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ABSTRACT OF THE DISSERTATION

Resonance Effects on Shoaling Surface Gravity Waves

by
Michael Harris Freilich

Doctor of Philosophy in Oceanography
University of California, San Diego, 1982

Professor Robert T. Guza, Chairman

Two nonlinear models describing the shoaling of unidirectional
surface gravity waves are developed. The models, based on variants of
the Boussinesq equations for a sloping bottom (Peregrine (1967)) are
cast as a set of coupled evolution equations for the amplitudes and
phases of the Fourier modes of the wave field. The models contain no

free or empirically determined parameters, and accept arbitrary, broad

banded (in frequency) inputs. Resonant and near resonant triad
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interactions across the entire wind-wave frequency band (0.05-0.25 Hz)
provide the mechanism for nonlinear cross spectral energy transfers
and phase modifications as the waves propogate shoreward through the
shoaling region (10 m - 3 m depth). A numerical code has been
implemented to integrate the coupled evolution equations.

A major field experiment designed to test the operational
validity of the models was undertaken in the summer of 1980. Dense
instrumentation of the shoaling region provided data on wave
parameters over a wide range of conditions. Three representative data
sets illustrating different initial spectral shape and subsequent
evolution are compared in detail to predictions of the shoaling models
and linear, finite-depth theory. The nonlinear shoaling models
accurately predict Fourier coefficients of the wave field through the
shoaling region for all data sets. Differences between the model
predictions can be related to differences in the linear dispersion
relations of the models. Slowly varying, linear, finite-depth theory
js found to be a poor predictor of Fourier coefficients in regions
where significant evolution of the power spectrum of sea—surfaée
elevation was observed, whereas the nonlinear models are good
predictors in precisely these regions. However, where such evolution
was not observed, linear, finite-depth theory is a superior predictor
of both spectral density and phases, thus verifying the validity of
the linear, finite-depth dispersion relation in at least some areas of
both frequency and physical space in the shoaling region. Nonlinear

models such as those derived here are necessary, however, to predict

Fourier coefficients over the broad range of wave conditions typically
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encountered.

Measurements of directional spectra at two depths are used to
partially explain coherence spectra between models and data. The
Maximum Likelihood Estimator directional analysis is also used to
indicate that seaward-propogating energy in the shoaling region is
probably less than 10% of incoming energy in the wind-wave band,
although precise limits await design and implementation of a special-
purpose, data-adaptive estimator.

Bottom slope is found to influence the nonlinear shoaling
transformation only indirectly. Finally, some simplifications to the

full, nonlinear models are suggested.




I. INTRODUCTION

As surface gravity waves approach a beach their shapes change
dramatically until, in most cases, they break. The aim of the work
reported here 1is to develop and test a model describing the
transformations that occur as a spectrum of surface gravity waves
propagates shoreward over a miidly sloping bottom. Although wave
breaking and subsequent surf-zone fluid motions are both visually
spectacular and scientifically important for such processes as
sediment transport, the present work will concentrate on the “shoaling
regior," defined here to be the area between approximately 10m depth
and 3m depth, outside and specifically excluding the break zone. On
typical Southern California beaches, this shoaling region has a
horizontal extent of 300 m to 1000 m. In order to be applicable to
field situations, any shoaling model must allow for a complicated wave
field characterized by a broad, arbitrarily shaped frequency spectrum.
In some areas, due to 1local beach orientation with respect to the
larger scale coastline or offshore topographic features, a realistic
shoaling model must also accommodate waves incident at a relatively
hich angle to the bottom contours at the outer edge of the shoaling
region. The models discussed here allow broad frequency spectra but
are restricted to waves almost normally incident on a beach with
straight, parallel contours. Results from a field experiment at a
site satisfying these requirements are used here to test the shoaling

models.

Linear theory has often been used as the basis for shoaling

wave models. Assuming that the nonlinear terms in the finite-depth,




inviscid, irrotational equations of motion and boundary conditions are
small, several authors (Hanson (1926), Friedrichs (1948), Stoker
(1957), for a review see Whitham (1979)) have found exact solutions
for the case where beach slope hx is given by h = Mw /2N, M and N
integers. For the physically interesting case of small bottom slope,
approximate (WKB) solutions have been obtained on the assumption of no
reflected energy. In these solutions, the wave locally satisfies
flat-bottom equations; slow changes in amplitude and phase due to
varying depth are obtained by satisfying solubility conditions at the
next order in an expansion in bottom slope (Chu and Mei (1970)). The
amplitude changes predicted by the WKB solution are of course equal to
those obtained by applying conservation of lowest-order energy flux to
the lowest order solution (Rayleigh (1911)).

Because of the 1linear nature of the governing equations,
solutions for motions with differing frequencies can be superposed to
satisfy any arbitrary conditions at a given on-offshore point. Slowly
varying, linear theory is roughly consistent with observations of rms
shoaling wave heights (to the 20% level), but some spectral features
are apparently due to nonlinear effects (Guza and Thornton (1980)}).
It seems intuitively clear that the processes immediately preceeding
wave breaking are essentially nonlinear. As there are well known
techniques for incorporating at least weak nonlinearity into a
physical problem, attention has naturally turned toward nonlinear
aspects of wave shoaling.

Considerable effort has been expended 1in attempts to use

Stokes-type perturbation expansions on the full, finite-depth




equations of motion and boundary conditions for waves over a sloping
bottom. (See for instance Skjelbrea and Hendrickson (1960), LeMehaute
and Webb (1964), Chu and Mei (1970).) With the exception of Chu and
Mei (1970) (who explicitly expand in terms of bottom slope), all
dependent variables are expanded in a small parameter (found to be
equivalent to the Ursell number ak/(kh)® ). Temporally periodic
solutions composed of the primary wave and its forced harmonics are
found, reducing to the classic Stokes (1847) solution for the case of
a flat bottom. The forced harmonics cannot grow to be large (or even
comparable) compared with the fundamental. Bottom slope is generally
considered to be of a higher order than that to which expansions are
carried, and thus WKB energy flux arguments can be applied as in the
linear theory. Solutions are steady in the sense that amplitudes of
the fundamental and harmonics would not change in the absence of the
sloping bottom,

The necessity of the Ursell number remaining small in order to
justify the 1low-order truncation of the series expansion is a
particularly stringent restriction for long waves in shallow water
characteristic of the shoaling region. The applicability of slowly
varying Stokes theory is thus suspect. Fortunately, shallow water
approximations to the equations of motion can be derived and have been
found to be considerably more tractable. In the 1limit of very 1long
waves in very shallow water, the classic shallow water equations
(Stoker (1957), Whitham (1979)) can be wused. Carrier and Greenspan
(1958) found. an exact solution of these equations for the purely

reflective problem of non-breaking waves on a sloping beach. However,




the Carrier and Greenspan solution suffers from restriction to very

shallow water in much the same way that the Stokes solutions are

essentially restricted to deeper water. Boussinesq (1871) derived a

set of evolution equations containing terms accounting for weak

dispersion due to finite depth and weak nonlinearity due to finite

- amplitude. Korteweg and deVries (1895, hereafter K-dv) followed with
4 a single equation describing a similar system supporting
, unidirectional wave motion only. Both Boussinesq and K-dV obtained
| exact solutions of their equations describing waves of permanent form
in water of constant depth.

Considerable effort in the last two decades has been devoted
by others to exploring the 1limits and applicability of these

i remarkable systems which not only admit exact, nonlinear, analytic

solutions, but also appear to be easily studied in Jaboratory wave

i ‘ tanks. Starting with Peregrine's (1967) derivation of Boussine;q‘s
",; equations for mild bottom slope, many authors have conducted extensive
ﬁ } experimental and numerical studies of the development and eventual
%’: fate of solitary and cnoidal waves over varying bottom topography (see
f*; Miles's (1980) review). However, because of the rather restricted
“g initial or boundary conditions required for the exact solutions of
e Boussinesq- or K-dV-type equations, it is not clear that detailed

studies of the behavior of these solutions will lead to a general

shoal ing model for surface gravity waves.

- S

Wave observations on open and partially sheltered coasts
confirm that the frequency and wavenumber spectra of sea-surface

elevation and horizontal velocity can vary appreciably on time scales
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of days, even when the area of interest »s not in an active generation
region. Although occasionally incoming vive energy is concentrated in
a narrow band of frequencies and directiuns analogous to the basically
monochromatic systems discussed above, most of the time the spectrum
is broad or contains multiple peaks (not harmonics). Following the
suggestion of Phillips (1960) that energy could be transferred between
deep water gravity waves of different frequencies and directions,
Hasselmann (1962, 1963, 1966) developed a model for such nonlinear
resonant transfers 1in a general, continuous spectrum of deep water
gravity waves. Much additional work followed on this essentially
statistical problem (Benney and Saffman (1965), Hewell (1968),
Willebrand (1975), Longuet-Higgins (1976), Hasselmann and Herterich
(1979)). Svch work has demonstrated that the quartet resonance
mechanism can indeed cause significant changes in the spectrum of the
wave field over distances of several hundred kilometers or more.
Importantly, although details of the evolution depend on the spectrum.

the models themselves do not require o specific initial spectral

shape. A major difficulty in the work has been the complication due

" to the presence of two asymptotic 1Yimiting procedures; one due to

perturbation expansions in small nenlinearity, and the other due to
the passage from discrete to continuous spectra.

Armstrong et. al. (1962) and Bretherton (1964) intrcduced the
ideca of "near resonance" in weakly nonlinear systems with discrete
spectra. Near resonant systems exhibit behavior similar to resonant
systems on moderate scales, but appear more Yike forced systems on

Tong scales. Mei and Unluata (1972) and Bryant (1973) demonstrated
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that Boussinesq-type shallow water equations for waves over a flat
bottom support neir resonance at second ({quadratic) order. Because
the near resonance in the equations occurs at lower order than for
deep water gravity waves, significant enerqy transfers and phase
modifications can take place 1in several indred meters rather than
hundreds or thousands of kilometers.

In Chapter II of this work we develop two nonlinear models for
the evolution of the wave field in the shoaling region, based on
sloping bottom Boussinesq-type equations. fhé mechanism for the
shoal ing transformation is seen to be triad near resonance across the
entire wind-wave frequency band. The models predict both cross-
spectral energy transfers and nén]inear phase changes. Chapter 111
describes a field experiment in which detailed measurements of wave
parameters were collected throughout the shoaling region.
Measurements are compared with model predictioas for a variety of wave
conditions in Chapter IV, and further discussion and conclusions

appear in Chapter V.
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IT1. THEORY

In this section we derive equations for the evolution of
amplitudes and phases of inviscid, irrotational, wind-waves
propagatina shoreward over slowly varying, impermeable topography.
These rate equations are a consequence of triad near resonance in the
governing, shallow water, Boussinesg-type master equations.

To Justify the use of shallow water equations, periodic
solutions are first found for the special case of linear waves over a
flat bottom of arbitrary depth. The Aispersion relation obtained
indicates that for motions 1in the wind-wave frequency band defined
here as 0.05-0.25 Hz, wavelengths are large compared with the water
depth almost everywhere in the shoaling region. This motivates the
derivation of a simplified set of nonlinear equations of motion valid
only for such long waves. Small amplitude solutions of these
equations yield a dispersion relation which is at most only' mticy
dispersive. We show that such a system supports triad near resonance.
Thus amplitudes and phases of lowest order solutions are oxpected to
vary slowly due to nonlinear wave-wave interactions. Two-scale
methods are used to solve the nonlinear, long wave equations; at
Towest order, the linear, flat-bottom dispersion relation is obtainec
as well as a relation between sea-surface 'elevation and velocity
potential. Carrying the solution to the next order yields equations

for the cn-offshore evolution of lowest order amplitudes and phases.
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The Equations of Motion

The equations of motion and boundary conditions for the one-
dimensional, irrotational motion of an inviscid, incompressible fluid

over an impermeable bottom are well known:

v2¢-= 0 -h(x)< z< n{x,t) (a)
= - =2 e b
¢, = -hyo, z = -h(x) (b) )
n, + (n¢,) -¢,=0 z = n(x,t) (c)
gn + ¢, +%(62 + ¢2) = 0z = n(x,t) (d)
2
where v2 = %;2 + %;2, -h{x) 1is the bottom, pn(x,t) is the free

surface, and ¢ (x,t) is the velocity potential. (See figure (1) for a
definitional sketch.) It is possible to nondimensionalize, expand, and
scale the system (1) such that the nonlinear terms in the surface
boundary conditions (l.c, 1.d) differ from the other terms by the
factore = (aoAg)/(4n2h3), where a, is a typical sea-surface elevation
amplitude, A, a horizontal scale of motion, and h, a depth. If € and

the bottom slope h, are small, then a solution of the lowest order

equations is

n = a cos(kx-ot) (a)
R R UCED) (b) (2)
o2.= gk tanh kh (c)

Evaluation of the dispersion relation (2.2) shows that in 10 m depth
(at the outer edge of the experimental shoaling region), even short

wind-waves of 4 second period have a wavelength greater than twice the
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| Definitional sketch and coordinate system
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water depth. Although the Stokes expansion used to obtain the

solutions (2) 1is correct for deep and moderate depth water (where

wavelengths are not much larger than the depth), it is clear that the
requirement that the Ursell number (-e¢) remain small will preclude

its use in shallow water except for the smallest amplitude wind-waves.

This severe constraint on wave'amplitudes can be relaxed if it
) {s assumed apriori that the depth 1is shallow. The derivations of
equations for finite amplitude Tong waves were originally based on
physical arguments (Boussinesq (1871), Korteweg and de Vries (1895))
and later put on firmer formal ground by Friederichs (1948) and Keller j
(1948). The more formal derivations begin by nondimensionalizing and
scaling the horizontal and vertical cocrdinates in (1) differently.

3 The dependent variables are then expanded in a power series in

(depth/waveTength)z, resuiting in two equations corresponding to the
boundary conditions (l.c) and (1.d), each with the two small
:;:1 parameters (hg/xg) and (a_/h_). Boussinesq's equations are then
obtained by retaining terms up to first order in each of these
vq parameters, thus modeling the effects of both weak dispersion and weak
‘ nonlinearity. These equations admit exact solutiaons corresponding to

~} waves of permanent form, the so-called cnoidal and solitary waves.

D Generalizations of the Boussinesq and K-dv equations to include the
effects of sloping bottoms were obtained by Peregrine (1967), Mei and

i LeMehaute (1966), Ostrovsky and Pe]ino@sky (1970), Grimshaw (1970),
and Johnson (1973). Svendsen and Hansen (1978) discuss the size (in
an ordered sense) of bottom slope for 'which the equations can be

expected to remain valid models of the physical system from which they

. .
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were derived. Although the solitary and cnoidal wave literature is
extensive, to our knowledge no analytic or numerical work has been
done pertaining to the transformation, on a sloping bottom, of
periodic waveforms of arbitrary spectral shape (within of course, the

bounds of long waves). We now give a brief derivation of the sloping

bottom Boussinesq equations, following Peregrine (1967) and Grimshaw-

(1870).

The independent and dependent variables in (1) can be

nondimensional ized and scaled by

>

g\ 2
- » o O . , o - P - o 0
X*= A X3 27 hOZ; t-= t; h-= hoz, $°=

2 ¢3 n"= an (3)
Y3h, /gh,

(where unprimed quantities are nondimensional), resulting in

Boy * 422 0 -h <z <an (a)
Bh. ¢, + ¢, = 0 z = -h (b)
Bn,+ Ban, 6, - ¢, =0 2 =an (c) (4)
Bn + Bn, *+ %Ba¢§ + %u¢§ =0 .z =an (d)
a=ag/h; 8= (h/1)? (e)

¢ is then expanded in the form
¢ = 40 + Boy + 820 + 0(83) (5)

with the forms of ¢o , ¢, , and ¢, obtained by substitution of the

expansion for ¢ into (4.a) and (4.b), yielding

12
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$0 = do(x,t) (a) J
01 =% 2%¢0,, - 2(do,h), (b) (6)
$2 = %T zl.%xxxx + % 23(M’xh)xxx +
1.3 -1 h2
2(5 h D0y xx % h (¢°xh)xx)x (c)
If the expansion (6) is then substituted into (4.c, 4.d), neglecting J

terms of 0Of ®8,0%,8%, then the system

n+ 4o, * % aleg,)? = 0(a8, a?; 82) (a)
ng + (o, ), + alnoy), + BLL 3 M0, ), + (7)
5(h2h  90,),} = 0(c?, a8, 8?) (b)

is obtained (Grimshaw (1970)). These are the sloping bottom variant
of Boussinesq's eauations for the surface velocity potential. By
repeated use of (5) and (6.a, 6.b), they can be transformed into
equations for any desired velocity pofentia] variable. For instance,

the average velocity potential is defined by

an

1 I olx, 2z, t) dz (a)
-h

¢"h+an

leading to (8)

= ¢g - % Boo, N2 + % Bhleg.h), + 0(82,a8) (b)

ol
1

(8.b) can then be inverted and substituted into (7); the resulting
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system (after considerable algebra)
- - 1,,—
ny by - % hB“xth)xx 5 Bt * (a)

al(e2) = aB, a2, g2
% a(e2), = 0(a8 82) (9)

ne + (NE), + (n8,), = O(a8, o2, §2) (b)

is equivalent to Peregrine's (1967) equations (13, 14). Returning to

dimensional coordinates, we obtain as our approximate equations of

motion for wind-waves in the shoaling region (dropping primes)

Y T Y2 -y Yy l
gn, * by *% (07 =% e M) -5 h%, . (a)

(10)
ng + (ho,), * (ne,), =0 (b)

As there are no explicit restrictions on their applicability,
a few comments are warranted. Firstly, equaiions (10) are good
approximations to the full equations (1) only for the case of 1long

vaves of moderate nonlinearity

O(hal)‘a) = O(aolho) << 1

In addition, even if these conditions on the parameters of the
solution are valid, the equations cannot be considered a valid wmodel
for all values of the independent variables; terms of formal order
((holkéu, {ao/ho)?, ... ) which were neglected in the equations may

have 0{(1) effects on the solution over nondimensional times and

distances O((h /A )% (a,/h)"2).  This s analcgous to the
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discrepancies intuitively expected between solutions of inviscid,

conservative, equations and the behaviour of “real" (nonconservative),

isolated, physical systems. The conservative equations are generally
derived by an ordering process (explicit or implicit) equivalent to
that shown above, with the viscous terns deemed to be of higher order.
Solutions of the conservative system will be apparently valid for all

values of the independent variables. In fact, we expect that the real

il A L. g

effect of the neglected viscosity will be to cause the isolated system
to lose energy to its surroundings, and thus eventually to “run down."

The details of the energy loss processes and their effects on the

system can never be inferred from solutions of the conservative

equations.

! Additionally, one can view fhe neglected terms as adding
errors of their order into any local solution. On ordering grcunds,
even exact solutions of the approximate equations cannot be expected
to be exact solutions of the full equations of mot}on obeyed by a real

% % system. It s thus wholly consistent with the derivation of

approximate equations to pursue approximate solutions (which have a

more obviously 1limited validity) in an attempt to model specific

“é | phenomena. This is true even when, as in the present case, exact

solutions of the approximate equations can be obtained for a limited *

class of initial or boundary conditions.
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A Consistent Shoaling Model

The equations (10) can be recast as a set of approximate
equations describing the spatial evolution of the Fourier modes of the
wave field. The resulting equations are valid for a wave field that
is everywhere periodic in time in a region of length L (large compared
with a wavelength, but not 1larger than the apriori limits on the
validity of (10) discussed above). 1In the following, the implicit
assumption 2B used in the derivations of (9) and (10) is made
explicit upon renondimensionalizing 'by the substitution B = pc
( p =0(1) is the inverse of the Ursell number, ¢ =h°3 koz/ao Y. Mild

and slowly varying bottom slope 1is made explicit by the assumption
3"h
ax"

h=h( a x); then =0(a" ). The equations in nondimensional form

then become

'+ 5 - Y ah%% T2) =
ne F by - 3 PaNT g a(¢,%), = 0 (a)
ry 6 = N
n, + (o,0), + a(n¢x)x 0 (b) (1)
on 05x3L, L<0(a?), a<<1 (c)

Before embarking on the protracted algebra required for a
perturbation-type solution of (11), it is instructive to investigate
the linearized form of (11) obtained by allowing a =0

¢ *n=0 (a)
(12)

n, + h;;x =0 (b)

This set 1{s just the linear shallow water equations for a flat bottom
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(Stoker (1957)). Periodic solutions of (12) of the form

n = a cos{kx-ot+a) (a)
| (13)
‘ , ® = Q sin(kx-ot+a) (b)

yield the relations

] Q = a/o | (a) (14)
; -k = a/h (b)

The linear dependence of k on o in the dispersion relation (14.b)
indicates the well known fact that linear, shallow water waves are
nondispersive, with all frequencies propagating at a uniform phase

speed that depends only on the (nondimensional) depth. This has

important consequences on higher order (in a) solutions of (11). At

ol b

next order, the nonlinear terms in (11) appear, and there arjses the

possiblity of either nonlinearly generated forced. waves or resonant

= triads. Which manifestation of the nonlinearity actually occurs
3{ depends on the form of the lowest order dispersion relation.

Second order, forced waves are due to nonlinear interactions
- among lowest order, free waves, resulting in time and space
L periodicities that are incommensurate with the lowest order diSpersion
{ ' relation. Forced wave amplitudes are constrained to be always small,
E | of 0(a). '

1f, however, nonlinear interactions between lowest order free
modes result in motions that satisfy the dispersion relations,

nonlinear resonance occurs. The requirement that nonlinear

L4
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interactions between lowest order modes result in resonant forcing is

expressed by the “resonance conditions"

* 0

I+

02 ~03 =0 (a)

(15)

I+

K1 £ Ry - Ky

i+

0 (b)
where each (o, k,) satisfies the Jowest order dispersion relation.
Clearly, if motion 1is unidirectional and the dispersion relation
relating |k | and o is Tinear, (15.a) and (15.b) are not independent
constraints. Under these conditions, -if one of (15.a) or (15.b) is
satisfied, then the other must be satisfied as well. Thus triad
interactions governed by equations (11) must be resonant. The
literature on resonances in general is extensive (for a review of
physically interesting triad resonancés, see Kaup et. al, (1979 a,b);
Hasselmann (1966) enumerates geophysical resonances; while Phillips
(1974) reviews resonances in waves in fluids.) The salient features
of the interactions are:
1) 0(1) energy can be slowly {on length
scales large compared with wavelengths)
transferred between interacting hodes;
2) Similarly and simultaneously, slow

phase shifts (equivalent to small

changes in the phase speeds) can

occur among the interacting modes.
The scales on which significant nonlinear energy or phase changes can
occur 1s approximately ( ot ), where o is the (small) measure of the

size of the nonlinear terms (Bretherton (1964), Phillips (1977)).

. .
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Bretherton (1964) and Armstrong et. al. (1962) used methods similar to
the two-scale technique of Krylov and Bogoliubov (see Minorsky (1974)
or .Cole (1968)) to obtain asymptotic solutions describing resonant
interactions. In the following, similar techniques will be employed

to derive approximate solutions of (11),

We expand the dependent variables ¢ , n in a power series in

¢=9tagyt ... (a)

(16)

n=mn tan + ... (b)

The solution will be caried only as far as the first term in each
expansion. Anticipating resonant interactions, we will allow

parameters of the solutions ¢1 . n, , to vary slowly with x.

Specifically, assume solutions of the form

41 = 7 Q. (x) sin(¥ (x)-0,t) (a)

m =g an(x) cos(vn(x)-ont). (b)

where o =rdo¢ and Q;, a, are functions of the slow space variable §=ax

(similar to h=h(ax)) such that

]+om“U (18)

The spatial phase function v (x} has both 0(1) derivatives
(corresponding to the basic wave motion itself) and higher order

derivatives (slow phase changes due both to the sloping bottom and to




the anticipated effect of resonant interactions):

%; wn(x) = kn(E) + ufn(i) + 0(e?) (a)
. : (19)
8 9 (x) = a d k(&) + 0(a2) (b)

When (17)-(19) are substituted into {11), the lowest order relations
(14) are obtained. Higher order solutions are more compactly pursued
if (1l.a, 11.b) are cross-differentiated and subtracted to eliminate

linear terms containing n:

_ - . - _
fiypt - Moy - 3 pmh2¢’1xxxt‘.t: *s °(¢1§)xt -

u = _ (20)
- 2 ah& Piyy - a(“¢1x)xx =0
Substitution of (17)-(19) into (20) yields at 0(a)
7 2 _ .2 .
Z {Qm;(3hkn on) + ann(3m<n€ + ZhEkn)} sin o+
2 _ 52y _ 1 r20 13,2
k {QnTn(3hkn dn) 3 ph annon} cos 9, + -
21

J% QJkam(kJ+km){‘ k. (o +0 ) + 9 (k +k )} cos(@ o ) +

L C.=k V{3 - - -
fgg qumkm(kj km % kj(cj om) + oj(kj km)} cos(ej om)

= 2(¢,)

where eq = (wq-'oqt) and = is the linear operator

-
t

= (& - _.3.)
( xat? 3X

If a1l waves are unidirectional, then (14.b) can be used to eliminate

e e o Rk S o
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k. The technique of Krylov and Bogoliubov, essentially a sclubility
constraint, requires that ¢, not contain time periodicities common to
¢7. Since the sums in (21) are taken over all {positive) frequencies,
¢, can thus be set identically equal to zero. Then, applying the
resonance condition (15.a) and making use of the fact that all

frequencies are harmonics of a small frequency ag ,

(3 .
g {20n5°§ + Qn( 1 o: H—)}swneﬂ + % Qno§{2Tn-%p/F og}cosen =
3 -
.3 2 .
' [(h) ‘Ij::}'; {QJQ(n‘j) OJ-O(n_j) 0’% Sln(ej+9(n_j))} (22)
. 5 .
- 3my 2 55 (0.9 0.0\ 02 sin(0.-0,. )
3 5% 1%%G-n) %5%(3-n) “n 57%(3-n)’}

Expanding the arguments ejx e} )’ adding and subtracting wn’ and

+(n~j
equating 1ike frequencies, two evolution equations for each mode are
obtained:
h 3
K 3y 2 sin(rore,  1ov ) 4
= - — + . ol ® . . Ve -
e = Nkt %508 °5°(n-3)""" 5 (n-3)"¥n

3 (a)
3py 2 Cves
f %9(5-n) € M) 7 039(5n) TN ¥5 (5 ny )

(23)
Q.Q . 3 .
1 J (n"J) 3 ’7‘
To =g eMon - 3 G " ogo(n.g)leos ¥ ¥ ng) ) -
%%s-n) 5, 3 (&)

7
{ g(h) oja(j_n)}cos(wj-v(j_n)-wn)

J Q,

21
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The problem is thus reduced to solving the system (23) of coupled,
first order, ordinary differential equations for modal amplitudes and
phases.

If it is assumed that all energy in the shoaling region is
propagating shoreward (thus specifically neglecting reflection in the
shoaling region), knowledge of the Fourier coefficients of sea-surface
elevation and velocity potential at a single on-offshore location
provides a sufficient boundary condition for solution of the evolution

equations. Boundary conditions of the form

¢:(0,t) = e cos(An+ ont) (a)
(24)
n;(0,t) = % a; cos(An+ cnt) (b)
cn = nAo

are used to set the integration constants Qn(O), ¥,(0). The golution
® =¢;+ 0(a?) is a first order solution uniformiy valid over the
horizontal extent 0 < x <L, L <0(a"2), For larger values of x,
the cumulative effects of the neglected derivative terms 925 [ 3 ] s
n >2, are expected to invalidate the solution, Furthermgie, terms of
this formal order have been omitted from the basic equations (9, 10)
so that higher order solutions are pointless unless higher order
versions of (9, 10) are properly derived.

Sowme physical meaning can be given.each of the terms on the

RHS of (23.a,b). The first term of (23.a) has the form of “"linear

shoaling,” that is, the result due to a WKB solution of the 1linear

equations (12) on a mildly sloping bottom. It is present due to the

22




assumption that bottom slope is O(a). If bottcm slope was deemed of
higher order, the term would not appear in these equations, but it
would appear in exactly the same form in a higher order solution.

The first term of (23.b) models the effect of O( a )
dispersion. The term represents an increase in phase speed that is
dependent weakly on depth and strongly on frequency, and is precisely
the first correction to an expansion of the linear, finite-depth
dispersion relation (2.c) for small kh.

The remaining terms in (23.a, b) are due to nonlinear,
resonant triad interactions. Since they are a sum over all possible
interactions 1in which a given mode can participate, they represent the
net rate of change of modal amp]itude and phase. Viewed
heuristically, a mode can be simultaneously participating in one triad
in which it is gaining energy and in another in which it is losing
energy. The ordering criterion of slow modal amplitude and phase
changes must be satisfied for both the net changes ;nd each findividual
triad interaction. Each of the interaction terms is composed of a
quadratic product of amplitudes, a coupling coefficient, and a
trigonometric term whose argument is a function of spatial phases
only. In the case of phases (23.b), the terms are further divided by
the amplitude of the mode of interest. Phases thus have “amplitude
inertia" in that small amplitude modes will tend to experience larger
phase shifts due to nonlinear interactionS than will larger amplitude
modes (all else remaining equal). Note that if the dimensioniess

amplitude of any mode starts and remains small (0(a)) for many

interaction lengths, the formal ordering scheme is technically
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violated. Such a situation occurs for initial conditions described by
narrow-banded power spectra. In such cases, models similar to (23)
predict only small, nonlinearly-induced changes in the amplitudes and
phases of modes whose frequencies are not near harmonics of tie
spectral peak. Although inclusion of such modes in 0 @ ) rate
equations such as (23) is not justified, comparisons between measured
data and the formally inconsistent predictions of (23) are seen to be
remarkably good (cf. section 5.2.2).

The coupling coefficients do- not depend on either the
amplitudes or phases of the interacting waves, but are functions (in
general) of their frequencies, wave numbers, and the local depth. For
a given resonant triad, the value of the coupling coefficient
increases with decreasing depth.

The trigonometric term modulates the amplitude and phase
changes according to the relative spatial phases of the three waves in

a given triad. At a position x=D', the relative pﬁase can be written

- g._- L4
3% Yn-g) " Y T L@ Yegneg) T ) X7

vj(o) * V:(n-j)(o) - v, (0)
Using the definition (19.6) and the dispersion relation,
D' )
"j % wt(n'j) - ‘Pn\= 6 G(TJ. + Ti(n‘j) - Tn)dx +

(25)
(¥;00) £ v, 5)(0) - ¥ (0))

The importance of nonlinear phase changes over large distances is

manifest in the integral on the RHS of (25 ). Although the integrand

is formally O( o ), if D' is O(a”!), the integral contributes an 0(1)

24
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amount to the relative phase. This affects both the magnitude and
sign of the amplitude and phase changes undergone by the interacting
waves. Effects of the 1linear dispersion term 1in (23.b) are also
expressed through the trigonometric modulation terms. Dispersion
causes the phases of higher frequency modes to change more quickly in
X than those of low frequency modes (independent of nonlinear
interactiéns). The relative phase of a triad containing high
frequency modes will thus oscillate more rapidly than one containing
only low frequency modes. Consequently, the value and sign of the
trigonometric term will change more quickly, and net (over a distance

D'< L) energy transfers and phase modulations will be smaller.
An Alternate Shoaling Model

The dimensional equations {10) can also be nondimensionalized

and scaled by:

‘= . ‘= h . ‘= . ‘= . ‘=
x“=h x; .t /'50 t; n=agn; ¢ a°¢§ﬁg¢, h-=h h  (26)

yielding:
ry 2 - ry _Y o =
Ot % e(¢x)x MM ehhg xxt =3 Mot =0 (a)
(27)
ng +eh. ¢ + heyy + €lnd,), =0 (b)

where ¢ = aO/ho << 1 and bottom slope is 0(c). This set of equations,
used by Mei and Unluata (1972) (the nondimensionalization and scaling

was apparently used implicitly by Peregrine (1972) in deriving his




“linearized Boussinesq equations”) has only the nonlinear terms

explicitly small; the dispersive term % h? %,

0(1). The equations for € = 0 yield the counterpart of (14),

wxxt is formally

Q= ’;%z (a)
(28)
k=% (1- %-hozr’ﬁ (b)

The wave number k is no longer a linear function of ¢ . However, if

% h ¢2 << 1, (28.b) can be expanded and truncated to
k=-2—(1+1ho?+ 0(h2a%) )
/h 6 g

and the 1leading term 1is just shallow water dispersion. In terms of

dimensional coordinates, the restriction of
% ho? << 1

is not very severe for the physical shoaling problem. % ha? =0.3
corresponds to wave period about 6 seconds in 10 m depth, 4 seconds in
5 m depth, and a value of (depth/wavelength)2 ( g of the previous
discussions) of about 0.04. Thus although the system (27) formally
has lowest order dispersion, for the wavelengths and frequencies
encountered in the physical shoaling problem, the dispersion is mild.
In the following, we will ignore the formal ordering problems
associated with the fact that, with the present scaling, realistic
values of ¢ and k will be small and will wuse the full dispersion
relation (28.b). Similar selective failure to neglect formally high

order terms is not uncommon in the )iterature {eg. Grimshaw (1970) and

Bryant (1972)), and occasionally has led to erroneous conclusions (cf.

26




.r-!rllllllii-ii....,.___;;n_“H

3

27

Johnson's (1973) comments regarding Grimshaw (1970)). In Chapters IV
and V we will present experimental evidence that suggests that the
major differences between a shoaling model (30) (derived from
equations (27)), and the model (23) (cerived from (9)), are
attributable to differences 1in 1linear dispersion relations. WKB,

finite-depth, linear theory will be seen to yield the best predictions

of power spectra and average phase in the "linear" regions of physical
and frequency space where differences between the two nonlinear models i
are most apparent. As the 1linear dispersion velation (28.b) is a »
better model of the finite-depth relation (2.c) than is (14.b),
equations (27) will in fact be seen to provide a slightly better model

for predictions of power spectra of sea-surface elevation than the

F ' more consistent equations (9).

Bretherton (1964) showed that a system such as (27), with only
mild dispersion, can be treated analytically by the methods qescribed
earlier for exactly resonant systems. Monotonic bispersion prohibits
(in general) any triad from satisfying both resonance conditions (15)
exactly. However, if the dispersion is mild, (15) can be satisfied
with only small error by some triads. The conditions for this “near

resonance” are:

.“.‘Oli02=03+60 (a)
1k tk =Ky + 8 (b) (29)
s 1. 13,1 = ofe) (c)

The formalism of (16)-(23) can be easily carried through (in the

present case, §, =0); the resulting evolution equations are:




T

23

2 2
) ann hg(3°n -1)

he T T e * I Q05 € () sinlryre g)-n) ¢
n
- ] (a)
;_:% Q;Q(;5.n) & (3on) sinfys-ves yov)
(30)
T H—‘Ml ¢*(3un) cos(yhv(_5)-ty) -
n
(b)
nggj-n[ -
§ e (3.n) cos(¥y-¥(y -y
n
; + .
| where £8(3.) = Ky gy (kytkygg) 0 50 5; (K5*e(n-g)) * % o}

(Equation (30) can be simp]ified and the coupling coefficients made
symmetric by omitting terms of O( &, =€).) The physical explanation
of most terms is the same as for equations (23). However, (30.b)
g lacks a linear phase shift. The effect is modeled, in this case, by
the 0(1) dispersion through the dispersion relation relating k to

o . The relative phase terms now have argument

; D' .
wj: Y52 ¥ 4) "% " é (k % k+(n i) - k,)dx +
"‘ D'
- Fe(T, &1

- T, )dx +(w (0) + Vz(n-j)(o) - ¥.(0))

By (29.b) above, (kj*k+n J-kn) =0(e); on a flat or mildly sloping

bottom where the wave numbers are only slowly yarying functions of x,

N
—

L3

i

a
e




ey T e TR A

the effect of the mismatch in the resonance condition is to introduce
slow changes 1in the relative phase of the triad similar to the linear
phase shift term in (23.b). The larger the mismatck, the more rapid
the phase oscillations. Since the deviation from linearity of the
dispersion relation (and hence the mismatch) is more pronounced at
high frequency, the net energy transfers and phase changes are small
for triads containing high frequency waves. It is thus reasonable to
suppose that a high frequency cutoff in the sums (17) is possible; as
long as it is sufficiently high, the exact cutoff frequency is not
critical (Bretherton (1964)). Of course, as depth decreases, the
waves become more nondispersive in character, In the 1limit of
extremely small depth, all high frequency modes have vanishing

mismatch, and the cutoff frequency musf be extremely high (c.f. Nayfeh

(1981)). In this case, however, both the governing equations {10) ard .

the perturbation-solution techniques are inappropriate and should be
replaced by the nonlinear shallow water equations (Stoker (195}i) and
one of the many techniques for obtaining approximate solutions of
hyperbolic equations (Whitham (1974), Nayfeh (1981)).

Neither system (23) nor (30) have knowr analytic solutions.
If the depth 1is constant and only a single resonant triad is
considered, Armstrong et. al. (1962) and Bretherton (1964) show that a
solution exists in which modal amplitude and phase variations are
described by Jacobi elliptic functions. These solutions are
applicable to a broad spectrum of modes only in the case where ¢
becomes so small that any given mode participates in at most a single

(near) resonant triad (Bretherton (1964)). This 1is clearly not the
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case for shoaling surface gravity waves. The evolution equations must

thus be integrated numerically.

In the present study we have implemented a numerical
integration scheme known as "repeated extrapolation to the limit" due
to Gragg (1963) and Bulirsch and Stoer (1966) (see Stoer (1972) for a
review of extrapolation methods and improvements on the algoritm
published in Bulirsch and Stoer (1966)). The algorithm is both
efficient and highly accurate and is easily modified to accommodate
large numbers of coupled equations. We have performed considerable
testing to verify the accuracy of the numerical scheme. Four coupled
equations (corresponding to the amplitudes and phases of a fundamental
and its second harmonic) were integrated over a flat bottom for more
than a kilometer (in dimensional coordinates) for both equations (30)
and. (23). The results were compared . with the aralytic solution
expressed in terms of Jacobi e113ptic functions (Armstrong et. al.
(1962)). Modal amplitudes differed from the exact solution by less
than 0.5% everywhere, and phases by less than 0.1 radian, over a
variety of initial amplitudes and phases. In addition, internal
consistency checks were carried out for integrations of up to 30
modes. The automatic step size feature of the algorithm was disabled,
and integrations were performed with a range of basic step sizes. All
results compared well (less than 1% maximum difference) for step sizes

over a range of a factor of 5,
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I1T. EXPERIMENT

A field experiment to measure the wave parameters of sea-
surface elevetion, pressure, and horizontal velocity was undertaken at
Torrey Pines Beach, Ca., during the summer and fall of 1980. The
primary goal of the field work was to determine the operational
validity of the one-dimensional shoaling models developed 1in the
previous section. However, the dearth of existing quantitative wave
measurements in the shoaling region motivated an extension of purpose.
A secondary goal was to provide a comprehensive, quantitative
description of wave-induced fluid motions throughout the shoaling
region, with the hope that the data would be useful for validating
future theories. To this end, the on-offshore measurements were
extended beyond the defined shoaling region (10 m depth to 3 m depth),
and two longshere arrays of instruments at different depths were
established to allow measurement of wave frequency-directional
spectra.

This chapter describes the experimental site and types of
instruments used, experiment design and sensor placement, data
acquisition and reduction, and concludes with a brief overview of the

data set as a whole.

Site and Instrumentation

Torrey Pines Beach, Ca. has been the site of numerous
nearshore field experiments (Pawka et. al. (1976), Aubrey (1578),

Gable (1979), 1Inman et.al. (1980)). Located approximately 3 km north
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of Scripps Pier, it is readily accessible both by small boat and four-
wheel-drive vehicle. The bathymetry is relatively homogeneous in the
longshore direction, with contours running approximately 6.5° west of
true north-south. The beach is composed of fine, quartz sand (mean
diameter 0.17 mm) and has a fairly constant slope of about 2% through
the instrumented region. An extensive study of the wave climate at
the site was reported by Pawka et. al. (1976).

In all, 28 channels of wave data were obtained from three
types of instruments: 10 pressure sensors, 5 dual-axis,
electromagnetic, current meters, and 8 surface-piercing wavestaffs.
The pressure sensors used were of the strain guage type, predominantly
Statham model PA 506-33 (a 1imited number of Transducer Inc. #5AP-69F-
50 were also wused). The pressure sensors are extremely durable and
easy to install and maintain when mounted 1in the standard
configuration, approximately 25 om above the bottom. Previous
experience has shown them to be highly linear and drift free over long
periods of time and varying ocean conditions. All instruments were
pre- and post-calibrated with agreement to better than 3%. Raw
pressure signals were amplified prior to being digitized, resulting in
least count error of 0.003 m.

The linearized form of Bernoulli's equation can be used to
relate pressure signals directly to sea-surface elevation or
horizontal speed when finite amplitude effects are locally small.
Pawka (1976) and Guza and Thorntcn (1980) present comparisons between
estimations of wave parameters derived from co-located pressure

sensors, wavestaffs, and current meters throughout the shoaling region
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and surf zone. In most cases reported, agreement between pressure-
derived estimates of sea-surface elevation and direct measurements was
well within 10% in amplitude across the entire wind-wave frequency
band. The agreement is virtually independent of spectral shape, total
energy, and on-offshore position, with the exception of the region
near the break zone. In place of the 1linear, finite-depth
transformations, the relations obtained from the 1linear Boussinesq
equations can also be used with comparable results everywhere except
at high frequencies ( > 0.17 Hz) in deep water (> 9 m). The
discrepancy is due to breakdown of the long wave assumption inherent
in the derivation of the Boussinesq equations. The linear, finite-
depth theory was therefore used to transform between bottom pressure
and sea-surface elevation.

The current meters were Marsh-McBirney #512 dual-axis,
electromagnetic, current meters. The instruments measure two
orthogonal components of velocity. In this experiment, the sensing
elements were placed approximately one meter above the bottom, and
horizontal velocity (longshore, on-offshore) was measured. Although
rugged and durable, there 1is considerable uncertainty about the
dynamic response of the instruments to a broad-banded wave field
(Lavelle (1978), Cunningham et. al. (1979)). Additional uncertainty
in orientation (about 5° 1in all directions) further degrades the
current meter data. The performance of the E-M current meters vas a
disappointment throughout the course of the experiment. Apparent gain
reductions of up to 30% we-e observed to occur over immersion periods

of about a menth. The changes became apparent only when new, dry,
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meters were substituted for ones that had been underwater for some
time. Because of the questionable gain, it was initially decided to
ignore all curent meter data for comparison with the shoaling models
presented here. Since various types of instruments were intermingled
on the on-offshore 1line, the loss of all current meter data was not
catastrophic. It did, however, seriously affect the high-frequency
aliasing characteristics of the directional arrays, as the current
meters were the basis for the shortest on-offshore lag in each array.
The wavestaffs used were similar to those described in Flick
et. al. (1979), consisting of twin resistance wires supported
vertically by a 5 m long fiberglass pole. They are useful for direct
meashrements of sea- surface elevation in depths shallower than about
6 m. As with pressure sensors, considerable field testing has shown
these instruments to be 1linear and stable, with excellent frequency
response up to 10 Hz. Although post-calibrations were not possible
due to breakage of the sensing wires in the storm of 1-2 October, each
instrument had been calibrated periodically for more than a month
prior to being installed, with differences at the 1% level for gain
and offset. In addition, wavestaffs and pressure sensors were "in
situ" calibrated by comparing predicted and observed tides and
intercomparing mean depths between sensors over time. Least count
error for the wavestaffs was less than 0.002 m. The largest source of
error in the measurements was due to the staff being mounted at an
angle to true vuwtical. Visual and phovographic observations showed

that the staffs were well within 20° of vertical, resulting in

elevation errors less than 6%.
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Experiment design and sensor placement

Quantitative comparison of the one-dimensional shoaling
models' predictions with data required instrumentation of an on-
offshore transect through the shoaling region, approximately 300 m in
horizontal extent. Based on the results of Guza and Thornton (1980},
spatial coverage was maximized by placing only a single instrument at
each on-offshore leccation; the 1linear, finite-depth relations were
used to Tlocally transform from the measured variable to the wave
variable of interest on a frequency band-by-band basis.

Previous data obtained on the same beach in November, 1978, as
well as casual observation, indicated that the evolution of the
frequency spectrum became more pronounced in shallow water than in the
deeper regions of the shoaling region. This is entirely consistent
with the form of the evolution equations (23) and (30), in which wave
amplitudes, coupling coefficients, and closeness to resonance, all
increase with decreasing depth. Trial comparison, of spectral
evolution between numerical integrations of the evolution equations
and November, 1978 field data indicated qualitative agreement.
Additional model testing with idealized, synthetic, input conditions
confirmed the trend toward increased spectral shape evolution with
decreasing depth. Thus, rather than sampling evenly along the on-
offshore transect, the density of instruments was greater in shallow
water, primarily at the expense of mid-depth (8-6 m) regions. As seen
in the plan view figure (2), a mix of 4 pressure sensors, 5 current
meters, and 3 wavestaffs constituted the main on-offshore

instrumentation. Wavestaffs were used in shallow water in place of
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Plan view of the instrument locations in the 1980
shoaling waves field experiment. Approximate depths are

! given near the right side of the figure.
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pressure sensors, in part to avoid complications arising from
previously observed discrepancies near the break zone between direct
measurements of sea-surface elevation and estimates inferred from
pressure data; however, under most wave conditions the instrumentation
did not extend to the break zone.

An additional pressure sensor (Pl) was placed approximately
240 m seaward of P6 in a depth of 14.5 m. Pl was placed 4.3 m above
the bottom, considerably higher in the water column than other
sensors, in order to maximize the frequency range of acceptable signal
to noise. If evolution of the wave field was truly dominated by near
resonant triad interactions as hypothesized, such interactions were
expected to be very weak over 1argé portions of the wind-wave
frequency band 1in water deeper than 10 m. At these relatively large
depths, quantitative predictions of the Boussinesq models were
expected to diverge from actual data, in consequence of the breakdown
of the long wave assumptions crucial to th~ derivation of the models.
Qualitatively, however, the increased inability of the wave field to
satisfy the triad resonance conditions was expected to hinder net
nonlinear transfers via the triad mechanism., As discussed in Chapter
I, nonlinear energy exchanges should then occur on the much larger
length scales appropriate to the quartet mechanism of Phillips (1960)
and Hasselmann (1962). The primary function of the deep sensor Pl was
to verify this qualitative reasoning.

The field experiment was designed to measure wave directional
spectra quantitatively at two depths in the shoaling region. A well-

surveyed, 5 sensor 1linear array of pressure sensors comprising

8y G Ay S Be - a
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instruments P2, P3, P5, P6, and P7 (see figure (2)) had been
established at the Torrey Pines site in March, 1977. Design criteria
and analysis techniques for this array are discussed in detail by
Pawka (1981). The array had a total longshore extent of 400 m. The
original  five sensor array had minimum lag spacing of 33 m,
corresponding to an aliasing frequency of 0.16 Hz in 10 m depth
(Pawka, 1981). Addition of another sensor (P4) for the present
experiment reduced the minimum Jag to 17.8 m and the aliasing
frequency to 0.20 Hz. This is approximately the high frequency 1limit
imposed by depth extinction of the presure signal itself. Addition
of P4 also allowed use of the four sensor subarray P2-P3-P4-P5, with
optimal spacing 1-3-2 (Barber (1961)), in the event that sensor
locations P6 and P7 could not be supported; however, the anticipated
problems did not materialize, and use of the shortened array was not
necessary.

A1l linear wave-gauge arrays suffer from 180° directional
ambiguity with respect to the 1line connecting the sensors. The
historical justification for the use of 1linear 1longshore arrays in
coastal regions has been the assumption, which was avoided here, of no
seaward-propagating energy in the wind-wave frequency band. In the
plan view figure (2), all sensors enclosed within a set of dashed
Tines were designed to be analyzed as a single, two-dimensional,
directional array. Such an array theoretically allows unambiguous
resolution between seaward- and shoreward-propagating energy in a
given frequency band. Some results of directional analysis will be

discussed in Chapter V; model testing using realistic, synthetic,
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directional spectra and the Maximum Likelihood Estimator was used to
aid in array design.

A second directional array was designed to operate in a mean
depth of approximately 4 m. The heart of this instrument group was a
1-3-2 longshore array of wavestaffs, with basic lag of 10 m. The
array thus had aliasing characteristics similar to those of the deep
array. Provision was made for two additional sensors in the
longshore, and model testing with realistic spectra led to the final
longshore array design 8-1-3-2-5, with total 1length 190 m. Three
additional on-offshore sensors (W1, C3, C4) could be included in the
analysis to provide full, two-dimen:zional estimates of the directional
spectrum, as with the deep array. |

With the exception of a few previously established sensor
sites, all sensor locations were initially established using a mini-
ranger radar Tlocating system operated from a small boat. Positions
were later verified by numerous mini-ranger surveys and direct
measurements between  instruments. In addition, all wavestaff
locations were further refined by shooting redundant sets of angles
between the staffs and known benchmarks on the beach. The position

and approximate uncertainty for each sensor is given in table (I).

Data Acquisition and Reduction

For data acquisition purposes, the sensors were divided into
two groups, based on their on-offshore positions. All sensors seaward

of P11 inclusive (see figure (2)) received their power from, and

returned signals to, a tethered spar as described by Lowe et. al.
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Table I

Positions and approximate uncertainties for sensors in

the shoaling waves field experiment. Positions are given

in meters relative to a left-handed coordinate system
centered on an arbitrary benchmark on the beach, with the
positive Y axis aligned with true North (thus

approximately longshore). Uncertainties are given in

meters, and apply to both X and Y coordinates.
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NAME

Pl
p2
P3
P4
P5
P6
P7
P8
P10

TR
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TABLE 1
X Y UNCERT
794.6 475.6 4.0
527.5 270.0 0.5
531.6 300.9 0.5
536.4 351.5 0.5
538.1 369.2 0.5
563.4 501.5 0.5
573.4 665.2 0.5
507.0 506.2 1.5
389.0 518.3 2.0
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(1972) and Gable (1980). An electronics package inside the spar
scanned each data channel at 64 Hz. On each scan, all analog data was
digitized, encoded using pulse code modulation, multiplexed, and
transmitted over a VHF radio link to the Shore Processes Lab, where
the telemetered data stream was recorded on magnetic tape.

A similar scheme was used for data from all sensors shoreward
of P11. An underwater electronics package located near location W4
distributed power and performed signal conditioning. Digitized,
encoded, multiplexed data was returned to a beach installation via a
single cable, The data stream was then transmitted over a separate
VHF fe]emetry 1ink to SPL, where it was recorded on magnetic tape
simul taneously with the deep station's data. In a separate, non-real-
time operation, data from the raw telemetry tape was decoded,
demultiplexed, block averaged to a sampling rate of 2 Hz, and placed
onto computer compatible magnetic  tape. Further preliminary
processing removed "glitches" (caused, for example, by temporary
telemetry signal 1losses) and applied a low-pass, digital filter, with

cutoff frequency 0.9 Hz.

Experiment Overview

Useful data was collected sporadically from 14 June 1980 to 1
October 1980. All pressure sensors and wavestaff W1 were operational
throughout this period. At most times after 20 June, wavestaff W4
functioned, and W8 (either as a wavestaff or a co-located pressure

sensor) came on line after 14 July. Due to difficulties involving

wavestaff maintenance and sand accretion, the 1longshore array of

43




wavestaffs did not return data reliably until 3 September. However,
from this time until 1 October, all pressure sensors and wavestaffs
(with the exception of P10 on 4 September) returned high quality data.
The data presented and analyzed in the following chapters was
taken over a two week period in early September, 1980. During this
time, all pressure sensors and wavestaffs were operational.
Continuous data was obtained for between 10,000 seconds and 26,000
seconds on 11 occasions. Tidal variations during data runs ranged
between 20 an and 100 am (runs were taken across all stages of the
tide cycle). Average variance of sea-surface elevation in the wind-
wave frequency band (as measured in 10 m depth) was approximately 90
an? in early September, grew to 510 cm® on 11 September as wave energy
from a storm 1in the southern hemisphere arrived, and then gradually
decreased to 175 am? by 16 September. Spectral shape varied
considerably over the two weeks of interest. An intensive bathymetric
survey was conducted on 9 September, and measurements of instrument
heights off the bottom indicated that the bathymetry of the shoaling

region remained relatively constant throughout the two weeks of

interest.




IV. DATA COMPARISON

In this chapter we present comparisons between data obtained
in the field experiment, predictions of the nonlinear shoaling models
(30) and (23), and predictions of linear, finite-depth theory (LFDT).
Before presenting the comparisons, however, the relationship between
deterministic models and (possibly) stochastic data is explored
briefly. By examining some numerical examples, it is found that time
series analysis techniques applicable to stochastic processes yield
accurate results when applied to deterministic time series composed of
many discrete modes. We further demonstrate that nonlinear model
predictions of Fourier coefficients (or time series) are relatively
insensitive to the number of modes used to describe the wave field.

Finally, by treating the outputs of deterministic models as
realizations of a stochastic process, comparisons are made between
theories and data for power spectra of sea-surface elevation through
the shoaling region. Correlations between model predictions and data
are analyzed in the frequency domain by considering coherence and
phase spectra of sea-surface elevation. Both of the nonlinear models
(30) and (23) accurately predict significant, observed, nonlinear
evolution of the power spectrum of sea-surface elevation, while LFDT
obviously does not. Coherences and phases between all three models
and data are favorable in those regions of frequency space containing
large amounts of energy. However, coherences and phases between LFDT
and data indicate poor correlation in those regions (both in frequency
and on-offshore position) where nonlinear spectral evolution s

observed to take place, in contrast with the models (30) and (23),
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which continue to have moderately high coherence and near-zero phase

difference.

A fundamental problem, both conceptual and operational,
involves defining the basic deterministic or stochastic nature of the
wave field itself. The models (30) and (23) described in Chapter Il
are deterministic - they assume that the wave field is composed of a
finite number of discrete modes, each having a definite amplitude and
phase. On the other hand, the ocean wave field bhas in recent years
been considered a stochastic process. Such processes cannot be
characterized by fixed frequencies with definite amplitudes and
phases, but must instead be described in a statistical sense. Rather
than attempting to give exact values for physically measurable
quantities, a statistical description appropriate to a stochastic
process attempts to define the probability that the measurable
quantities will fall within some range of values. If a deterministic
model is perfect (it exactly predicts all physically measurable
quantities), it can also be used to answer any statistical questions
to any desired precision. Since stochastic models only describe the
statistics of quantities, they cannot yield information on the actual
values of the quantities themselves. It thus seems desirable to model
physical processes deterministically rather than stochastically
whenever possible,

It is impossible, given finite data, to determine beyond doubt
that a given process is either deterministic or stochastic. As a well
known example (see, for instance, Feigenbaum (1980)), a8 random number

generator on a digital computer is clearly a deterministic process
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whose outputs can be predicted exactly if the algorithm and seed are
known. Yet, if such information is absent or imprecisely known, a
finite-length output series {shorter than the repeating block) can
pass all tests for “stochasticity"; the output series can, with high
probability, be considered a realization of a truly random process
with certain statistical properties only. Similar behavior has been
found for the outputs of deterministic models of physical systems
(Lorenz (1963), Ford (1975), Feigenbaum (1980)). Such models have the
property that although they possess very few degrees of freedom, their
outputs can at times pass tests for stochasticity if the inputs and

model equations are not known precisely.

Numerical Experiment

The numerical examples described in this section are intended
to 1illustrate two points. Firstly, we show, using a time series
typical of those measured in the field, that spectral analysis
techniques (strictly valid only when applied to realizations of
stochastic processes) give quantitatively accurate results when
applied to deterministic time series which are underresolved. Thus,
given short sections of a deterministic time series, fast Fourier
transform techniques, followed by frequency and ensemble averaging of
power estimates, can be used to accurately predict the average power
in a given frequency band.

Secondly, we demonstrate that deterministic models such as
(23) yield similarly accurate predictions of averaged power in a

spectral band, as well as having high coherence and near-zero phase
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with “"data" time series and Fourier coefficients, almost independent
of the number of modes usec to represent the wave field.

A model data set was constructed with a fixed, large (960},
number of modes evenly spaced in the frequency band 0.0002-0.2344 Hz.
Initial modal amplitudes and phases were determined by Fourier
transforming a 4096 second data record collected at location P6 on 9
September 1980 (see below for an in-depth discussion of this data

set). The model "shoaling region" for the numerical experiment was

considered to be of constant, 5 m depth, and 283 m in horizontal
extent. The 960 modes were taken to represent the initial wave field
: | exactly, and the waves themselves were assumed to obey equations (23)
identically. The "data set" consisted of Fourier coefficients of sea-
surface elevation ﬁ(xj,f) at each of 7 locations X5 obtained by
numerically integrating equations (23) subject to the initial

conditions described above. The constant-depth system has significant
computational advant~ges over the more realisitic sloping-bottom
system. The qualitative nature of the solutions of the flat-bottom
system was not expected to be different from solutions over a mildly
sloping bottom, as 1in practice, Bottom slope terms were numerically
small compared to nonlinear terms under conditions similar to this
data set. The 5 m depth was chosen arbitrarily as being
representative of the physical shoaling region. The 7 on-offshore
positions Xj were chosen to correspond approximately to the positions
of sensors in the field experiment.

In the following discussion, each of the time series D(xj,t)

(obtained by 1inverse transforming the set 6(xj,f)) will be considered
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a realization of an ergodic process. Each of the series D(xj,t) can
be broken into shorter records, =ach of 1length T, represented by
Si(xj,t ,T). Here the subscript i denotes the "record number" of S,
the ith record containing data from times (i-1)T <t < (i)T. Each of
the records Si(xj,t,T) can be FFT'd to yield Fourier coefficients at
the harmonic frequencies n/T, n=1,2,.... If this is done for the
records Si(xj,t,T), the coefficients §i(xj,f,T) can serve as initial
conditions for an integration of equations (23, thus generating model
coefficients ﬂi(xj,f,T) and time series Mi(xj,t,T).

If the spectrum of an ergodic process is sufficiently smooth
over a chosen bandwidth 1/T, and low frequency energy is sufficiently
small, then equivalent, smocthed, spectral estimates for bandwidth 1/t
can be constructad v ensamble-averaging estimates from records of
length at least 1, frequency averaging, or a combination of both.
Figure (3) demonstratec that spectral estimates obtained in these ways
are indeed equivalent for the time series D(xj,t) and Si(xj,t,T) for
T=128, 256, 512, and 1024 seconds. Presented are smoothed spectra of
sea-surface elevation (bandwidth=.00781 Hz, 64 dof) at 6 locations X3
j=2,7. The data spectrum at each location corresponds to spectra
obtained from 5(xj,f), frequency-averaged by 32 bands. The other
spectra are derived from §1(xj,f,T) with various values of T, by
ensemble- and frequency-averaging. With the exception of the shortest
record length T=128 seconds, all spectra are quantitatively similar

(for reference, the 90% confidence 1imits on spectral estimates,

assuming the process D(xj,t) is Gaussian, are also plotted). Al though

frequency-merging of power spectral estimates is pointiess for known
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Figure 3

Averaged power spectra at 6 positions. "DATA" is from
D(xj,f), frequency-averaged by 32 bands. Other spectra
are the result of combinations of frequency- and
ensemble-merging of power estimates from Fourier
coefficients Si(xj,f,T), T=1024, 512, 256, and 128
seconds. The ordinate of all plots 1is dimensional
frequency (Hz), and the abscissa 1is spectral density
(am2/Hz). A1} spectra have 64 dof, and the 90%

confidence 1limits (identical for all plots) are shown for

.

x = 46.3 m,
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deterministic time series, figure (3) demonstrates that for typical,
underresolved data, reasonable estimates of average power in a
frequency band can be obtained by treating the data as a realization
of a stochastic process without being able, in fact, to prove that the
data is random rather than deterministic.

Figure (4) presents a similar comparison between spectra
obtained from the model integrations ﬁi(xj,f,T) and the data 5(xj,f).
Once again, all spectra are quantitatively similar. In fact, smoothed
spectra obtained from §i(xj,f,T) and ﬁi(xj,f,T) are virtually
identical over all bands at all locations, even though significant
spectral evolution with x is observed. It thus seems plausible that
for smoothed spectral predictions, the model (23) (and, presumably,
similar models such as (30)) are stable with respect to the number of
modes used to represent the wave field, if initial modal amp)itudes
and phases are obtained by Fourier transforming sampled time series
such as Si(xj,t,T).

As the model (23) predicts actual time series or Fourier
coefficients, not just averaged spectral quantities, it 1is reasonable
to examine the correlation between time series predicted by the model,
and those obtained from the data. In the frequency domain, such
information 1is contained in the coherence and phase spectra (Jenkins
and Watts (1969)). If the cross spectrum Cpq(x-,f) between two time
series p and q (with Fourier coefficients ?p(xj,f) and F_(x,,f) is

qQ J’
defined by

- *
Coqt¥32f) = FoFyg (31)
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Figure 4

"Model" power spectra. “DATA" is as in figure

spectra result

from averaging of model

Mi(xj,f,T), T=1024, 512, 256, and 128 seconds.

(3); other

predictions
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(suitably'averaged over frequencies and ensembles), then the smoothed

coherence qu(xj,f) is defined by

. .
Cpq{*321) Cpqlxs-F) L (32)

CPP qu

L f) =
qu(xJ )

0 <y <1 is a measure of the correlation between bandpassed time series

p and q. The phase © (xj,f) between the time series is defined

Pq
Im(C
8 (x.,f) = tan”! —TS—ESZ ] (33)
1qJ Re(cpq)

If phases epq are positive, then series p leads series gq. Jenkins and
Watts (1969) present approximate confidence 1imits for coherence and
phase estimates (although, for low coherence, the confidence limits on
phase become meaningless). Confidence 1imits are a function of the
stability {equivalent dof) of the cross spectral estimates and the
true coherence between the time series, but are independent of phase.
Figure (5) presents smoothed coherence spectra between model
time series Mi(xj,t,T) and sampled data Si(xj,t,T) at the six on-
offshore locations shown in figures (3) and (4) for values of T=1024,
512, and 256 seconds. An overall degradation of coherence between
model predictions and data 1is observed as sampled record length T
decreases. In all cases, coherence 1is high 1in the frequency band
0.075-0.012 Hz, corresponding to the maximum energy portion of the
power spectrum, and coherences are nearly an order of magnitude larger

than would be expected if Mi(xj,t,T) and Si(xj,t,T) were independent

time series., The phase spectra shown in figure (6), independent of
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Figure 5

Spectra of coherence between model predictions Mg(xj,f,T)
and sampled data Si(Xj,f,t) at 6 locations X5 j=2-7, for
‘ T= 1024, 512, and 256 seconds. Averaged bandwidth is

0.0078 Hz. The ordinate on all plots is frequency (Hz),

while the abscissa is coherence (MOT coherence?). Al

plots have the equivalent of 64 dof.
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for T=1024,
bandwidth is 0.0078 Hz.
frequency (Hz),

degrees).

Figure 6

of relative phase between model predictions
Mi(xj,f,T) and sampled data Si(xj,f,T) at 6 locations xj,

512, and 256 seconds. Averaged

The ordinate on all plots is

while the abscissa is relative phase (in
A11 plots have the equivalent of 64 dof. A

positive phase indicates that M leads S.
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record length T, position x;, and frequency, are consistent with zero
phase lag to within 95% confidence 1imits (not shown).

Thus, as with smoothed spectral predictions, the model (23) is
relatively insensitive to the number of modes used to represent the
wave field with respect to coherence and phase between model time
series and "data." The frequency and ensemble averaging used to
stabilize power, coherence, and phase estimates is not strictly
applicable if the true process is known apriori to be deterministic.
However, as the concepts of "stochastic® and “deterministic" are
properly defined only for infinite Yength time series, and as it is
further known that the finite length outputs of some clearly
deterministic systems of equations can be viewed as realizations of a
stochastic process, it is reasonable, in the case of models (30) and
(23), to treat both model predictions and data as realizations of
stochastic processes.

In the following analysis, the deterministic models (30) and
(23) will be used to predict various finite statistics of the surface
gravity wave field in the shoaling region. Inputs to the models, such
as the number of modes, their freqﬁencies, initial amplitudes, and
initial phases, will be obtained from data in arbitrary ways. In all
cases, the time series derivable from model outputs will not be
identical, to experimental precision, with measured data. On an
absolute scale, therefore, the models are incorrect. We  have
suggested, however, that for some statistical quantities such as
power, coherence, and phase spectra, the model predictions are not

significantly sensitive to input conditions such as the number of
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modes used to describe the wave field. In addition, it appears that
the time series analysis techniques used are not operationally
sensitive to the deterministic or stochastic nature of the time series
on which they operate, either data time series or those derived from
model outputs. Differences between the outputs of the various models
and data can thus be discussed in terms of the deterministic "physics"

contained (or lacking) in the models,

The Data

Three selected field-data sets have been compared to
predictions ‘of the model. The three sets encompass a wide range of
wave energies and spectral shapes. For each data set, time series
from the on-offshore sensors P1l, P6, P8, P11, P10, W1, W4, and W8 were
broken up into consecutive records of 1024 seconds duration. These
records were then Fourier transformed and, where appropriate, Fourier
coefficients of near-bottom pressure were converted to coefficients of
sea-surface elevation (SSE) using the linear, finite-depth
transformation (Guza and Thornton (1980)). 240 modes evenly spaced in
the frequency band 0.001 - 0.234 Hz were used to represent the wave
field through the shoaling region. The Fourier coefficients of SSE
obtained from sensor P6 in approximately 10 m depth provided initial
modal amplitudes and phases of depth-averaged velocity using the
appropriate linear transformation (28.a) or (14.a). Although this
procedure introduces small errors into the initial conditions, it can

be shown that these errors cannot significantly affect the evolution

of the wave field over distances comparable to the shoaling region.
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As in the numerical experiment described previously, these initial

conditions were integrated numerically to produce model predictions of
« Fourier coefficients at the six onshore positions corresponding to
sensor locations. Although detailed measurements of bottom topography
were available, the numerical integrations were carried out with

assumed constant bottom slope of 2.2%. The initial depth was obtained

M s et s auw o i

directly from the mean pressure at P6 over the record, and thus varies
- in accordance with the tides. The assumed linear depth dependence on
: on-offshore position allows calculation of the spatial phase ¥p{x) in
; closed form for both models (30) and (23), thus greatly simplifying
the  numerical integrations. As the coupling coefficients and

dispersion relations 1in (30) and (23) contain only weak depth

dependence, and as the beach of interest is in reality nearly plane,
it is not expected that the results will differ significantly from
those obtained by using real topography in the integrations. Figure
(7) depicts the measured on-offshore topography along the main range
of instruments. It also shows the plane topography used in the
integrations as well as sensor positions.

Fourier coefficients of SSE obtained directly from the data

y and from model integrations were then compwered in a manner similar to

C e e

the numerical experiment, that is, averaged spectra of SSE, coherence
and phase between models and data are shown at various on-offshore
locations. For the three data sets analyzed here, the wave field was
found to be stationary as determined by x? testing of unsmoothed

spectral estimates (Haubrich (1965)).
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Figure 7

On-offshore bathymetry and sensor 1locations along the
main instrument transect. The dashed line represents the

P ptane beach with slope 0.022 used in model integrations.

+ On-offshore distance (in meters) is relative to an

arbitrary benchmark.
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5 Sept 80

The 5 Sept data set consists of 11 records (11264 seconds)
obtained on a mildly rising tide. It is typical of low energy, (93
can? variance measured in 10 m depth), broad-banded (in frequency) wave
conditions common throughout the summer. Figure (8) presents averaged
spectra of SSE calculated from the data at the four locations Pl, P6,
Wl, and W8. The spectrum is basically flat from approximately 0.125 -
0.25 Hz, with two narrow, but not very energetic, low frequency peaks
centered at 0.053 Hz and 0.077 Hz.

The spectra measured at locations P1 (14 m depth) and P6 (10 m
depth) are virtually identical. This 1is as expected since 1linear
shoaling effects are negligible and near resonant triad interactions
are small due to the large mismatch terms in this rather deep water.
From approximately 0.15-0.25 Hz, the spectra exhibit no significant
differences through the shoaling region. From 0.05-0.15 Hz, the
lowest frequency range with significant wind wave energy, spectral
shape does not change appreciably through the shoaling region.
However, there is a smooth, mild increase in spectral density with
decreasing depth,

Figure (9) presents comparisons between data and model
averaged spectra of SSE at six on-offshore 1locations. At each
location, spectra obtained from the data, model (30) (labelled
"BOUSS"), model (23) (labelled “CONSIS") and 1linear, finite-depth
theory (LFDT) (labelled "LINEAR") have been plotted. Each spectrum
has 160 dof, and the 90% confidence 1limits are shown. At all

locations through the shoaling region, LFDT accurately models the

65
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Figure 8

Averaged power spectra of SSE measured at 4 on-offshore
locations. Averaged bandwidth is 0.0039 Hz. Location
names, mean depth (meters) and mean variance of SSE (cm?)

are shown.
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Figure 9

Comparison of averaged power spectra of SSE between
measured data ("DATA"), the model (30) (“BOUSS"), the
model (23) ("CONSIS"), and 1linear, finite-depth theory
("LINEAR"). Averaged bandwidth is 0.0078 Hz. A1l model
input conditions were derived from data measured at P6.
Shown under each plot is the 1ocation name and its on-
offshore distance from the initial conditions. The
ordinate is frequency (Hz) and the abscissa is spectral

density (am2/Hz). Spectra have the equivalent of 160 dof

and the 90% confidence 1imit is shown on the plot for P8.
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observed spectrum of SSE. The model (30) is slightly worse only at
; frequencies greater than 0,18 Hz, where the model consistently
L; ‘ underpredicts spectral density. These results are in contrast with
4 model (23), which overpredicts spectral density in a wide frequency
band from 0.12 - 0.24 Hz.

Additional information can be obtained by comparing coherence
2 and phase spectra between the nonlinear models, LFDT, and the data.
Figure (10) presents smoothed coherence spectra through the shoaling
region. For both LFDT and the nonlinear models, coherence is greater
than 0.9 throughout the low freauency region of the spectrum (0.05-

Lo 0.10 Hz). At higher frequencies, the dominant feature of the

coherency spectrum is a pronounced decrease in  coherence with

! increasing frequency. Such a feature, which is present to some extent
| in all the data analyzed to date, 1is consistent with finite
directional spread of the wave field. Model testing was carried out
assuming a constant depth shoaling region and a wave field obeying
LFDT.  Directional spectra E{o,0) were obtained from a Maximum
Likelihood (MLE) analysis of data from the shallow array of wavestaffs
W2-W7. Briefly, the cross spectrum at lag r in the on-offshore can be
determined if the wave field is homogeneous and the directional

spectrum E{c,8) is known:

Clr) = £ E(o,0) e'F" cos(0) 4 (34)

(Cartwright (2962)). Using the definition (32) of coherence and
calculating the integral in (34) numerically, test coherence spectra

(1abelled "TEST" in figure (10)) can be generated. The general shape

of the test coherence spectrum is neither a strong function of the
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Figure 10

Comparison of smoothed coherence between models (30)
("BOUSS"), (23) ("CONSIS"), and 1linear, finite-depth
theory ("LINEAR") at ‘the 6 on-offshore locations of
figure (9). Also shown ("TEST") is the coherence
obtained by assuming a uniform, 5 m depth shoaling region
and linear waves with the measured directional spectrum
obtained from the array W1-W2-W3-U4-W5-W6-W7. Test
coherences were only calculated in the band 0.05-0.25 Hz.

The ordinate is frequency (Hz) and the abscissa is

coherence (NOT coherence?),
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assumed depth nor of the detailed fine structure of the directional
spectrum estimates.

The shapes of the test coherence spectra are quite similar to
the model-data coherences, even including the slight plateau at
approximately 0.15 Hz. The dramatic falloff of the coherence spectrum
with increasing frequency and distance can thus be attributed to the
effects of increased directional spread in the higher frequencies, and
the fact that a given spatial lag represents a larger normalized (by
wavelength) lag for higher frequency waves than for lower frequencies.
Additional model testing with “top-hat" directional spectra indicates
that the second effect is dominant.

There are no significant deviations in coherence between any
of the shoaling models tested. The good agreement for spectral and
coherence predictions between 1inear and nonlinear models and the data
strongly indicate that net nonlinear effects are small through the
shoaling region for this particular data set. The phase spectra,
presented in figure (11), can thus be interpreted for this data set in
terms of the 1linear dispersion relations appropriate to the models
(30), (23), and LFDT. It should be born in mind throughout the phase
discussion that confidence 1limits on phase are dependent on the
coherence, and thus phase estimates at the higher frequencies at the
shallower reaches of the shoaling region are extremely urcertain. As
the coherences for all models are virtually identical everywhere,
confidence 1limits for all phase estimates at various frequencies have
been indicated on figure (11).

LFDT phases at locations P8 and Pll are nearly consistent with




Figure 11

Comparison of vrelative phase spectra between shoaling

il e e o e A A

models and data. Relative phase is shown in degrees.

i 90% confidence 1imits on phase (nearly the same for all

three models) are shown for various frequencies and

locations.
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zero phase shift at all frequencies. (The very slight trend of

increasing phase with increasing frequency is possibly due to a small
(0(1 meter)) uncertainty in sensor position.) Both the models (30)
and (23) show large deviations from the data, especially at high
frequencies. The model (30) shows a strong tendency to lead the data
while (23) has a lesser tendency to lag the data, although both models
agree well with the data at lower fruguencies. The deviations are
consistent both in sign and magnitude with differences between the
1inear dispersion relations (28.b), (14.b), and (2.c). In the case of
model (30), the 1linear dispersion relation grossly overpredicts
wavenumber for high frequency waves in relatively deep water, as shown
in figure (12). Thus the linear contribution to total phase Wn(x)
will be 1larger than that predicted by LFDT, and the model will lead
the LFDT prediction. The second order linear phase change term, as

well as the linear dispersion relation, must be taken into account for

model (23). However, the magnitude of the 1inear phase change term is

>
€

insufficient to offset the dispersion relation's underprediction of
3 wavenumber at high frequencies in deep water (figure (12)), and thus
' the observed lag of the model in relation to LFDT (and hence, in this

case, the data).

- 11 Sept 80

The second data set consists of 20480 seconds of data obtained
on 11 September 1980, over a tidal maximum. With total variance in 10
m depth of over 500 an? ,this data set is the most energetic analyzed

for this work. As seen in figure (13), the vast majority of the

e —— e e
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Figure 12

Wavenumber vs. frequency for four 1linear dispersion
relations at two depths, 10 m (a) and 5 m (b). The
"exact Boussinesq" 1is equation (28.b), “approximate
Boussinesq" 1is effective total 1linear wavenumber for

model (23), "Linear exact" is LFDT, and “"Shallow" is

nondispersive shallow-water theory.
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energy in the wave field at depths greater than about 10 m is

concentrated in a narrow (0.016 Hz wide) band centered at 0.065 Hz.
Chapter V contains a discussion of the frequency-directional
characteristics of this data set. This data set is representative of
long period, well-directed swell impinging on the beach. Figure (13)
shows that significant spectral evolution occurs as the waves
propagate shoreward through the shoaling region. In shallow water, a
secondary (but significant) peak is observed centered at 0.127 Hz,
nearly the exact second harmonic of the primary peak. As in the data
set 5 Sept (figure (8)), no significant spectral evolution is observed
between 1ocations P1 in 14.5 m depth and P6 in 10.4 m depth.

Figure (14), similar to figure (9), compares averaged spectral
predictions of the nonlinear models, LFDT, and the data. The smooth,
steady growth of the secondary peak at 0.127 Hz is modeled almost
precisely by the nonlinear models, but not at all by LFDT. As in the
previous data set (5 Sept), the model (23) overpredicts spectral
density in the high frequency ( >0.15 Hz) regions of the spectrur.
while model (30) exhibits a considerably smaller underprediction at
high frequency. Except for frequencies near the secondary peak, LFDT
accurately predicts spectral shape. However, LFDT overpredicts the
power at the spectral peak '~ '0% (compared to only a 5%
overprediction by model (30)). “mis »nct lends credence to the
hypothesis that the secondary peak is due to nonlinear transfers of
energy from the primary low frequency peak to its second harmonic.

Coherence spectra are shown in figure (15). As in the case of

the 5 Sept data set, the drop in coherence with increasing frequency
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Figure 13

Measured power spectra of SSE for 11 Sept data set.

{Similar to figure (8)).
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Figure 14

Comparison of averaged power spectra for 11 Sept data

set. (Similar to figure (9)).
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Figure 15

Smoothed coherence spectra for 11 Sept data set.

(Similar to figure (10)). Flat-bottom, directional test

coherences are not shown.




05°L92 8M P€*9he  hM 0S°'hel M

e ot'e s52'e o2'e si'e L0 so'0 sz'e e st'e el w0
L) L] ¥ ¥ L] ¥ L Ls T Ll L] T L) L] L] 1 4 L) L] L L L L L v

1'e t'e -1t-9

2°0 20 20

A £ £'e o €0

[N ) ’

HERY h'Q h'e L] H
’ ' nm
._ " 3'p 50 5°e .-
! ' [y
\ 2'0 ) A J :
L] o
\ -0 Lo 0 ;
) L8
-89 . WgINIYee - 8'o CCENTR T ¢re 3

d5°0 SISNOD o - 450 818M0D oo -5 o

ssnop —— $sn08 g
P P ot
PE°SS8I 02Ild PS'he I1d 2€°3h 8d
an‘e e a0e e T are o1°e se°¢ e oT'e at’e oo 80
L4 L T L] L] L] L L ¥ L L} L L ¥ T L L] T L LS

‘o, -1'e

20 -12°e

€0 €0

h'e +e

5°0 i

9'0 ¢ 0

L'e LR

8'0 [

8‘'0 6°@

't o1

(S3ON3Y3HOD) @8 1435 11




and distance from the initial point (P6) agrees well with coherence
predicted by the directional spectra. In all cases the nonlinear
model coherences do not differ significantly from each other, but are
substantially different from LFDT at the secondary peak in the power
spectrum. As the peak develops, the coherence between LFDT (which
does not predict development of the secondary peak) and the data
becomes progressively lower. Conversely,the coherence at 0.127 Hz
between nonlinear models and the data is substantially higher on 11
Sept than it is for the 5 Sept data set (figure (10)). The drop in
coherence for LFDT is restricted to the same frequency band as the
secondary peak in the power spectrum; at frequencies higher and lower,
there is no significant difference 1in coherence between 1inear and
nonlinear models. A slight exception to this is seen at location W8,
at frequencies near 0.20 Hz. A mild increase in coherence of the
nonlinear models is not present in the 1linear model. Although the
deviation between nonlinear and 1linear model coherences is not
significant at the 95% confidence level, the fact that it occurs at
the third harmonic of the grimary, energetic peak in the power
spectrum is indicative of nonlinear fransfers of energy to the third
harmonic via near resonant interactions between the primary and
secondary peaks.

At locations P8 and P11, in relatively deep water where little
spectral evolution is observed and éoherences between all models and
the data are high, the phase spectra of all models (figure (16)) are
virtually identical to those of the 5 Sept data set (figure (11)). As

in the discussion for 5 Sept, phase deviations can be attributed to
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Figure 16

Spectra of phase between models and data for 11 Sept data
set. (Similar to figure (11)).
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linear dispersion differences between the models. With the exceptions
of the frequency band sbout 0.127 Hz for LFDT and the narrow band
about 0.20 Bz for the model (30), relative phases between models and
data are similar to those observed in the 5 Sept data set throughout
the shoaling region.

The most striking differences between data sets occurs in the
frequency band about 0.13 Hz, where LFDT increasingly leads the data
as one progresses through the shoaling region. It must be remembered
that in this band, coherence between LFDT and the data is quite low;
thus confidence intervals for phase increase, in this case, to +35° at
W8. Even considering this, the deviation is significant at all on-
offshore locations. As no significant phase deviations between
nonlinear models and data are observed in this band, it must be
concluded that there is a nonlinearly-induced phase change in addition
to the observed power spectral transfers. The change is such that the
phase speed of the second harmonic is greater than that of a free,
Yinear wave with the same frequency.

A second difference between this data set and 5 Sept is
apparent near 0.20 Hz for the model (30) at the most shoreward
locations W4 and W8. Rather than a smoothly increasing phase
difference as would occur with waves obeying LFDT dynamics, the phase
difference between model and data drops nearly to zero in this
frequency band. This band is the third harmonic of the primary, and a
slightly 1increased coherence between (30) and the data was observed as
well. The phase results further confirm that nonlinear interactions,

probably between the primary and the now large second harmonic, are
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present in this band. Since the amplitude of the third harmonic is
small, substantial phase modifications can take place (cf. equation
(30.b)), and thus the actual phase in the band can be substantially
coupled to the phase of the primary and second harmonic (which are

predicted well by the nonlinear models), rather than the phase

dictated by the linear dispersion relation.

9 Sept 80

The 9 Sept data set exhibits the most complicated evolution of
any of the data so far analyzed. Composed of 17408 seconds of data
obtained on a falling tide, the variance of SSE at 10 m depth
{measured at 275 am?2 ) falls between the low variance of 5 Sept and
the high variance of 11 Sept. The power spectrum of SSE is dominated
by a broad, energetic peak centered at 0.09 Hz. The high frequency
(>0.15 Hz) spectrum in depths greater than 10 m is flat and nearly 2
orders of magnitude down from the peak. Figure (17) shows data
spectra through the shoaling region. As in the other data sets, there
is no spectral evolution in depths greater than 10 m. However,
through the shoaling region, the entire high frequency portion of the
spectrum grows so that 1in 4 m depth, spectral densities are 5 - 10
times greater than in 10 m depth in the frequency band 0.15 - 0.21 Hz.

As in the 11 Sept data set, the nonlinear models accurately
predict spectral evolution through the shoaling region, while LFDT
does not (figure (18)). Although the model (23) appears to predict

power spectral density more accurately than model (30) at frequencies

greater than 0.17 Hz, the consistently large (20%2 - 40%)

90




%]
Y i
i
3
!
.
-

N &

91

B

Figure 17

Measured power spectra of SSE for 9 Sept data set.

(Similar to figure (8)).
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Figure 18

Comparison of averaged power spectra for 9 Sept data set.

(Similar to figure (9)).
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overprediction of spectral density in the band 0.09 - 0.17 Hz by model
(23), not present in model (30) predictions, makes (30) a more
accurate overall predictor of spectral shape. Of some interest is the
fact that the evolution of the spectrum begins with the emergence of a
(nonsignificant at the 90% level) peak at 0.19 Hz, the second harmonic
of the highest energy portion of the broad, low frequency spectral
peak. The emergence of such a structure is not unexpected, as the
peak-peak-harmonic triad interaction is expected to dominate early
spectral evolution due to the larger amplitudes found at the peak of
the power spectrum. The importance of off-peak interactions is clear,
however, as 1in the shallower portions of the shoaling region the
entire high frequency end of the spectrum has increased significantly.
The coherence spectra shown in figure (19) are further
evidence of the complicated evolution of the wave field as it
propagates through the shoaling region. Apart from the barely
significant coherence peak at 0.19 Hz apparent in models (30) and
(23), the basic shape of all coherence spectra at locations P8 and P11
is again consistent with measured directional spectra. At all
locations, all models have high coherence in the energetic region of
frequency space (0.063 - 0.125 Hz). However, at locations P10 through
W8, significant deviations between models are evident in the high
frequencies. Coherence between LFDT and the data drops dramatically
with decreasing depth, first in the band 0.13-0.20 Hz, then throughout
the high freguency region. At the same time, coherence between the
nonlinear models and the data actually increases significantly in the

high frequency region. Such an effect is clearly not due to finite
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Figure 19

Smoothed coherence spectra for 9 Sept data set. (Similar

to figure (10)). Flat-bottom, directional test

coherences are not shown.
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directional spread in a homogeneous, linear, wave field, but must be
attributed to the fact that the high frequency wave field is dominated
by nonlinear interactions with lower frequency components.

The nonlinearities are also evident 1in the phase spectra
(figure (20)). Phases at locations P8 and P11 evolve similarly to
those of previous data sets, in accordance with simple LFDT
dispersion. At the shallower locations P10 through W8, the breakdown
of linear dispersion is clear. The phase relationship between linear
theory and the data at high frequencies 1is neither monotonic nor
consistent with zero phase lag (elthough once again it must be
remembered that coherence is low in this region of frequency space).
In terms of phase speed, some frequency components appear to be
travelling faster than predicted by LFDT, and some slower! Rather
than model (30) leading the data in the high frequencies, as predicted
by linear dispersion arguments and observed in the basically 1linear 5
Sept data set (figure (11)), the model actually lags the data
slightly. The model (23) phases exhibit none of the sharp lag
predicted by 1inear dispersion, but instead are nearly identical with
phases predicted by model (30). It thus appears that nonlinear
interactions, properly modeled by both (30) and (23), completely

dominate the high frequency portion of the wave field in this

particular data set,

98



3 Figure 20
‘ Spectra of phase between models and data for 9 Sept data
t 1 set. (Similar to figure (11)).
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V. DISCUSSION AMD CONCLUSIONS

The present work has developed and tested models decribing the
changes  undergone by wind-generated surface waves (4-12 second
periods) as a broad spectrum -of such waves propagates shoreward over a
shoalina bottom. Two, one-dimensional models based on variants of the
Boussinesq equations and incorporating the physics of multiple near
resonant triads have been derived and implemented numerically. The
models, which assume that all waves are normally incident to the
heach, have no empirically determined parameters.

A field experiment involving dense instrumentation of the
shoaling region from 10 m depth to 3 m depth was successful in
obtaining detailed measurements over a wide range of wave conditions.
Three selected data sets spanning fhe range of observed wave
conditions and spectrai evolution have been analyzed in depth and
cempared with power spectra, coherence, and phase predictions of the
two nonlinear shoaling models and linear, finite-depth theory.

Overall, both nonlinear models were good predictors of the
power spectrum of sea-surface elevation throughout the shoaling
region. Linear theory was considerably less accurate except under
broad-banded, 1ow energy conditions. Ccherence between predictions of
a1l  models and the data was uniformly high in the ow-frequency
tcenerally energetic) region of the wind-wave band. With the
exception of those regions of space (both physical and freguency)
where significant nonlinear evolution of the spectrum was taking
place, the features of all model-data coherence spectra were similar

and adequately accounted for by the measured directional spread of the
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wave field. Where nonlinear effects were important (shallow water,
mid- to high-frequencies), coherences between the nonlinear models and
the data improved markedly compared to "linear" regions of the
spectrum, while coherence between 1linear, finite-deptﬁ theory (LFDT)
and the data became dramatically worse. In spatial regions where
nonlinear effects are small, LFDT is an accurate predictor of phase
across the entire wind-wave spectrum. In these regions, phase
deviations between the nonlinear models and the data can be ascribed
to differences 1in linear dispersion relations; the 1long wave
assumptions inherent in the derivation of the Boussinesq-type models
ricke them poor predictors of wavenumber for high-frequency waves in
relatively deep water. Where nonlinear effects are important in the
evolution of the power spectrum, the nonlinear models are good
predictors of phase whereas LFDT is significently poorer, indicating
that nonlinear phase changes (which can, for instance, generate the
observed asymmetrical shape of waves near btreaking) are as evident as
the more often documented nonlinear energy transfers.

The accurate predictions of the nonlinear shoaling models over
a broad range of input wave conditions makes them especially
appealing. Some specific data sets (eg. 5 Sept, figures (8) to (11))
are predicted well by LFDT. The evolition of harmonics in some data
snts (eg. 11 Sept, figures (13) to (16)) is reminiscent of Stokes-type
forced theories (although the similarity is merely illusory as the
Ursell number in 5 m depth is greater than 1). In all cases so far

observed, the more general nonlinear shoaling models (23) and (30)

accurately predict the observed spectral evelution of the wave field
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Figure 21

Frequency-directional spectra in the wind-wave band for
the 11 Sept data set. The top spectruﬁ is obtained from
MLE analysis of the two-dimensional deep array shown in
figure (2), excepting the nonfunctional current meter.
The bottom spectrum results from a similar analysis of
the 1linear shallow array of wavestaffs W2-W7. "isvemeni
inaccuracies resulted in staffs W2 and W/ seing far
enough shoreward and seaward (respectively) of the
Tongshore line to allow for resolution of onshore- vs.
offshore-propagating energy. Scaling is such that at any

frequency, the total area under the curve is proportional

to log{spectral density) in that band.
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through the shoaling region; in the three data sets analyzed here in
depth, the nodels properly predict nonlinear phase evolution as well.

Directional effects appear to play little role in the
nonlinear evolution of the data sets analyzed here. In part this is
due to the fact that Torrey Pines Beach has few open windows to the
deep ocean, and thus energetic low- and mid-frequency waves tend to
hpave narrow, well-defined directional spectra. Hore generally,
however, these waves refract considerably before entering the
relatively shallow water of the shoaling region, and thus the
extremely broad directional distributions typical of the open ocean
are not expected.

Figure (21) shows two, averaged, frequency-directional spectra
from the 11 Sept data set. The top figure displays data obtained from
the two-dimensional deep array (see figure (2)). MNote that the energy
in the low-frequency peak of the power spectrum (0.065 Hz) is directed
from approximately 15° south of true west, and has a width of only
250. It is 1ikely that this swell is being generated by a distant
storm in the southern hemisphere. Pawka (1981) discusses details of
the directional spectrum for simi1ar-data sets. Of interest to the
present study is the fact that, although the majority of the energy at
frequencies greater than 0.10 Hz is directed from the northern
auadrant, approximately half of the energy at the harmonic frequency
(0.127 Hz) 1is directed from the south, similar to the low frequency
primary. The effect is enhanced in the data from the shallow array,
shown in the lower half of figure (21). In general, directional

spreads measured at the shallow array are narrower than at the deep
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array, as expected on the basis of simple linear refraction. At the
harmonic frequency bund, the vast majority of the energy comes not
from the north but from the south, This s expected if, as
hypothesized in Chapter 1V, the energy in the harmonic peak 1is due
primarily to nonlinear transfers via peak-peak-harmonic triad
interactions. As the resonance condition (15.b) is a vector equation,
any peak-peak-harmonic interaction will force a harmonic wave whose
wavenumber points in the direction of the peak waves.

The directional spectra also provide preliminary bounds on the
amount of seaward-propagating energy in the shoaling region. Direct
integration of directional spectral estimates in the frequency range
0.059-0.152 Hz for all data sets reveals that at no time is more than
25% of the total energy in any band propagating westward in the window
45°. 135% at the shallow array, and less than 20% at the deep array.

Average values of seaward-propagating energy are approximately 17% for
the shallow array and 14% for the deep array. However, model testing
of the MLE estimator indicates that the data-adaptive analysis
technique has a tendency to window incoming energy incorrectly into
outgoing directions for the arrays in this experiment. The model
tests suggest that there is a strong possibility that the true amount
of outgoing energy is negligible (in the range 0-10% of total energy)
at frequencies in the wind-wave band. The predictions of the one-
dimensional shoaling models clearly are not significantly affected by
such small amounts of outgoing energy. Should a more quantitative

description of seaward-propagating energy be desired, a special-

purpose analysis window with minimal windowing error of incoming to
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outgoing energy, similar to those discussed in Davis and Regier (1977)
and Pawka (1981), should be implemented.

The role of the sloping bottom is found to be of only minor
importance in determining spectral evolution of the wave field through
the shoaling region. Comparison of power spectral results from the
numerical experiment (figure (4)) with those from the 9 Sept data set
(figure (17)) from which dnitial conditions for the flat-bottom
numerical experiment were drawn, shows that the qualitative nature of
the evolution of the spectrum is similar in both cases. Bottom slope
appears explicitly only in the linear shoaling terms in (30) and (23),
and implicitly 1in the calculation of total phase necessary to
determine the trigonometric modulation of the nonlinear coupling.
Differences between the 1linear shoaling terms, due to differences
between 1inear dispersion relations, account for much of the deviation
between power spectral predictions of models (30) and (23), and the
data. This is true of all frequencies in the 5 Sept data set and at
those (generally very high) frequencies in other data sets where
nonlinear spectral evolution is not apparent. In a given frequency
band, 1linear shoaling predicts tﬁat the ratio of energies at two
depths (neglecting refractive effects) is inversely proportional to
the ratio of group velocities (defined as %% ) at those depths. The
nondispersive form of the dispersion relation (14.b) overpredicts (in
comparison to LFDT) the ratio of 1inear group velocities

Cg(deep)/cg(shallow)

and hence overpredicts the ratio

Eyor (Shallow)/Ey , (deep)
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over most of the wind-wave band. Conversely, the Boussinesq

dispersion relation (28.b) underpredicts the ratio

Cg(deep)/cg(shaﬂmv)

but remains within 10% of LFDT for frequencies less than 0.17 Hz
everywhere in the shoaling region. (Care must be taken when
attempting to isolate the effects of individual terms in the rate
equations. Since the models (30) and (23) allow weak nonlinear
interactions across all frequencies, a misprediction in the evclution
equations, even if confined initially to a small band of frequencies,
can feed back through the nonlinear coupling to cause errors at other
frequencies and other on-offshore locations.)

The observed lack of power spectral evolution between 14 m
depth (P1) and 10 m depth (P6) strongly indicates that the process of
triad near resonance modeled by (30) and (23) is in fact confined to
the relatively shallow shoaling region. Although the models are not
valid 1in depths much greater than 10 m due to breakdown of the long
wave assumptions over much of the wind-wave frequency band, the trend
toward increasina inability to satisfy the resonance conditions for
triads containing high-frequency waves suggests that the triad
resonance mechanism 1is wunimportant in such relatively large depths.
That this is observed in the data bodes well for future attempts to
smoothly match the present model with one more appropriate to deeper
water.

Finally, it should be noted that the numerical integration of
highly resolved spectra is extremely time consuming and therefore

(perhaps prohibitively) expensive. A typical day's data takes
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approximately 10C hours to be integrated on a fast (Perkin-Elmer 8/32)
minicomputer with highly optimized code. The present results, coupled
with analysis of the structure of models (30) and (23), suggest some
simplifications.

Clearly, for broad-banded, low energy wave conditions, weakly

nonlinear resonant interactions are small compared with 1inear
effects. As the phase comparisons on 5 Sept showed, it is
advantageous to use LFDT due to its apparently more accurate
dispersion relation at all frequencies through the shoaling region.
Quantitative 1limits on "broad-banded" and "low energy" have not been
established.
Narrow-banded input spectra, such as 11 Sept, tend to
i concentrate nonlinear effects at the harmonics of the input peak
frequency. This is due to the fact that the product of amplitudes in
the nonlinear term s large for triads involving two large-amplitude
modes. Although the net effect of a large number of interactions with

low energy modes cannot be ignored on ordering grounds, it appears

o -
..

that in practice large amplitude, peak-peak-harmonic interactions
' dominate the evolution of harmonic bands. A code in which LFDT is

used to predict evolution away from the harmonic bands coupled with

Favg T

v ] high resolution nonlinear evolution at the harmenics is expected to be

bt

a good predictor of the shoaling transformation. Note that the second

harmonic band should be approximately twice the width of the primary

band, etc. Work is currently proceeding along these 1ines.
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