are presented for a wide variety of projectile shapes, having
both axisymmetric and nonaxisymmetric boattail geometries, and demonstrates
the ability of the procedure to predict successfully the observed range and
tunnel variations of pitching moment and normal force throughout the transonic
range. Additional calculations illustrating the separate effects of different
geometry models to simulate the afterbody wake and nose bluntness including
fuze geometries are presented.
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Figure 8 Illustration of typical finite-element .
mesh employed for inner problem.
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