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UNIFORM IMPROVEMENTS ON THE CERTAINTY LQUIVALENT
RULE IN A STATISTICAL CONTROL PROBLEM
L. Mark Berliner
Department of Statistics

Ohic State University
Columbus, Chio, U.S.A.

1. The Control Problem. The problem considered here arises when it

is desired to choose values for design variables in a linear model so
that the resulting dependent random variable will be close to a prescribed
constant. For discussions and applications of this problem, see Aoki [11],
Dunsmore [€]), Lindley [7], and Zellner [12].

The analysis here concerns the following transformed version of the

problem as given in Basu [2] and Zaman [11]. Consider the linecar model

y = ZtB + E,
where B is an urlqown p-vector, z is an arbitrary p-vector, and € ~ N(O,cz);
02, possibly unknown. FPurthermore, an estimate (independent of €) of 8,
say B, is available. Assume that 8 Np(B,A), where A is a known, positive
definite matrix. The goal is to choose a controller zc(é) which performs

well with respect to a control risk function R, given by

Ey-y*)?
E((z (B)1%8 + € - y»)7,

(1.1) RC(ZC,B)

t

where y* is a non-zero constant, and the expectation is taken over both

é and €. Computation in (1.1) yields

(1.2) Ry(z,,8) = o° + (yELy®) 2 (B)1%8-112,

1 Research supported in part by the National Science Foundation under
Grant MSC~7802300 and by the 0ffice of Naval Research under
Contract NOOOlu-78-C~0543(NRO42-403).

e e e it P e | T = Ay smangos
e e

e

e et




Now, consider the following transformation:

¥ = A-12
o = A7/7
§ = (y*)°lA'1/2zC(§).

Application of this transformation in (1.2) yields the equivalent problem
of choosing a decision rule §{x) = (6l(x),. .o ,6p(x) )t, based on an observation

X Np(B,I), 8 unknown, subject to incwrring a loss,

(1.3) 1(8,8) = (e%6-1)2.
This version of the control problem will be considered below.

The approach here is decision theoretic; control rules are evaluated
in terms of their risk (expected loss) functions, R(6,8) = EeL(G(X),G).

Our interest is the proposition of rules which dominate, in risk, the rule

-2 2 _ P2
6,00 = |x| "%, (|x|© = Z--lxi

controller. For brevity, discussion of the "certainty equivalent principle"

.) This rule is the certainty eguivalent

(also known as the "separation principle') is omitted. The reader is
referred to Aoki [1], Basu [2], and Zellner [12] for such discussions.
However, in the spirit of this principle, note that the loss function
implies that 8 should be a estimator, in some sense, of the quantity
ie!'2e. Clearly, 6 is the maximum likelihoud estimator of this quantity.

As will be seen, a theorem of Zaman [11] implies that Gm is inadmissible
in all dimensions. (In fact, note that <5m has infinite risk when p is

lor2.)

2. Previous Results. Most previous results are concerned with

spherically symmetric (s.s.) rules, i.e., rules of the form §(x) = ¥(|x])x.
Many inadmissibility results are based on the asymptotic behavior of s.s.

rules as Ix! + . In particular, suppese that for some constant ¢,




;

(2.1) §(x) % (|x]%re) 1x

for |x| sufficiently large. The essence of the available results is that
if ¢ > 5 - p, then § is inadmissible. (See Zaman [10] and Berger, Berliner,
and Zaman [4] for precise theorems.)} Related work of Zaman [10] and
Takeuchi [9] also concerns rules of the form (2.1). In particular,

Zaman [10] showed that the value ¢ = § - p is asymptotically optimal

(i.e., for all [8] sufficiently large, &(x) % ([xlzt‘i-p)-lx has the
smallest risk of all rules of the form (2.1)). Berger, Berliner, and
Zaman (5] studied the admissibility of s.s. generalized Bayes

controllers. Of special interest in this paper, it was shown that, under

suitable regularity conditions on generalized prior measures, the corresponding

generalized Bayes rules, that are given by &(x) (lx|2+5-p)-lx for |x|
large, are admissible,

Three other results are directly applied in the discussion below.
These results are paraphrased here. The reader is referred to the

indicated references for precise statements.

RESULT 1. (Zaman [111). If 8(x) = ¥(|x|)x is admissible, then

1) 0 < ¥(r) < 1.

ii) 1ldm ¥(r) = 1.
r+0

1i1) ¥(o) is a ¢

- function.
Note that Result 1; i), ii), imply that 8, is inadmissible.

In Result 2, and the rest of the paper, the following notation is used:

DEFINITION: For any function ¥, let
Tl(\i’(r)) = min {1;¥(r)}.

Result 1 can be viewed as a partial motivation of Result 2.
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RESULT 2. (Zzaman [11].) Let §,00 = ¥ (IxDx. If rg¥ (IxD) > 1) >0,
then & given by 6(x) = T, (¥,(|x]|))x dominates 5.

The next domination result was given by Berliner [5]. Th~ darivation
of this result is bhased on an integration by parts technique for risk
analysis first introduced by Stein [8]. See Berliner {5] for ¢ discussion
and recent references.

For any differentiable function y(r) let

P (r) = mdgr) .

Also, for all real n define the quantities £(¥) and Z(¥) by
wy (p+1),2
EQY) = fl i ¥ (r)exp(~ )]!exp(m)dr

and

z9) = [EP 2 (pyaxp(- )exp(rn)]l

RESULT 3. (Berliner [51). Let 6(x) = ¥(|x[)x and §,(x) = ¥ (Ix)x.

Suppose that both ¥ and ‘FD are continuous, piece-wise differentiable

hold: (i) E(¥) < =, (ii) &(‘}'O) < e, (1ii) IC(‘P)I < o, and (iv)

le(ed] < = If

(2.2) V(@) (209" (r) + (pHl-rP)¥(r) + 2} >

¥, () {2r¥] (r) + (p+1-r‘2)‘i’0(r) + 2)

for all r > 0, and with strict inequality on a set of positive Lebesgue

measure, then § dominates 60.

3. Main Results. Theorems 1 and 2 below present classes of procedures

hich dominate 5m. These theorems are direct appiications of Result 3.

"
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THEOREM 1. Assume p > 6. Let 8(x) = ¥(|x|)x where ¥(r) = (vz—g(r))'l.

Suppose that

i)  g(r) is continuous, piece-wise differentiable, and non-decreasing,

ii) g(r) is not identically zero,

and 1ii) 0 < g(r) < min{2(p-5); h(r2,p)}, where h(PQ,p) is given by

r2[r2+3(p—3) - ((r2+ll—p)2 + 32(p-5))l/2] .

h(rz,p) = 5
2(r°+p-3)

Then § dominates 6m.

Proof: Tirst, note that Gm clearly satisfies the requirements of
Result 3 (when p > 3). It is also easy to verify that § satisfies these

requirerments.
Step 1. To apply Result 3, let ¥ (r) = r% and ¥(r) = (r2~g(r))-1.
Computing (2.2) in this case yields

(3.1) (rz—g(r))-l{-2r(2r~g'(r))(rz—g(r))-2

+ (p+l-r2)(r2-g(r))-l + 2} >

rn s prmms L

2 2r(- 2073 + (p+l—r2)r"2 + 2},
Simplification of (3.1) yields

~

(3.2) L g en 3 2n(g! (r1-2n)
+ [pt1-r?) + 2(rP-g@) Ur—g(r)} >
r (-2 + 17, !
It is easy to check that g(r) f_h(rz,p) implies that g(r) < r?

2 . .
for all r® > 0. Using this fact, an algebraic manipulation of (3.2)

implies the equivalent inequality




(3.3) 2rg' () + v g() {[2(p-5)-g(r) To"
+ [g(r)—3(p-3)]g(r)r2 + (p-B)gQ(r)} > 0.

Since g'(r) > 0 it is sufficient to verify that

(3.4) [2(p—5)—g(r)]rq + [g(r)-3(p~3)]g(r)r2 + (p—3)g2(r) > 0.

Step 2: Let Q(g) denote the L.H.S. of (3.4). Note that Q(g) can

be written as (suppressing the dependence of g on r)

(3.5) Qlg) = (r2+p-3)g2 - rz(r2+3(p-3))g + 2(p—5)ru.

Clearly Q(g) is an upward opening quadratic function of g. Consider
the smallest root, say 'é', of Q(g). The quadratic formula implies that
’;\: = h(r'z,p). Next, inspection of h(rz,p) implies that h(rQ,p} >0
when r’ > 0 (and, of course, p > 6), Hence, Qg) > 0 for all g < E
Finally, the dominance assertion ther follows directly, ]

The remainder of this section is devoted to the development of a
readily applicable wersion of Theorem 1. The motivation of this discussion
is twofold. First, the funetion h(rz,p) in Condition iii) of Theorem 1
is rather cumbersome. Second, the specific g functions to be discussed

in Section 4 are easily bounded by linear functions of r‘2.

<

TFEORIM 2. Assume p > 6. Let 3 be defined as in Theorem 1.

suppose that the corresponding g function satisfies Conditions i) and

ii) of Theorem 1. F

0 < g(r) < (p=5)min{1;r?/y*)

where y* > 0 satisfies h(y*,p) = p-5, then § dominates 8-

(>8]




The preof is based on the following lemma.

LM 1. Forp >6and vy > 0, h(y,p) is an increasing, concave

function of y.
The proof of lLemma 1 is & straightforward differentiation argument

and is omitted.

Proof of Theorem 2: By Theorem 1 it is sufficient to verify that

g < min{(p-5); h(r’,p)}.

First, by lLemma 1, ‘n(rz,p) < p-5 iff r‘2 < y*. Now consider a
graph of h(r‘z,p) as a function of rz. The formula for the line connecting
the origin and the point at which h(rZ,p) = p=5 is [(p=5)/y*Ir’.

Therefore, by concavity, [(p—S)/y*:lr2 ih(rz,p) for all r? < yr

We close this section with a few remarks. TFirst, the limit as
r¢ + ® of h(r’,p) is 3(p=3)/2. Lemma 1 implies that if p > 11, Condition
iii) of Theorem 1 simply reduces to 0 < g(r) < h(r’,p). (Since 3(p-3)/2 < 2(p-5)
when p > 11.)

Second, Theorem 2 can be generalized in the following sense. Theorem 2
is an application of Theorem 1 where the implicit upper bound on g is
lowered from 2(p-5) to p-5. The same analysis could be pe;*formed for
other upper bounds (moderated by the remark immediately above) if desired.
However, Theorem 2 does include the important asymptotically optimal
case.

Finally, the computation of y* is required. For convenience,

a partial list of the values of y* (computed numerically) is given in

Table 1.




Table 1. Selected Values of y#

p y* P y*

6 7.605551 15 20.000000

7 9.123106 16 21.280110

8 10.582576 17 22.549834

9 12.000000 18 23.810250
10 13.385165 19 25.062258
11 14, 744563 20 26. 306624
12 16.082763 25 32.433981
13 17.403124 30 38.440307
14 18.70820u 40 50. 206556

L, Proposed Control Rules. TFirst, the following limitation in

the application of Result 3 is noted. Substitution of ¥ = ¥ in (2.2)
forces the R.H.S. of the inequality to be (positive) unbounded as r + 0
(see (3.2)). Meanwhile, the L.H.S. of (2.2) remains bournded as r + O
for any admissible (or nearly admissible, in the sense of Result 1;

i), i1i)) rule. Hence, the differential inequality (2.2) cannot yield
admissible alternatives to Gm. In the case of Theorems 1 and 2, this
fact is reflected in the implicit restriction that the ¥ functions
satisfying the conditions of these theorems are bounded from below by
le['z, for some constant K, as |x| - 0. However, the combination of
Result 2 and these theorems leads to reasonable altermatives to ‘Sm for

p > 6.

PROPOSITION 1. Assume p > 6. Let 8(x) = ¥(|x|)x. Suppose §

satisfies the assumptions of Theoram 1 (or 2). Then 8y given by

§p(x) = Tl(‘!'(lx[))x

dominates §_.

m




Proof: Obvious. ||

REMARK: Unfortunately, the rules GT are also inadmissiblc o. =@ foey
violate the smoothness requirement of Result 1.

The final point of this discussion is the suggestion of functions
g(|%|) for actual use in the application of Theorem 2 and Proposition 1.
The functions described below arise naturally as parts of a certain class
of generalized Bayes rules. The reader is referred to Berger [3] and
Berliner [5] for discussions. Only the required facts are given here.

let n > 1/2. For v > 0 define the function rn(v) by

1 1
v/ lexpe VA

rn(v) =3

N0 Vg Zunian
0

The following facts concerning r, are needed here:

LEMMA 2. (Berger [3]1.) Ifn >1/2, then
1) 0 < rn(v) < 2n.
ii) ri(v) > 0.
n —

11i) 1lim rn(v) = 2n.
Mo

iv) lim v (v)/v = n/(n+l).
o B

v) rn(v)/v < n/(n+l).

Now, let v = a!x!z for some constant a > 0. Next, for p > 6, define
r#(v) by r*(v) = r (v) forn = (p-5)/2. Then, clearly, by lLemma 2,
r*(a|x12) + p=5 as lx]2 + =, Hence, the rule §(x) = (|x|?-r*(a|x$2))-lx is

asymptotically optimal.




A

Also, by Lemma 2, note that
r#(alx|?) < [(p-5)/(p-Dalx| .
Then, to apply Theorem 2, we require that

a < (p-3)/y*.

PROPOSITION 2. Assume p > 6. Let 8% be given by

8% (x) = Tl([|x|2-r=“(alx|2)]-l)x. f

Then for any constant a such that 0 < a < (p-3)/y¥, &% dominates dm.

Proof: The proof is a direct application of the above arguments,

Lemma 2, and Proposition 1. ||

5, Comments. 1) The m.les &% proposed above display desirable properties:
a) They are relatively easy to compute.
b) Their behavior for |x| large is similar to that of the generalized
Bayes, acmissible rules discussed in Berliner [5].

¢) They are asymptotically optimal.

However, they are not admissible since the smoothness requirement of

Result 1 is viclated. !
ii) A common criterion for choosing among decision rules is

minimaxity. We simply note here that ¢ is minimax when p > 3. Hence,

6% is also minimax. See Berliner [5] for proofs and discussion.
iii) Ancother natural control procedure often considered is the

uniform measure, generalized Bayes rule § (x) = (1+|xl2)_lx. This rule

is admissible for p < 4, but inadmissible for p > 5. Several authors

have shown that GU is dondinated by 5m when p > 5. Hence, the rules &%




t propused above aiso dominate 6u when p > 6. For further discussion,

references for the above results, and another class of rules which

for

& the

(1]

[2]

[s]

[7]
el

(9]

{10]

dominate 6u, see Berliner [5].
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