AD=A113 829 AIR FORCE INST OF.TECH WRIGHT=PATTERSON AFB OH SCHOO==EYC F/§ 9/2
SYSTEM RELIABILITY: A MICROCOMPUTER SOLUTION TECHNIGUE.(U)
DEC 81 D R TUROS

UNCLASSIFIED AFIT/00R/0§/810-9

NG
B

e

——
cos V==

.
el
I“" LI £ M=
== =2
| ——

22 i nie

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

4

MA111429

DT R T I TR " Ty
DA e] S FrED 7.

SECURITY CLASSIFICATION OF TH!S PAGE (When Dall.Emered)J

READ INSTRUCTIONS
BEFORE COMPLETING FORM

REPORT DOCUMENTATION PAGE

1. REPOR:I’ NUM;ER / 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
AFIT/GOR/0S/610-9 Wb-pr.er| #29

4. TITLE {end Subdtitl.) 5. TYPE OF REPORT & PERIOD COVERED
SYSTEM RELIABILITY: /

A MICROCOMPUTER SOLUTION TECHNIQUE

6. FPERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Air Force Institute of Technology (AFIT/EN)
Wright-Patterson AFB, Ohio, 45433

10. PROGRAM ELEMENT, PROJECT, TASK

9. PERFORMING ORGANIZATION NAME AND ADDRESS
AREA & WORK UNIT NUMBERS

(1
1. CONTROLLING OFFICE NAME AND ADDRESS \‘:.v’ PSS 12. REPORT DATE
/<\ ,”n‘d} .December 1981
4D 13. NUMBER OF PAGES

LA 4

fg } S

14, MGNITORING AGENCY NAME & ADDRESS(%?”I;e@;n Controlling Office) | 15. SECURITY CL ASS. (of this report)
' 7 &

> < *2‘ Unclassified

‘< 154, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIEUTION STATEMENT (of this Report)

Approved for public release: distribution unlimited.

17. DISTRIPUTION STATEMENT (ol the abatract entered in Block 20, it difterent froen Report) | - R

28 JAN isc2 e vraetiei 278, Ui weiid

18. SUPPLEMENTARY NOTES

G

APPRGVED TOR TUSLIS RILEASE AFR 18217

dudic Nl

19. KEY WORDS (Continue on reverse side il necessary and identify by block number)
Computer program

Reliability

Graphics

Pascal

Microcomputer

FREDRIN 00 P21z <oy memms
Diovale -« oo T

20. ABSTRACT (Continu: on reverse side if necessary and identify by blo.k number)

This study investigates the feasibility of using a microcomputer
to calculate system reliabilities. The computer program, written
in Pascal on an Apple II computer, uses interactive graphics to
allow a user to manipulate a system of components. The components
are limited to a constant reliability in parallel and series
structures. Once a calculaticn has veen made, the usar can ther

reconfigure the sysiem znd recalculate the reliavility. This

b e

technique may provide insights to how the system reliabdbility

FORM
0D (fS%'%s 1473 ecimion oF Y nOv 65 1s oBsoLETE P -
S 0 VRN E T)
~ S SECURITY CLASSIFICATION OF THIS PAGE (#hen Deta Enterec
- b *
A L -
». - « LS N~ . :\ ‘ -

o

2 P SRR
"

SECURITY CLASSIFICATION OF THIS PAGE(When Dste Entered)

changes as components are changed.

The appendices include the system configuration, User's Guide,
Programmer's Guide, and program listing.

- SECURITY CLASSIFICATION OF Tu't PAGE/When Data Entered)

9 - .. oo :_:'_' . », :;:"_—_.\‘ w(,';xea . , . PR

AF1T/G0OR/05/81D-9

SYSTFM RELIABILITY:
A MICROCOMPUTER SOLUTION TECHNIGQUE
THESIS

AFIT/GOR/0S/81D-9 Donald R Turos, Jr.
Captain USAF

Approved for public release: distribution unlimited

: 82 02 18 108

|

AFIT/GOR/0S/81D-9

Thesis

SYSTEM RELIABILITY:
A MICROCOMPUTER SOLUTION TECHNIQUE

E e WY LT PR Y. VSO PP S

E Donald R. Turos, Jr.
, Captain USAF

Prepared in partial

fulfillment of the

requirements for a
Masters Degree

December 1981

School of Engineering
Air Force Institute of Technology
Wright-Patterson Air Force Base
Ohio

Approved for public release: distribution unlimited

I wish to thank my advisor, Major Daniel Fox, whose
patience allowed me the flexibility to overcome my own
procrastination and enable ne-to complete this effort.

I sincerely hope that being a member of a division
championship team in both intramsural softball and football
is enough for the successful completion of my athletic
scholarship.

Finally, only a good working relationship with a great

group of GOR’s and an understanding and supportive wife

could have made my stay at AFIT so bearable.

Abstract

~ This study investigates the feasibility of using a
microcomputer to calculate system reliabilities. The
computer program, written in Pascal on an Apple Ir
computer, uses interactive graphics to allow a user to
manipul ate a system of components. The components are
limited to a constant reliability in parallel and series
structures. Once a calculation has been made, the user can
then reconfigure the system and recalculate the
reliability. This technique may provide insights to how
the system reliability changes as components are changed.

The appendices include the system configuration,

User’s Guide, Programmer’s Guide, and program listing. N

iii

LR — gy

e

Iable of Contents

Pr.‘ ace - - - []] - - - - - - - - L] - - [] - - - - i i

e e . iy

m!tr.ct - - - - - - - L) - -] - - - - - - - - - - iii

List of Figures . . <« « ¢« ¢« « ¢« ¢« o a a @ a 2 s s s« s V

1. Introduction ¢ 2 o ¢ =« = o « » s o « « 1
Background « « ¢ 2 © 2 o 2« ¢ o o o o a « = o =
Topic Area . « o« o« « =« a o« » = o o o o o @ E
Related Research . . . « & ¢+ 2 = « « & . . i
Study Overview « '« ¢ =« ¢ « 2 « = o o o o a o » ;
Objectives . . & &« & @ « o = & s =« = a a & {
Scope/Limitations «. . ¢ ¢ & ¢ o o .

2. Methodology « =« o o = « o o o« @ =« « s a o = a = @

Program Overview . .

OO O GUOUONR-

Capabilities ¢ ¢ ¢ o ¢ o = a =« &« ;
Data Structure ¢ ¢ & =« ¢« =« ¢ « = =« :
Program Structure ¢« « « « = = =« » 11 i
Segments . . ¢ ¢ ¢ « . 2 2 e s e s e o s e« = 13
Basics Unit . ¢« & &« ¢ & ¢ 2 ¢ o « = = » = » 14
Initialize Segment . . &« . « ¢ =« ¢« =« =« « + 16
Edit Segment - . &« o o s « « « 17
Analyze Segment ¢ . « » -« = « « . - 18
. Executive Routine ¢« + = ¢ « = = - « 19

3. Results . ©« =« ¢« o ¢ ¢ = « a a = o =« 21

Validation . 21

ConClusSions . .« o« 2 « « o = = a = = a = s a « 24
ProblemsS . = & « = = 2 2 « 2 s s s a s s » « » 23
Ex tensi ms - - - L] - - - - - - - - - - - - - - 27

Bibliography . . « 2 ¢ ¢ 2 2 « « s o o = s « s a a « 30

Appendix 1: System Configuration

Appendix 2: User’s Guide |

Appendix 3: Programmer’s Guide

Appendix A: Program Listing

iv i

1. Reliability Equations . . . ¢ 2 « = « ¢ =« =
1. Component Configurations for Validation . .

2. Prototype Configuration for Validation . .

A

I Introduction .

System reliability is a major question for a wide
variety of people and concerns. It is easy to imagine a
need for reliability calculations, without access to a
machine that could provide the answer or where time to do
the calculations by hand is not available. In the past,
the large scale computer facility could provide such
support for a specific, preprogrammed problems, but very
often this support was not available to a small scale
operation. Any needed computations would have to be
carried out by hand: a tedious and error prone process at
best. This study is an attempt to fill the gap by using an
inexpensive microcomputer to provide an automated solution
technique to the system reliability problem.

Jopic Area. The main topic area, reliability theory,
has received a reasonable amount of research attention.
The area of interest important to this study lies with the
work done with parallel and series structures of
components. The mathematical equations used for
determining the reliability of a system of components with

known reliabilities are well documented in any number of

sources; Hillier and Liebermsan (Ref 6) provide a reasonable

discussion of these equations. Figure 1 presents the form

of the reliability equations. This study will automate the

evaluation of these equations to provide the reliability

calculations for a user defined system of componants.

Parallel

1 - (1-R1)(1—R2) oo (1-R))

Series R1 XR,x .00 X Rn

2

where Ri is the individual component reliability.

Figure 1. Reliability Equations

the choice of a microcomputer, graphic subsystém and
language to support the study; then the applicqtiun of the
technology to provide a useful tool. Any of the many
microcomputers on the market today could have been used to
support this study. A decision was made to write the
program in a standardized, high level programming language
to allow the results to be used on as many different
machines as possible. Machine availability was also a
constraint, an Apple II was readily available. This
particular microcomputer supports both Fortran and Pascal.

The Apple machine was a good choice for two other reasons:

the Apple II is widely availabile, and the UCSD Pascal

system supported by the Apple is becoming an industry
standard (Ref 10:v).

The Pascal language was designed to aid the beginning
programmer in learning programming techniques while
affording the advanced programmer the power of én hlgol
like, block-structured language. Examples of block
strctures are IF-THEN-ELSE, DO-WHILE, CASE-OF,
REPEAT-UNTIL, and procedures. These structures of the
language readily provide for self documenting code. Two
important features of Pascal are the flexible data
structures and recursion. Data flexibility allows the user
to structre the data in the most convient form, depending
on the desired objective; for example, minimum amount of
memory per element, computation speed, access speed, or
even readability. Recursion, calling a routine from within
that routine, is very important aspect of reducing the code
needed to handle problems, especially if the data can be
structured to be handled by recursive routines. Two
specific applications of both of these techniques will be
discussed in Chapter 3. 6An excellent discussion of Pascal
is provided by Jensen and Wirth (Ref 7). The
Turtlegraphics subsystem of UCSD Pascal has been
implemented for the Apple and supports all of the protocols
of the UCSD Pascal System, thus providing the designer with
a great deal of power and flexibility on the graphics

screen. An excellent discussion of the Apple

-~

implementation of the UCSD Pascal Operating System is
provided by Lewis (Ref 10). The specific configuration of
the Apple II system used for this study can be found in
Appendix 1.

Several other areas were also explored before.design
of the program started. The first area was that of circuit
theory (Ref 1, S5, 8). The computer has been used in
several applications for generating circuits using graphics

capability. Most applications are closed loop in nature

and would not fit in with the network structure of the

reliability system. The applications are most useful for

circuit layout and positioning, but this would not be the
case for this design.

The second area explored concerned algorithms designed
to find the shortest path ar K shortest paths through a
netwark (Ref 9, 12, 16). Other algorithms dealt with
finding the most reliable route and the N most vital links
(Ref 13, 17). These articles most often were designed to
aid the user performing manual calculations. The purpose
of this program is to automate these calculations. Further
search of the literature was abandoned as no specifics for
the topic as applied to automated calcution using

interactive graphics were found.

Objectives. The objective of this study is to
determine the feasibility of using a microcomputer for
interactive reliability systems generation and calculation.
Through making use of the graphics capability of the
microcomputur, the user can view a representation of the
system as it is generated. Success in meeting these
objectives rely on the software providing the results of
the user’s input within a reasonable time . This time
should not exceed a maximum of several seconds to preclude

user dissatisfaction and abandonment of the system.

Scope-Limitations. The scope of this study will be

limited to reliability systems with independent components
and constant component reliabilities. The first assumption
insures that each component reliability is not affected by
any other component. This condition must be met to use the
deterministic equations to solve for the system
reliabflity. Because of this condition, the relaxation of
this assumption is impossible for this study. The
independence assumption is reasonable for a large portion
of the reliability field. However, some of the work done
in reliability theory concerns dependent components and is
the way a significant number of real world systems behave.
The second assumption is convenient for a feasibility study.
as many real world systems may be approximated in this

fashion. This limitation may indeed be relaxed to allow

S

R —————

the reliability of any or all components to be a function
of time. This is discussed in Chapter 3 as a possible
extension to a more general solution of the system
reliability problem.

Several other limitations exist. The intent of these
limitations is not to limit the form of the system, but to
provide reasonable limits for a feasibility study. In
actual use, these limits could be easily changed to suit a
specific user’s requirements. An arbitrary limit of 100
components located on a 20 by 20 grid has been set for the
study. Any single component may be in-parallel with a
maximum of six other structures. Any input series
structure is limited to a maximum of eight components. The
reliability of any individual component will be displayed
as a two digit rounded pereentage, but the program will
allow an eight digit input reliability while the Apple
system can maintain a maximum of 32 bits (approximately 7
significant digits) of accuracy for real numbers (Ref 3, pg
85). The program is not yet able to interface with a mass
storage device, thus the saving of a generated system is
not supported; this will also be discussed as a program
extension. The program is interfaced with a printer to
allow for a representation the generated system to be

printed. This feature uses a standard 80 column printer

format.

Hardware limitations also exist. The Apple allows for
a matrix of 280 (horizontal) by 192 (vertical) addressable
dots on the graphics screen. Thus the graphics capability
only allows for a maximium of a 10 by 10 grid of components
to be reasonably displayed at any one time. The Apple
Pascal system has a limited amount of memory (44K 8 bit
bytes) available for use by the programmer. This amount is
reduced to 34K when using the graphics screen. The amount
is not a critical limit, as the Pascal system allows the
programmer to segment the code to fit the available space.
This is at the cost of execution speed because the system
must interact with the mass storage device to overlay the
active code into memory. An intermediate version of the
code did not require segmentation; but in the interest of
follow on program modification, a decision was made to
segment the program into four logical parts to insure
memory was available for modifications and extensions. The
time delays introduced by segmentation are not significant,

as they occur at normal break points in the operation of

the program.

I1__Methodology

This chapter will provide an overview aof the system
reliability program. The topics to be discussed will be
system capabilities, data structures, and rationale for
segmentation. Finally, there will be a discussion of each
main program segment, focusing on the procedures and the
underlying algorithms. The discussion will be general in
nature as the specifics of operation may be found in
Appendix 2, the User’s Guide, while the specifics of the
program may be found in Appendix 3, the Programmer’s Buide.

Capabilities. The capabilities of the progam allow a
user, with minimal knowledge of reliability, to generate a
system of parallel and series structures, edit the system
to user satisfaction, and calculate the reliability of the
system. After each calculation the user has the option of
obtaining a hard copy a representation of the system. The
user may then edit the system to calculate the reliability
of a slightly different configuration. This edit
capability allows a user to conveniently perform online
sensitivity analysis. The user may then reinitialize the
system grid and construct a new system.

The program design allows for easy changes in
capabilities. The limits, grid size and the number of
components in the grid and each structure, are coded as

Pascal constants. Thus, the data grid and data structures

can be modified by simply chanqing several constants and
then recompiling the program. There are several procedures
that currently contain no active codes this is to provide
for future extensions. The desired code can be inserted
into the procedure stubs because the existing structure
already provides for the implementation of the extensions.

Data Structure. The data types available in Pascal
are very flexible and can be adapted to meet almast any
need. They are available in two different types,
unstructured and structured. The unstructured types are
constants and variables used in a program. These are very
simple and are discussed in Appendix 3, the Programmer’s
Guide. |

This program makes use of two of the structured types:
the record and the array. The record structure, called a
node in the program, was configured to hold the data for
each component. Associated with each node is a pointer
that is the starting location for the record in memory.
Each node contains pointers to the next, the previous, and
the parallel components to the component represented by the
node. Each node also contains the component’s integer grid
(ordered pair) location, a two character identification
tag, and a real number representing the component

reliability. Each node can use up to fourteen words of

memory depending on system constants. The current

configuration uses twelve words per node. This memory is

oy

rj

dynamically allocated when a new node is inserted into the
grid by the user. A maximium of 2500 words of dynamic
storage is available to the user (Ref 4, pg 255), thus a
realistic limit to the number of nodes is less than 200.

The array structure, called IJPOS in the program,
provides the grid into which the components are inserted.
The IJPOS array contains the pointer to the node that
contains the data for the component at any (I1,J) grid
location. The grid is sized by two constants: one for the
numger of columns and the other for the number of rows.
The program makes all checks for the grid boundaries
against the constants, thus the user may configure the grid
to any rectangular shape. The minimum suggested is a 10 by
10 grid because this is the maximum that can be displayed
on the screen at one time. The maximum should be limited
by the number of nodes needed in any direction, but the
uppef limit of about 200 active nodes must be kept in mind.
The 20 by 20 grid currently employed works nicely for a
variety of small scale systems and effectively demonstrates
the capabilties of the program.

In practice, the grid system is really not limited to
a maximum of 200 nodes. The user can always construct
subsystems and calculate their reliabilities, then use each
of those subsystems as a component in a macro-system. This
type of application is limited only by the user’s

imagination and stamina.

10

Program Structure. The program has been divided into

four sections, each operating under the control of the

oo TIm R TEERARTE T e em e

executive routine. Of the four sections, three are segment

procedures and the fourth is an intrinsic unit. A segment

SEMAMEEE L Mt

procedure is an independent, self contained procedure that

only refers to the procedure that called it. An intrinsic

B 2ol

unit is a group of user written procedures that any program

N

can use, and is located in the System Library file. The

X System Library file contains special purpose system
provided functions and procedures such as trigonometric
functions, math functions, graphic routines, and any other
special purpose type routines in addition to any user
written routines. The three segment procedures and the

executive routine compromise the main program and are

compiled into a single code file. The intrinsic unit,

named Basics, is compiled separately and then inserted into
the System Library file. This strateqy was taken for_tﬁo i
reasons: first, the Apple only has a limited amount of
space to build the text file that will be later compiled
into a code file; second, the Apple only has a limited
amount of memory for the loading and execution of a code
file.
The first reason comes from the fact that the Apple
Pascal editor has room for only 18400 bhytes aof information
(Ref 4, pg 98). This limits a programmer to between &00

and 800 lines of text in the editor at any time. The

11

program contains about 1600 lines of text, excluding
comments, thus there was a need to break the program into
pieces. During prelimenary coding, ghis problem was solved
using a technique that split part of the code into the
intrinsic unit. This division split the program into two
main sections and reduced the compilation time of the main
program, because an intrinsic unit is.compiled separately.
The limitation on text file size can also be overcome by
using the compiler INCLUDE option. This option allows the
programmer to signal the compiler to go to another text
file and compile that code and then return to the current
text file and finish compiling the rest of the program.
This option was used to break the main program’s 1100 line
text file into three pieces: one containing the executive
routine and the edit segment, one containing the initialize
segment, and one containing the analyze segment. This
technique was not needed for the Basics unit, since that
text file can fit into the editor.

The second reason, limited memory for execution, was
aslo solved with the solution to the limited editor
capability. The main program’s three sections were made
into segment procedures. This option of the Pascal system
overlays the segment’s code into memory only when a routine
from that segment is active. The optimal choice for
segmentation dictates that the segments be independent and

infrequently exchanged. The choice of segments abided by

12

. il A SR e bt

that rule. The initialize segment is only used to set up

the grid and the display, and then is discarded. The edit
segment performs both the system generation and edit
functions and is the largest segment. The analyze segmsent
performs the reliability calculations and outputs the

i system to a printer. The edit segment and the analyze i
segment are only exchanged when the user wants to calculate
a reliability. The time spent overlaying either procedure
is minimal and is completed as the next prompt is displayed
on the screen. The time delay is short because a
substantial amount of the routines needed by the edit

3 segment are in the Basics unit; this makes the size of the
edit segment smaller, thus making the time needed gu
overlay that segment into memory shorter. 1

A final reason, documentation, while not critical to

the program operation, is an important consideration for
the programmer and user of the system. The top-down
structuring allows for the above type modifications without
loss of continuity in the program. This structure also
allows for searching only a portion of the code for an
error. Other benefits include leaving procedure stubs to
be completed later and easy reading and locating of any

portion of code.

Segments

This section will discuss the specific procedures and

structure of the Basics unit, the initialization segment,

13

the edit segment, the analyze segment, and finally the
executive routine.

Basics Unit. The Basics unit contains four important
subparts: the glabal variables, general use procedures,
display procedures, and cursor component movement
procedures. The blobal variables include the system

. caonstants, the two structured types, and the system
variables. All of these items are available to all
procedures; each procedure may also declare variables that
are only active within that procedure. The global
variables serve as the caoammunications links between the
major segments and the Basics unit.

The second part of the Basics unit is the general
purpose routines. These routines are used by at least two

: different major segments, thus are placed in this common
i area to avoid duplication. The routines include all of the
procedures used to interact with the user on the console
and the procedure needed to define a new node. None of the
procedures are unique and many could be used in any program
that needs to interact with a user via the text screen or
graphics screen of the Apple. Several of the routines were
borrowed from the sample programs provided with the Apple

f Pascal System. Those routines are specifically mentioned

in the computer code and the Programmer’s Guide.

The third part of the Basics unit contains the display

procedures used specifically by the edit segment. jhese

14

i ' e adiaiiniliiabiisit W—M

"--r"!---!-'“'-u-!--I.-I--l-I-IlIII---I.--.--ﬂﬁi—————~—~

procedures are designed to operate under any of the
passible configurations of the system constants. 7Two of
the functions are used to determine the X and Y location of
a specific component on the graphic screen window. One
routine determines the 10 by 10 subgrid that will be
displayed at any one time. This routine is invoked if the
component cursor moves out of the currently displayed
subgrid. The two most important routines are used to
display an individual component in either white on black or
black on white and the entire system. The system display
routine uses the component display routine to place each
component into the window. The routine then draws the line
to the highest parallel component in the window (this
component has not yet been drawn), and then draws the line
aover and down (if necessary) to the next component. This
procedure is repeated until all components in the current
window are displayed. The procedure is quite fast, a
typical screen is displayed in 3 to O seconds. The delay
provides the user some time to plan his next addition.

The final part of the Basics unit contains the two
procedures used to move the cursor up and down, and left
and right on the screen. These procedures ar~ also used
exclusively by the edit segment.

The Basics unit is a special case because it is a
complete program except for an executive routine. The main

program serves as the executive. As such, the unit needs

15

I als st e e S e e i e et

to be recompiled only if there is a change to any routines

or constants. The code is then linked into the systea
library using the system librarian package. The main
program does not have to recompiled if there is a change to
the Basics unit and likewise the Basics unit does not have
to be recompiled when the main program is changed. The
main program can be nonexistant when the Basics unit is
compiled because the two parts are linked only when the
main program is compiled or executed. This feature allows
the programmer to deal with only half the code at any one
time; if the procedures in the Basics unit are fully
operational the unit will remain static while
experimentation and change occurs in the main program.
Specifics on using the system librarian package to insert
the unit into the system library can be found in Appendix
3, the Programmer’s Guide.

Initialize Segment. The initialize segment contains
the routines needed to prepare the program for operation
and allow several default parameters to be changed. This
segment is also executed if the user wants to clear the
system grid and start working on a new problem. This
segment is also responsible for preparing the instructions
on the text screen that the user can display if help is
needed on a program command. @ This segment alsc contains

the procedure stub that will eventually interface with a

mass storage device to provide for reading an old

16

pr—— 1

reliability system back into memaory. The segment allows
the user to change the default reliability used in defining
new nodes and also allows the user to turn the automatic
labeling option on or off.

Edit Segment. The edit segment contains the
procedures needed to generate and edit the reliability

system. The generate section includes the procedures to

generate a parallel and series structures and to label a

B 2

component. The edit section includes the procedures to

e e PR A

remove or change a component and control the cursor, which

is the current component. The executive part of this
segment selects the generation sequence, if data does not

exist in the grid, or the edit sequence, if the grid

contains data.

The generation sequence uses recursive calls to the
parallel and series procedures. The user begins the
sequence by choosing the original structure of the system,
either parallel or series. The program then displays that

structure and locates the cursor component at the first

component in the structure. The user is then asked to

either label the component or change the component into the
other structure. The program inserts the new structure or
labels the camponent and continues to prompt until the
structure is finished. The program then returns to the
second component of the original structure and repeats the

process until the entire system is completed. The program

17

Raadie MU B

then enters the edi! sequence.

Once in the edit sequence, components can be changed,
removed ar added. The gquit option allows the user to exit
to the main program executive routine which then allows a
transfer to any of the three segments. The user can togqgle
the labeling option and change the default reliability.

The generation sequence can be entered by using the change
option. The procedures in this segment are relatively
straight forward and easy to follow once the notion of
recursion is understood. Simply stated recursion is the
act of calling a procedure from within itself or calling a
procedure that called the procedure now executing. The
Apple Pascal system fully supports this feature of the UCSD
Pascal system, and allows the programmer a great deal of
power from a relatively few number of procedures while
providing for the linking of all the recursive steps
automatically.

Analyze Segment. The final segment is the analyze
segment, which controls the reliability calculation and
provides the interface to the output devices. This segment
also uses recursion to implement the mathematical equations
to calculate the reliability of the system. This sequence
starts at the first component and calls the multiply
procedure. If the component is in parallel with any
strdétures, the procedure to analyze a parallel structure

ig invoked. This procedure must recursively call the

18

procedure to analyze a series structure because a parallel
structure is made up of series components. The series
procedure recursively calls the multiply procedure to
calculate the series reliabilities. The multiply procedure j
combines the results of the parallel structure with the
aoriginal component and then procedes to the next series
structure. Recursion allows three relatively simply
procedures to be able to reduce any system no matter how
complex. This ease is also aided by the structure df the
data and the grid it resides in. The speed at which the
reliability of a moderate sized system (50 components) can
be calculated is no more than a few seconds.

The second function of the analyze segment is the
interaction with external devices. The primary device is a
printer. The grid will be printed out in 10 by 10 blocks
in a standard 80 column format. This routine can easi, ' be
modified for 132 column output. The praocedure *» store a 1
reliability system to disk is not proviged but a procedure
stub exists for this purpose.

Executive Routine. The executve routine is very

simple as it must provide only for the switching between
tﬁe various procedure segments, which all have their own
executive routines which function in the same manner. This

executive sequence is basically the same for all segments

and is as follows:

19

T B e iAot ' T . o7y o7 i S b e A =1

1. The display is updated.
2. The menu is presented.
3. A command is selected.
4. The command is executed.

5. Repeat until the exit command is selectod:

The executive routine exists in the main program text
file along with the edit segment. When this file is
compiled, the correct version of the Basics unit must exist
in the system library or the compilation will fail. It is
at compilation time that the initialize and analyze segment
text files are included and compiled with the main program

text file into the single main program code file.

20

r G e ot i S

TR

II1I Results

This chapter will cover the validation of the
computerization of the reliability equations, the
conclusions drawn about the system’s feasibility, the major
problems encountered, and several extensions to enhance the
system.

Validation

The validation of the computerized reliability
equations is an important part aof the study. The method of
validation chosen was to enumerate the possible
combinations and configurations of components on a small
scale and insure that the computed reliability equaled the
hand calculated reliability. This strategy was selected
for two reasons: first, recursion insures that the same
sequence is used to compute the reliability of a
configuration no matter where it is in the system; and
second, hand calculation, as has been mentioned, is tedious
and error prone procedure. A constant reliability of 0.5
made the hand calculations simpler, but effectively tested
the sequence of computations thé program must carry out.
Simple series and parallel structures were tested firstg;
after verifing the computations, more complicated
structures were tested. Thus the hand calculations were
kept to a reasonable limit. The configurations used are

depicted in Figure 2.

21

R. = .5

0O~ %
_O__O_O_ = ,125 = ,75 =. .875 |

{)@ - s Ig:;[s
.[g__g:L 4375 @@. = .5625
@ .5313 @— .5313

& 3 '36?2% B} '6?19

Figure 2. Component Configurations for Validation.

22

QO

&5 o &0 b

o

= .1114

| Lo O -

Figure 3. Prototype Configuration for Validation.

A single large system was configured and a reliability
was calculated. The computed number agreed with the number
calculated very carefully by hand. This prototype
configuration is presented in Figure 3. The calculation
changed appropriately when the component reliabilities were
adjusted. The program was also tested usin, the possible
extreme values of 0.0 and 1.0 resulting in no errors. The
strength of the tests performed indic;te that the program

does perform the reliability calculations correctly.

23

Several conclusions can be drawn from this study.
First, and foremost, this program shows that a
microcomputer can indeed be used to interactively generate
reliability systems and then calculate the reliability of
the system. The use of the graphics capability allows the
user the ability to visualize and then build and change the
system interactively on the console. The actual
implementation is not important; it is the power and
flexibilty that an interactive system provides that was the
underlying issue of this study.

Second, the microcomputer is a powerful and useful
tool -- useful in a wide range of applications. The study
Aas shown that a microcomputer can handle a complex problem
with relative ease. The available graphics allow a very
user oriented display of the reliability system.

Third, the UCSD Pascal System as implemented on the
Apple II System is a very powerful and useful tool for a

programmer and user of microcomputer systems. This system

offers most of the scientific computing power of Fortran
less exponentiation with the block-structuring of Algol and
the self-documenting feature of Cobol. The operating
system allows the programmer and user a great many options
and flexibility. The power of the segmenting and
overlaying capabilities are shown because the program,

which taken as a single piece could not fit into the

24

available memory, can execute with a surplus of space.

Finally, the most important conclusion is that
microcomputer systems can be used to handle complex
problems in a highly desirable fashion —— interactively.
The power of this avenue of approach to any problea can not
be overemphasized. A well written program can be used as a
power ful aide to a manager or technician that does not have
the time to manually tackle a problem.

Several problems were encountered during the course of
the study. A class of problems was computer implementation
dependent and as such, the discussion can be found in
Appendix 3. The first major problem to be encountered was
the limited size of the system editor. This problem was
solved by using the compiler INCLUDE option and then
dividing the program into several parts with no harmful
effects. Editing four different pieces of code can be
cumbersome but the Pascal Operating System allows for
smooth transitions and storage. The floppy diskettes can
be unreliable, a single instance of data retieval error
occured in several months of operation. The operating
system allows for duplicating diskettes before an
unrecoverable error can occur. The user must make at least
one backup copy to prevent the catastrophic loss of a

complete diskette, as disk units have been know to fail.

25

A second problem concerned the graphics capability of

the Apple System. The design of the individual component
and the hardware combined to limit the display of only a 10
by 10 grid of components. This is only a quarter of the
possible grid. The solution rested on software to
automatically keep only the portion of the grid that the
user is working with on the screen. This strategy causes
the screen to shift radically if the grid is sparse because
the cursor component shifts large distances as the user
moves through the grid. The addition of a position prompt
of the current component, that is on the screen at all
times, relieves most of the confusion that can result from
éhe computer’s attempt to display the grid.

A final problem, that was really a limitation of the
system, was the amount of time needed to compile the
program. The compile process takes about five minutes for
the Basics unit and about eight minutes for the main
program. This was an annoyance when working but was
probably a small price to pay. This uas.the only drawback
to the Pascal operating system; the processor can only
compile 150 lines per minute (Ref 3, pg 68), the more lines
the longer it takes. This inconvience must be put .into
perspective: batch turn around for a large scale computer
is normally several minutes but can take days depending on
the work load and the environment. Even in an interactive

environment, the user may spend an inordinate amount of

26

PUS,

[

time waiting for a listing at a production control window.
The longest the microcomputer will ever take is a few
minutes. This inconvenience happened only during
development as the program was constantly being recompiled,
the user will normally execute the compiled code u;less a
change must be made.

Two major extensions will be discussed in this
section, several other minor changes are mentioned in
Appendix 3. The first extension is the addition af the
routines to store and retrieve data to a mass storage
device. This was not accomplished because the original
program design precluded having a node for every grid
location in memory at the same time. This design allowed
flexibility in dealing with the limited amount of memory.
The program currently executes with a surplus of memory,
thus the extensions should be attempted.

The strategy could be one of combining the IJPOS‘grid
array and the node records into a single structure — a two
dimensional array of record. The pointer can fhen be
changed to a (I,J) address in the grid. Once the new
structure has data in it, input or output to mass storage
is very easy: read or write the individual recaords. The
difficulty lies in sizing the static array (about 12 words
per node) to fit into the available memory, approximately

6000 words minus the amount needed for the largest code

27

segment. This sizing can force only a limited size system

at a time, but the storage capability coupled with the
decomposition of the reliability system may counterbalance
the negative effect. This option requires the revision of
every reference using 2 pouinter to using an order;d pair
address; this will be a very time consuming and tedious
effort, but the results may very well be worth the effort.
This methad implies a static array of nodes but another
method is available.

In this second option, the record structure could add
a single pointer to be the location in memory of the node.
The pointer would only be used to allocate or deallocate
the memory needed for the node. This option would preserve
the efficient use of the dynamic memory available, yet
still allow for a simple interface to the mass storage
device.

The second extension would allow the individual
component reliabilities to be a function of time. This
could be implemented by providing the program with several
probability distribution functions, such as the Wiebel or
Exponential that could be used to model the reliability.
The identification label could be used to indicate that the
relibility is a function of time and the reliabiiity could
be used as the function’s parameter. An alternate solution
would use the ability to declare variable record formats;

thus one type for a constant reliability and another type

28

for the different functions allowed, since some are
characterized by more than one parameter. The analyze
segment could be modified to to ask for the duration and

¢ interval desired for the resulting system reliability; then
‘the analysis routines could call the appropriate function
(one could be a constant) for the reliability using the
current time and parameter set for each component in the
normal sequence. The reliability calculations could be
saved for each interval and then plotted on a graph of the
system reliability versus time using each interval
calculation as a data point. The number of functions will
probably not be limited by memory size because the analyze i
segment is smaller than the edit segment. This extension
can remove a restriction that forces an assumption to be

made that limits the analysis that can be conducted on many

real world problems being investigated using this program.

N e LT

29

@ oo

10.

11.

12.

13.

14.

ibliography

Albrecht. "Evaluating Systems Reliability"”, IEEE }

L2 2= =T8s EENAENEIE Sl flEeENS = o

Inc., 1980.

AR =E=2=EL SRR =2 S22l AR Rl =S S

Computer Inc., 1980.

Bell. "Computer Aids For Reliability Prediction And

L e L, e IR L e e LY =

13642 (1979).

Hillier, Fredrick S., and Gerald J. Lieberman.
“"Chapter 14: Reliability"”, Introduction to Operations

Research, 3rd ed. San Francisco: Holden-Day Inc.,

Jensen, Kathleen, and Niklaus Wirth. PASCAL User

Manual and Report, 2nd ed. New York: Springer-Verlag,

Klingman. "NETGEN, For Generating Large—-Scale Network
Problems”, Management Science,20:814-21.

Lewis, Theodore Gyle. Pascal Programming For The

Apple. Reston, VA: Reston Publishing Co. Inc., 1981.

Ostroski. "“"Run System Studies on a Microcomputer®,
Electronics World,190:56-7 (Oct 1, 1978).

FPollack. "The Kth Best Route", Operations Research,?:
578-80.

E=fE=EC2vV =

Rondeau. "Short-Cut Reliability Analysis", Machine
Design,50:108-12 (Sep 21, 1978).

15.

16.

17.

Shogan. "Reliability of a Stochastic Network®,
Operations Research.24:1027-44.

Shorack. "Most Reliable Route Algorithm”, Operations
Research, 12: 632-3.

Yen. "Finding The K Shortest Loopless Paths",

31

SYSTEM _CONF IGURATION

Appendix 1

System _Confiquration

1. Apple 11 Plus with 48K memory .
2., RAM card with 16k memory (required) (slot 0)

3. Apple Disk II (2) with controller card (slot 6)
4. Printer with controller card (slot 1)

9. Color TV with RF modul ator

1. Apple II with 48K memory (48k minimum)

2. Any number of disk drives (1 minimum)

3. HAny printer with controller (not required)
4. Any 80 column or lower case card (slot 3}

9. #éAny video monitor

Appendix 1

Appendix 2

e e e o ccsanli b AN St Ak

Overview

This User’s guide is a discussion of the System
Reliability program. This guide covers the general system,
the set up process, the initializing process, the ;diting
process, and the analyzing process. A quick reference
command list, segment interaction chart, and example
session are also provided. This guide should be used in
conjunction with the Applé Pascal Operating System Manual

and the System Reliability Programmer’s Guide.

ii - Appendix 2

i e~

- " o . /_,- I —— i) ") _ L _
f———

R4 4 A0 R4 412 2 5 34

DVerview . ¢« o« ¢ =2 =« o = o ® s o a s s a s 5 a o = @ ii

user’s Guide - L] - - - - - - - - - - - - - - L] - - - 1

-

General Information & « ¢ ¢« o ¢« & o & & =«
Start Up . & & & 2 o 2 » ¢ ¢ «a o 2 2 o s &« s a = =
Single Drive . . . ¢ o o 2 o o « =« @« o s a o
Dual Drive « = . o « ¢ ¢ o« o o « o o & & o = =
Initializing . - « &« ¢ « » o 2o &« o « o © « = o« & =
Editing . . « ¢ o o ¢ & o o o o o o a s a « « « =

Generate . = . ¢ ¢ ¢« ¢ o e © = ® ® o a2 = s = &«

N A W W

Edit . o . & o ¢ o o 2o o o o o © @« s ¢ «a o =« o

90

ANAlYZiNG . . - ¢ o « o s o « ® s o « = » a a s @
Main Menu . . ¢ ¢ &« ¢« « o =2 o o a o = a « a « = «» 10
Quick Reference Command List « « 11
Segment Interaction Chart « & ¢ o« ¢ a o « =« o« 12

Example Session . . + « « ¢« ¢ o 2 » s « = « e = =« « » 13

iii Appendix 2

This User’s Guide will take the form of a structured
walk through the workings of the program. The guiae will
be operational in nature and focus on the options the user
may employ along with an explanation of the menu choices.
The explanation of the inner workings of the program can be
found in Appendix I, the Programmer’s Guide. The User’s
guide will address the following topics: general
information, start up, initializing, editing, analyzing,
and the main menu. This guide assumes a rudimentary
knowledge of the Apple Pascal Operating System; a
familiarity with the System and FILER commands is
necessary. The guide can be read through as the user
practices with the program or beforehand as a program
familiarization step. The quick reference command chart
provides a list of all available commands. The segment
interaction chart provides a map of the paths available to
the user. The example session is a tutorial on the program
functions and commands.

General Information

The program will allow the user to place up to 100
components on a 20 by 20 grid. The individual component
will be represented by a 2 character identification label

above a 2 digit rounded reliability percentage. This

t

1 Appendix 2

ﬁ"wr‘;4---n---u--n---nvuu‘

component will be connected to other components using
straight lines. The display will be constructed from left
to right and bottom to top. The screen will either contain
text information or a display of a 10 by 10 portion of the
reliability grid. The bottom display line will be.used to
communicate information to and elicit responses from the
user.

The program will ring the buzzer if an error has
occured. A single sound indicates that the input character
is not allowed from that menu. The corrective action is to
reread the menu or use the <ESC> key to display the
available commands. 7Two buzzes indicate that the limits of
the grid have been‘exceeded. This means that a particular
column or row has grown to large and no more components can
fit, or an attempt has been made to put more than six ‘
compaonents in parallel. In either case, the program will

automatically insert as many of the components as is

possible, the excess will be ignored. If no room exists
then the program will offer the only option that can be
successful completed. If the the maximum number of
components is exceeded the program will remind the user
each time an attempt is made to add a new component, but
will not terminate the praogram. The limit is currently set
at 100 but there is memory available for at least 200

components. This value can be changed; see the

Programmer’s Guide for specific details.

2 Appendix 2

Start Up

This program requires an Apple II with 48K of memory
and a language or expansion RAM (Random Access Memory) card
installed in slot zero, a single disk drive with controller
card installed in slot six, and an appropriate mon}tor or
television and modulator. A printer with interface card
installed in slot one and a second disk drive attached to
the controller card in slot six may also be used. If the
Apple has the shift key modification, then select the
normal keyboard (shift m generates a < 1 > right square
bracket). The user must insure that the correct library
exists on the boot diskette. The SYSTEM.LIBRARY file must
contain 45 sectors, if it does not or you suspect the file
is not correct, please refer to the Programmer’s Guide for
specific instructions. Depending on the number of disk
drives available, the start up procedure varies slightly.
Once either procedure has been accomplished, the user can
then EXECUTE the SYSREL.CODE file, and the initializing
process will begin.

Single Drive. The single drive user must insure that
the SYSREL.CODE file is on the boot diskette. 1If it is
not, the FILER must be used to transfer the file from the
WORK: diskette to the APPLE1l: diskette (boot diskette).

Dual Drive. The dual drive user must only insure that

the APPLE1: diskette (boot diskette) is in drive 1 and that

the WORK: diskette is in drive 2.

I Appendix 2

Initializing

The initializing process is the first segment of the
program to be encountered, and as such it informs the user
about some general program limitations and f;nctions, and
enables the user to change program default values.. An
important piece of information is that the current
component the program is working on is displayed as white
letters on a black background; any other components are
displayed as black letters on a white background. The
current component will also be refered to as the cursor
component.

Two important key stroke commands are also mentioned:
the <ESC> (escape) key will display a quick reference
command list, and the < <- > (left arrow or backspace) key
will let the user change a selected command. The left
arrow key allows the user to reenter a mistaken command
choice for multiple keystroke entries (examples are P#,
S#); the function will not work if the command is only a
singlé key stroke (examples are E, C), other means are
available to stop the commanded action.

After reading the information the user can then select
the <RETURN> key to change the default values or any other
key to continue the initializing process. Changing the
defaults simply involves answering the questions. The
autolabelling option is normally turned on and the default

component reliability is 0.5, The user is now asked if

4 Appendix 2

data resides on disk; this function is not yet implemented
so either answer will cause the program to finish the
initializing process.

If the user reenters the initializing process from the
main menu, pressing the <ESC> key returns the user.to the
main menu without clearing the current.reliability grid.
Any other choice will erase whatever system had been
constructed by causing the program to reinitialize. The
rest of the process will be repeated as before, then the
user automatically enters the generate sequence aof the
editing process.

The editing process consists of two sequences:
generate and edit. The generate sequence is entered
automatically when the initializing process is complete.

At the completion of a generate sequence, the edit sequence
is initiated. This entire process may also be initiated
from the main menu. A generate sequence may be started
from the edit sequence. The # symbol is used to indicate a
single digit input is required to complete the command.

The numbers in the lower left corner of the display
indicate the row and column of the current component. This
information is displayed at all times and is designed as an

aide in keeping tract of the user’s location in the grid.

S Appendix 2

Generate. The generate sequence allows the user to

create a reliability system. The generate menu.allows the
user to insert a Plarallel structure with # components, a
S)eries structure with # components, L)abel a component
with an identification label and reliability, or m;ve to
the N)ext component in the structure. The current
component limit for a parallel structure is six, while the
current limit for a series structure is eight. These
limits may be changed; see the Programmer’s Guide for
specific procedures. This process of inserting and adding
components continues until the user has visited each
component at least once. If the component does not have to
be changed into a parallel or series structure, or the user
is satisfied with the label, the N)ext command may be used
to advance the cursor component. The program automatically
advances to the next component after any other command.

It is important to note that the user’s initial
command choice, parallel or series, will determine the
structure of the final system. This choice has a
significant impact on the reliability of the system. 1If
the user chooses the parallel command then the system will
consist of # structures in parallel with each other. If
the user chooses the series command then the system will
consist of # structures in series with each other. This
basic arrangement is unalterable; the system would have to

be reinitialized to change the arrangement. In either

6 Appendix 2

case, the structures may be very complex, but will still
have the basic pattern. Based on this information, the
suggestion is offered that the user choose a series
structure as the first command until the capabilities of
the program are understood. Any excess components.can be
later removed from the system by the edit sequence. A
series component can also be effectively eliminated from h
the structure by setting the reliability to 1.0, while a
parailel component can be effectivelyleliminated from the
structure by setting the reliability to 0.0. At the
caompletion of the generate sequence, the edit sequence is
automatically initiated.

Edit. The edit sequence is entered automatically from
a generate sequence or can be entered from the main menu.
This sequence enables the user to change the system that
has been placed on the grid. The edit menu allows the user
to R)emove a component, Clhange a component or the
defaults, move the cursor, or @uit and return to the main

menu to procede to the analyze segment.

The R)emove command will attempt to remove a component
from the grid; the routine is not very sophisticated and
therefore can not handle all possible cases. The details
of the command restrictions are discussed in the
Programmer’s Guide in the Internal Section: Main Program,

REMOVE procedure.

7 Appendix 2

B U S

The C)hange command displays the change menu which
allows the user to start a generate sequence by using the
Plarallel or S)eries command, L)abel a component, or change
the defaults by using the T)oggle command to turn the
autolabelling option on or off, and the D)efault c;mmand to
change the component reliability default. The @Q)uit
command returns the user to the edit menu after the use of
the T)oggle or Dlefault commands, or if the C)hange command
was inadvertantly selected. The program automatically
returns to the edit menu after the completion of the
P)arallel, S)eries or L)abel commands.

The cursor movement commands allow the user to move
from component to component to make editing changes. The
command keys were selected because they closely resemble a
diamond shape on the keyboard. The positions in the
diamond represent the direction the cursor will move: I and
M force the cursor up and down respectively, while J and K
force the cursor left and right respectively. The
direction is followed by the number of grid locations to
shift. The program will allow movement out of the
currently displayed subgrid and then present a new section
of the grid with the target component centered. The
maximum input allowed is a 9. If no component exists at
the target location, the program checks either side for a
component; if a target still does not exist, th:- program

reduces the shift amount and tries again until a target

8 Appendix 2

o

component is found. The H)ome command will position the
cursar at the lower left corner of the grid with the
corresponding quadrant of the grid di played.

The Quit command will return the user to the main
menu. This command can be used with the cursor in’any
position. The <ESC> key will display a quick reference
list of all of the available commands. The left arrow < <-—
> key functions to change a command that requires more than
a single character entry. After exiting the editing
process, the user can then select the main menu A)nalyze
command in order to calculate the system reliability.

Analyzing. All of the analyzing process options are
initiated from the main menu. The A)nalyze command will
cause the program to calculate the reliability of the
system currently on the grid. A short pause can be
expected while the calculations are progressing. The
answer will be displayed and the <RETURN> key will call the
print routine while any other key will return the user to
the main menu. The P)rint command will begin the process
of printing a formetted representation of the grid on a
piece of paper. The routine places each component in its
grid location with the row and column of the component, the
row and column of the forward linked component, and the row
and column of the backward linked component; the row of the

parallel linked components; and the component reliability.

The user must insure the printer is on and ready to accept

9 Appendix 2

G & e
ARG it <. A 2R

.4y b . o it 33 e S e bttt

data. The analyze routine may be called from the print
routine. The S)tore command will initiate the process of
saving the grid on a diskette file but is not currently
implemented.

Main Menu. The main menu commands allow the user to
select which process will be initiated next. The commands
are for the E)dit process, the A)nalyze process, or the
I'nitialize process. The P)rint and S)tore commmands are
part of the analyzing process but are selected from the
main menu. As suggested by the command names, each
selection places the user under the contro{ of the
specified process. The Q)uit command will cause the
program to terminate and place the user in the Pascal
Operating System command line.

The program is designed to allow the user to alternate
between the E)dit process and the A)nalyze process at will.
This facility allows the user to rapidly reconfigure a

reliability system, calculate its reliability and then

iterate the process as many times as is required.

10 Appendix 2

Ruick Reference Command List

3R Ro PRSI -1 AR 1 0 PR b1l RA PR 1S

——— e A= EaeSReamX

== =mU 24 4l 2R3

Generate Sequence
Parallel Structure
Sleries Structure
L) abel Component
N)ext Component

Edit Sequence

R)emove Component

C)hange Component
P)arallel Structure
S)eries Structure
L) abel Component
Tloggle autolabelling on or off
D)efault Reliability
Buit Change

I or M - cursor up or down

J oar K — cursar left or right

H) ome

Quit Edit Process

A)nalyze grid reliability
Ability to print grid
P)rint grid to paper
Ability to analyze grid
S)tore grid to disk
Id)nitialize Process

@uit program

11

Appendix 2

o ascemnipge ———— —— - :3==I-.lIlllllllllllIIllllllII=======E!!!!E!!!!!!!"

(ENTRY > i

INITIALIZE ?
SEGMENT ’

GET
DATA)

EDIT !
SEGMENT i

4

PRINT STORE
GRID DATA

ANALYZE SEGMENT

Appendix 2

heotch o e

This example session contains a very simple system to
present some of the commands of the program in a structured
environment. The user must experiment with the prpgram to
make it do the things that are of special interest. The

example will recreate the system depicted in Figure 1.

g

. 3298

i

Figure 1. Example System

The example will be discussed exactly as the program will
execute, thus the user should be doing the commands on the
computer as this example is being read.

1. The first step is to insert the APPLELl: diskette
into drive 1 and the WORK: diskette into drive 2. The
Apple should then be turned on and the drives will operate,
finally displaying the UCSD Operating System command line.
In.response to this the user should now EXECUTE the

13 Appendix 2

RIS AT gr e TR

WORK: SYSREL file and the system reliability program will
begin to execute.

2. The user will first see the specific program
information. Take time to read all of the comments as they
are important to the correct operation of the prog}am.
After reading the comments, hit any key to continue with
the program. The program now asks if the user has data
stored on disk. Respond no to this question as the routine
has not yet been implemented. The drive will again operate
as the program starts the initializing process and display
an appropriate message. At the completion of the
initialization the program will display the generate
sequence menu.

3. The user can now start to build the system
depicted in Figure 1. The first step is to notice that the
system is basically three structures in series. The first
response is S3. The program now displays a three component
series structure with the first component as the current
component (white on black). Now, the first structure of
the series is kasically three structures in parallel, thus
the second response is P3. The lowest component of the
parallel structure is two components in series, so the next
command is S2. The lowest structure is now complete so two
N commands are used to move the cursor to the second
element of the parallel structure. This structure is

basically two structures in series so the next command is

14 Appendix 2

S2. Now use a P2 command and two N commands, twice, to
change the two series components into parallel structures
and move the cursor to the top parallel structure. The
last stucture of the parallel structure is a series
structure so use a S2 command to finish the last siructure
and two N commands to move to the second component of the
original series structure. Use another N command to move
on to the last component in the series as the second is not
to be changed. The last component is a simple parallel
structure, so use a P3 command to finish the system. The
generate sequence must now be exited so use three N
commands to start the edit sequence.

4. The edit menu is now displayed, but the system is
complete so use the QUIT command to exit to the main menu.
Once in the main menu the ANALYZE command can now be used
to calculate the system reliability. This process takes a
few seconds and the program displays an appropriate
message. The calculations are completed and displayed to
the screen, reliability is .3298. Not being finished, use
the space bar to return to the main menu. Once in the main
main, the user can now return to the EDIT sequence to
change the system.

9. Once back in the edit sequence, the user can now
use a K2 command to move to the lone series component to
change its reliability. Use the CHANGE command to enter

that menu and then select the LABEL command and change the

13 Appendix 2

- Ty e ot casbustddot, i Lainbasifiain

o e NP et e

o etite e A i I o < oot I i o s s bl e < T 2 o e

component’s reliability to .9, which the display
automatically updates. Now use a K1 and I3 commands to
move to the third component in the simple parallel
structure. Use the REMOVE command to delete this component
from the system. Again the display is automatically
updated. Use the QUIT command to return to the main menu
to analyze the new configuration.

6. Use the ANALYZE command to again calculate the
religbility, which is now computed at .508%9. This number
should make intuitive sense as the .5 reliability was
changed ta a .9 reliability but a triple parallel structure
was reduced to a double parallel structure somewhat
negating the effect of the reliability change. Again use
the space bar to return back to the main menu and then
enter the edit sequence.

7. Use a K2 command to move over to the single series
component. Use the CHANGE command and the select the
DEFAULT command and change the default reliability to .9.
Now, use a P4 command to change the single component into a
simple quadruple parallel structure. Four N commands must
be used to return to the edit menu. Now select the GQUIT
command to again return to the main menu to analyze the
reliability. The reliability is now ..5654 and this is a
final form of the system. So, insure the printer is turned
on and use the <RETURN> key to print a copy of the system

to paper. If no printer is connected to your system just

16 Appendix 2

return to the main menu. Once the printer is finished use
the QUIT command to exit the program. The final version of
the system is depicted in Figure 2.

Note. This is a very small example, the user must
feel free to experiment and use all of the command; to
become familiar with them. The program offers numerous
ways to cancel a command if a wrong choice was selected.

No example can depict all of the facets of a system, only

usage can teach the full range of capabilities.

g
Q Q@ Q

= 5654

i

Figure 2. Final System

17 Appendix 2

——— e ——— L WA Ve

Appendix 3

! Overview
This Programmer’s Guide will provide general

information on the program and diskettes. Specific detail
of the external operation of the program will inclhde the
editing, compiling and linking of the program segments.
Specific detail of the internal workings of the program
will include the Basics unit and all program segments.
This guide should be used with a Pascal reference and the
Apple Pascal Languagé Reference Manual.

This guide contains Appendix A, the program listing.

it Appendix 3

BN 20 N SIER_4 {25 34584

i
OVerview . . o« o « « « 2 o 2 o 8 @« s s ®© s o s = & = ii

-

Programmer’s Guide . . « « ¢« ¢ ¢ o o o o o « « a o =

Program Detail . . . o« o ¢ ¢ c c &« o ¢ o s o & % &
Notation . . &« o« o o o o o o « a o a ¢ o o« s a a @
Diskette Detail e« & = = = © ® o = s & @ o & & & &®
Required Familiarity o« ¢« ¢« o« ¢ a ¢ ¢ a ¢ =« a o« « &«

AWM

External Section . . ¢ o ¢ ¢ ¢ 2 o o o s 2 e o s o =

v Main Praogram o« & 2 ¢ « o e s & s @« = a =
4 Editing - - - - - - - - - - - - - - - Ld - - - -
' Compiling . . « ¢ ¢ ¢ o ¢ a2 a &« 2 a2 & « s o = =

Basics Unit 4 o & ¢ o @ o = & o s @ o« « &«
Editing . « . ¢ & 2 ¢ o« ¢ s o o o & « s 5 « @« @«
Compiling . -« ¢« ¢ & ¢ o « ¢ a o s o s s » a s =
Linking . « o« « & o o o o o & « o o« a s s o @« »

£ NNOOC vn W

Internal Section: Basics Unit . . . « ¢« « ¢ «a ¢ & « =

Structure . . . 2 ¢ « = o a = « e s a & a8 = » @« = 9
Constants . . & ¢ ¢ &« ¢ ¢ 2 2 s ¢ v @ o » = a = = 10
TYPES =« = 2 o o =2 o s = « = © o « a s« = o« =« = = « 11
Variables . . ¢ o« ¢ &« e « 2 2 a 5 2 &« s =« s a =« = 11
Data Structures . . &« ¢ ¢ o« 2 ¢ = 2 « o s @« & = = 13
RoOUutines . .« « ¢ =« o o = & a « a s s » a v o s = &= 14

CRT o« ¢ o« 2 2 o o« @« 2 = % =2 o a a = = »u = « = =« 14

BACKUP . & 2« ¢ ¢ « © o a a« « o « s« = = = « o« « 13

GETANS . - - & = &+ = « o« o « o« s « o« s = « =« o« 15
; GETSTR . = = « = « =« o « =« o a = » « a o« « « « 15
; GETREL . . « « =« 2 = = « = o =« a2 « = = o« a o« « 15
g DISPLAYAT . . « & o « = « = « = o « s o« = ¢« =» = 18
; INSTRUCT & & & & o = = o o = = a « o« = « = = « 18
: AUTOLAB . . . « = = = s o« = « = = « =« o =« = » « 16
] INITNODE . & & ¢ 2 = ¢ o = = o =« =« = a = » « « 16
i XPOS .+ 2 « & o = o « 2 « 2« o o a o » s o « « o 16
' YPOS . & & = ¢ o o o « % o 2 o 2 s« s « = o« o =« 17
CHECKDIS . . ¢ v &+ ¢ o o o o o o o« o o = o« « « 16
DCOMPON . « . v « & o = o« » « o « a a = « « o = 17
DISPLAY . &« &« ¢ =« ¢ o o o o o o« s o = o « =« = « 17
POSITION .+« = . &« 2 « « 2 = = = =« o = « « =« =« « 18
UPDOWN . o . « « = = o o « s o« = o« = = + =« « « 18
LEFTRIBGHT « &« « =« &« &« =« o o « s = o« = =« » = « « 18

iii Appendix 3

Internal Section: Main Program « « « « 19
Executive . . & ¢ & ¢ 4t 4 4t s 4 2 & = s & ® s e e = 19

Initialize Segment

8

Executive . . & & @ & ¢ & o o 2 o o 2 « « = = = = 20
BETCRT . . o ¢ « 2 o ¢ o 2 o a = s s s o s« = o« a » 20
PROMPTAT . . o o« o o ¢ o 2 a s = s a 2 o« o« o =« « = 21
- INTRO . o ¢ ¢ 2 o o « 2 2 o a a s « 2 o o a =« « « 21
INITDISPLAY . ¢ ¢ & o o s & o 2 & o & 2 « =« a « s« 21
GETDATA . & « o« 2 ¢ 5 2 2 s a s =2 o e « s » « o« « 21
INFO & & & & & ¢ 6o o o o a o o o o = o8 « o «a s a « 21

Edit Segment . . . & . . 4 4t 4 d s e s e e s eee 21

Executive . . . & & & & & 4 4 o « o o o o s = = &« 22
LABLE . . . & ¢ & ¢ ¢ o o & o = s s o o s o« » o« » 22
PARALLEL . . . 2 & & & 2 ¢ o « 2 o o o o s o = a a 2%
SERIES . © ¢ ¢ 2 2 ¢ o o a o o s 2 s © a a = s =« « 24
REMOVE . . . & ¢ 2 ¢ ¢ a ¢ o s a a s o a o =« s o o« 24
DEFAULT . . & & 2 ¢ 2 o 2 o s s s s o« a s = « « « 25
CHANGE . . ©. ¢ ©¢ 2 2 o o 2 o a 2 28 s = o« v =« o o « 25

Analyze Segment ¢ &« . . e s e = 2 a2 &« 2 &« o 25
ANALYZE . . ¢ o o 2 o 4o o o o o o s s = =« » « =« « 26
PRINT . & ¢ ¢ & 4 o & o ¢ o a e 2 o v a a « «a o & 26
STORDATA . . v« ¢ & o 2 = o a s o s o = a « s s o « 27

Procedure Hierarchy Chart ¢« &« =« « = « « « 28

3 Appendix A: Program Listing

iv Appendix I

- .

The Programmer’s Guide is for use if the program must
be changed or recompiled, or if the user desires an indepth
knowledge of the internal program structure. This guide
‘ will begin with some general information and comments about
the program. The rest of the guide is divided into three
sections: external, internal, and program listing. The

external section will discuss the external operation of the

Ao Al

program. The topics will include editing and compiling of
the main program; and editing, compiling, and linking of
the Basics unit. The internal section will discuss

internal workings of the program. The topics will include

the Basics unit and each segment of the main program,
executive, initialize, edit, and analyze. The program
listing section will include a procedure hierarchy chart
along with an annotated listing of the program.

Program Detail. This program has been divided into

two major portions: the main program and the Basics unit.

This division occured because the Pascal editor can only 1

handle about a maximum of 800 lines of code. The Basics

unit is compiled separately and is then linked into the ‘

system library file. A change to the unit does not require
a recompilation of the main program. The unit contains all
of the global constants and variables, data structures,
general purpose routines, and display routines. Once the

1 Appendix 3

program starts executing, the code contained in the unit is
always resident in memory.

The main program has also been divided into three
segments. This division occured for two reasons: editor
limitations and memory limitations. The solution ;rovided
an answer to both limitations. The three program segments
do not have to be in memory at the same time because they
perform independent functions. Each time their function is
required, that segment of code is overlayed into memory and

executed. The overlaying process takes no more than a few

" seconds and is accomplished at normal program break points.

The source file for each segment also (esides in a
different text file; the files are compiled together into a
single code file when the executive routine is compiled by
using the compiler INCLUDE option. This allows a portion
of a text file to exist as a separate text file, then at
compilation time a single line in the main text file
instructs the compiler to include the named file in this
compilation. A change to the main program does not require
the recompilation of the unit, but does require a current
version of the unit to exist in the system library before a
recompilation could be attempted. A change to any one of
the segments would require recompiling the entire main
program. The INCLUDE line must completely specify the file

volume and name.

2 Appendix 3

w— — R —~

The program has borrowed from the example programs
pravided in the Apple Pascal Language Reference Manual.
The specific routines are mentioned when discussed and in
the program listing.

Notation. There has also been a change in the
standard notation convention in the program. The
reliability grid displayed by the program is dimensioned by
; an ordered pair (I,J). Any reference to I or the first
dimension of the array IJPOS is to the column in the grid,
while any reference to J or the second dimension of IJPOS
is to the row in the grid. This convention is not normal
(I normally indicates a row) but was noticed too late to

change. The tedious precedure of reindexing was not

considered worth the effort but may be accomplished by any

enterprising programmer. The change could be made with a
minimum of effort when the extension for the alternate data
structure is attempted.

Diskette Detail. All the files discussed in this
guide reside on the WORK: diskette. This diskette should
be used as the source for all code; when changes are made,
the files should be updated to reflect the changes. The
WORKB: diskette is the WORK: diskette backup, it contains a
copy of all of the files on the WORK: diskette. Once an
updated version of the program is executing correctly and

all the updated files are on the WORK: diskette, the WORKB:

diskette should then be updated. In this fashion, only the

3 Appendix 3

most recent change can be lost if the boot dikette is lost
as the WORK: diskette is constantly being updated. If the
WORK: diskette is damaged or laost, or the programmer has
made an untraceable error, the WORKB: diskette can serve as
backup, thus losing only the most recent test vers}on of
the program. To preclude the ultimate disaster, the WORKB:
diskette should be stored separately.

Reguired Familiarity. This guide is written for a
user who is familiar with the Apple implementation of the
UCSD Pascal Operating System. The Apple Pascal Operating
Reference Manual and the Apple Pascal Language Reference

Manuals are necessary for complete understanding of the

concepts and procedures used and discussed in this guide.

Appirz by Lewis (Ref 10) to be very useful. The advanced

R aAs EEEL. ==

and Report by Jensen and Wirth (Ref 7) to be a complete

reference.

4 , Appendix 3

External Section

The external section will detail the process the user
must go through to change and recompile the main program,
and the slightly different process used to change,
recompile, and relink the Basics unit. This discussion
will assume that the user has a dual drive system.

The division of the main program into three text files
makes editing and compiling unusual. The peculiarities of
each will be discussed separately.

Editing. The editing process is the normal for each
individual text file. Each text file has its own name,
INITSEG and ANALSEG; the edit segment is contained in the
main program file SYSREL. Each file can be edited and
saved to any disk file in the normal fashion. The major
differences occur during compiling.

Compiling. The compiling process is different because
of the INCLUDE option. To use the include option, the user
must completely specify the file name to be included. A
copy of the INITSEG and ANALSEG files sﬁould be transferred
to the APPLEZ2: diskette with the compiler because the
INCLUDE option specifies the volume for these files as
APPLEZ:. This makes recompilation very easy. The APPLEZ2:
diskette with the compiler and the include files

INITSEG. TEXT and ANALSEG.TEXT should be placed in drive 2.

S Appendix 3

prT

The APPLE1: diskette should be in drive 1 with the
SYSREL.TEXT file as that file name or the SYSTEM.WRK.TEXT
file along with the SYSTEM.LIBRARY file that contains the
Basics unit. The work file or text file is then compiled
normally. The compiler will go to the APPLEZ: disLette and
include the two separate segment text files when instructed
to by the INCLUDE option in the main program text file.

The names or the locations of the separate segment text
files are not critical, but the specification of the file
names on the include card must be exactly right:
VOLUME: NAME . TEXT or the compilation will not work. The
INCLUDE option is discussed in Chapter 4 on pages 63 and 64
in the Apple Pascal Language Reference Manual. The current
version of the Basics unit must be linked into the system
library or the compilation will not work. The RUN option
may be used to compile and run the main program.

Basics Unit.

The process for the Basics unit is completely normal
except for using the librarian utility provided on the
APPLE3: diskette.

Editing. The editing process is normal as the entire
text file will fit into the editor. Thg segment numbers
chosen for this unit do not conflict with any other unit;
care must be exercised if the segment numbers are changed

to insure that there is no conflict with system provided

segments. The Apple Pascal Language Reference Manual

6 ' Appendix I

discusses this point in detail in Chapter 5 on pages 76 and

77-
Compiling. The compilation process is also normsal, {

except that the RUN command should not be used because the
code file can not be executed until called by the ;ain
program. The compilation of a unit requires that the
compilier SWAPPING option be turned on. This allows enough
room in the computer for declarations but also slows the
compilation process down. This point is discussed in
Chapter 4 on page 68 in the Apple Pascal Language Reference
Manual.

Linking. The linking process is simple to execute but
possibly hard to understand. This guide will only present
the procedure, an adequate explanation exists in the Apple
Reference Manuals and Addendum. The procedure is easiest
with the updated BASICS.CODE file on the WORK: diskette.
This Diskette also contains the files OLD.LIBRARY and
NEW. LIBRARY. Thesé;three files are accessed by the
librarian utility to link the unit into a new library file.
The user must now EXECUTE APPLEI:LIBRARY.CODE. The program
will ask for output code file, reinsert the WORK: diskette
and respond WORK:NEW.LIBRARY. The program will then ask
for a link code file, respond with WORK:O0LD.LIBRARY.

Follow prompts and use the = command to link all source

slots of the old library into the same destination slots of

the new library. Now select a new link code file using the

7 Appendix I

N command and respond WDRK:BASItS.QODE. Link slot 1 into
slot 7 and slot 2 into slot 8. Now quit the librarian
program using the 8 command and ;h; <RETURN> command. The
NEW.LIBRARY file now contains an updated and linked version
of the Basics unit. The SYSTEM.LIBRARY file on th; APPLE1:
diskette must now be replaced by the WORK:NEW.LIBRARY file.
Once this has been accomplished the main program can be
compiled or executed. The details of the librarian utility
operation can be found in &he Apple Pascal Operating System

Manual in Chapter 8 on page 187.

Appendix 3

A3 1 IRAL L+ 0 R4 == ===

This section will discuss the internal contents of the
Basics unit. The topics will include unit structure,
constants, types, variables, and data structures along with
a8 discussion of each routine.

Structure. The structure of an intrinsic unit is very
regimented. A unit has four parts: a heading, an interface
part, an implementation part, and an initialization block.
The heading of the Basics unit turns the compiler SWAPPING
option on (required for all units), names the unit,
declares the unit as an intrinsic unit, and specifies the
segment numbers associated with the unit. The interface

»

part declares the units this unit uses, tr‘ global

constants, the global types, and the global variables the
main program will use to communicate with all other |

segments and the unit. The interface part also declares
all of the routines that are contained in the unit. The

implementation part declares any local structures to the

unit; the Basics unit has none. The implementation part
also contains the body of each of the procedures or
functions contained in the unit. The last part of a unit
is an initialization block; this block is empty for the
Basics unit. A detailed discussion of units is provided in
Chapter 5 on pages 75 through 81 in the Apple Pascal
Language Reference Manual.

9 Appendix 3

Constants. The Basics unit declares seven constants
that serve to size the entire program. The MAXX and HAXY.
constants are for the maximum X and Y positions allowed on
the graphics screen. These values should not be changed as
they are presently\set to allow the maximum usable-area on
the graphics screen.

The NREC, NSER, and NPAR constants control the nuaber
of nodes allowed in tbe grid, the maximum number of
components in a series structure, and the maximum number of
components in a parallel structure. These constants may be
adjusted by the user to suit the need. NREC is limited by
the amount of memory available or the product of MAXI & °d
MAXJ; memory currently allows for approximately 200 nodew
while the grid cauld accept up to 400 nodes. NSER is
limited to a single digit number. The single digit
limitation is derived from the method of inputting the
command parameter. This could be changed by adjusting the
input format of the commands for parallel and series. NPAR
is also limited to a single digit number but is used to
determine how many parallel links each node must have, thus
impacting the amount of memory each node must have. The

current value of NPAR is &, thus 6 words of memory are used

for the parallel links of each node, as each link uses a

word of memory.

R .

The MAXI and MAXJ constants determine the column and
row size of the reliability grid. These numbers may also
be adjusted to suit the users need. A single restriction
is that the MAXI value be 1 gre =r than the column size of
the grid to allow for an invisible terminal node. .Any
reference to grid size excludes the extra column that the
program actually needs. The minimum values should allow
for a 10 by 10 grid; the maximum size the program can
display at any one time. The current values of 20 by 20
allow for a demonstration of all of the program
capablities.

Jypes. Pascal allows the user to declare nonstandard
types to suit the programmers need and enhance sel#f
documentation. The Basics unit declares four new types:
NODEPTR, NODE, CRTCOM, and CHARSET. The NODEPTR type
defines variables that are used to paint to variables of
type NODE. The type NODE is a record data structure that
contains the information pertaining to each component. The
type CRTCOM declares the names of the variables that will
be used as console commands. The type CHARSET declares
variables that are of type SET OF CHARacter.

Variables. Pascal forces the programmer to declare
all the variables the program uses before any executable
statements of that block are compiled. Each block may have

its own variables, but they are local (in force) only in

that block or a subordinate block. Eight different types

11 Appendix 3

K

of glabal variables are declared for the progras.

The INTEGER type includes ICUR, JCUR, IMAX, JMAX, and
NODES. ICUR and JCUR correspond to the column and row of
the lower left grid postion in the current display. These
values are changed as user moves though the grid, ;nd then
are used to provide the starting position of the display.
IMAX keeps track of the rightmost column in the grid, while
JMAX keeps track of the highest row in the grid. NODES
keeps a running count of the number of nodes currently on
the grid.

The SCREENCOLOR type includes only COLOR. This
variable is used to indicate what color to draw the lines
connectin he components on the display. It is currently
set to Wh.

The CHARacter type includes ANS, LAB1, and LAB2. ANS
is a single character variable that is used to pick up
keyboard inputs and transmit them to the program. LABl1 and
LAB2? are also single character variables and are used to
provide the letters the autolabelling procedure uses for
component labels.

The BOOLEAN type includes AUTO and DATA. AUTO is a
true or false variable that is used to indicate the status
of the autolabelling option. DATA is used to indicate the
status of the reliability grid: true indicates ghe grid
contains data or the data was loaded from disk aﬁ&m?algg

e

indicates that the grid is empty.

12 Appendix 3

rr

TaeTRT e T

The REAL type only includes DREL. DREL is used to
contain the default reliability s:ected by the user.

Three arrays of dif erent .ypes are also declared.
CRTINFO is an ARRAY OF CHARacters indexed by the type
CRTCOM that contains the console commands. PREFIXED is an
ARRAY OF BOOLEAN indexed by the type CI.TLOM tnat determines
if the console command selected is prefixed by an escape
character; IJPOS is an ARRAY OF NODEPTR that will be
discussed as a data structure.

Data Structures. One type and one array serve as the
programs only data structures. The type NODE represents
each component. Each node is dynamically allocated as a
new component is defined. This methad uses a minimum
amount of memory for a given size grid. The record
structure used provides pointers for a forward and backward
link, FLINK and BLINK, and NPAR parallel links in array
PLINK. I, J are the integer grid column and row location
aof the component. IDI and ID2 are the two character
variables used for the component label. REL is a real
number for the component reliability. Each link needs a
single word of storage to represent any address in memory.
I and J need only half a word to represent a integer that
can be no larger than MAXI. ID! and ID2 need half a word
to represent a REL needs 2 words to réPresent a real
number. Thus, a node currently needs 12 words of memory.

This scheme could be changed by replacing the pointers with

13 Appendix 3

(I,Jd) grid locations to allow for staorage to disk and not
change the memory requirements of each node.

The array IJPOS serves as the other data structure.
This array, as sized by MAXI and MAXJ, provides the grid of
pointers that determine the location of each of th;
components. This structure could possibly be combined with
the record structure to make the disk to memory transfer a
simple task. This idea is left as a program enhancement,
which could discard the power of the dynamically allocated
scheme in favor of a static array structure losing a
substantial amount of the surplus memory avaliable for
other enhancements.

The Basics unit contains 9 general purpose routines, 6
display routines, and 2 cursor movement routines. The
display and cursor movement routines a~¢ edit segment
functions but are placed in the unit to balance the size of
the main program segments. The purpose of each routine
will be briefly discussed; study of the program listing of
each routine will provide the details.

CRY. The procedure CRT is used to carry out the
specified console command. This routine was borrowed from
the DISKIO program, which can be found on the Apple Pascal

system diskette APPLE3:.

14 Appendix 3

BACKUP. The procedure BACKUP is used to back the
character cursor up on either the text or display screen
depending on the option selected. This fuction enables the
back arrow key. This routine is a modified version of a
code sequence in the DISKIO program. .

GETANS. The function GETANS is used to obtain a
single character input from the user. The routine will
echo the input to the text or graphics screen depending on
the option selected. The routine also knows the only
possible answers and will cycle until a correct response is
obtained. This routine is also a modified version of a
routine in the DISKIO program.

GETSTR. The procedure GETSTR is similar to GETANS and
is used to obtain string input from the user. This routine
will also echo the input to the correct screen. The
original of this routine is found in the DISKIO program.

GETREL. The function GETREL is used to change an
input string representing a real number into a real number
represented by a variable. The function manipulates real
number input strings such as .7239 into the correct
internal representation between the values of 1.0 and 0.0.
All three of the GET routines are sophisticated and deserve

close attention.

DISPLAYAT. The procedure DISPLAYAT is used to

2 AL XY

communicate with the user on the display screen. The

routine can clear the message area before displaying

iS5 Appendix 3

b g ol e

b

depending on the option selected and can affect only a
limited portion of the message area if necessary.

INSTRUCY. The procedure INSTRUCT is used to enable
the <ESC> key to display the quick reference command list
on the text screen. The words always exist on the.text
screen, the routine just switches from graphics display
screen to the text screen to show them and then back to the
unchanged reliability display.

AUTOLAB. The procedure AUTOLAB is used to
automatically label a camponents ID if the autolabelling
option is on. The default is on, but can be changed during
program execution from the change menu.

INITNODE. The final general purpose procedure,
INITNODE is used to initialize each node as required. The
links are appropriately set, as are the reliability and
label. The I and J positions are also set according to
input parameters.

XPOS. The function XPOS is the first of the six
display routines and is used to determine the X coordinate
of the display screen position from the value of 1 for the
component. This routine is scaled to provide for 10
components horizontally. Each component needs 28 dots and

there are 280 dots available horizontally., The position on

the screen is based on the current value of ICUR.

16 Appendix 3

YPOS. The function YFOS is used as XPOS to determine
the Y coordinate. This routine is scaled to provide 10
caomponents vertically and a message area at the bottom of
the display. Each compor.ent needs 18 dots and there are
192 dots available leaving 12 dots for the message.area, or
enough for more than a line of text.

CHECKDIS. The function CHECKDIS is used to check if
the cursor component has been shifted out of the displayed
grid. If outside the display, ICUR and JCUR are adjusted
to center to current component and the function is set
true. The value of the function is used to determine if
the display should be changed. This routine i; used in
conjunction with DISPLAY to constantly keep the cursor
component on the displayed part of the grid.

DCOMPON. The procedure DCOMPON is used to display an
individual component in the mode sélected. This routine
provides the white on black or black on white components
for the display. It is called by the DISPLAY routine.

DISPLAY. The procedure DISPLAY is used to display the
grid on the graphics screen. The rautine displays the grid
starting from position (1,1). THis insures that all the
connecting lines will be displayed. The components do not
appear on the screen until the X and Y positions determined
from XPOS and YPOS routines are plottable locations for the

DCOMPON routine. This routine has two local procedures.

DEXTEND draws the line from the component being displayed

17 Appendix 3

e TR

to that components forward link. DASCEND draws the line
from the component being displayed to the highest component
that is in parallel.

POSITION. The procedure POSITION is the last display

routine and is used to display the current row and column
of the cursor component in the message area.

UPDOWN. The procedure UPDOWN is used to move the
cursor component up or down on the display grid depending
on the sign of the parameter. If no component is found at
that location the routine checks to the right and left to
find a target. If still unsuccessful the routine will move
ane row vertically towards the original component and try
again. This can cantinue until a target or the original
component is found.

LEFTRIGHT. The procedure LEFTRIGHT iz used in the

same manner as the UPDOWN routine but using horizontal

moves and checking above and below.

18 'Appendix 3

TR

—_—_e=2L R R —_—te mesxdLTs

The main program is divided into four parts: the
executive routine, the initialize segment, the edit
segment, and the analyze segment. The executive controls
the three segments; each segment is an independent
procedure that has its own executive and procedures. This
section will discuss the executive routine and then each
segment. The segment discussion will detail that segment’s
executive routine and procedures.

Executive

The executive routine is responsible for scheduling
the original order of the segments and then controls the
main menu. The first function is nothing more than calling
the initialize segment and then calling the edit segment.
The generate sequence is executed if the user does not have

data from disk and the edit sequence is executed if the

user loaded the reliability grid with data from disk.

‘Completing this task the executive routine becomes the main

menu, selecting the correct segment based on the user
input. The use of three independent segment procedures,
each with there own executive routine, has made the
operation of the main program executive very simple: the
selection of the next segment to be executed or program

termination.

19 Appendix 3

The initialize segment functions in two'wayss first,
to prepare the pragram for operation, and second, to allow
the user to clear the grid and begin a new problem. This
segment contains six procedures.]

Executive. The initialize executive routine serves
four functions. First, the GETCRT procedure is called the
first time the initialize segment is called. This
procedure determines the console commands. The option to
return to the main menu is defeated the first time.
Second, the global variables are all preset to their
defaults. Third, the defaults can be changed by the user
by selecting the correct option. And fourth, the data grid
is initialized or loaded from disk depending on user
selection. Control is then transfered back to the main
program.

GETCRT. The procedure GETCRT is used to determine the
console commands. The rnutine.accesses the Pascal
SYSTEM.MISCINFQ file for the characters used as console
commands. This file varies depending on the terminal
system connected to the Apple. This routine will read the
file for any type terminal and insure that the program has
the correct commands. The CRTINFO and PREFIXED arrays are
set to the appropriate values for use by the CRT procedure

of the Basics unit. This routine was borrowed from the

DISKIO program.

20 Appendix 3

PROGMPTAT. The procedure PROMPTAT is used to position
the text screen cursor at a particular line and then write
a line of text. This routine clears the keyboard buffer to
insure the user does not type ahead. This routine was

borrowed from the DISKIO program.
INTRO. The procedure INTRO is used to display the
general system information on the text screen and present

to the user as the program begins.

INITDISPLAY. The procedure INITDISPLAY is used to

initialize the data grid array 1JP0OS and preset the display
screen for use by the program. The first and invisible
last nodes are inserted in their proper places to start the
reliability grid.

GETDATA. The procedure GETDATA is not yet
implementedf This routine would be used to query the user
for the disk file from which to preload the reliability
grid. This stub is provided with all the linkage necessary
to operate in the program if this routine is implemented.

INFC. The procedure INFO is the last routine of the
initialize segment and is used to write the quick reference
command list to the text screen. This list is displayed by
the INSTRUCT procedure in the BASICS unit.

The edit segment has two functions: provide for the
generate and edit sequences. All of the data manipulation

occurs in the edit segment. This segment is by far the

21 Appendix 3

largest in the program and has 16 suhordinate routines.
Executive. The edit executive routine must insure a

generate sequence is initiated if the &ata grid is empty,

otherwise only an edit sequence éccurs. The generate

sequence is of the same form as the edit sequence. The

current grid is displayed with the menu and the user is
able to select a command. The generate sequence is limited
to the Plarallel, S)eries, L)abel and N)ext commands.
Completion of a generate sequence causes the edit menu to
be displayed with no change to the grid and the edit
sequence to be initiated. The full command set is now
available, R)emove, C)hange, and the cursor movement
commands, along with the @)uit command to return to the
main menu. Both sequences use this structure: check the
cursor component for a grid change and display the change,
highlight the cursor component and update the position
information, display the menu and wait for an appropriate
command, reset the cursor component and execute the
command, repeat until the Quit command is selected. Each
routine that has its own menu also functions in this same
basic manner. 1
LABLE. The procedure LABLE (sic) is used to input the
label and reliability for every component. The routine
interacts through the message area on the display screen
and the display changes immediately. The routine will

automatically label a component if the option is turned on.

22 Appendix 3

The routine converts the input string to the appropriate

internal representation. If only a <RETURN> is input then
the current value will be retained.

PARALLEL. The procedure PARALLEL is one of the
recursive pair of routines that generate the grid.. This
routine has its own executive and five subordinate
procedures: ERRORPAR, ABOVEPAR, CHECKPAR, SHIFTPAR, and
INSERTPAR. The executive and routines perform in the i
following fashion. First, CHECKPAR determines if the

commanded number can be input. The user hears two beeps if

this can not be done, the routine takes appropriate action ;

to complete the command. If no space is left the LABLE v
procedure is invoked and the procedure exits to the calling :
procedure. Second, ABOVEPAR allocates the amount of space
needed to complete the command. Third, CHECKPAR reduces
the amount to fit the available space and exits as in
CHECKPAR if no space is available. Fourth, SHIFTPAR
actually moves the components in the grid to make room for
the new parallel structure. Fifth, INSERTPAR is used to
place the possibly reduced amount into the grid. Finally,
the basic executive sequence with the menu of S)eries,
L)ABEL, or N)ext is executed with each inserted component
as the cursor component. The other half of the recursive

pair, SERIES, may now be called.

23 Appendix 3

SERIES. The procedure SERIES is the other half of the
recursive pair and is used to insert series structures into
the grid. The routine has an executive routine and three
subbordinate procedures: CHECKSER, SHIFTSER, and INSERTSER.
The executive and the procedures perform in the foilnuing
manner. First, the executive determines if a conflict
exists due to the commanded number. Second CHECKSER
pravides error checking as in the PARALLEL routine and
exits to the calling procedure if an error can not be
resolved. Third, SHIFTSER moves the components in the grid
to provide the needed space. Fourth, INSERTSER pufs the
possibly reduced number of components into the grid.
Finally, the basic executive sequence is executed with the
Plarallel, L)abel or N)ext commands for each component as
in the PARALLEL routine. The PARALLEL routine may now be
called recursively. The generate sequence alternates in
the above fashion between the PARALLEL and SERIES routines.
REMOVE. The procedure REMOVE is used to remove a
component from the grid. The routine is not very
sophisticated and as such the routine can only be used in a
certain sequence. To remove a series component, that
component must not be the first component of a series
placed in a parallel structure or the component that a
parallel structure terminates before. To remove a parallel

component, that component must a single component in

parallel with other single components and not the lowest

24 Appendix 3

component in the structure.

DEFAULT. The procedure DEFAULT is used to change to
default reliability. The input string is entered through
the display screen communication area and parsed to the
appropriate internal value and stored in the variagle DREL.
If <RETURN> is the oanly input, the value of DREL is not
changed.

CHANGE. The procedure CHANGE serves as a submenu for
the edit sequence to provide for the commands Plarallel,
S)eries, L)abel, D)efault, and T)oggle, along with @Quit to
return to the edit sequence menu. This routine takes.the
form of a basic executive sequence. The T)oggle command is
simply switching the boolean variable AUTO from true to
false or the reverse, thus controlling the autolabelling
option. This routine will automatically exit to the edit
menu after all but the T)oggle and D)efault commands.
Analyze Segment .

The analyze segment has three functions: calculate the
reliability of the grid, print a representation of the grid
to paper, and store the grid to disk. This segment has a
minimal executive that echos the choice made from the main
menu for one of the three functions. This structure

eliminates the need for a separate analyze menu. The

segment contains nine subordinate procedures.

25 Appendix 3

ANALYZE. The procedure ANALYZE is used to calculate
the reliability of the system on the grid. This routine
has thfee subordinate routines that recursively call one
another to calculate the reliability: ANALMULT, ANALSER,
and ANALPAR. First, ANALMULT is called by the anaiyze
executive sequence to start the process. This routine
multiplies the next structure in series by the current
reliability. If the next structure is a parallel
structure, ANALPAR is called to pravide the reliability of
that structure. ANALPAR in turn calls ANALSER to calculaie
the reliability of each series structure that make up the
parallel structure. ANALSER recursively calls ANALMULT to
multiply the structures in series together. This sequence
is repeated as many times as necessary to reach the right
most component in the grid. The ANALPAR routine is the
critical part of the process and is very sophisticated in
the manner of knowing when to close a parallel structure.
The resulting reliability is displayed in the message area.
The user can then print the grid by pressing the <RETURN>
key or any other key to return to the main menu.

PRINT. The procedure PRINT uses the routines 0OUT and
PAROUT to print a representation of the reliability grid to
a piece of paper. The result is (1,J) grid locations of
the components, the component reliability, and the

coﬁponents they are linked to and from. The analyze

routine can be called from this routine.

26 Appendix 3

STORDATA. The procedure STORDATA is the counterpart
of the BETDATA procedure and as such is not yet
implemented. The linkage for execution has been

incorporated into the program.

27 Appendix 3

PR

Main Program

INITSEG
GETCRT
PROMPTAT
INTRO
INITDISPLAY
GETDATA
INFO

EDITSEG

LABLE

PARALLEL
ERRORPAR
ABOVEPAR
CHECKFPAR
SHIFTPAR
INSERTPAR

SERIES
CHECKSER
SHIFTSER
INSERTSER

REMOVE

DEFAULT

CHANGE

ANALSEG
ANALYZE
ANALMULT
ANALSER
ANALPAR
PRINT
ouT
PAROUT
STORDATA

Basics Unit

CRT
BACKUP
GETANS
GETSTR
GETREL
DISPLAYAT
INSTRUCT
AUTOLAB
INITNODE
XPOS
YPOS
DCOMPON
DISPLAY
DEXTEND
DASCEND
POSITION
UFDOWN
LEFTRIGHT

28

Appendix 3

Program listing

Appendix A

T - e L R s

e T .

—— e e e Y

Basics Upit . . « -
Heading . « « « & & « &
Interface
Implementation . . .

General Purpose Routines

CRT . « ¢ 2 o = & o & =
BACKUP . . . « . . &
GETANS . . . =« &« o « « &
GETSTR . « « « ¢« « &« o« =«
GETREL . . . - -« .« « .« .
DISPLAYAT
INSTRUCT . . . « « « « .
- AUTOLAB . . - - . + o &
INITNODE . . « . « « . .

XPOS « v « o« « = = = «
YPOS v v v v o« = o = = =
CHECKDIS . . . « « - - .
DCOMPON . « + = « - - .
DISPLAY . « « = « « - =

DEXTEND . . - « - - .

DASCEND . . .
DISPLAY Main Body . . .
POSITION . . « « « - =

UPDOWN . . . -« . . « « =«
LEFTRIGHT « . .

Initialization

—_——rae el

Heading . . - « « « « &

EDITSEG = « « « =« « « = « .
LABLE . « « « « « « « -

ii

DONNCUNLUAAW

« 11
- 12
- « 12
-« 13
« - 14
.« - 14

« «» 10

Appendix A

Table of Contents

PARALLEL . . . « &+ o ¢ 2 ¢ o o a =« 2 =2 s o« s « « « 19
ERRORPAR . .« ¢ ¢ ¢ ¢ « =« 2 o 2 « a o s a » = » 19
ABOVEPAR & o 2 ¢ = o a s o = s o =« « « 20
CHECKPAR «c & & o o o s 2 & o« « o a = « 22
SHIFTPAR . . & o« ¢ ¢ o o o 2 2 s o a « o a » « 23
INSERTPAR . . . 2« ¢ v o «a o « =« 2 2 = a a s s« o 23

PARALLEL Executive + 4 4 &« ¢« o = ¢ = « « 24

SERIES . . . - & o o 4 o e 2 =« 5 a s = s s a = « « 25
CHECKSER . . . ¢ & & o ¢ v o o = a s s s a &« « 25
SHIFTSER . o« & o &6 &« ¢ o o o 2 « a o« a o « a « 26
INSERTSER & = v ¢ o o o 2 s s a o = a o« 26

SERIES Executive . . . ¢ &« ¢ ¢ o o o = o o s« o« « o« 27

REMOVE . . & & ¢ & 2@ 4 ¢ o 2 « o 2 o 2 2 s s « o« = 28

DEFAULT . . . & &4 4 = ¢ « 2 e a « s « =« «a « = = « 28

CHANGE &« & & & & 2o & 2 2 o 2 s = s s =« o« « 29

EDITSEG Executive . . . ¢ ¢ ¢ 2 ¢ o « s s s « = « 30
Generate Sequence . « « ©. ¢ 2 =« 2 2 s o » = « « 30
Edit Sequence« & & & & 4 4 4 4 s -2 e . 31

Main Program Executive & . & . . 32

INITHEG . & & o & =« 2o o ¢ 2 a o = o a o a s a « =« » o« 33
GETCRT - ¢« o =& o 2 e« ¢ e 2 o s = s 2 o s » s o « o« I3
PROMPTAT . . . & 2 o« ¢ = = s = s a » 8 = s s s « « 34
INTRO . . & ¢ 2 o o o = o = o 2 a2 «a s s« a s« « =« « 34
INITDISPLAY . & & o v 2 a o« 2 2 a s s a o o« = « « 35
BETDATA . . & = o« 2 o = s 2 s o s o« « a o =« s« o « 35
INFO & & & & 4 2o 4 o v = 2 2 2 o 2 2 =2 s a w s« =« « 36
INITSEG Executive . . 2« +¢ o o 2 o a o 2 o = o « « 37

Analyze Segment

ANALSEG . . &« & & & 4 & o @ =2 o o o a o a o « = « « « 38
ANALYZE . & o o o o o = o = o o o =« s = s« « « « « 28
ANALMULT . & & o v 2 o o = s 2 s« o s a s o« s« o« 39
ANALSER o o « o o = 2 ¢ « s a s« a =« &« « 39
ANALPAR & & 2 2 2 o o o 2 = a = « =« =« « 40
ANALYZE Executive . . & ¢ ¢ o o ¢ o« s o « o a o« = 42
PRINT . . . & & 4o o « o o a s 2 s =2 a a o « a =« « 43
OUT & & 2o o o o o 2 s s s s s = « = » s« = = o« « 43
PAROUT . & v« o = o o a o s » a o a =« o s s « « 43
OUT Main Body . . . ¢« ¢« ¢ o o &« 2 =« a =« a « =« » 44
PRINT Executive . & ¢ & & ¢ 2 o o « « « o o s « o« A8
STORDATA . . o o o o o a a2 e o = a s a s« o s s o « 47
ANALSEG Executive . . ¢ & o o o a « « = s o =« s « 47

iiid Appendix A

AD=A111 829 All FORCE INST OF -TECH WRIGHT=PATTERSON AFS OH SCHOO=—ETC #/6 9/2
ST[H R!LIA.!LITH A MICROCOMPUTER SOLUTION TECHNIQUE.(U)

WCI.ASS!F!ED VIY/M/OS/.ID-’

{
I

=.gi
L L
= e
a2s flie. me

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

UNIT DECLARATION BASICS UNIT
(X$S+%) (x COMPILER SWAPPING OPTION MUST BE ON Xx)
UNIT BASICS; INTRINSIC CODE 25 DATA 263

£ 3323232232338 23 3233282333223 38 833333323333 333 3333332224849

% . . %)
% THIS UNIT CONTAINS MANY OF THE SPECIAL PURPOSE %)
(¢ ROUTINES USED IN THE SYSTEM RELIABILITY PROGRAM. %)
(% 3)
x THE PROGRAM WAS WRITTEN BY CAPT DON TUROS %)

(¥ WHILE A STUDENT AT AFIT AS A THESIS EFFORT. SOME %)
(2 MATERIAL AND ALGORITHMS WERE BORROWED FROM EXAMPLES %)
(2 PRESENTED IN THE APPLE 1L PASCAL OPERATING SYSTEM x)
(* MANUAL. SPECIFIC MODULES ARE MENTIONED IN LINE. X)
(% %)
(G222t 223 333333333333 23233332333333233333 3383333843389

INTERFACE

uUses TURTLEGRAPHICS; (x FOR ALL GRAFPHICS Xx)

CONST MAXX = 279; (x MAX X SCREEN POSITION x)
MAXY = 1913 (*x MAX Y SCREEN POSITION x)

NREC = 1003 (¥ USER SET # OF NODES x)

NSER = 8; (x USER SET # IN SERIES x)

NPAR = 63 (¥ USER SET # IN PARALLEL x)

MAXI = 213 (¥ USER SET MAX COLUMNS %)

(¢ MUST BE # COL + 1 %)

‘MAXJ = 203 (x USER SET MAX ROWS Xx)

/ TYFPE NODEPTR = “NODEj;
; NODE = PACKED RECORD '
FLINK, BLINK : NODEPTR; :
PLINK : PACKED ARRAYCL1..NPAR] OF NODEPTRj
1,J s 1..MAXIs3
ID1,ID2 : CHARj;
REL : REAL;
END3;
CRTCOM = (EOS,EOL,UP,DN,RT,LT,LI); » 1
.CHARSET = SET OF CHAR;

VAR ICUR, JCUR, IMAX , JMAX ,NODES : INTEGERj;
IJPOS : ARRAYL1..MAXI,1..MAXJ] OF NODEPTR;
COLOR : SCREENCOLORj :
ANS,LAB1,LAB2 : CHAR;
AUTO,DATA : BOOLEAN;
DREL : REALj
CRTINFO : PACKED ARRAYLCRTCOM] OF CHAR;
PREFIXED : ARRAYLCRTCOM] OF BOOLEAN;

1 : APPENDIX A

UNIT DECLARATION BASICS UNIT

(2 GENERAL USAGE ROUTINES X)

PROCEDURE CRT(C : CRTCOM);

PROCEDURE BACKUP (OPT : INTEGER)j;

FUNCTION GETANS(OPT : INTEGER3; OKSET :CHARSET) : CHARj;
PROCEDURE GETSTR(OPT :INTEGER; VAR S:STRING; MAX: INTEGER);
FUNCTION GETREL(S : STRING) : REALj;

PROCEDURE DISPLAYAT(OPT : INTEGER; LOC: INTEGER; S:STRING)j
PROCEDURE INSTRUCT; :
PROCEDURE AUTOLAB(C : NODEFPTR);

PROCEDURE INITNODE(I,J : INTEGER; VAR C : NODEFPTR);

(& DISPLAY ROUTINES ¥)

FUNCTION XPOS(I : INTEGER) : INTEGER;

FUNCTION YPOS(J : INTEGER) : INTEGER;

FUNCTION CHECKDIS(OPT : INTEGER; C : NODEPTR) : BOOLEAN;
PROCEDURE DCOMPON(C : NODEPTR; MODE : INTEGER);

PROCEDURE DISPLAY;

PROCEDURE POSITION(C : NODEPTR);

(x CURSOR MOVEMENT ROUTINES x)

PROCEDURE UFPDOWN(J : INTEGER; VAR C : NODEPTR);
PROCEDURE LEFTRIGHT (I : INTEGER; VAR C : NODEPTR);

APPENDIX A

=

Y,

e i

GENERAL. USAGE ROUTINES BASICS UNIT f%

IMPLEMENTAT ION .

PROCEDURE CRTj .
(* BORROWED FROM DISKIO %) .
(¢ ACTIONS OCCURS AT THE CURRENT CURSOR POSITION &%) o
BEGIN :
IF PREFIXEDCLC] THEN UNITWRITE(1,CRTINFOCLI1,1,0,12)}
UNITWRITE(1,CRTINFOLC],1,0,12);
END;

PROCEDURE BACKUP; ' ;
(¢« OPT = 1 -> BACKSPACE ON DISPLAY %) ,5
(¢ ELSE -> BACKSPACE ON TEXT SCREEN %) ¥

BEGIN
IF OPT = O THEN
BEGIN
MOVETO(TURTLEX — 7,TURTLEY);
WCHAR(* *)3
- MOVETO(TURTLEX - 7,TURTLEY);
END
ELSE
BEGIN
CRTWUT);
WRITE(® *)3;
CRT(LT);
END3;
ENDs

3 APPENDIX A

BGENERAL USAGE ROUTINES BASICS UNIT

FUNCTION GETANSS

(* BORROWED FROM DISKIO %)
(* OPT = 1 -> ECHO TO TEXT SCREEN &%)
(* OPT = 0 -> ECHO TO DISPLAY 3
(¢ ELSE —=> NO ECHO AT ALL %)

VAR CH : CHAR;
600D : BOOLEAN;

BEGIN
REPEAT
READ (KEYBOARD,CH);
IF EOLN(KEYBOARD) THEN CH:=CHR(13)3;
G00D:=CH IN OKSET;
IF NOT GOOD THEN WRITE(CHR(7))
ELSE IF CH IN [’ *..7Z°] THEN
BEGIN
IF OPT = 1 THEN WRITE(CH);
IF OPT = O THEN WCHAR(CH);
END;
UNTIL GOOD;
GETANS: =CHj;
ENDg

4 APPENDIX A

GENERAL USAGE ROUTINES BASICS UNIT

PROCEDURE GETSTRj;

(¥ BORROWED FROM DISKIO %)
(¥ OPT = 0 -> OPERATE ON DISPLAY %)
(¢ ELSE ~> OPERATE ON TEXT SCREEN X)

VAR ANS : STRINGL11j;

BEGIN
S::”;
ANS: =" 7
REPEAT
IF LENGTH(S) = O THEN
ANSL11:=GETANS(OPT,[’ *..7Z",CHR(13)1)
ELSE
IF LENGTH(S) = MAX THEN
ANSIL11:=GETANS (OPT, LCHR(8) ,CHR(13) 1)
ELSE
ANST11:=GETANS(OPT,L’ *.."Z°,CHR(8),CHR(13)1);
IF ANSC11 IN [*..7Z71 THEN
S:=CONCAT (S, ANS)

ELSE
IF ANSL1] = CHR(8) THEN

BEGIN
BACKUP (OPT) 3
DELETE(S,LENGTH(S), 1)

END;

UNTIL ANSC1] = CHR(13);
END3;

] APPENDIX A

GENERAL USAGE ROUTINES BASICS UNIT
FUNCTION GETREL}

VAR I,J : INTEGERj;
RL 3 REAL;

BEGIN
RL3=0.03
IF SC[1]) = *1’> THEN
RL:=1.0
ELSE
BEGIN
:=POSC.”,5) + 13
J:=103
WHILE I < (LENGTH(S) + 1) DO
IF SILIJ IN [°0°..79%1 THEN
BEGIN
RL:=RL + (ORD(SC11) - 48) / J;
J:=J X 103
I:=1 + 1
END
ELSE
:s=LENGTH(S) + 13 1

Aainaleus,

ENDg;
GETREL:=RL;
ENDs

APPENDIX A

GENERAL USAGE ROUTINES

PROCEDURE DISPLAYAT;

BASICS UNIT

(¢ OPT = 1 - RESET GRAPHICS SCREEN MESSAGE AREA &)

BEGIN .
UNITCLEAR(1);
IF OPT = 1 THEN
BEGIN
VIEWPORT (LOC,MAXX,0, 10) 3
FILLSCREEN(BLACK);
PENCOLOR (NONE) ;
MOVETO(LOC,0) 3
VIEWPORT (O, MAXX,0,MAXY) 3
END3;
CHARTYPE(10);
WSTRING(S5) ;
END;

PROCEDURE INSTRUCT;
VAR ANS : CHAR;

BEGIN
TEXTMODE;
ANS:=GETANS (2, *..7Z2’1);
GRAFMODE 3

END;

APPENDIX A

GENERAL USABE ROUTINES BASICS UNIT

PROCEDURE AUTOLAB;

BEGIN
IF AUTO AND (C~.ID1 = > ”) THEN
BEGIN
IF LAB2 = *9° THEN
BEGIN
, LAB1:=SUCC (LAB1);
i IF LAB1 = *Z’ THEN LAB1:=’A’;
4 LAB2:="0";
ENDj;
LAB2: =SUCC (LAB2) ;
C~.1D1:=LAB1;
C~.ID2:=LAB2;
END;
END3;

TITIT: TN

3 PROCEDURE INITNODE;
VAR K : INTEGER;

- BEGIN
NODES:=NODES + 1;
NEW(C) 3)
C~.FLINK:=NIL;
C~.BLINK:=NILj;
FOR K:= 1 TO NPAR DO
C . PLINKEKIz=NIL;
C~.ID1:=* *3
C™, ID2:=> °;
AUTOLAB(C) ;
Cr.1:2=1I3
Cr.J:=J3
C~.REL3:=DREL; \
IJPOSLI,J1:=C;
IF NODES > NREC THEN
BEGIN
WRITE(CHR(7) ,CHR(7));
DISPLAYAT(1,0,’# OF NODES EXCEED MAXIMUM’);
ANS: =GETANS(2,[” *..7Z’1);
END3;
ENDs

APPENDIX A

. 2 i 5 B B 7 5 ANt £ 000 e) S b 7
i . - s
s A e e M

DISPLAY ROUTINES BASICS UNIT

FUNCTION XPOSj;
(2 ALLOWS 10 HORIZONTAL COMPONENTS ON SCREEN X)

BEGIN
XPOS:=(I-ICUR) £28;
END;

FUNCTION YPOS; *
(¢ ALLOWS 10 VERTICAL COMPONENTS ON SCREEN &)

BEGIN]
YPOS: =(J-JCUR) 218+18; i
END3; i

9 APPENDIX A

DISPLAY ROUTINES BASICS UNI1T

FUNCTION CHECKDISj
(¢ OPT =1 - FIRST COMPONENT —-> A NEW DISPLAY &%)

VAR 1,J : INTEGER;

BEGIN -
CHECKDIS: =FALSE3;
I:=C~.13;
Jz=C~.J3
IF ¢((I > ICUR + 92) OR (ICUR > I)) THEN
BEGIN
CHECKDIS: =TRUE;
ICUR:=1 - S
IF ICUR <= 1 THEN
ICUR:=1
ELSE
IF ICUR >= MAXI - 10 THEN
ICUR:=MAXI - 103
END;
IF ¢(¢(J >JCUR + 2) OR (JCUR > J)) THEN
BEGIN
CHECKDIS:=TRUE;
JCUR:=J - 53
IF JCUR <= 1 THEN
JCUR: =1
ELSE
- IF JCUR >= MAXJ — 9 THEN
JCUR:z=MAXJ - 93
END;
IF OPT = 1 THEN CHECKDIS:=TRUE;
END;

10 APPENDIX A

-

DISPLAY ROUTINES BASICS UNIT
PROCEDURE DCOMPON;

VAR X,Y,R : INTEGER;
RL : STRINGC21;

BEGIN .
PENCOLOR (NONE) 3
X:=XPOS(C~.I)
Y:=YPOS(C~.J);
IF Y < 11 THEN EXIT(DCOMPON);
MOVETO(X+3,Y) s
PENCOLOR(COLOR) 3
MOVE(21);
CHARTYPE (MODE) ;
MOVETO (X+8,Y+1);
WCHAR(C~.ID1);
WCHAR(C~.1D2) ;
MOVETO(X+8,Y-7);
:=ROUND (C"~.REL X100) 3
IF R = 100 THEN RL:="1 ~’
ELSE
BEGIN
STR(R,RL);
"4 IF R < 10 THEN RL:=CONCAT(’0”,RL)3; :
END;
- WSTRING(RL) ;
END;

11 APPENDIX A

DISPLAY ROUTINES

PROCEDURE DISPLAY;

NODEPTR;

VAR C :
I,J : INTEGER;

PROCEDURE DEXTEND(C : NODEPTR);

VAR NEW : NODEPTR;
X,Y,XNEW, YNEW : INTEGER;

BEGIN
X:=XPOS(C~.I);
Y:=YPOS(C~.J);
NEW: =C~.FLINKj
XNEW: =XPOS (NEW~. 1) ;
YNEW: =YFPQOS (NEW"~,J) ;
PENCOLOR (NONE) 3
MOVETO(X+24,Y);
PENCOLOR (COLOR) 5
MOVETO (XNEW-3,Y) ;3
IF YNEW = Y THEN
MOVETO (XNEW+3,Y)
ELSE
MOVETO (XNEW—-3, YNEW) ;
END;

12

BASICS 'UNIT

APPENDIX A

4T Po—r— e e . o

DISPLAY ROUTINES
PROCEDURE DASCEND(C : NODEPTR);
VAR MAX : NODEPTR;

J,X,Y,YMAX : INTEGER;
DONE : BOOLEAN;

BEGIN
MAX:=C3;
DONE:=FALSE
z=13
REPEAT
IF C~.PLINKLJ] = NIL THEN DONE:=TRUE
ELSE
BEGIN
IF MAX~.d < C*.PLINKLJJ}~.J THEN
MAX:=C~.PLINKLJ]1;
J2=J + 13
END;

UNTIL DONE OR (J = NPAR + 1):
IF J <> 1 THEN
BEGIN
X:=XPOS(C™.1);
:=YPOS(C™.J);
YMAX:=YPOS (MAX~.J) 3
PENCOLOR (NONE) 3
MOVETO(X+3,Y);
PENCOLOR (COLOR) 3
MOVETO (X+3, YMAX) ;
END;
END3;

13

BASICS UNIT

APPENDIX A

DISPLAY ROUTINES BASICS UNIT

(x DISPLAY MAIN BODY Xx)
BEGIN

INITTURTLE;
VIEWPORT (O, MAXX,11,MAXY) 3
FOR J:=1 TO JCUR+9 DO
FOR I:=1 TO ICUR+9 DO .
BEGIN
s=1JP0OSLCI,Jd1;
IF (C <> NIL) THEN
IF C~.ID1 <> ’%” THEN
BEGIN
DCOMPON(C,S) 3
DEXTEND(C) 3
DASCEND(C) ;
END;
END;
VIEWPORT (O, MAXX,0,MAXY) 3
ENDs

PROCEDURE POSITION;

- VAR IJ : STRINGL2]1;

' BEGIN

‘] PENCOLOR (NONE) 5

; CHARTYPE(10) 3
MOVETO(0,0) ,
Id:z=> 73 ;
STR(C~.J,1Jd);)
IF C*.Jd < 10 THEN IJ:=CONCAT(> *,I1J)s l
WSTRING(IJ) i
WCHAR(? /%) |
I1J:z=" 73
STR(C~.1,1Jd)3 :
IF C~.1 < 10 THEN IJ:=CONCAT(> °,1J);
WSTRING(IJ) 3
WCHAR(* ’)3

ENDg

14 APPENDIX A

MOVEMENT ROUTINES BASICS UNIT

PROCEDURE UPDOWN;
(2 J CAN BE POSITIVE FOR UP AND NEGATIVE FOR DOWN &)

VAR INEW, JNEW, INC : INTEGER;
DONE : BOOLEAN;

BEGIN
INEW:=C".1;
JNEW:=C~.J + Jj
IF JNEW > MAXJ THEN JNEW:=MAXJ;
IF JNEW < 1 THEN JNEW:=1;
(% POSITVE IF UP AND NEGATIVE IF DOWN x)
IF J > 0 THEN
INC:=1
ELSE
INC:z=-13;
DONE : =FALSE;
REPEAT
IF IJPOSLINEW,JINEW] <> NIL THEN
DONE:=TRUE
ELSE
IF INEW > 1 THEN
IF IJPOSTINEW-1,JINEW] <> NIL THEN
BEGIN
INEW: =INEW - 13
DONE: =TRUE;
END
ELSE
IF INEW < MAXI - 1 THEN
IF IJPOSLINEW+1,JIJNEW] <> NIL THEN
BEGIN
INEW: =INEW + 13
DONE:=TRUE;
END;
IF NOT DONE THEN JNEW:=JINEW — INC;
UNTIL DONE3;
C:=IJPOS[INEW, JNEW];
ENDs

15 APPENDIX A

MOVEMENT ROUTINES "BASICS UNIT

PROCEDURE LEFTRIGHT;
(%8 LEFT IS NEGATIVE AND RIGHT IS POSITIVE %)

1 VAR INEW,JNEW, INC : INTEGER;
DONE : BOOLEAN;

ey

BEGIN
E INEW:=C". I + I3
JNEW: =C"~.J3
: . IF INEW > IMAX—-1 THEN INEW:=IMAX - 1;
1 IF INEW < 1 THEN INEW:=13
; - IF 1 > O THEN
3 INC:=1
3 ELSE
1 INC:=—-13;
DONE: =FALSE;
REPEAT
IF IJPOSLINEW,JNEW] <> NIL THEN
DONE : =TRUE
ELSE
IF JNEW < MAXJ THEN
IF IJPOSLINEW,JNEW+1]1 <> NIL THEN
BEGIN
JNEW:z=INEW + 13
DONE: =TRUE;
- END
ELSE
IF JNEW > 1 THEN
IF IJPOSCLINEW,JNEW-11 <> NIL THEN
BEGIN
JNEW:=IJNEW — 13
DONE: =TRUE;
END;
IF NOT DONE THEN INEW:=INEW - INC;
UNTIL DONE;
C:=IJPOSLINEW, INEWI];
END;

(% UNIT INITIALIZATION PART)
BEGIN

(x NOTHING TO DO x)
END.

16 APPENDIX A

(58S+2) (%

EXECUTIVE

MAIN PROGRAM

TURN COMPILER SWAPPING ON FOR SYMBOL TABLE %)

PROGRAM SYSREL;

(SEBXABRRRBEBRRBLXERXAEIARXNER KR LSRR AL AR R ARK SRS E LR AR LK)

(%
(%
(%
%
(%
(%
(%
(%
(%
(%
(%
(2
(%
(%
(%
(x
(%
(%

%)

THIS PROGRAM PROVIDES THE USER WITH A TOOL TO X)
GENERATE, EDIT, ANALYZE, AND SAVE RELIABILITY %)
SYSTEMS. THE SYSTEMS CAN CONTAIN SERIES AND §)
PARALLEL COMPONENTS, EACH IDENTIFIED WITH A USER %)
SUPPLIED ID TAG AND A CONSTANT RELIABILITY. THE x)
PROGRAM WILL ALLOW A USER TO CONFIGURE A SYSTEM, %)

DETERMINE ITS RELIABILITY AND THEN CHANGE THE SYSTEM %)
A LA SENSITIVITY ANALYSIS TO DETERMINE METHODS OF %)
ENHANCING RELIABILITY OR REDUCING THE NUMBER OF ¥)

COMPONENTS FOR THE SAME RELIABLITY.

%)
%)

THE PROGRAM WAS WRITTEN BY CAPT DON TUROS WHILE %)

A STUDENT AT AFIT AS A THESIS EFFORT.

SOME MATERIAL %)

AND ALGORITHMS WERE BORROWED FROM EXAMPLES %)
PRESENTED IN THE APPLE 1[PASCAL OPERATING SYSTEM %)
MANUALL. SPECIFIC MODULES ARE MENTIONED IN LINE. 3

X)

(SEREEEXERKREEEE R ARARREAERREARKA R LR ERE AR KR KR LR X EXRL LK K)

USES TURTLEGRAPHICS,BASICS; (* GRAPHICS AND USER ROUTINES %)

(%81 APPLEZ2: INITSEG. TEXTX)

17

(¥ INCLUDE INITSEG HERE %)

APPENDIX A

EDIT SEGMENT

SEGMENT PROCEDURE EDITSEG(OPT : BOOLEAN);
(¥ OPT = TRUE -> THEN GRID HAS DATA IN IT
(& ELSE => NO DATA — RUN GENERATE

VAR C : NODEPTRj;
ANS,NUM : CHAR;
REM,NI : INTEGER;

PROCEDURE LABLE (C : NODEPTR):
VAR S : STRING;

BEGIN
DISPLAYAT(1,42,°LABEL ->7)3
IF AUTO THEN
AUTOLAB(O)
ELSE
BEGIN
DISPLAYAT(0,0,” ID = 7)3;
GETSTR(0,S5,2)3;
IF LENGTH(S) >= 1 THEN
C~.ID1:=S[11;
IF LENGTH(S) = 2 THEN
C~.1ID2:=SCL2]
ELSE
C~.ID2:=" ’3;
END;
DISPLAYAT (0,0, REL = ’);

%)

(X MAX LENGTH IS 7 DIGITS AND DECIMAL POINT x)

GETSTR(0,S,8);
IF LENGTH(S) > O THEN
C~.REL:=BETREL (S) 3
DCOMPON(C, S) s
END;

MAIN PROGRAM

PROCEDURE SERIES(VAR NI : INTEGER; C : NODEPTR) ; FORWARD;

18

APPENDIX A

Ll

EDIT SEGMENT MAIN PROGRAM

PROCEDURE PARALLEL (VAR NJ : INTEGER3 C : NODEPTR)j;

VAR I,J,NI NP, IHI, ILOW,JHI,JLOW,JLAP : INTEGERj;
TODO : ARRAYI1..NPAR] OF NODEPTRj;
ABOVE, DONE,FOUND : BOOLEANS
ANS,NUM : CHAR; .

PROCEDURE ERRORPAR3

BEGIN
IF C*.Jd = MAXJ THEN
BEGIN
(¥ NO ROOM IN COLUMN Xx)
WRITE(CHR(7),CHR(7))3
LABLE(C);
EXIT(PARALLEL);
END; i
IF C~.PLINKLINPAR]1 <> NIL THEN
BEGIN
(¥ NO PLINKS LEFT %)
WRITE(CHR(7) ,CHR(7))3
- LABLE(C) s
. EXIT(PARALLEL) ;
END
ELSE
BEGIN
NP: =03
WHILE C . PLINKINP+1]1 <> NIL DO NP:=NP + 13
IF NJ - 1 > NPAR — NP THEN
BEGIN
(X TOO MANY — REDUCE FOR PLINKS Xx)
WRITE(CHR(7) ,CHR(7))3
NJ:=NPAR — NP + 13

END;
END3;

|
19 APPENDIX A '

EDIT SEGMENT MAIN PROGRAM
PROCEDURE ABOVEPAR;
VAR NEW 31 NODEPTRj

BEGIN
J:=C~.J3
JLAP: =03
IHI:=C~. I}
ILOW:=C". 13
JHIz=C".J3
JLOW:=C".J3
ABOVE: =FALSE}
DONE: =FALSE ;
REPEAT
I:=C~.13
J:=J + 13
FOUND: =FALSE;
(% FIND FIRST COMPONENT ABOVE AND LEFT %)
REPEAT
IF IJPOSLI,.J] <> NIL THEN
FOUND: =TRUE
ELSE
Iz=I - 13
UNTIL FOUND OR (I = O)3;

20 APPENDIX A

EDIT SEGMENT MAIN PROGRAM

IF I = O THEN
DONE : =TRUE
ELSE
BEGIN
NEW: =IJPOSLI1,J1;
IF NOT ABOVE THEN .
(¥ DETERMINE HOW MUCH ROOM AVAIL %)
IF ((NEW~.I = C~.I) AND (NEW~.J = J)) OR
(NEW~.FLINK~.I > C~.I) THEN
BEGIN
ABOVE: =TRUE 3
JLAP:=C~.J + NJ - J;
JLOW: =J3
ENDj;
(% FIND RIGHTMOST COMPONENT TO MOVE UP %)
WHILE NEW~.FLINK~.J = J DO
NEW: =NEW". FLINK;
IF NEW~.I > IHI THEN IHI:=NEW".I;
' IF NEW~.FLINK~.I > C~.I THEN
4 BEGIN
JHI:=NEW"~.J3
; (%2 FIND LEFTMOST TO MOVE UP %)
i NEW: =1JPOSC1,J3;
' WHILE NEW~.BLINK~.J = J DO
{ NEW: =NEW~. BLINK;
‘ IF NEW~.I < ILOW THEN ILOW:=NEW~.I1j
END;
END;
UNTIL DONE OR (J = MAXJ);
ENDs;

EDIT SEGMENT MAIN PROGRAM
PROCEDURE CHECKPARj;

BEGIN
IF DONE THEN
(% NOT ENOUGH ROOM TO FIT ALL - REDUCE INPUT ¥)

BEGIN .
IF JHI + JLAP > MAXJ THEN
BEGIN
WRITE(CHR(7) ,CHR(7))3;
JLAP:=MAXJ - JHI;
:=JLAP + JLOW - C*.J3
END;
IF JHI + NJ - 1 > MAXJ THEN
BEGIN
WRITE(CHR(7) ,CHR(7));
NJ:=MAXJ — JHI + 13
END3;
END
ELSE
BEGIN .
IF (JLOW - C™~.Jd = 1) AND (JHI = MAXJ) THEN
BEGIN

(¥ NO ROOM PERIOD %)
WRITE(CHR(7),CHR(7));
LABLE(C);
EXIT(PARALLEL);
END;
IF ABOVE THEN
(x LIMITED ROOM — REDUCE &)

BEGIN
IF JHI + JLAP > MAXJ THEN
BEGIN
WRITE(CHR(7),CHR(7));
JLAP:=MAXJ - JHI;
NJ:=JLAP + JLOW - C~.J;
END;
END
ELSE
IF JLOW + NJ — 1 > MAXJ THEN
BEGIN

WRITE(CHR(7) ,CHR(7))
NJ:=MAXJ - JLOW + 13
END;
END3
END3;

22 APPENDIX A

EDIT SEGMENT

PROCEDURE SHIFTPAR;

BEGIN
FOR J:=JHI DOWNTO JLOW DO
FOR I:=ILOW TO IHI DO
IF IJPOSCI,J] <> NIL THEN
BEGIN
1JPOSCI,J+JLAP]:=1JPOSCI,J1;
IJPOSCI,J31~.J:=J + JLAP;
IJPOSLI,J2:=NIL;
END;
ENDj;

PROCEDURE INSERTPAR;
VAR NEW : NODEPTR;

BEGIN
NEW: =NIL;
INITNODE(C~.I,C".J+J-NP+1,NEW);
C™.PLINKLJ+1]1:=NEW;
NEW~.FLINK:=C™~.FLINK;
NEW~.BLINK:=C3;
TODOCJI-NP+2]:=NEW;
(% SET TOP COMPONENT FOR PRINTER %)
IF NEW~.J > JMAX THEN JMAX:=NEW".J;
END3

23

MAIN PROGRAM

APPENDIX A

PR NRRPRVS S ST TR

EDIT SEGMENT MAIN PROGRAM

(* PARALLEL EXECUTIVE ROUTINE %)
BEGIN
ERRORPAR;

ABOVEPAR;
CHECKPARS
IF JLAP > O THEN SHIFTPAR;

TODOC11:=C;3
FOR J:=NP TO NP + NJ — 2 DO
INSERTPAR;

FOR J:=1 TO NJ DO
BEGIN
IF CHECKDIS(J,TODO[LJ]) THEN DISPLAY;
DCOMPON(TODOLJ]1,10)3;
POSITION(TODOLJ 1) 3
DISPLAYAT (1,42, PARALLEL -> S#,L,N —-> 7)3;
REPEAT
(¢ PARALLEL MENU X)
NUM:="8"3
REPEAT
ANS: =GETANS(0,[°S’,’L’, N’ ,CHR(27) 1)
IF ANS = CHR(27) THEN INSTRUCT;
UNTIL ANS <> CHR(27); '
IF ANS IN [*S’1 THEN
BEGIN
NUM: =GETANS (0, [’ 2’ . .CHR (NSER+48) ,CHR(8) 1) 3
IF NUM <> CHR(8) THEN
NI:=0RD(NUM) - 48
ELSE
BACKUP (0) 3
END:
UNTIL NUM <> CHR(B):;
CASE ANS OF :
’S* : SERIES(NI.TODOCJ]1);
L” 3 LABLE(TODOCJID) s
END;
DCOMPON(TODOLJ1,5) 3
END;
END3;

24 APPENDIX A

L e G T oA

EDIT SEGMENT MAIN FROGRAM

PROCEDURE SERIESs
VAR 1,J,ILAP,NJ : INTEGER;

TODO : ARRAY(1..NSER1 OF NODEPTR;
NUM,ANS : CHARj;

PROCEDURE CHECKSER}

P BEGIN
IF ILAP + IMAX > MAXI - 1 THEN
IF C*.FLINK~. 1 — C~.1 = 1 THEN
BEGIN
(x NO ROOM AT ALL %)
WRITE(CHR(7) ,CHR(7));
LABLE(C) §
EXIT(SERIES);
END
ELSE
BEGIN
(x LIMITED ROOM - REDUCE x)
WRITE(CHR(7) ,CHR(7));
NI:=MAXI - 1 — IMAX + C~.FLINK™.I - C*.1I - 13
~ ILAP:=C~.I + NI — C~.FLINK~.I;
ENDs
END;

25 APPENDIX

EDIT SEGMENT
PRUCEDURE SHIFTSER;
VAR LAST : INTEGER;

BEGIN
LAST:=C~.FLINK".I3
FOR I:=1IMAX DOWNTO LAST DO
FOR J:=1 TO MAXJ DO
IF IJPASCI,J1 <> NIL THEN
BEGIN
IJPOSCI+ILAP,J1:=1IJP0OSLI,J];
IJPOSICI,J21".1:=1 + ILAP;
IPOSLI,J1:z=NIL;
END3
IMAX:=IMAX + ILAP;
ENDj;

PROCEDURE INSERTSER;
VAR NEW : NODEPTR;

BEGIN
NEW: =NILj3
INITNODE (C™. I+I-1,C~.J,NEW) 3
NEW™.FLINK:z=C"~.FLINK3;
IF NEW~.FLINK~.J = NEW™~.J THEN

NEW™~ . FLINK".BLINK:=NEW;

NEW".BLINK:=Cj;
C™.FLINK:=NEW;
TODOC I 1:=NEW;

END;

- 26

MAIN PROGRAM

APPENDIX A

EDIT SEGMENT MAIN PROGRAM

(x SERIES EXECUTIVE ROUTINE ¥x)

BEGIN
ILAP2=C~.1I + NI ~ C~.FLINK™.I3
(% POSITIVE IF COMPONENT OVERLAP %)

CHECKSERj; .

IF ILAP > O THEN SHIFTSER;

TODOL11:=C;3
FOR 1:= NI DOWNTO 2 DO
- INSERTSER;

FOR I:= 1 70 NI DO
BEGIN
IF CHECKDIS(I,TODOLI]) THEN DISPLAY;
DCOMPON(TODOCI1,10);
POSITIONCTODOLID)
¥ DISPLAYAT (1,42, SERIES -> P#,L,N -2> 7)3;
REPEAT
(x SERIES MENU Xx)
NUM:="6"3
REPEAT
ANS:=GETANS(0,[’P’,’L”>,’N*>,CHR(27) 1) ;
IF ANS = CHR(27) THEN INSTRUCT;
UNTIL ANS <> CHR(27);
IF ANS IN [’P’] THEN
BEGIN
NUM: =GETANS (0, [2” . .CHR (NPAR +3£) ,CHi 18) 1) 3
IF NUM <> CHR(8) THEN
NJ:=0RD (NUM) - 48
ELSE
BACKUP (0) 3
END;
UNTIL NUM <> CHR(8):
CASE ANS OF
P> « PARALLEL (NJ,TODOCI1);
’L” : LABLE(TODOLID);
END;
DCOMPON(TODOL1]1,5);
END;
ENDg;

27 APPENDIX A

EDIT SEGMENT MAIN PROGRAM
PROCEDURE REMOVE (VAR C : NODEPTR)j;
VAR K : INTEGER;

BEGIN
IF C*.BLINK~.FLINK = C THEN
BEGIN
IJPOSLC~.1,C~J1:=NIL3
C™.BLINK™.FLINK:=C"~.FLINKj;
END
ELSE
FOR K:= NPAR DOWNTO 1 DO
IF C~.BLINK*.PLINKIK] = C THEN
BEGIN
IJPOSLC*.1,C".J3:=NILg;
C~.BLINK~,PLINKCK]:=NILj;
END;
!, END;

PROCEDURE DEFAULT;
VAR S : STRING;

BEGIN :
DISPLAYAT (1,0, °CHANGE DEFAULT RELIABILITY = *)g;
GETSTR(0,5,8);
IF LENGTH(S) > O THEN
DREL : =GETREL. (S) ;
ENDs

28 APPENDIX A

EDIT SEGMENT MAIN PROGRAM
PROCEDURE CHANGE (C : NODEPTR);

VAR ANS,NUM = CHAR;
NI : INTEGER;

BEGIN
REPEAT
DCOMPON(C,10) 3
POSITION(C);
DISPLAYAT (1,42, CHANGE —> P#,S#,L,D,T,@ -> *)3;
REPEAT
(¥ CHANGE MENU Xx)
NUM:="6"3
(¥ INSURE SERIES TO ALLOW PARALLEL %)
REPEAT
IF (CH.FLINK™,J = C*.J)OR(C™.BLINK™~.J = C~.Jd) THEN
ANS:=P"*
ELSE
ANS: =75’
ANS: =GETANS (0, [ANS,’S”,”L’,’D’,”T”,”2° ,CHR(27) 1)}
IF ANS = CHR(27) THEN INSTRUCT;
UNTIL ANS <> CHR(27)3;
IF ANS 1IN [’P’,*8*3 THEN
BEGIN
IF ANS = P> THEN
NUM: =CHR {(NPAR+48)
ELSE
NUM: =CHR (NSER+48)
NUM: =GETANS (0, [*2*..NUM,CHR(8) 1) ;
IF NUM <> CHR(8) THEN
NI:=ORD(NUM) - 48
ELSE
BACKUP (0) 5
ENDs
UNTIL NUM <> CHR(8):
CASE ANS OF
’P* : PARALLEL (NI, C);

’S” ¢ SERIES(NI,C);
’L? : LABLE(C)g
’D” : DEFAULT;
’T? : AUTO:=NOT AUTO;
ENDj; .
UNTIL ANS IN [’Q°,°P”,7S*,°L’”1;

ENDs

29 APPENDIX A

EDIT SEGMENT

: (% EDIT EXECUTIVE ROUTINE %)
4 BEGIN
C:=IJP0OS(1,113
REM: =13
IF NOT OPT THEN
BEGIN
(¢ GENERATE SEGUENC
DISPLAY; :
DCOMPON(C, 10);
POSITION(C);
[) DISPLAYAT (1,42, GENERATE —-> P#,5% -> ’);
REPEAT
REFPEAT
i ANS: =GETANS (0, L[’P”,*8* ,CHR(27) 1)
' IF ANS = CHR(27) THEN INSTRUCT;
UNTIL ANS <> CHR(27);
IF ANS IN [°P*]1 THEN
NUM: =CHR (NPAR+48)
ELSE
NUM: =CHR (NSER+48) ;
NUM: =GETANS (0, [’ 2. .NUM,CHR{8) 1) ;
IF NUM = CHR(8) THEN BACKUP(0);
UNTIL NUM <> CHR(8B);
NI:=0RD(NUM) - 48;
CASE ANS OF
’P” : PARALLEL(NI,C);
S : SERIESINI,O);
END3;
END;

L2

]

30

MAIN PROGRAM

APPENDIX A

EDIT SEGMENT MAIN PROGRAM

A (¢ EDIT SEQUENCE %)
REPEAT

IF CHECKDIS(REM,C) THEN DISPLAY;
REM: =03
DCOMPON(C, 10) 3
POSITION(C); .
DISPLAYAT (1,42, EDIT -> R,C, I#,J#,K#,M#,H,Q > ’)s
REPEAT
(¢ EDIT MENU)
NUM:="46"
REPEAT
ANS31=CHR (27) 3
ANS: =GETANS(0,L[”R*,’C’,*1%,°Jd",°K’,"M’,”H’,’ Q" ,ANS1) §
IF ANS = CHR(27) THEN INSTRUCT;
UNTIL ANS <> CHR(27);
IF ANS IN £°1°,73”,°K?,’M” 1 THEN
BEGIN
NUM: =GETANS(0,[(*1°..79” ,CHR(B) 1) ;
IF NUM <> CHR(B) THEN
NI:=ORD(NUM) - 48
ELSE
BACKUP (0) 3
END;
UNTIL NUM <> CHR(8);
DCOMPON(C,5) ;5
CASE ANS OF

"I” 2 UPDOWN(NI,C);
’J” 3 LEFTRIGHT(-NI,C);
’K” : LEFTRIGHT(NI,C);
M’ ¢ UPDOWN(-NI,C);
’R* : REMOVE(C);
*C? : CHANGE (L)
"H> : C:=1JP0OS(1,1];
END3;
IF ANS = R’ THEN
BEGIN
REM:=1;

C:=C~.BLINK;
IF C = NIL THEN
:=IJPOSC1,11;
ENDs

UNTIL ANS IN [°@Q°1;
DATA: =TRUE;

END;

31 APPENDIX A

EXECUTIVE MAIN PROGRAM

(381 APPLE2:1 ANALSEG. TEXT®) (% INCLUDE ANAL SEGMENT HERE %)

(2 MAIN PROGRAM EXECUTIVE %)
BEGIN
INITSEG (TRUE) 3
EDITSEG (DATA) 3
REPEAT
(¢ MAIN MENU X%)
IF DATA THEN
BEGIN
DISPLAYAT(1,0,’-> E)DIT,A)NAL,P)RINT,S) TORE, I)NIT,@UIT?);
REPEAT
ANS: =CHR (27) ;
ANS: =GETANS (0, [’E’,’A”,*P*,?S*,”17,°Q° ,ANS1) ;
IF ANS = CHR(27) THEN INSTRUCT;
UNTIL ANS <> CHR(27);
END
ELSE
ANS:="E’}
CASE ANS OF

E” : EDITSEG(DATA);

A’ : ANALSEG (1)

P> : ANALSEG(2)3;

’S” : ANALSEG(3);

>I” = INITSEG(FALSE);
END3;

UNTIL ANS = *@°3

GOTOXY(0,0) 3

CRT(EOS) 3

GOTOXY(0,15) ; :
WRITELN(’MEMORY AVAILIBLE — °,MEMAVAIL);
END.

32 APPENDIX A

PP

INITIALIZE SEGMENT MAIN PROGRAM
4
(EEBEXUREXERREB L LA REEXRAEX AL R AR EX AR AR XKL XS R EE K EEK) L
(% - K)
(% THIS SEGMENT PROVIDES FOR ALL THE INITIAL- 1)
(2 IZATION OR CLEARING OF THE DATA IN THE GRID. %)
(x THE GETCRT PROCEDURE PROVIDES TERMINAL INDE- %)
(X PENDENT CONSOLE CONTROL. THE EXECUTIVE IS . %)
(% RESPONSIBLE TO FROVIDE ALL THE DEFAULTS THE %)

(% PROGRAM NEEDS. THE GETDATA STUB IS PROVIDE TO0 %)
(2 ALLOW FOR INTERACTION WITH A DISK FILE IN THE %)

(¥ FUTURE. x)

(% . %)

SEGMENT PROCEDURE INITSEG(OPT : BOOLEAN); 1
(x OPT = TRUE -> INITIAL TIME IN ROUTINE X)

(x ELSE —> REINITIALIZE POSSIBILITIES %)

VAR S : STRING;
ANS : CHARj;

PROCEDURE GETCRT;
(x CODE USED FROM DISKIO PROGRAM ¥)

VAR 1I,BYTE : INTEGER;
BUFFER : PACKED ARRAY[O0..5111 OF CHAR;
F : FILE;

BEGIN

RESET (F, ’ SYSTEM. MISCINFO’) 3

: =BLOCKREAD (F , BUFFER, 1) }
CLOSE (F) 3
BYTE:=0RD (BUFFERL721) §
CRTINFOCLI] :=BUFFERL&621: PREFIXEDLLI] :=FALSE;
CRTINFOCLEOS1: =BUFFERL641; PREFIXEDCLEOS1:=0DD(BYTE DIV 8)3;
CRTINFOLEOL1: =BUFFERL&651; PREFIXEDLEOL3:=0DD(BYTE DIV 4)3;
CRTINFOCRT] :=BUFFERL&661; PREFIXEDCRT] :=0DD(BYTE DIV 2)3
CRTINFOLUP] :=BUFFERL&67); PREFIXEDCUP] :=0DD(BYTE);
=BUFFER[&681; PREFIXEDILT1:=0DD(BYTE DIV 32);
=CHR(10); PREFIXEDLDN] :=FALSE;

CRTINFOLLT] :
CRTINFOLDN] :
END;

33 APPENDIX A

b hiotis Y k. PR ¥ OUPIE P g 2P SRR

INITIALIZE SEGMENT MAIN PROGRAM

PROCEDURE PROMPTAT(Y : INTEGER; S : STRING);
(¥ BARROWED FROM DISKIO &)

BEGIN
UNITCLEAR(1);
GOTOXY (0, Y);
WRITE(S);
CRT(EOL) ;

END;

FROCEDURE INTROj;

BEGIN
GOTOXY(0,0) s
CRT(EOS);
PROMPTAT (1, ’RELIABILITY SYSTEM GENERATION PROGRAM’)j
PROMPTAT (3, SERIES AND PARALLEL STRUCTURES ONLY?):
PROMFTAT(4,’A MAX OF &6 COMPONENTS MAY BE IN PARALLEL’)j;
PROMPTAT (S, ’ THE SYSTEM MAY NOT EXCEED A 20 X 20 SIZE’);
PROMPTAT (6, > 100 COMPONENTS MAXIMUM®);
PROMPTAT (7, CURSOR COMPONENT IS WHITE ON BLACK’)j
PROMPTAT (10, *DEFAULT FOR AUTOLABELLING IS ON’)j
PROMPTAT (11, DEFAULT FOR RELIABILITY IS 0.5%);
PROMPTAT (13,><ESC> TO SHOW INSTRUCTIONS’);
PROMPTAT (14,°< <— > WORKS FOR A MULTI-KEYSTROKE INPUT’)gs
PROMPTAT (15, *<RETURN> GIVES CURRENT VALUE FOR LABEL’);
PROMPTAT (17,°SINGLE BEEP — INPUT ERROR®);
PROMPTAT (18, >DOUBRLE BEEP — LIMIT ERROR’):
PROMPTAT (21,7 ANY KEY TO CONTINUE?):
PROMPTAT (22, ><RETURN> TO CHANGE DEFAULTS’)j;
IF NOT OPT THEN

PROMPTAT (23, <ESC> TO RETURN TO MAIN MENU’);
END;

34 APPENDIX A

INITIALIZE SEGMENT MAIN PROGRAM
PROCEDURE INITDISPLAY; i

VAR 1,J : INTEGER;
€ : NODEPTR;

BEGIN
C:=NIL3;
) INITTURTLE;
I VIEWPORT (O, MAXX, 0, MAXY) ;
COLOR:=WHITE;
DISPLAYAT (1,0, ’PLEASE WAIT — INITIALIZING SYSTEM’);
FOR I:=1 TO MAXI DO
FOR J:= 1 TO MAXJ DO) 1
IJPOSCI,J1:=NIL3 :
ICUR: =13
JCUR:z=13;
IMAX: =23
3 JMAXz=13
N | INITNODE(2,1,C) s
\ C~.ID1:="%"3
’ C*.REL:=1.03;
INITNODE(1,1,C~.BLINK)
C~.BLINK™~.FLINK:=C3;
2 ENDs

PROCEDURE GETDATAj
VAR ANS : CHARj;

BEGIN
PROMPTAT (15, ROUTINE NOT IMPLEMENTED®);
PROMPTAT (17, ANY KEY TO CONTINUE’);
ANS: =GETANS(1,[’ ’..7Z"71);
DATA: =FALSE}; ‘
INITDISPLAYS
ENDs

-

35 APPENDIX A

— ——————————y

INITIALIZE SEGMENT MAIN PROGRAM
PROCEDURE INFO3

BEGIN .
60TOXY (0, 0) 3 ﬁ
CRT(EOS) ; i
PROMPTAT (0, E)DITING PROCESS COMMANDS’) 3
‘ PROMPTAT (1, GEN P# —> # OF PARALLEL COMPONENTS’);

PROMPTAT (2, ’ S# -> # OF SERIES COMPONENTS®);
PROMPTAT (3, ’ L ~-> LABEL CURRENT COMPONENT’)j
PROMPTAT (4, ° N -> MOVE TO NEXT COMPONENT’);
PROMPTAT(S,’EDIT R -> REMOVE A COMPONENT’); g
PROMPTAT (b6, * C -> CHANGE A COMPONENT’) !
PROMPTAT (7, ’ P# -> AS ABOVE’);
PROMPTAT (8, * S# -> AS ABOVE’);
; PROMPTAT (9, ’ L -> AS ABOVE’);
F PROMPTAT (10, * D -> DEFAULT CHANGE’) 3
PROMPTAT (11, T -> TOGGLE AUTOLABELLING?);
] PROMPTAT (12, ° @ -> QUIT CHANGE’)3;
| PROMPTAT (13, ’ I#/M# —> GO UP/DOWN # LOCATIONS’);
g PROMPTAT (14, ” JH/K# -> GO LEFT/RIGHT # LOCATIONS’);
; PROMPTAT (15, ° H -> GO TO LOWER LEFT LOCATION’)j
: PROMPTAT (16,7 @ -> RETURN TO MAIN MENU’);
; _ PROMPTAT.(17, > A)NALYZE GRID RELIABILITY’); ‘
: PROMPTAT (18, >P)RINT GRID TO PAPER’);
PROMPTAT (19, °S) TORE GRID TO DISK’);
L PROMPTAT (20, 1) INITIALIZING PROCESS’);
i PROMPTAT (21, @) UIT PROGRAM®)3

? FPROMPTAT (23, ANY KEY TO RETURN?’) ;
END;

36 APPENDIX A

T

INITIALIZE SEGMENT MAIN PROGRAM

(8 INITSEG EXECUTIVE ROUTINE X)
BEGIN
IF OPT THEN GETCRT;
INTRO;
TEXTMODE ;
IF OPT THEN .
ANS:=CHR (1 3)
ELSE
ANS:=CHR (27);
ANS:=GETANS(1,L” *.."2°,CHR(13),ANS1);
IF ANS = CHR(27) THEN
BEGIN
GRAFMODE;
INFO3;
EXIT(INITSEG);
END3;

7 e s e o e

i DREL :=0.5;
LAB1:="A’3;
LAB2:=> /73
NODES: =03
AUTO: =TRUE;
DATA: =FALSE;

IF ANS = CHR(13) THEN
BEGIN ;
GOTOXY (0,0) 3
CRT (EOS) 3
PROMPTAT (15, AUTOLABELLING (Y OR N) = *);
AUTO:=(GETANS(1,L°Y*,>N”1) IN C°Y>1)3;
PROMPTAT (15, CHANGE THE DEFAULT RELIABILITY?’)j;
PROMPTAT (16, ENTER <RETURN> FOR NO CHANGE OR’);
PROMPTAT(17,”ANY # FROM 1 TO .0000 : REL = ”)3;
GETSTR(1,S,8);
IF LENGTH(S) > O THEN DREL:=GETREL (S)}
END;
GOTOXY(0,0) 3
CRT(EOS) 3

PROMPTAT (15, °GET DATA FROM DISK? (Y OR N) = *);
DATA:=(GETANS(1,L*Y?,’N”1) IN L’Y’1);
IF DATA THEN
GETDATA
ELSE
INITDISPLAY;
INFO;
ENDs

’ 37 APPENDIX A

ANALYZE SEGMENT MAIN PROGRAM

(SRR ERARSAERLXR AR RER KRR AR AR RS LR LR XKLL XXX L XX R KX)

(2 %)
(s THIS SEGMENT PROVIDES THE AUTOMATED L 3]
(¢ EQUATIONS TO DO THE RELIABILITY CALULATIONS. %)
' (% THE STORDATA STUB PROVIDES FOR THE INTERFACE TO %)
(¥ DISK THAT WILL BE IMPLEMENTED IN THE FUTURE., %)
(2 THIS ROUTINE ALSO PROVIDES THE PROCEDURE TO %)
(¥ PRINT THE SYSTEM TO HARD COPY. 3
(% %)
SEGMENT PROCEDURE ANALSEG(OPT : INTEGER);

(x OPT = —> CALL ANALYZE ROUTINE %)

(¢ OPT =2 -> CALL PRINT ROUTINE %)

(* OPT =3 -> CALL STORDATA ROUTINE Xx)

VAR REL : REAL;

PROCEDURE PRINT(OPT : BOOLEAN); FORWARD;

PROCEDURE ANALYZE(OPT : BOOLEAN);
(x OPT = TRUE ~> CALL THE PRINT ROUTINE x)
(¥ ELSE ~> CALLED FROM PRINT ROUTINE X)

VAR RL : STRING[43;
1,J : INTEGER;

PROCEDURF ANALPAR(VOR I,J : INTEGER3; VAR REL:REAL) ; FORWARD;

38 APPENDIX A

ANALYZE SEGMENT MAIN PROGRAM
PROCEDURE ANALMULT(VAR I,J : INTEGER3; VAR REL : REAL);

VAR R : REALj;
C : NODEPTR;

BEGIN
C:=1JPOS(I1,J1];
IF C~.PLINKL1]
BEGIN
(¥ NEXT IS SINGLE COMPONENT x)
REL:=REL & C~.REL;
I1:=C".FLINK"~. I3
J:=C~ . FLINK~.J3
END
ELSE
BEGIN
] (x NEXT IS PARALLEL STRUCTURE x)
r 4 (X ANALPAR UPATES I,J AND RELIABILITY %)
s=13
ANALPAR(1,J,R);
REL:=REL % R3
END3;
END3;

]

NIL THEN |

PROCEDURE ANALSER(VAR 1.,J : INTEGER; VAR REL : REAL);
VAR ROW : INTEGERj;

BEGIN
ROW: =J3
RELz=13;
(X ANALMULT UPDATES I,J AND RELIABILITY %)
REPEAT
ANALMULT (I ,J,REL);
UNTIL J < ROW;
END;

APPENDIX A

‘Pizgmgx,g:=“_,_,__.,....-u..—u---u--uuu—n---—-u--n-un—n---u-unuuuu

ANALYZE SEGMENT MAIN PROGRAM

PROCEDURE ANALPAR;

VAR SERREL : ARRAY[1..NPAR] OF REAL;
SEREND : ARRAYLC1..NPAR] OF INTEGER;
K,HI,NJ,ROW : INTEGERj; .
R : REAL;

C : NODEPTR;
DONE,CLOSE : BOOLEAN;

BEGIN
(x SERREL HAS SERIES RELIABILITY x)
(¥ SEREND HAS LAST SERIES COMPONENT LOCATION X)
HI:=I3
C:=1JPOSC1,J1;
I:=C*.FLINK". I3
J:=C*.FLINK"~.J;
REL:=C~.REL;
DONE : =FALSE;
NJ:=13
REPEAT)
(¥ CHECK FOR PARALLEL STRUCTURES %)
IF C~.PLINKINJY = NIL THEN
DONE: =TRUE
ELSE
BEGIN
SERRELI[NJ]1:=0.0;
SERENDLNJ J:==HI}
NJ:z=NJ + 13
END;
UNTIL DONE OR (NJ > NPAR);
NJ:z=NJ — 13

(% DETERMINE SERIES RELIABILITY %)
FOR K:=1 TO NJ DO
BEGIN
ROW: =C~.PLINKIK1~.J3
ANALSER (SERENDEK 1, ROW, SERRELLK1) 5
IF SERENDLK1 > HI THEN HI:=SERENDICKI;
END;

40 APPENDIX A

ANALYZE SEGMENT MAIN PROGRAM

(% DETERMINE PARALLEL RELIABILITY §)
DONE : =FALSE
REPEAT
C:=1JPOSCI,J1;
CLOSE: =FALSE;
FOR K:=1 TO NJ DO)
IF 1 = SERENDLK] THEN CLOSE:=TRUE;

(¥ CLOSE = TRUE —> CLOSE A PARALLEL STRUCTURE ©)
IF CLOSE THEN
BEGIN
R:=13;
(¥ DETERMINE PARALLEL BASE RELIABILITY x)
FOR K:=1 TO NJ DO
IF I = SERENDCK3 THEN
BEGIN
R:=R % (1 - SERRELIKI]);
SEREND(K1:=0;
END;
(¥ PARALLEL RELIABLITY EQUATION Xx)
REL:=1 - (1 - REL) % R;
IF I = HI THEN DONE:=TRUE;
END
ELSE
ANALMULT(I,J,REL)
UNTIL DONE;
END3;

41 APPENDIX A

———— e o

ANALYZE SEGMENT MAIN PROGRAM

(% ANALYZE EXECUTIVE ROUTINE %)
BEGIN

DISPLAYAT (1,0, PLEASE WAIT - ANALYZING THE SYSTEM’);
Iz=1;
Je=13
REPEAT
ANALMULTC(I,J,REL) ;
UNTIL X >= IMAX;
DISPLAYAT (1,0, >RELIABILITY =)3
(2 10000 TO GIVE 4 DIGITS »)
I:=ROUND(REL % 10000);
IF I = 10000 THEN
WSTRING(”1.07)
ELSE
BEGIN
STR(I,RL);
IF I < 1000 THEN RL:=CONCAT(O’ ,RL);
IF I < 100 THEN RL:=CONCAT(’0" ,RL);
IF I < 10 THEN RL:=CONCAT(’0’,RL);
WCHAR(’.%)3
WBTRING(RL) ;
ENDg;
IF OPT THEN
WSTRING(> — <RET> FOR FRINT?)
ELSE '
WSTRING(® — ANY KEY’)j;

IF (GETANS(2,[> *..°Z*,CHR(13)1) IN [CHR(13)]) AND OPT THEN

PRINT (FALSE) 3

END3

42 APPENDIX A

ANALYZE SEGMENT

PROCEDURE PRINT;
(¢ OPT = TRUE -> CALL ANALYZE ROUTINE *)

(¢ ELSE —> CALLED BY ANALYZE ROUTINE %)

VAR LEFT,RIGHT : INTEGER;
ANS : CHARj;
P : TEXT;
S : STRING;

PROCEDURE OUT(TOP,BOT,LEFT,RIGHT : INTEGER);
VAR I,J,K : INTEGER;

C : NODEFPTR;
B8 : STRINGIL81;

PROCEDURE PAROUT(OPT : INTEGER);

(¢ OPT = ODD -> FIRST LINK OF POSSIBLE PAIR
(x OPT = EVEN —> SECOND LINK OF PAIR
BEGIN
FOR J:=LEFT TO RIGHT DO
BEGIN

C:=13P0OSLJI, 113
IF C = NIL THEN
WRITE(P,B8)
ELSE
BEGIN
Ce:=C~.PLINKILIOPT];
IF C = NIL THEN

WRITE (P, BS)
ELSE
IF ODD(OPT) THEN
WRITE(P,’ ~’,C~.J:2,° *)
ELSE
WRITE(P,’ /?,C*.3:2,7 *);

ENDs
END;
END;

43

MAIN PROGRAM

¥)
X)

APPENDIX A

B

ANALYZE SEGMENT

(% PROCEDURE OUT MAIN BODY .%x)
BEGIN
BB'=, ,;
(2 WRITE — NO CR OR LF %)
(% WRITELN — CR AND LF x)
FOR I:=TOP DOWNTO BOT DO
BEGIN)
(X ROW/COL POSITION %)
FOR J:=LEFT TO RIGHT DO
BEGIN
C:=1JPDOSLJ, 113
IF C = NIL THEN
WRITE (P, B8)
ELSE
WRITE(P,’
END3
‘ WRITELN(P);
! (X RELIABILITY #.%88% ()
FOR J:=LEFT TO RIGHT DO
BEGIN
:=LJPOSLJ, 113
IF C = NIL THEN
WRITE (P, B8)
ELSE
WRITE(P,C~.REL:7:4,"’
END;
WRITELN(P);
(x ROW/COL OF FORWARD LINK %)
FOR J:=LEFT TO RIGHT DO
BEGIN
:=1JPOSCJI,I1;
IF C = NIL THEN
WRITE (P,B8)
ELSE
BEGIN
C:=C~.FLINKj;
IF C = NIL THEN
WRITE(P,B8)
ELSE
WRITE(P,’
END;

%’ ,C~.J:2,7/7,C~.1:2,°)3

,);

27 4C™uJ22,7/7,C™ 122,

END;
WRITELN(P)

a4

MAIN PROGRAM

,,‘

APPENDIX A

ANALYZE SEGMENT MAIN PROGRAM

(& ROW/COL OF BACK LINK %)
FOR J:=LEFT TO RIGHT DO
BEGIN
C:=1JP0OS(J,11;
IF C = NIL THEN
WRITE (P, B8)
ELSE
BEGIN
C:=C~.BLINK;
IF C = NIL THEN
WRITE (P, B8)
i ELSE
WRITE(P,” <’,C~.J:2,7/’,C™.1:2,"
ENDs
ENDs
WRITELN(P);
(X ROW OF PARALLEL LINKS - SAME COLUMN &)
K:=13
»’. REPEAT
IF K <= NPAR THEN
! PAROUT (K) 3
(2 CR BUT NQO LF FOR EVEN PLINK x)
(¥ CHR(13) ALWAYS HAS LF SO MUST USE »)
(2 CHR(141) IN PASCAL %)
WRITE(P,CHR(141));
IF K + 1 <= NPAR THEN
PARDUT (K+1) ;
WRITELN(P);
Ki=K + 23
UNTIL K > NPAR;
(2 BLANK LINE BETWEEN ROWS %)
. WRITELN(P);
END;
END;

’);

e

ANALYZE SEGMENT MAIN PROGRAM

(8 PRINT EXECUTIVE ROUTINE %)
BEGIN
REWRITE (P, ’ PRINTER: *) 3
DISPLAYAT (1,0, ”ENTER PRINT TITLE ~-> °);
GETSTR(0,S,20);
IF LENGTH(S) = O THEN
S: =CONCAT(’> TEST SYSTEM *);
IF OPT THEN
BEGIN
DISPLAYAT (1,0, ANALYZE SYSTEM (Y OR N) -> "); ;
ANS: =GETANS (0, L’ Y’ , "N’ ,CHR(27) 1) ; j
- IF ANS IN C°V’1 THEN .
ANALY ZE (FALSE)
ELSE
IF ANS = CHR(27) THEN
EXIT(PRINT);

END;
¥ DISPLAYAT(1,0,’PLEASE WAIT — PRINTING GRID”);
LEFT:=13
REPEAT 1
IF IMAX — 1 <= LEFT + 9 THEN
RIGHTz=IMAX — 1

ELSE
RIGHT:=LEFT + 9;
WRITE(P,’ RELIABILITY SYSTEM: ?48)s

WRITELN(P,” RELIABILITY = *,REL:27:4);
WRITELN(P);
OUT (IJMAX, 1,LEFT,RIGHT) 3
PAGE (P) 3
LEFT:s=LEFT + 103

UNTIL LEFT > IMAX — 13

CLOSE(P) ;3

END3;

46 APPENDIX A

ANALYZE SEGMENT MAIN PROGRAM

j

PROCEDURE STORDATAj; 7
VAR ANS 3 CHARj; :
w

BEGIN H
DISPLAYAT (1,0, ROUTINE NOT IMPLEMENTED -~ ANY KEY’); b
ANS: =GETANS (2,[> *..°Z°1); _ ;
ENDg ‘

(% ANALSEG EXECUTIVE ROUTINE X)

BEGIN : ;

REL:=1.0; : |
CASE OPT OF

1 ANALYZE (TRUE) 3

2 : PRINT(TRUE);
3

END3
END;

STORDATA; |

47 APPENDIX A

AAED i

s 2 o Y T — i prenbm e)

Donald R Turos, Jr was born in Cleveland, Ohio and
raised on the San Francisco peninsula. He attended the Air
Force Academy and received a Bachelor of Science in
Computer Science and his regular commission in the Air
Force on 1 June 1977. He served at the Tactical Fighter
Weapons Center Range Group, Nellis AFB, Nevada until
entering the Air Force Institute of Technology in June of
1980. During his tour at Range Group, he was responsible
for data reduction software for the Nellis Range Complex in

support of any range activity and, in particular the

Redflag exercises.

