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important result obtained is concerned with the meridional skin friction

* 4
c fu The zero-c 0 point (at which c- vanishes) does not, as expected,

move forward as time increases, instead it remains over the rear body.

As cO, it jumps to the front nose. This implies that there is no flow

,separation over the symmetry-plane at finite times. In the meanwhile,

it is argued that separation must occur on two sides of the body. This

situation leads us to propose a new-unsteady separation sequence, i.e.

an open type separation prevails at earlier times, while a closed type

of separation occurs only at the steady-state condition. This sequence

presents a sharp contrast to the conventional notion of unsteady separa-

tion which consistsof a series of closed separations only. Furthermore,

this sequence with the time as the parameter is found to be similar to

that for previously-studied steady flows with varying incidences.
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ABSTRACT

The svmnetry-planelaminar boundary layer of. an impulsively-started

ellipsoid of revolution at high incidence is solved to shed light on some

basic characteristics of three dimensional, unsteady flows. The governing

equations are formally similar to those for the three-dimensional, steady case,

so the same method of solution and computer programs previously developed were

employed in the present work. The most important result obtained is concerned.

with the meridional skin friction c f * The zero-cf6 point (at which c f vanishes)

does not, as expected, move forward .as time increases, instead it remains over the

rear body. As t- .o- , it jumps to the front nose. This implies that there is no

flow separation over the symmetry-plane at finite times. In the meanwhile,.it

is argued that separation must occur on two sides of the body. This situation

leads us to propose a new unsteady separation sequence, i.e. an open type separation

prevails at earlier times, while a closed type of separation occurs only at the

steady-state condition. This sequence presents a sharp contrast to the conventional

notion of unsteadygse1gratfn which consists of a series of closed separations only.

Furthermore, this sequence with the time as the parameter is found to be similar

to that for previously-studied steady flows with varying incidences.
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1. INTRODUCTION

The complexity of boundary layer research increases from two-dimensional

steady problems to two-dimensional unsteady, three-dimensional steady and finally

to three-dimensional unsteady problems. Considerable progress has been made

in recent years to two-dimensional unsteady and three dimensional steady problems,

but the three-dimensional, unsteady area remains to be the last frontier to be

fully exploited. Three-dimensional, unsteady solutions are very scarce. A

classical work in this subject is due to Squire (1954) who, using a time-series

expansion method investigated the motion of an impulsively-started ellipsoid.

Recent publications in this area include, for example, those of Dwyer and Sherman

(1979)and Williams (1980).

As a prelude to full three-dimensional investigations, the present work

considers the symmetry-plane boundary layer over an ellipsoid of revolution. The

steady counterpart of this problem was studied before by one of the present authors

(Wang 1970) and later by Cebei et al (1980). Although consideration was restricted

to the symmetry-plane, the results revealed features of fundamental significance

for (steady) three-dimensional flows in general (Wang 1974a, 1976). It was our

original motivation that the present work will achieve the same for the corresponding

unsteady case. Our results to be presented later seem to bear out this expectation.

The specific unsteady motion considered is that of an impulsive start. This

problem provides an interesting contrast to the classical impulsively-started

circular cylinder problem. In the !after case, the zero-skin-friction point starts
I

from the rear stagnation point, moves gradually forward as time increases and

approaches finally the steady-state separation position (9 W 104.50). For the

present ellipsoid case, the zero-skin-friction point on the leeside symmetry-plane

was at first thought to move very much the same way. From our previous investiga-

tions (Wang 1974b), the steady-state position bf the zero-skin-friction point on

"-- - , , _ i II I "' 
- L .... . l
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the symmetry-plane is located at the front nose, while a closed type of separa-

tion prevails over the whole body (figure ic). Consequently if the zero-skin-

friction point on the leeside symmetry-plane gradually moves forward as'expected,

then it seems natural to think that similar overall separation pattern would also

prevail over the body at earlier times as well. This leads to an unsteady sequence

of developments as depicted in figures l(a)-(c), each figure displays a closed type

of separation except the separated area expands with time. This sequence represents,

in fact, the conventional idea of unsteady separation. However, in Section 4,'we

shall show that our present results did not turn out the way as expected and in

Section 5, we shall propose instead a new sequence of unsteady separation consisting

of both open and closed types of separation patterns.

Finally we would like to comment on the current status of the boundary layer

theory relative to the "thin layer" theory (Pulliam and Stcger 1980, Hsieh 1981).

The basic idea of the "thin layer" approximation is similar to that of the boundary

layer theory except the pressure is not imposed according to an inviscid solution,

instead it is calculated along with the boundary layer. This allows the inviscid

boundary layer interaction and hence broadens the range of validity beyond that of

the boundary layer theory. However a thin-layer problem is mathmatically an

elliptical problem in the space coordinates, whereas a boundary layer problem is

parabolic. Solving an elliptical problem requires larger computer storage and

* longer computation time so that adequate resolutions were found not possible on

a CDC 7600 computer.

This difficulty led later to the idea of parabolicization, i.e. treating

an elliptic problem in a parabolic fashion (Schiff and Steger 1980). This

procedure requires that there is no upstream pressure influence in the main flow

direction. The latter condition is best satisfied in a supersonic cone flow for

which the longitudinal (or meridional) perssure gradient is identically zero.

A". J !



However even inthis particular case, the above condition is not completely met

because the flow is no longer strictly conical when the inviscid-boundary layer

interaction is considered. In a general supersonic flow, there is always a.

subsonic part of the boundary layer where the above condition cannot be satisfied.

For subsonic flows, parabolicization cannot be justified. Thus thin-layer theory

is more general, but is accompanied by the above shortcomings. At the present

state of the art, it appears that boundary layer theory is still the most appropriate

approach for general three-dimensional viscous flows, because even to this lower

approximation (compared to the thin-layer version), unsteady solutions are still not

available. On the other hand, one may favor the thin-layer version when computer's

storage and time are not of much concern under certain circumstances, because it

avoids to solve the inviscid and viscous flows separately aside from the interaction

between them mentioned above.

AI
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2. EQUATIONS

The governing equation for the present symmetry-plane boundary layer

written in non-dimensional form consists of

u + u u + u - p + 3z2  u (la)7t h{ U 9 +1 az = h 11all D

v v v v 2 2 V9v 9 v av v8  uv, ;r 92 (lb)v

7 U+r r hll r; 2  z 2

hT _ + Tz - 0. (1c)
U. V

Aside from the unsteady terms, these equations are otherwise identical to these

for the steady case treatedbefore (Wang, 1970). The same notations are also used.

Briefly, referring to.figure 2, als the incidence angle, 'w and 9 are two surface

coordinates, z is the normal coordinate. u, v and w are the corresponding velocities,

U and V are the inviscid velocitiesat the outer edge. hu and r are the metric

coefficients and r, in fact, is also the cross-sectional radius.

hi, =[(l - e2 2) / (i- 12)P

r = Pi- e 2)(i, u2)]

where

e (1 - b2/a2)

a and b are the semi-major and-minor axis of the ellipsoid.

At the plane of symmetry, v a 0, so that v'(= 3v/hG) is taken as an

independent variable along with u and w. The boundary conditions are

u - U, v 9  V (i.e. aV/@) at z-oo

u v - 0 at z - 0, (2a-,b,c)

where U, V and the pressure gradients are known;

ei
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2  [k(1+k a ) (coseg) (1-P2) + (b/a) (l+k c ) (sine) ' cos ]

~(3a,b,c,d)
V)= (1+k )sinc cos e,

2 2
_ u= (l1ka)2C°S 22 + Lc o s e] -/+X(cos e) (1-j2)

+ -e 2 11 + Q1

2
- a P 1 (1+k )(l+k )cosac sinec X_(12 -o AAO
B92 (b/a) a c (b) e2 1O 2 (q 2 ~Aio

with

(b) (l+k) sincc
a= ('+k acosoc

k e [ le 1-eLo g k I

a[TL10G .1 [ '+e2 2 - 1+2k
e a

Based on the u-velocity, the skin friction and the displacement thickness are

defined by

Cf = \ lu 0 (4a,b)

A* = f(l-u/U)dz
U 0

Analogously, we define based on the v3 - profile,

(f re = -"
_R (4c,d), o

A i (1-ve/V)dz

Although the v profile has always been calculated in the symmetry-plane

type of boundary layer studies, analogous displacement thickness A was,

however, not considered except by Wang (1971a). Even there A was not recog-ye

nized to be needed in evaluating the total displacement thickness.

Moore and Ostrach (1957) derived the equation for the unsteady total

displaeement thickness ,



6

v.Ipz (fo? -q o)dzI + -.Ip -f (P- Q dl 0 (5a)

in applying this equation to the symmetry-plane case, care must be taken to

incorporate jvO into the final expression;

1 ~ [U( - A )j+ 2 (A * e .(b
3t rh~ VDUI rU(' 1 r a -lv .(b

In the literature, only -Is has been reported. Here we shall present results

of both A and A ,but the calculation of A is still not carried out yet.

IV



7

3. METHOD OF SOLUTION

The equations (la,b,c) are similar in structure to those for three-

dimensional, steady boundary layers investigated before (Wang 1974a). So the

same numerical methods and computer programs developed earlier were used for

the present work.

3.1. Initial Profiles.

To start the computation, two sets of initial profiles, temporal and spatial,

are required.

Temporal Initial Profiles (t=t ). Immediately after (impulsive) starting,

potential flow prevails. For the temporal initial profiles, the usual firstapproxi-

mation of a small-time expansion is adequate, i.e.

U(t 0, l z) =U~i.) erf (- ) z (6a)

ve(to , ,z) = ve erf( --z), (6b)

where erf is the error function.

Spatial Initial Profiles (i=.o). Based on the argument that diffusion and
0

convection affect the downstream flow only, so that solutions near the stagnation

point are nearly independent of time. Thus the required spatial initial profiles

may be provided by the steady symmetry-plane solutions near the stagnation point.

3.2. Dependence Zone

For steady three-dimensional boundary layers, calculation was found to have

to follow the zone of dependence rule (Raetz 1957, Wang 1971b). For steady, symmetry-

plane problems, the wedge-shaped dependence zone shrinks to the symmetry-plane itself

and it was found (Wang 1970) that calculation stops at the onset of the reversal of

the u-velocity profile, but reversal of the ve-profile was unexpectedly calculated

with no sign of any difficulty. This result was at first looked upon with suspicion,

but later calculation of the full three-dimension problems as well as the repeat
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calculationof the same symmetry-plane problem confirmed that result to be

correct. However, a theoretical explanation was not available.

For unsteady cases, two-dimensional or the symmetr-r-plane, an analogous

zone-of dependence(Wang 1975, 1979) must be observed. So at the beginning of

the present work, we were faced again with the same question; what are precisely

the differences in logic for the calculation of the u-profile and the ve-profile?

In the unsteady case, we, in fact, further know that reversal of u-profile can be

calculated upto separation unlike in the steady case where calculation of the

reversal of the u-profile is prohibited (TTang 1979).

To provide the missing explanation, we carried out a characteristics study

of thesy stemof equations (la,b,c). The determinants (Wang 1971b) of the character-

istics and subcharacteristics were found respectively to be

Q 9- , (7a)

L (@ u a+w a( 2
a z \T + hIA TV + z ' 7

which shows that the addition of equation (lb) for ve (compared to equations for

two-dimensional cases) merely increase the power from 3 (Wang 1975) to 5 in equation

(7a) and from I to 2 in equation (7b). Otherwise the same dependence rule applies

to both the two-dimensional and the symmcetry-plane problems. The underlying reason

why reversal of v8 is not prohibited by the dependence rule is recognized due to

the fact that in both equations (la,b), the differential operator

+ u - + w -

at h ;1 a

does not involve v . Yet it is this operator which determines the subcharacteristics

in equation (7b).

3.3. Computational Details

The initial.time t was set to be 0.01 and the initial space U was taken0 0

)
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to be -0.984, very close tothe front vertex (U -1.0). With initial profiles,

calculation marches from the front stagnation point toward the rear body at a

fixed time t. At each station (u,t), solution between the body (z=0) and the

outer edge (z- cc) is implicitly calculated. Then the same process is repeated

as time increases from t to t+ At until the whole problem is completed.

At high incidence (450 ) , large pressure gradients prevail in both the meri-

dional and circumferential directions, especially over the two ends. Computational

difficulties due to poor convergence were experienced at the beginning of the

present work, it was only diagnosed later that unusually small steps must be employed.

Figure 3 compares the results of two calculations with different mesh sizes. Although

At = Ai= 0.005 is normally considered to be small, results still show large deviations.

Immediately after the impulsive start (t<0.05), relatively large meshes

(At = 0.005, 6u = 0.005) could be used. Then smaller space step (Au 0.00125 was

required near two ends of the body, finally At must also be reduced (0.0025 and

0.00125).For 0.05< t< 0.16, our computation covers the whole leeside symmetry-plane;

At = 0.00125, but two differentAp's were used to save the computing time. These

values are 0.00125 for two ends, and 0.005 for the mid-body. For 0.16<t<1.0, only

the front nose portion was calculated (reason is given in section 4), At = 0.00125,

Au = 0.00125 and even 0.000625. Such three-dimensional (t,u z) computatiorswith

small steps are very expensive. Compared to that for the u-profile , calculation

of the v -profile especially demands finer steps in order to satisfy the outer-

edge condition (i.e. to merge smoothly with V ). This is attributed to the lateral

(circumferential) pressure gradient being more severe than the meridional pressure

gradient for the problem under consideration.

!

. . ..__ _ _. .2 ... ... .. f -- ",- ,,- - ,
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4. RESULTS OF HIGH INCIDENCE

The windside symmetry-plane problem is more straightforward, so only the

leeside results (a- 450) are presented in details. For low to moderate incidences,

the unsteady growth is expected to have a very different structure, and will be

reported separately later on.

4.1 Pressure Variation

Figure 4 gives the variation of pressure p, longitudinal pressure gradient

2 2
ap/h DU and lateral pressure- curvature ;p/ra 2. The last two are directly

involved in equations (lb,c). The pressure gradient is fairly mild over the mid-

body, but extremely large near two ends. This suggests that computational difficulties

as well as the most interesting features of fluid mechanics would likely occur near

the ends also.

4.2 Skin Friction cf

Figure 5(a) gives the meridional skin-friction, cf1 , along the leeside

symmetry-plane. At first, cf l decreases from the front to become zero at the

rear stagnation point. But as time increases, two important features emerge:

(1) The zero-cfi po'nt does not gradually move forward, instead it remains over

the rear body; (2) there develops a minimum point at the front, and furthermore,

this minimum-c continues to decrease until finally it becomes zero. At that

time, the zero-cf1 point suddenly jumps from the rear to the front.

Calculationsover the entire leeside symmetry-plane were carried out up to

t - 0.16. At that stage, it was felt that the abovementioned two features were

established, and the remaihing task was only to determine how fast this minimum-

c will approach zero. For this purpose, it is unnecessary to calculate over

the entire symmetry-plane. Hence later calculations were limited to the front

body only in order to save the computing cost. The details of c from the later

f1
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calculations are shown in figure 5(b). As time increases, it is seen that cf14

approaches zero at an extremely slow rate. For example, between t = 0.5 and

1.0, (cf ) is only reduced from 0.2403 to 0.1828. With t = 0.0025, this

part of the calculation alone took 200 cycles with i= 0.000625. The slow change

led us to interpret that (cf )min approaches zero asymptotically as t-.

4.3. Analogous Skin Friction (cf)ve

Figures 6(a)-(b) give the7corresponding results of the analogous skin friction

(cf) v based on the profile of ve. (Cf)v. determines among others the sign of.

v-velocity near but off the symmetry-plane. Change of the sign of (cf) 8 means

the reversal of the v-velocity. At small times (t<O.10), figure 6(a) shows the

point of zero-(cf)vO, Pl, moving gradually forward from the rear stagnation

point. At 0.10 t<0.13, additional v-reversals occur at R and R over the front.
2 3

As time further increases, R2 moves rearward and merges with RI, then disappearing

altogether. At t>O.13, there exists only R3 at the front. The above description

of the zero-(cf)v point is summarized in figure 6(c) which displays clearly its

non-monotonic behavior. At 0.10 t<0.13, there are RI, R2 and R3 (corresponding to

t= 0.12). As time increases, R1 moves from D (i.e. rear stagnation point) to C, R2)

from B to C and R3 from B toward A. The curve ABCD divides the Uj,t-plane into

two parts; i.e. whether v-velocity near the symmetry-plane is reversed or not.

The surface flow pattern near the symmetry-plane in accordance with figure 5

and 6 are illustrated in figure 7. In figure 7(a), the flow at earlier times

points back and up (except between R1 and A where A stands for the rear stagna-

tion point), whereas in figure 7(d), the flow points back and down. Figures

7(b)-(c) indicate the intermediate changes. Figure 7(e) suggests that after

the point of zero-cfu jumps to the front, the steady-state separation point
S s(U - -0.921) is located downstream of R3 (u - -0.955). This makes Ss as a

saddle point of separation as expected. More about separation will be discussed
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in section 5. In any case, the changes of v-velocity's sign back and forth is

rather unusual, indicating the complex structure involved in an unsteady development.

4.4 B.sic Profiles

The reasons about why cf and (c ) show unusual variations can all be

traced out from the results of the corresponding basic profiles. Figure 8(a)

shows the u-velocity profiles at t - 0.12. The non-monotonic variation of cf

shown in figure 5(a) is a reflection of the intersection of the profiles at

different w-stations. Near the body (z<0.4), the curve for U= 0.716 stands

between those for i- -0.946 and -0.133. This implies that c is the smallest

at the front body U= -0.946, increases at the mid-body U= -0.133 and decreases

at the rear body 14= 0.716. Figure 8(b) shows the profile of v at t - 0.12.

That the curve for V- -0.133 falls between those for i= -0.946 and -0.833 (rather

than between U= -0.833 and 0.716) is again responsible for the sign of v-velocity

to change back and forth.

4.5 Displacement Thickness

Figure 9 shows the displacement thicknesses A and A* . Unlike in the
1v "

normal situation, these thicknesses do not grow montonically in the downstream

direction, instead they increase sharply near the front nose and then curve

downward immediately thereafter. This phenomenon again follows from the

profiles shown in Figures 8(a)-(b), and was similarly noted before in the

steady cases (Wang 1970, 1971a). A* increases much faster than A with increas-
vo1

ing time, reflecting the dominance if the circumfetential flow. A* is, in fact,ve

presented here for the first time, its importance has been to date overlooked in

the literature.
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5. IMPLICATION OF 3-D UNSTEADY SEPARATION

The variation of the meridional skin-friction c discussed in connection

with figure 5(a) has an important bearing with respect to three-dimensional

separation ,i.e. separation on the whole body rather than along the symmetry-plane

itself. A similar situation was noted previously in the steady case (Wang 1971a)

from which figure 10is reproducedto show the corresponding skin friction cf .

As the incidence increases, there develops a minimum point of c over the front

nose. This minimum dips deeper until it becomes zero. When that happens, the

zero-skin-friction point jumps from the rear body to the front nose.

Comparing figures 10 and 5(a), it is clearly seen that in both cases, the zero-

skin-friction point remains over the rear body, while a minimum develops over the

front nose. The varying parameters are the time in figure 5(a) and the incidence

in figure 10.

The behavior of cfu in figure 10 led us later to conceive the open vs closed

separation concept (Wang 1972, 1974a, 1976). The basic idea of a closed separation

fits well with the traditional notion of separation, but that of an open separation

proves to be just the opposite. In the past few years, the open separation idea

has been confirmed by many experiments and numerical solutions (Wang 1976, 1982).

By the same reasoning, we propose here an unsteady counterpart of the open-vs-

closed separation sequence. The arguments are as follows:

For the steady two-dimensional case or the steady symmetry-plane case

(Wang 1970), separation is marked by the vanishing of the meridional skin friction

c fu For the unsteady, two-dimensional case, it was demonstrated (Wang 1979) that

separation is identified by the running-together of the analogous limiting stream-

lines in the 1., t-plane, the same idea holds for the unsteady, symmetry-plane

problem concerned here. By this criterion, although the vanishing of c fu is not

synonymous to separation, yet separation occurs only after cf goes to zero and

f 1-
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then becomes negative. However, in section 4, since we noted already that

the zero-c f point does not continue to move forward, so we conclude that

there is no flow separation on the leeside symmetry-plane. Furthermore, in

order to have the separation patterns of figure lb,c. there must be a zero-

cfi point on the symmetry-plane. This condition is again denied by the

present results, so we conclude that the sequence shown in figure l(a)-(c)

is not to happen.

We must next emphasize that lack of separation on the symmetry-plane

does not mean there is no separation on the sides of the body. In fact, due

to the fact that the circumferential flow over most of the body is subject to

larger pressure gradient than the meridional flow, so that a mainly lateral

separation must occur on two sides of the symmetry-plane at much earlier times.

Besides, we knew beforehand that the steady-state separation at such a high

incidence is of a closed type as shown in figures lc or lic. It is inconceivable

that such a whole closed separation pattern is established instantaneously at the

moment when the zero-c fu point jumps to the fore body. Based on these reasons,

we propose that the likely sequence of developments is as depicted in figures

l~a,b,c. In other words, an open type of separation starts first (t=tI) over

the rear body, extends forward as time increases (t=t ) until the open separation

line finally intercepts the symmetry-plane upon the jump of the zero-cfu point

*from the rear body to the front, thus comoleting the formation of a closed separation

for the steady-state condition.

The proposed unsteady sequence of separation is analogous to a steady counter-
1

part suggested by one of the present authors (Wang 1976). While the latter has

been confirmed by experiments and calculations, we.expect that experimental

demonstration of the unsteady separation will be more difficult, whereas full

f three-dimensional unsteady boundary layer solutions also remain to be reported.
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The preceding conclusion of no separation of finite times touches on an

interesting story. Over the past few years, there was a controversy (Wang 1981)

on this question in the literature. Cebeci. (1979) advanced a similar idea in

connection with an impulsively-started circular cylinder problem. His idea

was disputed by other researchers (including one of the present authors, Wang) and

has since been known to be in error for the cylinder case. But ironically, our

present results do seem to provide an example in agreement with his idea as far

as the separation on the symmetry-plane is concerned. The circumstances here.are

of course different from what he originally conceived, the symmetry-plane separation

is only a part of the overall three-dimensional separation, whereas his problem was

a two-dimensional one.

S t

________I
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6. CONCLUSIONS

For an impulsively-started symmetry-plane problem at high incidence, the

circumferential flow near the symmetry plane was found to reverse its direction

back and forth.

*IThe variation of the meridional skin friction c is surprisingly found to

* be similar to that for the corresponding steady case studied before, although

the varying parameter is the time in the present unsteady case, while the same

is the incidence angle in the previous steady case. The zero-cf point was

found to remain over the rear body at all finite times until it jumps to the

front nose to reach the steady-state condition at t-),- o

Since the zero-c fupoint does not gradually move forward, it is concluded
fu

that there is no separation on the symmetry-plane at all finite times. Instead

an open separation is likely to develop first over the sides of the rear body,

and gradually extends forwar,.. When the zero-cf point jumps to the front nose

and the open separation line intersects the symmetry-plane, then a closed separ-

ation is formed at the steady-state condition. On the one hand, this open and closed

* separation sequence provides a striking contrast to the conventional notion of

unsteady sequence consisting of closed separations only. On the other hand, this

sequence with time as the parameter is found to be similar to that for steady

flows with varying incidences. Our open vs. closed separation idea originally

conceived for steady flows is now extended to unsteady flows.
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