STATIONARY DISCRETE AUTOREGRESSIVE-MOVING
AVERAGE TIME SERIES GENERATED BY MIXTURES

by

P. A. Jacobs
P. A. W. Lewis

January 1982

Approved for public release; distribution unlimited

Prepared for:
Chief of Naval Research
Arlington, VA 22217

National Science Foundation
Washington, DC 20550
This work was supported in part by National Science Foundation under Grant NSF-ENG-79-01438 and NSF-ENG-79-10825; and by the Office of Naval Research under Grant NR-42-284 and NR-42-469.

Reproduction of all or part of this report is authorized.
Two simple stationary processes of discrete random variables with arbitrarily chosen first-order marginal distributions, DARMA(p,N+1) and NDARMA(p,N), are given. The correlation structure of these processes mimics that of the usual linear ARMA(p,q) processes. The relationship of these processes to mover-stayer models, and to models for discrete time series given separately by Lindqvist and Piegram is discussed. Ad-hoc nonparametric estimators for the parameters in the DARMA(p,N+1) and NDARMA(p,N) are given. A simulation study...
shows them to be as good as maximum likelihood estimators for the first-order autoregressive case, and to be much simpler to compute than the maximum likelihood estimators.
STATIONARY DISCRETE AUTOREGRESSIVE-MOVING AVERAGE
TIME SERIES GENERATED BY MIXTURES

by
P. A. Jacobs
and
P. A. W. Lewis
Operations Research Department
Naval Postgraduate School
Monterey, California 93940

ABSTRACT

Two simple stationary processes of discrete random variables with arbitrarily chosen first-order marginal distributions, DARMA(p,N+1) and NDARMA(p,N), are given. The correlation structure of these processes mimics that of the usual linear ARMA(p,q) processes. The relationship of these processes to mover-stayer models, and to models for discrete time series given separately by Lindqvist and Pegram is discussed. Ad-hoc nonparametric estimators for the parameters in the DARMA(p,N+1) and NDARMA(p,N) are given. A simulation study shows them to be as good as maximum likelihood estimators for the first-order autoregressive case, and to be much simpler to compute than the maximum likelihood estimators.

1-25-82
1. INTRODUCTION

Discrete time series arise in many different contexts. For example the exact arrival times in an arrival process are usually not measured. Instead the number of arrivals in successive time intervals are given. This is the case with the statistics published by the Center for Disease Control on the incidence of various diseases in the United States. The data are given as the number of occurrences of each disease in successive days. If the time intervals are short enough and the arrival process is orderly, then the resulting time series is approximately binary. In other instances the process that is being measured is continuous but the data is quantized in recording. For example, the amount of rainfall in a day (24 hours) at a location given that some occurs, is a continuous random variable; however, it is often recorded to the nearest one-hundredth or one-tenth of an inch. Also, since a rainfall series will often contain many zeros (no rain), an analysis is often made of successive wet and dry days which is a binary time series [cf. Buishand, 1978]. An economic imperative for modelling and predicting the binary rainfall series is that it is the primary concomittant variable for predicting volume of business done in some establishments on successive days.

Markov chains have been used as models for stationary discrete time series. However, they are overparametrized for statistical purposes. Further, the data to be modelled can often be shown to be non-Markovian, or at least not first-order Markovian. Higher order Markov chains can be used but this only aggravates the problem of overparametrization.
In the past several years various parametrically simple models have been proposed for stationary discrete time series. The models have as parameters the fixed, first-order marginal distribution of the time series and the correlation structure. In Jacobs and Lewis [1978a, 1978b] a simple scheme is given for obtaining a stationary sequence of discrete random variables with a given marginal probability mass function \(\pi \) and an autocorrelation structure like that of a mixed first-order autoregressive-(N+1)st-order moving average process. This DARMA(1, N+1) process has nonnegative correlations and a possibly countably infinite state space. The correlation structure is determined by parameters that are independent of the marginal distribution.

A special case of the DARMA(1, N+1) process with marginal probability mass function \(\pi \) is the DAR(1) process. This is a Markov chain with discrete state space \(\mathbb{E} \) and with transition matrix

\[
P = \rho I + (1-\rho)Q,
\]

where \(Q \) is a matrix with \(Q_{ij} = \pi(j) \) for \(i,j \in \mathbb{E} \); \(I \) is the identity matrix with \((i,j)\) element \(I_{ij} \) and \(0 < \rho < 1 \). The correlation structure of a real valued DAR(1) i.e. one for which \(\mathbb{E} \) is a subset of the real line, is that of a first-order autoregressive process with \(k \)th-order serial correlation equal to \(\rho^k \). There is no limitation on \(\pi \); a common and useful assumption is that it be Poisson and therefore have an infinite state space. The DAR(1) model with a finite state space is a special case of the mover-stayer model [Bhat, 1972, p. 302-9].

Lindqvist [1978] studied a real valued finite state space Markov chain with a transition function of the form...
\begin{equation}
\tilde{p}_{ij} = cI_{ij} + (1-c) Q_{ij},
\end{equation}

where $Q_{ij} = \pi(j)$, for $i, j \in \mathcal{E}$ as before. Since the state space \mathcal{E} is finite, the constant c can take on some negative values with the constraint that

\begin{equation}
\max_{1 \leq i \leq r} \left[1 - \left(1 - \pi(i)\right)^{-1} \right] < c < 1,
\end{equation}

where r is the number of elements in the state space.

In Jacobs and Lewis [1978c], the DAR(1) process was extended to obtain a sequence of discrete random variables with pth order Markov dependence and given marginal distribution. The DAR(p) process is defined as follows. Let $\{V_n\}$ be a sequence of independent identically distributed random variables with $P\{V_n = 1\} = 1 - P\{V_n = 0\} = 1 - \rho$, $0 \leq \rho \leq 1$; $\{A_n\}$ is a sequence of independent identically distributed random variables taking values $\{1, 2, \ldots, p\}$ with $P\{A_n = i\} = \alpha_i$, $i = 1, 2, \ldots, p$; and $\{Y_n\}$ is a sequence of independent identically distributed random variables with discrete state space \mathcal{E} and $P\{Y_n = i\} = \pi(i)$. Let

\begin{equation}
Z_n = V_n Z_{n-A_n} + (1-V_n) Y_n.
\end{equation}

The process $\{Z_n\}$ is called a DAR(p) process. Note that by direct argument from (1.4)
\[(1.5) \quad P(Z_{n+1} = j | Z_n = i_1, \ldots, Z_{n-p+1} = i_p) = (1-\rho) \pi(j) + \sum_{k=1}^{p} \rho \alpha_k \epsilon_j(i_k),\]

where \(\epsilon_j(i) = 1\) if \(i = j\) and \(\epsilon_j(i) = 0\) otherwise. There is no limitation on the marginal probability mass function \(\pi\).

Pegram [1980] considers a real-valued finite state space model \(\{Z'_n\}\) which is a generalization of the DAR(p) model in that its conditional probabilities are of the form

\[(1.6) \quad P(Z'_{n+1} = j | Z'_n = i_1, \ldots, Z'_{n-p+1} = i_p) = [1 - \sum_{k=1}^{p} \phi_k] \pi(j) + \sum_{k=1}^{p} \phi_k \epsilon_j(i_k),\]

where \(\{\phi_k; k=1,\ldots,p\}\) are (possibly) negative constants. Note that although some of the constants \(\phi_k\) may be negative, the admissible values for \(\{\phi_k\}\) depends on the marginal distribution \(\pi\). It was shown in Jacobs and Lewis, [1978c] that Corr\((Z_n, Z_{n+k})\), \(k=1,2,\ldots\) for the real valued DAR(p) process are nonnegative. Pegram's model allows some of the correlations to be negative. The amount of negative correlation, as in Lindqvist's model, depends on the marginal distribution \(\pi\).

In this paper we will consider models for real-valued stationary discrete time series whose nonnegative correlation structure is that of a mixed pth-order autoregressive and qth-order moving average process. Thus we have a generalization of all
of the preceding models. In Section 2 we will give definitions of two such models, DARMA(p,N+1) (discrete mixed autoregressive-moving average process with orders p and $N+1$ respectively) and NDARMA(p,N). We briefly describe some of their properties and suggest an estimate for the correlations. In Section 3 we describe in detail a simulation experiment that was done to study the behavior of various estimators for the first order serial correlation coefficients ρ of the DAR(1) model for small and moderate sample sizes. In Section 4 some extensions of the DARMA models are briefly discussed including one which can have negative correlations. Throughout the remainder of the paper we will assume that the NDARMA and DARMA processes are real valued. They can in fact be used to model categorical time series, but then numerical measures such as correlations are meaningless.
2. The DARMA(p,N+1) and NDARMA(p,N) Processes.

In what follows we let \(\{Y_n\} \) be a sequence of independent identically distributed random variables taking values in a real-valued discrete state space \(\mathbb{E} \) with \(P\{Y_n = i\} = \pi(i), i \in \mathbb{E} \). Let \(\{U_n\} \) and \(\{V_n\} \) be independent sequences of independent random variables taking the values 0 and 1 with

\[
P(U_n = 1) = \beta \quad \text{and} \quad P(V_n = 1) = \rho
\]

for fixed \(0 \leq \beta \leq 1 \) and \(0 \leq \rho < 1 \). Let \(\{D_n\} \) be a sequence of independent identically distributed random variables taking values 0,1,2,...,N with \(P(D_k = n) = \delta_n, n = 0,1,...,N, \) and \(\{A_n\} \) be a sequence of independent identically distributed random variables taking values 1,2,...,p with \(P(A_k = n) = \alpha_n, n = 1,2,...,p. \)

2.1 The DARMA(p,N+1) process.

The DARMA(p,N+1) process is a sequence of random variables \(\{X_n\} \) which is formed according to the probabilistic linear model

\[
X_n = U_n Y_{n-D_n} + (1 - U_n) Z_{n-(N+1)}
\]

for \(n = 1,2,..., \), where the "autoregressive tail" is

\[
Z_n = V_n Z_{n-A_n} + (1 - V_n) Y_n
\]
for \(n = -N-p+1, -N-p+2, \ldots \). This process differs
from the DARMA(1,N+1) process defined in Jacobs and Lewis
[1978a] in that the "autoregressive tail" \(Z_n \) is now the \(p \)th
order autoregressive process of (1.4). In Jacobs and Lewis
[1978c], it was shown that the vector-valued Markov chain
\((Z_n, Z_{n+1}, \ldots, Z_{n+p}) \), \(n = 1,2, \ldots \) has a limiting joint
probability mass function \(\nu \) with marginal probability mass
function \(\pi \). Hence, if \((Z_{-N-p+1}, \ldots, Z_{-N})\) has joint probability
mass function \(\nu \), then \(\{X_n; n = 1,2, \ldots \} \) is a stationary
process with marginal probability mass function \(\pi \).

Let \(r(k) = \text{Corr}(X_n, X_{n+k}) \) for the stationary process.
Then \(\{r(k)\} \) can be shown to satisfy the following system of
equations:

\[
\begin{align*}
(2.4) \quad r(1) &= \beta^2 \sum_{i=0}^{N-1} \delta_i \delta_{i+1} + \beta (1-\beta) r_B(1) + (1-\beta)^2 r_A(1), \\
(2.5) \quad r(2) &= \beta^2 \sum_{i=0}^{N-2} \delta_i \delta_{i+2} + \beta (1-\beta) r_B(2) + (1-\beta)^2 r_A(2), \\
&\quad \vdots \\
(2.6) \quad r(N) &= \beta^2 \delta_0 \delta_N + \beta (1-\beta) r_B(N) + (1-\beta)^2 r_A(N), \\
(2.7) \quad r(N+k) &= \beta(1-\beta) r_B(N+k) + (1-\beta)^2 r_A(N+k), \quad k \geq 1.
\end{align*}
\]

In these equations

\[
\begin{align*}
(2.8) \quad r_A(k) &= \text{Corr}(Z_n, Z_{n+k}), \quad k \geq 1,
\end{align*}
\]
which satisfy the following Yule-Walker equations:

\begin{align}
(2.9) \quad r_A(1) &= \rho_1 r_A(0) + \rho_2 r_A(1) + \ldots + \rho_p r_A(p-1), \\
(2.10) \quad r_A(2) &= \rho_1 r_A(1) + \rho_2 r_A(0) + \ldots + \rho_p r_A(p-2), \\
& \vdots \\
(2.11) \quad r_A(p) &= \rho_1 r_A(p-1) + \rho_2 r_A(p-2) + \ldots + \rho_p r_A(0), \\
\end{align}

and for \(k \geq 1, \)
\begin{align}
(2.12) \quad r_A(p+k) &= \rho_1 r_A(p+k-1) + \rho_2 r_A(p+k-2) + \ldots + \rho_p r_A(k),
\end{align}

where \(r_A(0) = 1. \)

In addition
\[
 r_B(i) = \text{Corr}(Z_{n+i-(N+1)}, Y_{n-D_n}) = \sum_{j=0}^{N} \text{Corr}(Z_{n+i-(N+1)}, Y_{n-j}) \delta_j
\]
is obtained recursively as

\[
 r_B(0) = 0; \\
 r_B(1) = (1-\rho) \delta_N; \\
 r_B(2) = \rho_1 r_B(1) + (1-\rho) \delta_{N-1}; \\
\vdots \\
 r_B(k) = \sum_{i=1}^{k-1} \rho_1 r_B(k-i) + (1-\rho) \delta_{N-(k-1)}
\]

for \(k < \min(p, N); \)
\[r_B(k) = \sum_{i=1}^{\rho} \rho a_i r_B(k-i) + (1-\rho) \delta_{N-(k-1)} \]

for \(\max(p,N) > k \geq \min(p,N) \);

\[r_B(k) = \sum_{i=1}^{\rho} \rho a_i r_B(k-i) \]

for \(k \geq \max(p,N) \).

To see that the serial correlations for the DARMA(p,N+1) process are all nonnegative let \(q(i) \) (respectively \(q_A(i) \)) be the probability that \(X_n \) and \(X_{n+i} \) (respectively \(Z_n \) and \(Z_{n+i} \)) choose the same random variable \(Y_k \), where, because of the backward definition of the autoregression \(k < n \). Then \(q(i) \) (respectively \(q_A(i) \)) also satisfy equations (2.4) - (2.7) (respectively (2.9) - (2.12)) and since they are nonnegative, so are the serial correlations.

To see this identity, let \(R_n \) be the random index of the \(Y_k, k \leq n \), that \(X_n \) chooses; that is,

\[X_n = Y_{R_n} \]

Then, since the random variables \(R_n \) are independent of the \(\{Y_k\} \) random variables,
\((2.13) \quad E[X_n X_{n+\ell}] = E[Y_{R_n} Y_{R_{n+\ell}}] \)

\[
= \sum_{k=1}^{n} E[Y_k^2] P(R_n = R_{n+\ell} = k) \\
+ \sum_{k=1}^{n} \sum_{\substack{j=1 \atop j \neq k}}^{n+\ell} E[Y_k Y_j] P(R_n = k, R_{n+\ell} = j)
\]

\((2.14) \quad = E[Y_1^2] P(R_n = R_{n+\ell}) \)

\[
+ E[Y_1]^2 P(R_n \neq R_{n+\ell}) .
\]

Thus

\[
\text{Cov}(X_n, X_{n+\ell}) = E[Y_1^2] P(R_n = R_{n+\ell}) \\
+ E[Y_1]^2 \left(P(R_n \neq R_{n+\ell}) - 1 \right)
\]

\((2.15) \quad = \text{Var}[Y_1] P(R_n = R_{n+\ell}) .
\]

Therefore

\((2.16) \quad \text{Corr}(X_n, X_{n+\ell}) = P(R_n = R_{n+\ell}) = q(\ell) \)

as asserted above.

This identity will also be used in the estimation procedure proposed in Section 3 for the serial correlations.
2.2 The NDARMA(p,N) process

In this subsection we will define another related discrete time series with the correlation structure of a mixed moving average autoregressive process. This new process is more reminiscent of the linear ARMA(p,N) process. The key idea that leads to this new model is that a probabilistic mixture of a finite number of random variables each with probability mass function \(\pi \) has probability mass function \(\pi \) even if the random variables are dependent. Thus it is not necessary to define the autoregression via an autoregressive tail, as in the DARMA(p,N+1) process; the autoregression can be made explicit, as in the usual (normal theory) linear processes.

Thus let

\[
X_n = V_n X_{n-p} + (1-V_n) Y_{n-D_n},
\]

where \(\{V_n\}, \{A_n\}, \) and \(\{D_n\} \) are as before. Thus, with probability \(\rho \), \(X_n \) is one of the \(p \) previous values \(X_n-1, \ldots, X_n-p \) and with probability \((1-\rho) \) it is a mixture of the previous \(Y_k 's, n - N < k < n \). Note that if \(\rho = 0 \), then \(\{X_n; n = 1,2,\ldots\} \) is a DMA(N) process as defined in Jacobs and Lewis [1978a]. If \(P(D_n = 0) = 1 \), then \(\{X_n\} \) is a DAR(p) process as defined in Jacobs and Lewis [1978c].

Let \(\tau = \text{inf}\{i : \delta_i > 0\} \). Note that

\[
\mathbb{Z}_n = \{(X_n, X_{n-1}, \ldots, X_{n-p+1}, Y_{n-\tau}, \ldots, Y_{n-N}), n = 1,2,\ldots\}
\]

is a Markov Chain with state space \(\mathbb{E} \) which is equal to the product space of \(\mathbb{E} \) with itself \(p + (N-\tau) \) times. Since
\[P(X_{n+1} = j | X_0, \ldots, X_n, Y_0, \ldots, Y_n) \geq (1-p) \delta_i \pi(j), \]

there is a set \(J \subset \mathbb{F} \) such that \(\min_{\kappa \in J} P(Z_{n+K} = \kappa \mid Z_n = \lambda) = \gamma > 0, \)

where

\[K = P + N \quad \text{and} \quad J = \{ X_{n+K} = Y_{n+K}, X_{n+K-1} = Y_{n+K-1}, \ldots, X_{n+K-p+1} = Y_{n+K-p+1} \}. \]

Thus the condition of case (b) on page 173 of Doob [1953] is satisfied. The proof on pages 173 and 174 extended to countable state spaces shows that \(Z_n \) has a limiting probability mass function \(\nu \) as \(n \to \infty \); further the convergence of the conditional distribution of \(Z_n \) to \(\nu \) as \(n \to \infty \) is geometric. The marginal probability mass function of \(\nu \) is \(\pi \).

It follows from (2.17) that the serial correlations for the stationary NDARMA(p,N) process satisfy the Yule-Walker equations for the ARMA(p,N) process with restrictions on the range of the coefficients;

\[r_N(k) = \text{Corr}(X_n, X_{n+k}) \]

\[= \sum_{i=1}^{P} \rho a_i \text{Corr}(X_n, X_{n+k-i}) \]

\[+ (1-p) \sum_{i=k}^{N} \delta_i \text{Corr}(X_n, Y_{n+k-i}) \]
for $k \geq 0$. The correlations $r_{NB}(i) = \text{Corr}(X_n, Y_{n-i})$ can be computed recursively as follows. For $i = 0$

$$r_{NB}(0) = (1-\rho)\delta_0 ;$$

for $1 \leq i < p$

$$r_{NB}(i) = (1-\rho)\delta_i + \rho a_1 r_{NB}(i-1) + \ldots + \rho a_i r_{NB}(0) ;$$

and for $i > p$

$$r_{NB}(i) = (1-\rho)\delta_i + \sum_{j=1}^{p} \rho a_i r_{NB}(i-j) ,$$

where if $i > N$, then $\delta_i = 0$ by convention.
Hence, if we assume $N < p$

\[r_N(k) = \rho a_1 r_N(k-1) + \rho a_2 r_N(k-2) + \ldots + \rho a_p r_N(p-k) \]

\[+ (1-p) \sum_{i=k}^{N} r_{NB}(i-k) \]

for $1 \leq k \leq N$;

\[r_N(k) = \rho a_1 r_N(k-1) + \rho a_2 r_N(k-2) + \ldots + \rho a_p r_N(k-p) \]

for $k > N$.

The serial correlations of the NDARMA(p,N) process are nonnegative since, if $q_N(i)$ is the probability that X_n and X_{n+i} choose the same random variable Y_k, $k < n$, then \{q_N(i)\} satisfies equations (2.21) and (2.22). The argument is the same as for the DARMA($p,N+1$) case.

2.3 Comparison of Admissible Range of Correlations for the DARMA(1,1) and the NDARMA(1,1).

Let \{X_n\} be a stationary DARMA(1,1) process; that is,

\[\begin{align*}
X_n &= \begin{cases}
Y_n & \text{with probability } \beta, \\
Z_{n-1} & \text{with probability } 1-\beta,
\end{cases}
\end{align*}\]
where

\[(2.24) \quad Z_n = \begin{cases} Z_{n-1} & \text{with probability } \rho, \\ Y_n & \text{with probability } 1-\rho. \end{cases}\]

Equations (2.4) - (2.12) for the DARMA(p,N+1) correlations simplify to

\[(2.25) \quad r(k) = \text{Corr}(X_n, X_{n+k}) = \rho^{k-1}(1-\beta)[\beta(1-\rho) + (1-\beta)p].\]

Similarly let \(\{X'_n\}\) be a stationary NDARMA(1,1) process; that is

\[(2.26) \quad X'_n = \begin{cases} X'_{n-1} & \text{with probability } \rho, \\ Y_n & \text{with probability } (1-\rho)\delta_0, \\ Y_{n-1} & \text{with probability } (1-\rho)(1-\delta_0). \end{cases}\]

Equations (2.21) and (2.22) simplify to

\[(2.27) \quad r_N(k) = \text{Corr}(X'_n, X'_{n+k}) = \rho^{k-1}[\rho + (1-\rho)^2\delta_0(1-\delta_0)].\]

Figure 1 gives graphs of the attainable values of \(\{r_N(2), r_N(1)\}\) as the parameter values \(\rho\) and \(\delta_0\) vary, and \(\{r(2), r(1)\}\) as the parameters \(\rho\) and \(\beta\) vary. Note that although the set of attainable correlations for the NDARMA(1,1) process is not strictly contained in that for the DARMA(1,1)
Figure 1. Graph (a) of the attainable values of \(r(2), r(1) \) as the parameters \(\phi \) and \(\beta \) vary in the DARMA(1,1) process and graph (b) of the attainable values of \(r_N(2), r_N(1) \) as the parameters \(\phi \) and \(\delta_0 \) in the NDARMA(1,1) process vary. Both processes contain the first-order moving average process for which the first serial correlation varies between 0 and 1/4 while the second serial correlation is zero. However, the regions beyond this for the two processes differ considerably. Beyond \(r_N(1) \) or \(r(1) \) greater than 1/4 the DARMA(1,1) process has a much broader correlation range than the NDARMA(1,1) process. The first lies in a broad band above \(r(2) = [r(1)]^2 \), the second in a narrow band below \(r_N(2) = [r_N(1)]^2 \).
process, it is much smaller. Thus, the DARMA(1,1) model appears to be broader than the NDARMA(1,1) model. The smaller region of possible correlation pairs for the NDARMA(1,1) model seems to be a constraint due to the explicit autoregression on X_{n-1}.

2.4 An Estimator for the Serial Correlations of the DARMA($p,N+1$) and NDARMA(p,N) processes.

The usual estimator for the serial correlations of a stationary real-valued sequence {X_1, \ldots, X_m} is

\begin{equation}
\hat{r}(\ell) = [S^2_X]^{-1} (m-\ell)^{-1} \sum_{j=1}^{m-\ell} (X_j - \bar{X})(X_{j+\ell} - \bar{X}),
\end{equation}

where

\begin{equation}
\bar{X} = \frac{1}{m-1} \sum_{j=1}^{m} X_j
\end{equation}

and

\begin{equation}
S^2_X = \frac{1}{m-1} \sum_{j=1}^{m} (X_j - \bar{X})^2.
\end{equation}

In this subsection we will suggest another estimator for the serial correlations of the DARMA and NDARMA processes.

By the remarks at the ends of Sections 2.1 and 2.2, the ℓth serial correlation, $r(\ell)$, for both the stationary DARMA($p,N+1$) and NDARMA(p,N) processes is equal to the probability that X_n and $X_{n+\ell}$ choose the same Y_k, $k \leq n$.

Hence, for both processes for $i \neq j$,
\[P \{ X_n = i, X_{n+\ell} = j \} = P \{ Y_{R_n} = i, Y_{R_n+\ell} = j \} \]
\[= \sum_{k \leq n} \sum_{r \leq n+\ell, r \neq k} P \{ R_n = k, R_{n+\ell} = r \} P \{ Y_k = i, Y_r = j \}. \]

Since the \((Y_k) \) random variables are independent, and independent of \(R_n \) and \(R_{n+\ell} \), we have

(2.31) \[P \{ X_n = i, X_{n+\ell} = j \} = \pi(i) \pi(j) P \{ R_n \neq R_{n+\ell} \} \]
\[= \pi(i) \pi(j) [1 - r(\ell)] , \]

by equation (2.16).

Thus, for \(j \in IE \)

(2.32) \[\lim_{N \to \infty} B_N(m,j) = \lim_{N \to \infty} (N-m)^{-1} \sum_{N-m}^{N} \sum_{i \neq j, k=1}^{N-m} 1_i(X_k) 1_j(X_{k+m}) \]
\[= [1 - \pi(j)][1 - r(m)] \pi(j) \]

almost surely where \(1_i(x) = 1 \) if \(x = i \) and 0 otherwise.

Hence

(2.33) \[\tilde{r}(m) = 1 - \sum_{j \in IE} B_N(m,j) [1 - \pi(j)]^{-1} \]

is a strongly consistent estimator for the mth serial correlation for the stationary DARMA and NDARMA processes.
Estimator $\tilde{r}(m)$ is also a strongly consistent estimator for the finite state space models of Lindqvist (1978) and Pegram (1980) since the conditional probabilities (1.2) and (1.6) are of the same form as those for the appropriate DAR(p) process.

In the next section we pursue this estimator for the special case of the first-order autoregressive process DAR(1).
3. ESTIMATION FOR THE DAR(1) PROCESS

Let \(\{X_n\} \) be a stationary DAR(1) process with state space \(\mathbb{E} = \{0, 1, \ldots\} \) and first-order serial correlation \(\rho \), \(0 \leq \rho < 1 \); that is,

\[
X_n = \begin{cases}
X_{n-1} & \text{with probability } \rho, \\
Y_n & \text{with probability } 1-\rho
\end{cases}
\]

for \(n = 1, 2, \ldots \), while \(X_0 \) is a random variable independent of \(\{Y_n\} \) but with the same probability mass function.

A simulation was conducted to study the performance of several estimator for \(\rho \) for small to moderate series lengths \(m \). The series lengths considered were \(m = 20, 50, \) and \(200 \). The marginal probability mass functions considered were the Poisson with parameter \(\lambda \),

\[
\pi(k) = e^{-\lambda} \frac{\lambda^k}{k!} \quad k = 0, 1, \ldots ,
\]

and the geometric with parameter \(p \)

\[
\pi(k) = p^k (1-p) \quad k = 0, 1, \ldots .
\]

One type of estimator considered was the single parameter maximum likelihood estimator. For a series of length \(m \) let \(N_{ij} \) denote the number of times the DAR(1) process goes from \(i \) to \(j \), for \(i, j \in \mathbb{E} \) and let \(N_j \) denote the total
number of times the process is in state \(j \). The log-likelihood function for a DAR(1) series \(\{X_1, \ldots, X_m\} \) of length \(m \) is

\[
L = \sum_{i=0}^{\infty} \sum_{j \neq i} N_{ij} \ln[(1-p)\pi(j)] \\
+ \sum_{i=0}^{\infty} N_{ii} \ln[1 - (1-p)\pi(i)] \\
+ \sum_{i=0}^{\infty} l_i(X_l)\pi(i).
\]

Taking the partial derivative of \(L \) with respect to \(x = 1-p \) and setting the derivative equal to zero results, after some simplification, in the following equation for the maximum likelihood estimator \(\hat{x} = 1-\hat{p} \), if it exists:

\[
f(x) \equiv 1 - N^{-1} \sum_{i=0}^{\infty} N_{ii} \{1 - \hat{x}[1 - \pi(i)]\}^{-1} = 0.
\]

Note that \(f(x) \) is monotone decreasing in \(x \) and \(f(0) \geq 0 \). Hence, if there is a solution to (3.5) in \([0,1]\), it will be unique.

The ad-hoc estimator of \(\rho \) given at (2.33) was also considered. For the DAR(1) process this estimator is

\[
\tilde{\rho} = 1 - \sum_{j=0}^{\infty} \left\{ [N^{-1} \sum_{i=0}^{\infty} N_{ij}[1 - \pi(j)]^{-1}] \right\}.
\]
The summations in both the maximum likelihood estimators and the estimators of the form (3.6) for the Poisson case (respectively the geometric case) were restricted to be between
\[a = \max[1, n_-(\mu-7\sigma)] \text{ (respectively } a = \max(1, n_-(\mu-10\sigma)) \text{) and } b = n_+(\mu+7\sigma) \text{ (respectively } n_+(\mu+10\sigma)) \text{; here } n_-(y) \text{ (respectively } n_+(y)) \text{ is the largest (respectively smallest) integer less (respectively greater) than } y \text{.}

Equation (3.5) was solved numerically. In the case \(N = 20 \), it was not uncommon that \(f(x) \) did not have a zero in \([0,1]\). In this case, if \(f(1) > 0 \), then \(x \) was set equal to 1; that is, \(\hat{\rho} = 0 \). If \(f(0) = 0 \), then \(x \) was taken to be 0; that is, \(\hat{\rho} = 1 \).

Other estimators for \(\rho \) that were considered included the following:

1. The usual estimate for first-order serial correlation,

\[
\rho_1 = \left[S_X^2 \right]^{-1} (m-1)^{-1} \sum_{n=1}^{m-1} (X_n - \bar{X})(X_{n+1} - \bar{X}),
\]

where \(\bar{X} \) and \(S_X^2 \) are as in (2.29) and (2.30). If \(S_X^2 = 0 \), then \(\rho_1 \) was set equal to 1.

2. The maximum likelihood equation (3.5) was solved numerically for \(\rho \) for each of the following three values for \(\pi(j) \):
 a. the known distribution (3.2) or (3.3) with known parameter \(\lambda \) or \(p \) was used; \(\rho_2 \) denotes this estimator;
 b. the known distribution with an estimated parameter was used; that is,
\begin{equation}
\pi(k) = e^{-\hat{\lambda}} \frac{\left(\hat{\lambda}\right)^k}{k!} \quad \text{where} \quad \hat{\lambda} = \bar{X} \tag{3.8}
\end{equation}

or

\begin{equation}
\pi(k) = \hat{p}^k (1-\hat{p}) \quad \text{where} \quad \hat{p} = \bar{X}(1 + \bar{X})^{-1} ; \tag{3.9}
\end{equation}

\(\rho_3\) denotes this estimator;

c. the nonparametric estimator \(\hat{\pi}(j) = N^{-1} N_j\) of \(\pi(j)\) was used; \(\rho_4\) denotes this estimator.

d. \(\rho_5\) is the estimator of \(\rho\) resulting from the two-dimensional maximum likelihood estimator where the other parameter is the distribution parameter (\(\lambda\) or \(p\));

3. the estimate \(\rho_6\) is the nonparametric estimate (3.6) using \(N^{-1} N_j\) as the estimate for \(\pi(j)\);

4. the estimate \(\rho_7\) is the nonparametric estimate (3.6) using the true value of \(\pi(j)\);

Both estimators \(\rho_6\) and \(\rho_7\) can have negative values for small to moderate sample sizes. Hence, we also considered the following estimate.

5. Estimator \(\rho_8 = \max(\rho_6 , 0)\).

3.2 The sampling experiment.

A DAR(1) series of length \(m\) was simulated and the estimates for \(\rho\) were computed. The computation was repeated for 1000 independent replications and the sample mean, sample variance, and sample root mean square error were computed. Each experiment was then repeated for 20 independent replications,
and the mean of the means, mean of the standard deviations, and mean of the root mean square errors were computed. Tables 1-3 give the means of the root mean square errors for the cases studied. The box plots of row values appearing in the last column of the table are given to help the reader to summarize the performance of the 8 estimators across the 7 cases considered.

All runs were performed on an IBM system 360/67 computer at the Naval Postgraduate School using the LLRANDOM package [Learmonth and Lewis, 1973] which generates numbers according to the scheme given by Lewis, Goodman, and Miller [1969]. Tests of the random number generator are given in Learmonth and Lewis [1974].

Among all the estimates of \(\rho \), the usual first-order serial correlation estimator, \(\rho_1 \), performs least well. The maximum likelihood estimator with smallest root mean square error tends to be \(\rho_2 \), although by the time \(m = 200 \) the difference is minor. Of course the value of \(\rho \) or \(\lambda \) would not be known in general, so that this estimator is unrealistic. Maximum likelihood estimators \(\rho_3 \) and \(\rho_5 \) are about equivalent, indicating that the extra computational complexity of the two-parameter maximum likelihood estimator, \(\rho_5 \), is not necessary. The performance of the nonparametric estimator \(\rho_8 \) is about the same or sometimes better than that of the maximum likelihood estimator \(\rho_4 \), especially if, for small sample size (m=20), the modification \(\rho_8 = \max(\rho_6, 0) \) is used. This suggests that the ad-hoc estimator of (3.6) altered to give values in the range \([0,1]\) is almost as good as the maximum likelihood
estimator with the same estimate for $\pi(j)$. The ad-hoc estimator is much easier to compute than the maximum likelihood estimator.
Table 1. Estimated Root Mean Square Error for several competing estimators of π for DAR(1) Series of length $m = 20$

<table>
<thead>
<tr>
<th>Estimator</th>
<th>p</th>
<th>0.05</th>
<th>0.60</th>
<th>0.50</th>
<th>0.75</th>
<th>0.25</th>
<th>0.60</th>
<th>0.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson</td>
<td>Poisson</td>
<td>Poisson</td>
<td>Geometric</td>
<td>Geometric</td>
<td>Box Plots of row Values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\lambda = 1$</td>
<td>$\lambda = 3$</td>
<td>$\lambda = 10$</td>
<td>$p = 0.3925$</td>
<td>$p = 0.63210$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Maximum likelihood; Known parameter</td>
<td>.110</td>
<td>.145</td>
<td>.133</td>
<td>.105</td>
<td>.173</td>
<td>.135</td>
<td>.056</td>
<td></td>
</tr>
<tr>
<td>3. Maximum likelihood; Parametric est. of $\pi(j)$</td>
<td>.101</td>
<td>.164</td>
<td>.134</td>
<td>.106</td>
<td>.169</td>
<td>.149</td>
<td>.129</td>
<td></td>
</tr>
<tr>
<td>4. Maximum likelihood; Nonparametric est. of $\pi(j)$</td>
<td>.082</td>
<td>.203</td>
<td>.174</td>
<td>.175</td>
<td>.173</td>
<td>.190</td>
<td>.233</td>
<td></td>
</tr>
<tr>
<td>5. Maximum likelihood; Both parameters</td>
<td>.102</td>
<td>.164</td>
<td>.134</td>
<td>.105</td>
<td>.169</td>
<td>.148</td>
<td>.129</td>
<td></td>
</tr>
<tr>
<td>6. Ad hoc estimator; nonparametric est. of $\pi(j)$</td>
<td>.168</td>
<td>.202</td>
<td>.155</td>
<td>.151</td>
<td>.226</td>
<td>.178</td>
<td>.191</td>
<td></td>
</tr>
<tr>
<td>7. Ad hoc estimator; true value of $\pi(j)$</td>
<td>.157</td>
<td>.164</td>
<td>.134</td>
<td>.105</td>
<td>.225</td>
<td>.149</td>
<td>.099</td>
<td></td>
</tr>
<tr>
<td>8. Ad hoc estimator; max$(\nu_6,0)$</td>
<td>.093</td>
<td>.192</td>
<td>.154</td>
<td>.148</td>
<td>.176</td>
<td>.171</td>
<td>.189</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Estimated Root Mean Square Error for several Estimators of ρ for DAR(1) Series of length $m = 50$

<table>
<thead>
<tr>
<th>Estimator</th>
<th>ρ 0.05</th>
<th>ρ 0.60</th>
<th>ρ 0.50</th>
<th>ρ 0.75</th>
<th>ρ 0.25</th>
<th>ρ 0.60</th>
<th>ρ 0.95</th>
<th>Box Plots of row Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson $\lambda = 1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poisson $\lambda = 3$</td>
<td>.144</td>
<td>.164</td>
<td>.165</td>
<td>.155</td>
<td>.180</td>
<td>.193</td>
<td>.198</td>
<td></td>
</tr>
<tr>
<td>Poisson $\lambda = 10$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometric $p = 0.3925$</td>
<td></td>
<td></td>
<td>.066</td>
<td>.096</td>
<td>.083</td>
<td>.115</td>
<td>.088</td>
<td>.091</td>
</tr>
<tr>
<td>Geometric $p = 0.63210$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.106</td>
<td>.094</td>
<td>.119</td>
<td>.098 .154</td>
</tr>
<tr>
<td>1. Sample serial correlation</td>
<td>.068</td>
<td>.095</td>
<td>.084</td>
<td>.066</td>
<td>.115</td>
<td>.087</td>
<td>.090</td>
<td></td>
</tr>
<tr>
<td>2. Maximum likelihood; Known parameter</td>
<td>.061</td>
<td>.095</td>
<td>.084</td>
<td>.066</td>
<td>.115</td>
<td>.087</td>
<td>.090</td>
<td></td>
</tr>
<tr>
<td>3. Maximum likelihood; Parametric est. of $\pi(j)$</td>
<td>.101</td>
<td>.101</td>
<td>.088</td>
<td>.071</td>
<td>.127</td>
<td>.092</td>
<td>.132</td>
<td></td>
</tr>
<tr>
<td>4. Maximum likelihood; Nonparametric est. of $\pi(j)$</td>
<td>.095</td>
<td>.095</td>
<td>.084</td>
<td>.066</td>
<td>.130</td>
<td>.087</td>
<td>.071</td>
<td></td>
</tr>
<tr>
<td>5. Maximum likelihood; Both parameters</td>
<td>.068</td>
<td>.101</td>
<td>.088</td>
<td>.072</td>
<td>.121</td>
<td>.092</td>
<td>.131</td>
<td></td>
</tr>
<tr>
<td>6. Ad hoc estimator; nonparametric est. of $\pi(j)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Ad hoc estimator; true value of $\pi(j)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Ad hoc estimator; max($\rho_0, 0$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Estimated Root Mean Square Error for several Estimators of ρ for DAR(1) Series of Length $m = 200$

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Poisson $\lambda = 1$</th>
<th>Poisson $\lambda = 3$</th>
<th>Poisson $\lambda = 10$</th>
<th>Geometric $p = .3925$</th>
<th>Geometric $p = .63210$</th>
<th>Box Plots of row Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sample serial correlation</td>
<td>.075</td>
<td>.082</td>
<td>.082</td>
<td>.068</td>
<td>.103</td>
<td>.103</td>
</tr>
<tr>
<td>2. Maximum likelihood; Known parameter</td>
<td>.040</td>
<td>.046</td>
<td>.042</td>
<td>.033</td>
<td>.056</td>
<td>.042</td>
</tr>
<tr>
<td>3. Maximum likelihood; Parametric est. of $\pi(j)$</td>
<td>.039</td>
<td>.047</td>
<td>.042</td>
<td>.033</td>
<td>.057</td>
<td>.043</td>
</tr>
<tr>
<td>4. Maximum likelihood; Nonparametric est. of $\pi(j)$</td>
<td>.038</td>
<td>.048</td>
<td>.043</td>
<td>.035</td>
<td>.058</td>
<td>.045</td>
</tr>
<tr>
<td>5. Maximum likelihood; Both parameters</td>
<td>.039</td>
<td>.047</td>
<td>.042</td>
<td>.033</td>
<td>.060</td>
<td>.043</td>
</tr>
<tr>
<td>6. Ad hoc estimator; nonparametric est. of $\pi(j)$</td>
<td>.049</td>
<td>.047</td>
<td>.042</td>
<td>.034</td>
<td>.061</td>
<td>.044</td>
</tr>
<tr>
<td>7. Ad hoc estimator; true value of $\pi(j)$</td>
<td>.049</td>
<td>.047</td>
<td>.042</td>
<td>.033</td>
<td>.064</td>
<td>.043</td>
</tr>
<tr>
<td>8. Ad hoc estimator; max($\rho_6, 0$)</td>
<td>.042</td>
<td>.047</td>
<td>.042</td>
<td>.034</td>
<td>.061</td>
<td>.044</td>
</tr>
</tbody>
</table>
4. EXTENSIONS

Since the process \(\{X_n\} \) is obtained as a probabilistic mixture of the \(\{Y_n\} \), the DARMA and NDARMA process may be defined using any sequence of independent identically distributed random variables \(\{Y_n\} \). One implication is that DARMA and NDARMA processes may have a continuous marginal distribution. However, even if the distribution of \(Y_n \) is continuous, a realization of the sequence \(\{X_n\} \) will, in general, contain many runs of a single value. This seems to be the major drawback to using DARMA and NDARMA processes to obtain a sequence of dependent random variables with a specified continuous distribution and correlation structure. However, the process with continuous marginals may be useful in simulation studies.

Multivariate DARMA and NDARMA processes may be obtained by using a sequence of multivariate \(Y_n \)'s. To illustrate this we generate DARMA and NDARMA-like processes having negative correlations. These can be derived from bivariate processes as follows.

Let \(\{(Y_n(1), Y_n(-1))\} \) be a sequence of independent bivariate random variables with state space \(\mathbb{E} = \{0, \pm 1, \ldots \} \), marginal probability mass function \(\pi \), and correlation \(r = \text{Corr}(Y_n(1), Y_n(-1)) \) which will be negative in general. One way to generate such a sequence is to note that a random variable \(Y_n(1) \) with probability mass function \(\pi \) can be simulated from a uniform \([0,1]\) random variable by defining

\[
Y_n(1) = j \quad \text{if} \quad \sum_{i=-\infty}^{j-1} \pi(i) < U \leq \sum_{i=-\infty}^{j} \pi(i) .
\]
If $Y_n(-1)$ is generated by

\[Y_n(-1) = j \quad \text{if} \quad \sum_{i=-\infty}^{j-1} \pi(i) < 1 - U \leq \sum_{i=-\infty}^{j} \pi(i), \]

then $(Y_n(1), Y_n(-1))$ is called an antithetic pair. If π is symmetric about zero, then $Y_n(1) = -Y_n(-1)$, and $r = \text{Corr}(Y_n(1), Y_n(-1)) = -1$.

A bivariate DARMA $(p,N+1)$ process \{$(X_n(1), X_n(-1))$\} is defined as follows. Let \{a_0, \ldots, a_p\} and \{b_0, \ldots, b_N\} be fixed sequences of numbers that are either -1 or 1. Let

\[X_n(1) = U_n Y_n-D_n (b_D n) + (1-U_n) Z_n-(N+1) (a_0) \]

(4.3)

\[X_n(-1) = U_n Y_n-D_n (-b_D n) + (1-U_n) Z_n-(N+1) (-a_0) \]

(4.4)

for $n = 1, 2, \ldots$, where

\[Z_n(a_0) = V_n Z_{n-A_n} (a_A n) + (1-V_n) Y_n(a_0) \]

(4.5)

\[Z_n(-a_0) = V_n Z_{n-A_n} (-a_A n) + (1-V_n) Y_n(-a_0) \]

(4.6)

for $n = -N, -N+1, \ldots$ where \{A_n\} and \{D_n\} are as in Section 2. The random variable $X_n(-1)$ is called the dual of $X_n(1)$.
or the antithetic when (4.1) and (4.2) hold for the \{Y_n\} pair. Note that if (4.1) and (4.2) hold and π is symmetric about zero, then $Z_n(-1) = -Z_n(1)$ and $X_n(-1) = -X_n(1)$.

A bivariate NDARMA(p,q) process $(X'_n(1), X'_n(-1))$ can be defined similarly:

\begin{align*}
(4.7) \quad X'_n(1) &= v_n x'_n - A_n a_n + (1 - v_n) y_n - D_n b_n, \\
(4.8) \quad X'_n(-1) &= v_n x'_n - A_n a_n + (1 - v_n) y_n - D_n b_n.
\end{align*}

The stationary bivariate DARMA and NDARMA processes will have marginal probability mass function π. A process having possibly negative correlations can be obtained by consider the marginal processes $\{X_n(1), X_n(-1), \}$. Details will be given elsewhere.
5. ACKNOWLEDGEMENTS

We would like to thank L. Uribe for his work on the simulation experiment of Section 3. The research of P. A. Jacobs was supported by grants from the National Science Foundation NSF-ENG-79-01438 and NSF-ENG-79-10825. The research of P. W. Lewis was supported by the Office of Naval Research under Grants NR-42-284 and NR-42-469.
REFERENCES

DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Address</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library, Code 0142</td>
<td>4</td>
</tr>
<tr>
<td>Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td>Monterey, CA 93940</td>
<td></td>
</tr>
<tr>
<td>Dean of Research</td>
<td>1</td>
</tr>
<tr>
<td>Code 012A</td>
<td></td>
</tr>
<tr>
<td>Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td>Monterey, CA 93940</td>
<td></td>
</tr>
<tr>
<td>Library, Code 55</td>
<td>2</td>
</tr>
<tr>
<td>Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td>Monterey, CA 93940</td>
<td></td>
</tr>
<tr>
<td>Professor P. A. W. Lewis</td>
<td>250</td>
</tr>
<tr>
<td>Code 55Lw</td>
<td></td>
</tr>
<tr>
<td>Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td>Monterey, CA 93940</td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td></td>
</tr>
<tr>
<td>Cameron Station</td>
<td></td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td>2</td>
</tr>
</tbody>
</table>

34