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STATIONARY DISCRETE AUTOREGRESSIVE-MOVING AVERAGE

TIME SERIES GENERATED BY MIXTURES

by
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and

P. A. W. Lewis

Operations Research Department
Naval Postgraduate School
Monterey, California 93940
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ABSTRACT
N
Two simple stationary processes of discrete random

B et DN PN TR S

variables with arbitrarily chosen first-order marginal

R T

distributions, DARMA (p,N+1l) and NDARMA(p,N), are given. The
‘ correlation structure of these processes mimics that of the
usual linear ARMA(p,q) processes. The relationship of these

processes to mover-stayer models, and to models for discrete

time series given separately by Lindgvist and Pegram is discussed.

Ad-hoc nonparametric estimators for the parameters in the
DARMA (p,N+1) and NDARMA(p,N) are given. A simulation study
shows them to be as good as maximum likelihood estimators for

the first-order autoregressive case, and to be much simpler to

compute than the maximum likelihood estimators.
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1. INTRODUCTION

Discrete time series arise in many different contexts.
For example the exact arrival times in an arrival process are
usually not measured. Instead the number of arrivals in suc-
cessive time intervals are given. This is the case with the
statistics published by the Center for Disease Control on the
incidence of various diseases in the United States. The data
are given as the number of occurrences of each disease in suc-
cessive days. If the time intervals are short enough and the
arrival process is orderly, then the resulting time series is
approximately binary. In other instances the process that is
being measured is continuous but the data is quantized in
recording. For example, the amount of rainfall in a day
(24 hours) at a location, given that some occurs, is a continu-
ous random variable; however, it is often recorded to the
nearest one-hundredth or one-tenth of an inch. Also, since a
rainfall series will often contain many zeros (no rain), an
analysis is often made of successive wet and dry days which is
a binary time series [cf. Buishand, 1978]. An economic impera-
tive for modelling and predicting the binary rainfall series is
that it is the primary concomittant variable for predicting
volume of business done in some establishments on successive days.

Markov chains have been used as models for stationary
discrete time series. However, they are overparametrized for
statistical purposes. Further, the data to be modelled can
often be shown to be non-Markovian, or at least not first-order

Markovian. Higher order Markov chains can be used but this only

aggravates the problem of overparametrization.




.

In the past several years various parametrically simple
models have been proposed for stationary discrete time series.
The models have as parameters the fixed, first-order marginal
distribution of the time series and the correlation structure.

In Jacobs and Lewis [1978a, 1978b] a simple scheme is given for
obtaining a stationary sequence of discrete random variables with
a given marginal probability mass function 7 and an autocor-
relation structure like that of a mixed first-order autoregres-
sive-(N+1) st-order moving average process. This DARMA(1l, N+1)
process has nonnegative correlations and a possibly countably
infinite state space. The correlation structure is determined by
parameters that are independent of the marginal distribution.

A special case of the DARMA(1l, N+1) process with mar-
ginal probability mass function T is the DAR(1l) process.

This is a Markov chain with discrete state space IE and with

transition matrix
(1.1) P =pl + (1-p)Q ,

where Q is a matrix with Qij = 7(j) for i,j€EE; I is the
identity matrix with (i,j) element Iij and 0 < p <1 . The
correlation structure of a real valued DAR(l) i.e. one for which
IE is a subset of the real line, is that of a first-order auto-
regressive process with kth-order serial correlation equal to
pk . There is no limitation on = ; a common and useful assump-

tion is that it be Poisson and therefore have an infinite state

space. The DAR(1l) model with a finite state space is a special

case of the mover-stayer model [Bhat, 1972, p. 302-9].
Lindgvist [1978] studied a real valued finite state

space Markov chain with a transition function of the form

e ol ki« dmaa. et . R, PR e ; ~ o
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(1.2) Pij = cI.lj + (1l-c) Qij '

where Qij = m(j), for i, j€¢IE as before. Since the state space

IE is finite, the constant ¢ can take on some negative

values with the constraint that

(1.3) max [1 - (L-m(i)" Y] <c<1,
l<i<r - -

where r 1is the number of elements in the state space.

In Jacobs and Lewis [1978c], the DAR(l) process was
extended to obtain a sequence of discrete random variables
with pth order Markov dependence and given marginal distri-
bution. The DAR(p) process is defined as follows. Let {V_}

be a sequence of independent identically distributed random

variables with P{Vn =1} =1 - P{Vn =0} =1- p,
0 <p < 1; {An} is a sequence of independent identically

distributed random variables taking values {1,2,...p} with

PR

P{An =i} = o, i=1,2,...,p; and {Yn} is a sequence of

independent identically distributed random variables with

discrete state space IE and P{Yn =i} = 7{i). Let

(1.4) z, = vnzn_An -V Y .

The process {2 } is called a DAR(p) process. Note that by

direct argument from (1.4)

\
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(1.5) Plz ., = dlz, = il""'zn-p+l = ip}
)
= (1=p) w(j) + pa, €. (i) ,
k=1 X 3K
where €j(i) =1 if i =3 and ej(i) = 0 otherwise. There

is nolimitation on the marginal probability mass function = .

Pegram [1980] considers a real-valued finite state space

model {Zg} which is a generalization of the DAR(p) model in that

its conditional probabilities are of the form

'
n

(1.6) P{z),, = 3lz, =1i;,.../2 =i}

n-p+1l p

P
[1 - 6,1 m(3) + } o, e.(i ),
k K2y kK 3k

Il 10

k=1
where {¢k; k=1l,...,p} are (possibly) negative constants. Note
that although some of the constants ¢k may be negative, the
admissible values for {¢k} depends on the marginal distribution
m. It was shown in Jacobs and Lewis, [1978c] that
Corr(zn, Zn+k)’ k=1,2,... for the real valued DAR(p) process
are nonnegative. Pegram's model allows some of the correlations
to be negative. The amount of negative correlation, as in
Lindgvist's model, depends on the marginal distribution .

In this paper we will consider models for real-valued
stationary discrete time series whose nonnegative correlation
structure is that of a mixed pth-order autoregressive and gth-order

moving average process. Thus we have a generalization of all




of the preceding models. 1In Section 2 we will give definitions
of two such models, DARMA(p,N+l) (discrete mixed autoregressive-
moving average process with orders p and N+l respectively)
and NDARMA(p,N). We briefly describe some of their properties
and suggest an estimate for the correlations. 1In Section 3

we describe in detail a simulation experiment that was done

to study the behavior of various estimators for the first order
serial correlation coefficients p of the DAR(1l) model for
small and moderate sample sizes. In Section 4 some extensions
of the DARMA models are briefly discussed including one which
can have negative correlations. Throughout the remainder of

the paper we will assume that the NDARMA and DARMA processes
are real valued. They can in fact be used to model categorical

time series, but then numerical measures such as correlations

are meaningless.
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2. The DARMA(p,N+1l) and NDARMA(p,N) Processes.

In what follows we let {Yn} be a sequence of independ-
ent identically distributed random variables taking values in
a real-valued discrete state space IE with P{Yn =i} = 7w(i),
ieIE. Let {Un} and {Vn} be independent sequences of independ-

ent random variables taking the values 0 and 1 with
(2.1) P{Un =1} =8 and P{Vn =1} =p

for fixed 0 < B <1 and 0 < p < 1. Let {Dn} be a sequence
of independent identically distributed random variables taking
values 0,1,2,...,N with P{Dk = n} = Gn , n=20,1,...,N, and
{An} be a sequence of independent identically distributed
random variables taking values 1,2,...,p with P{Ak = n} = a,

n=1,2,...,p.

2.1 The DARMA(p,N+l1l) process.
The DARMA (p,N+l1l) process is a sequence of random

variables {Xn} which is formed according to the probabilistic

linear model

(2.2) X, = UnYn—Dn + (1= Un)Zn-(N+1)

for n=1,2,..., where the "autoregressive tail" is

(2.3) z = vnzn_An + (1 - vy




for n = -N-p+l, -N-p+2,.... This process differs

from the DARMA(1l,N+]1l) process defined in Jacobs and Lewis
[1978a] in that the "autoregressive tail” z_ is now the pth
order autoregressive process of (1.4). In Jacobs and Lewis
f1978c], it was shown that the vector-valued Markov chain

{(Zn, 2 n=1,2,...} has a limiting joint

n+1’" Znopearl v

probability mass function Vv with marginal probability mass

function 7. Hence, if (2 ..+ Z_.) has joint probability

N

mass function v , then {Xn; n=1,2,...} is a stationary

-N-p+1’°

process with marginal probability mass function .

Let «r(k) = Corr(Xn, X ) for the stationary process.

n+k
Then {r(k)} can be shown to satisfy the following system of

equations:

2 N31 2
(2.4) r(l) =8 izo 8;8:41 + BL=-BIrg(1) + (1-8)“r, (1) ,
2 N32 2
(2.5) r(2) =8 igo 8i8i40 * B(1=BIrg(2) + (1-8)7r,(2) ,
(2.6)  r) = %58y + BUI-B)r () + (1-8) 2, (W) ,
(2.7)  r(N+k) = B(1-B)ry (N+k) + (1-8) °r, (N+k) . kK > 1.
In these equations
(2.8) rA(k) = Corr(Zn, Zn+k) ’ k > 1,




which satisfy the following Yule-Walker equations:

T

(2.9) r,(1) Po X (0) + pa,ra(l) + ... 4+ paprA(p—l) .

(2.10) rA(Z) paer(l) + paer(O) + o0 + paprA(p-Z) ’

b e s LU Ol Rai o Lag e sl an e o 1

3 (2.11) rA(p)

pa ra(p-1) + Pa, X (P=2) + ... + pa rp(o) ,

p

and for k > 1,

(2.12) rA(p+k) = paer(p+k—l) + paZrA(p+k-2) + ... 4+ paprA(k) ’

where rA(O) = 1.

biado o Al

In addition

N

F rB(l) = Corr(Zn+i_(N+l), Yn~Dn) = jzo Corr(Zn+i_(N+l), Yn_j)dj
is obtained recursively as
rB(O) =0 ;
rp(l) = (l-p)dN ;
rB(2) = Daer(l) + (l-o)GN_l H

rB(k)

)
il o~

pa;rp(k=-i) + (1-p) SN=(k-1)

for k < min(p,N) ;




rB(k) = igl pairB(k-i) + (1l=-p) SN-(k-l)

for max(p,N) > k > min(p,N) ;

rB(k) = igl pairB(k-i)

for k > max(p,N) .

To see that the serial correlations for the DARMA(p,i+1)
process are all nonnegative let q(i) (respectively qA(i)) be
the probability that xn and xn+i (respectively Zn and

Zn+i) choose the same random variable Yk , where, because of
the backward definition of the autoregression k < n. Then
g(i) (respectively qA(i)) also satisfy equations (2.4) - (2.7)
(respectively (2.9) ~ (2.12)) and since they are nonnegative,
so are the serial correlations.

To see this identity, let Rn be the random index of

the Y k < n, that xn chooses; that is,

kr

Then, since the random variables R~ are independent of the

&k} random variables,




n n+4

oty STy T T

(2.13) E[X X ] = E[YR Y

il
>
K e =]
(]

t
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o)

o]
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+
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=
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]
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]

; (2.14) = E[yi] P(R_ = R

Thus
F 2
Cov(Xn, Xn+2) = E Yl P{Rn = Rh+£}
+efv,}? [pir. # R _,} -1

1 n n+4%

(2.15) = Var[yl] P{Rn = Rn_,_g} .

Therefore

(2.16) Corr(xn, Xn+1) = P{Rn = Rn+2} = q(R)

as asserted above.
This identity will also be used in the estimation

procedure proposed in Section 3 for the serial correlations.

10




2.2 The NDARMA(p,N) process

In this subsection we will define another related
discrete time series with the correlation structure of a mixed
moving average autoregressive process. This new process is
more reminiscent of the linear ARMA(p,N) process. The key idea
that leads to this new model is that a probabilistic mixture of
a finite number of random variables each with probability mass
function 1m has probability mass function 1 even if the
random variables are dependent. Thus it is not necessary to
define the autoregression via an autoregressive tail, as in the
DARMA (p,N+1) process; the autoregression can be made explicit,
as in the usual (normal theory) linear processes.

Thus let

(2.17) X =V.X + (1-v )Y _

n n“n-A D_ '

n n

where {V_}, {a,}, and {D } are as before. Thus, with prob-
ability o , Xn is one of the p previous values
Xn-l""'xn-p and with probability (l-p) it is a mixture of
the previous Yk's , n -~ N<k <n. Note that if p = 0,
then {Xn; n=1,2,...} is a DMA(N) process as defined in
Jacobs and Lewis [1978a]. 1If P{Dn = 0} = 1, then {Xn} is
a DAR(p) process as defined in Jacobs and Lewis [1978c].

Let 1 = inf{i : §, > 0} . Note that
Zy = UXp 0 X 4 veeey Xn-p+1l ¢ Ypog roev Y N o n=1,2,...1
is a Markov Chain with state space IF which is equal to the

product space of IE with itself p + (N-1) times. Since

11




P{mel =Y .= j|x0,...,xn,Yo,...,Yn} > (1-p)6T n(j),

there is a set J<IF such that min P{zn+K = glgn =4il=vy>0,

LEIF
ke€J
where
K =P+ N and
J < {xn+K = Yn+K-'r’ Xn+K-l = Yn+K—1--T""' Xn+K-p+1 = Yn+K-p+l-T}

Thus the condition of case (b) on page 173 of Doob [1953] is
satisfied. The proof on pagesl73 and 174 extended to countable
state spaces shows that R has a limiting probability mass
function v as n-—+« ; further the convergence of the con-
ditional distribution of Z, to Vv as n-w is geometric.
The marginal probability mass function of v is 1w .

It follows from (2.17) that the serial correlations
for the stationary NLCARMA(p,N) process satisfy the Yule-Walker
equations for the ARMA(p,N) process with restrictions on the

range of the coefficients;

(2.19)

rN(k) Corr(xn, X

n+k)

)

]
Il t~110

1 pay Corr(Xn, xn+k-i

i
N
+ (1-p) izk 6iCorr(Xn , Y

)

n+k-i

12




for k > 0 . The correlations rNB(i) = Corr(xn , Y
be computed recursively as follows. For i = @
(2.20) rNB(Ol = (1-9)60 i

for 1 <1i<p

r

wp (1)

and for i > p

il ~110

(1-0)6i +

(1)
NB 1

where if i > N , then Gi = 0 by convention.

13
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n=21

(l-p)di + paerB(i-l) + ... + pairnb(O) :

can




Hence, if we assume N < p

(2.21) ry(k) = payry(k-1) + payry(k-2) + ... + paprN(p-k)
N .
i=k

for 1 <k <N ;

(2.22) rN(k) = paer(k-l) + paer(k—Z) + ...+ paprN(k-p)

for k > N .

The serial correlations of the NDARMA(p,N) process are
nonnegative since, if qN(i) is the probability that X, and
Xosi choose the same random variable Yk + k <n, then

{qN(i)} satisfies equations (2.21) and (2.22). The argument

is the same as for the DARMA(p,N+l1) case.

2.3 Comparison of Admissible Range of Correlations for the

DARMA(1,1) and the NDARMA(1l,1).

Let {xn} be a stationary DARMA(1l,1) process; that is,

(2.23) Y with probability B,

with probability 1-B,

14
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where

(2.24) Z with probability p,

Y with probability 1l-p.

Equations (2.4) - (2.12) for the DARMA(p,N+l) correlations

simplify to

(2.25)  x(k) = Corr(x , X ,,) = o 1(1-8)[B(1-p) + (1-8)0]

Similarly let {Xg} be a stationary NDARMA(l,l) process;

g that is
k

r . . .

Xﬁ_l with probability o,

. . o _
(2.26) xn = WYn with probability (1 p)60,
Y. 1 with probability (1-p) (1-8,)

Equations (2.21) and (2.22) simplify to

(2.27) (k) = Corr (X}, X!,) = o o + (1-p) %6 (1-5) 1.

Figure 1 gives graphs of the attainable values of

{rN(Z), rN(l)} as the parameter values p and 60 vary, and

{r(2), r(1)} as the parameters p and B vary. Note that

although the set of attainable correlations for the NDARMA(1l,1)

process is not strictly contained in that for the DARMA(1,1) -

15
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process, it is much smaller. Thus, the DARMA(1l,l) model appears
to be broader than the NDARMA(1l,1l) model. The smaller region

of possible correlation pairs for the NDARMA(1l,l) model seems to
be a constraint due to the explicit autoregression on Xn__1 .
2.4 An Estimator for the Serial Correlations of the

DARMA (p,N+1) and NDARMA(p,N) processes.

The usual estimator for the serial correlations of a

stationary real-valued sequence {Xl,..., Xm} is
-2
S0y = re21-1 -1 " z 2
(2.28) r(2) = [S3177 (m-2) j£1 (X5 = %) (X5, - %),
where
- -1 v
(2.29) X =nm .
j=1 )
and
m
2 1 2
2.30 Sy = —= X. - X i
(2.30) X = 51 jzl (Xy = X) 3

In this subsection we will suggest another estimator
for the serial correlations of the DARMA and NDARMA processes.

By the remarks at the ends of Sections 2.1 and 2.2,

the 2th serial correlation, r(f), for both the stationary
DARMA (p,N+1) and NDARMA (p,N) processes is equal to the prob-

ability that X, and Xn+l choose the same Yk r Kk <n .

Hence, for both processes for i # j,




: P{X =1, X = j} = P{y =1, Y = 3}
; n n+i Rn Rn+2
;
; = ) ] P{R_ = k, R =r} P{Yy, =i, Y_ = 3} .
k<n r<n+% n n+2 k r
x#k

Since the {Yk}random variables are independent, and independent

of Rn and R , We have

n+4

(2.31) P{xn =i, X = j}

N+ ﬂ(i)ﬂ(j)P{Rn # Rn+2}

T()m(H[L - rr)] ,

i by equation (2.16).

Thus, for j € IE

N-m
1 . . - . -1
(2.32) 1lim B_(m,j) = lim (N-m) 1.(X,) 1.(X
‘ Now N N-voo i;j kzl 17k 3( k+m)
= [1-m(3) J{1-r(m) ] m(5) #
almost surely where li(x) =1 if x =1 and 0 otherwise.
Hence E
(2.33) Tm o= 1- ] BgmIl- It |

j€IE

is a strongly consistent estimator for the mth serial correla-

tion for the stationary DARMA and NDARMA processes.

18




Estimator r(m) is also a strongly consistent estimator for
the finite state space models of Lindgvist(1978) and Pegram
(1980) since the conditional probabilities (1.2) and (l.6)
are of the same form as those for the appropriate DAR(p)
process.

In the next section we pursue this estimator for the

special case of the first-order autoregressive process DAR(1l).

19
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3. ESTIMATION FOR THE DAR(1l) PROCESS
Let {Xn} be a stationary DAR(1l) process with state
space IE= {0,1,...} and first-order serial correlation ¢ ,

0 < p <1l ; that is,

with probability o ,
(3.1) X =
Y with probability 1l-p

for n=1,2,..., while Xo is a random variable independent

of (Y.} but with the same probability mass function.

n
A simulation was conducted to study the performance of

several estimator for p for small to moderate series lengths

m . The series lengths considered were m = 20, 51, and 200.

The marginal probability mass functions considered were the

Poisson with parameter 2 ,

k
(3.2) 1K) = et & k=0,1,...,
and the geometric with parameter p
k
(3.3) m(k) = p (1-p) k=20,1,... .

One type of estimator considered was the single param-
eter maximum likelihood estimator. For a series of length m
let Nij denote the number of times the DAR(l) process goes

from i to j , for i, jeIE and let Nj denote the total




number of times the process is in state j . The log-likelihood

function for a DAR(1l) series {xl,...,xm} of length m is

(3.4) L= ) ] N;. an[(1l-p)m(3)] ;
=0 j#i |

+ ] N.. 2n[l - (l-p)m(i)]
+ I 1, (X)m(d) .

Taking the partial derivative of 1L with respect to x = 1l-p
and setting the derivative equal to zero results, after some
simplification, in the following equation for the maximum likeli-

A

hood estimator x = l-p , if it exists:

(3.5) £(x)

1-1N } N.. {1~ x[1-mi)1 =0 .

Note that f(x) is monotone decreasing in x and £(0) > 0 .
llence, if there is a solution to (3.5) in [0,1], it will be
unique.

The ad-hoc estimator of p given at (2.33) was also

considered. For the DAR(1l) process this estimator is

(3.6) p=1- ] Jnvt T w01 - n(j)]'ll
j=0 i=o
1#3 )
21




The summations in both the maximum likelihood estimators
and the estimators of the form (3.6) for the Poisson case
(respectively the geometric case) were restricted to be between
a = max{1l, n_(u-70)] (respectively a = max(l, n_{(u-100))
and b = n+(p+70) (respectively n+(u+100));here n_(y) (respectively
n+(y)) is the largest (respectively smallest) integer less
(respectively greater) than y .

Equation (3.5) was solved numerically. In the case
N = 20 , it was not uncommon that f(x) did not have a zero in
[0,1]. 1In this case, if £(1) > 0 , then x was set equal to

1l ; that is, =0 . If £(0) =0, then x was taken to be

p
0 P

that is, =1,

~e

Other estimators for o that were considered included

the following:

1. The usual estimate for first-order serial correlation,

1 m-1 _
21 (X, - X (X

3.7 oy =837 (m-1)” - %)

+1

where X and S are as in (2.29) and (2.30). If S% =0 ,
then py was set equal to 1 .
2. The maximum likelihood equation (3.5) was solved numer-
ically for p for each of the following three values for m(3j):
a, the known distribution (3.2) or (3.3) with known
parameter A Or p was used; Py denotes this estimator;

b. the known distribution with an estimated parameter

was used; that is,

22




R R
m(k) = e~ L%%— whevre A =X
!
_ 2k - . T =.-1 !
m(k) = p (l-p) where p = X[1 + X] ;

P denotes this estimator;

Il
2
2
(o]
H

c. the nonparametric estimator m(j)
m{j) was used; Py denotes this estimator.

d. is the estimator of ¢ resulting from the two-

Ps
dimensional maximum likelihood estimator where the other
parameter is the distribution parameter (A or p);

3. the estimate e is the nonparametric estimate
(3.6) using N1 Nj as the estimate for n(j) ;

4. the estimate P is the nonparametric estimate

(3.6) using the true value of w(j) ;

Both estimators Pe and P4 can have negative values
for small to moderate sample sizes. Hence, we also considered the
following estimate.

5. Estimator = max(p6 , 0 ).

i
3.2 The sampling experiment.

A DAR(1l) series of length m was simulated and the
estimates for p were computed. The computation was repeated
for 1000 independent replications and the sample mean, sample
variance, and sample root mean square error were computed. Each

experiment was then repeated for 20 independent replications,

23
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and the mean of the means, mean of the standard deviations, and
mean of the root mean square errors were computed. Tables 1-3
give the means of the root mean square errors for the cases
studied. The box plots of row values appearing in the last
column of the table are given to help the reader to summarize

the performance of the 8 estimators across the 7 cases considered.

All runs were performed on an IBM system 360/67 computer
at the Naval Postgraduate School using the LLRANDOM package
[Learmonth and Lewis, 1973] which generates numbers according
to the scheme given by Lewis, Goodman, and Miller [1969]. Tests
of the random number generator are given in Learmonth and Lewis
[1974].

Among all the estimates of p , the usual first-order
serial correlation estimator, Py v performs least well. The
maximum likelihood estimator with smallest root mean square
error tends to be Py although by the time m = 200 the
difference is minor. Of course the value of p or A would
not be known in general, so that this estimator is unrealistic.
Maximum likelihood estimators P3 and Pg are about equiva-
lent, indicating that the extra computational complexity of
the two-parameter maximum likelihood estimator, Pg is not
necessary. The performance of the nonparametric estimator P
is about the same or sometimes better than that of the maximum
likelihood estimator Pq especially if, for small sample size
(m=20), the modification Pg = max(p6,0) is used. This sug-
gests that the ad-hoc estimator of (3.6) altered to give values

in the range [0,1] is almost as good as the maximum likelihood

24




estimator with the same estimate for m(j) . The ad-hoc

estimator is much easier to compute than the maximum likelihood

estimator.
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4. EXTENSIONS

Since the process {X_ } is obtained as a probabilistic
mixture of the {Yn}, the DARMA and NDARMA process may be defined
using any sequence of independent identically distributed random
variables {Yn} . One implication is that DARMA and NDARMA
processes may have a continuous marginal distribution. However,
even if the distribution of Yn is continuous, a realization
of the sequence {Xn} will, in general, contain many runs of a

single value. This seems to be the major drawback to using

b § i SRR NI, MU AR LR £ O it it b R A W“
3
:

DARMA and NDARMA processes to obtain a sequence of dependent
random variables with a specified continuous distribution and
correlation structure. However, the process with continuous
marginals may be useful in simulation studies.

Multivariate DARMA and NDARMA processes may be obtained

by using a seguence of multivariate Yn‘s . To illustrate this

we generate DARMA and NDARMA-like processes having negative
correlations. These can be derived from bivariate processes
as follows.

Let {(y (1), Yn(-l))} be a sequence of independent
bivariate random variables with state space IE= {0,*1,...} ,
marginal probability mass function 1m , and correlation
r = Corr(y (1), Yn(-l)) which will be negative in general. One
way to generate such a sequence is to note that a random vari-
able Yn(l) with probability mass function 7 can be simulated

from a uniform [0,1] random variable by defining

3=l J
(4.1) Y (1) =3 if I mid) <u< ] om(i) .
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If Yn(-l) is generated by

3=l ]
(4.2) Y (-1) = j if ! (i) <1-U< } mw(i) ,

i:-oo i=-oo

then (Yn(l), Yn(-l)) is called an antithetic pair. If 71 is
symmetric about zero, then Yn(l) = - Yn(—l) , and
r = Corr(Yn(l), Yn(-l)) = -1

A bivariate DARMA (p,N+1l) process {(xn(l), Xn(—l))}
is defined as follows. Let {ao,...,ap} and {bo,...,bN} be
fixed sequences of numbers that are either -1 or 1 . Let

(4.3) X (1) = UnYn_Dn(bD ) + (l'Un)Zn-(N+1) (ag)

n

(4.4) X (-1) = UnYn-Dn('bDn) + (=02, (ne1) (-3

for n=1,2,... ,

where
(4.5) z (ay) = Vnzn—An(aAn) + (1-v )Y (ag)
(4.6) Zn(-ao) = Vnzn_An(—aAn) + (l-Vn)Yn(-ao)

for n = -N, =N+1,... where {An} and {Dn} are as in Section

2. The random variable xn(—l) is called the dual of Xn(l)

30
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or the antithetic when (4.1) and (4.2) hold for the {Yn} pair.
Note that if (4.1) and (4.2) hold and w7 is symmetric about
zero, then Zn(-l) = - Zn(l) and Xn(—l) = - Xn(l) .
L}
A bivariate NDARMA(p,q) proce. (xn(l), x;(-l)) can

be defined similarly:

(4.7) Xn(l) = V_X! (aA ) +(1-Vn)Y

(b
n n-An n

n-Dn

(4.8) X (-1) =V X! . (-a, ) + (-v))Y _
n n n n

The stationary bivariate DARMA and NDARMA processes
will have marginal probability mass function ® . A process
having possibly negative correlations can be obtained by consider
the marginal processes {Xn(l)}, {Xn(-l)}, {X;(l)}, {X;(—l)}

Details will be given elsewhere.
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