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UNIFORM IMPROMI-MI'S ON 7HE CERTAINTY EQUIVALENT

RULE IN A STATISTICAL CONTROL PROBLEM'

L. Mark Berliner

Department of Statistics
Ohio State University
Columbus, Ohio, U.S.A.

1. The Control Problem. The problem considered here arises when it

is desired to choose values for design variables in a linear model so

that the resulting dependent random variable will be close to a prescribed

constant. For discussions and applications of this problem, see Aoki Ell,

Dunsnore []), Lindley [7], and Zellner [12].

The analysis here concerns the following transformed version of the

problem as given in Basu [2] and Zaman [11]. Consider the linear model

y= ztB+ E,

where B is an unknwn p-vector, z is an arbitrary p-vector, and E ,, 
N(0, 2);

a2, possibly unknown. Furthermore, an estimate (independent of e) of 6,

say , is available. Assume that B ' N ((,A), where A is a known, positive
p

definite matrix. The goal is to choose a controller z (a) which performs

well with respect to a control risk function Rc given by

2A
(1.1) R c(z c) E(y-Y*)2

E([c()]t+ B + y*)2,

where y* is a non-zero constant, and the expectation is taken over both 4
and e. Computation in (1.1) yields

(1.2) Rc(zc,3) a 2 + (y) 2 E[(y*) -1[zc( )]S_1]2° i'

iResearch supported in part by the National Science Foundation under i
Grant MSC-7802300 and by the Office of Naval Research under
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Now, consider the following transformation:

X =-

a A-1/2B

6 (y*)- A-I/2zc(8).

Application of this transformation in (1.2) yields the equivalent problem

of choosing a decision rule 6W(x) - ((X),. . .,6(x)) t , based on an observation

X l Np (,1), 0 unknown, subject to incurring a loss,

p2
(1.3) L(6,0) z (ets-l)2

This version of the control problem will be considered below.

The approach here is decision theoretic; control rules are evaluated

in termns of their risk (expected loss) functions, R(6,O) = E0L(6(X),6).

Our interest is the proposition of rules wich dominate, in risk, the rule

m Ix- 2x. (ixi2  x I This rule is the :ertainty equivalent

controller. For brevity, discussion of the "certainty equivalent principle"

(also known as the "separation principle") is omitted. The reader is

referred to Aoki [11, Basu [21, and Zellner [121 for such discussions.

However, in the spirit of this principle, note that the loss function

implies that 6 should be a estimator, in some sense, of the quantity

101-2e. Clearly, 6 is the maximunn likelihood estimator of this quantity.

As will be seen, a theorem of Zaman [il] implies that 6 is inadmissible

in all dimensions. (In fact, note that 6 m has infinite risk when p is

1 or 2.)

2. Previous Results. Mbst previous results are concerned with

spherically symmetric (s.s.) rules, i.e., rules of the form 6(x) = (Ixl)x.

Many inadmissibility results are based on the asymptotic behavior of s.s.
,. vT -In , s"ppose tt for sato: c tant c,

-~o sc co.-~~-
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(2.1) 6(W) % (lxi 2 -c)-1x

for Ixj sufficiently large. The essence of the available results is that

if c > 5 - p, then 6 is inadmissible. (See Zaxran [10] and Berger, Berliner,

ind. Zaman [4 for precise theorems.) Related work of Zaman [10] and

Takeuchi [9] also ooncerns rules of the form (2.1). In particular,

Zaman [10] showed that the value c = 5 - p is asynptotically optiml

(i.e., for all 101 sufficiently large, 6(x) ; (JxI 2 i5-p)-Ix has the

symallest risk of all rules of the form (2.1)). Berger, Berliner, and

Zaiman [5] studied the admissibility of s.s. generalized Bayes

controllers. Of special interest in this paper, it was shown that, under

suitable regularity conditions on generalized prior measures, the corresponding

generalized Bayes rules, that are given by 6(x) % (1x12+5-p)-ix for lxI

large, are admissible.

Three other results are directly applied in the discussion below.

These results are paraphrased here. The reader is referred to the

indicated references for precise statements.

RESULT 1. (Zaman [11]). If 6(x :( Ixl )x is admissible, then

i) 0 < T(r) < 1.

i)lira T(r) =i
r+0

iii) T(r) is a C - function.

Note that Result 1; i), ii), imply that 6m is inadmissible.

In Result 2, and the rest of the paper, the following notation is used:

DEFINITION: For any function T, let

T 1 (r)) = min {l;(r)}.

Result 1 can be viewed as a partial motivation of Result 2.

I,



RE--SULT 2. (Zaman [11].) Let 6 0 () = 0CxI)x. If 0(Y 0lxi) > 1) > 0,

then 6 ven P 6(x) = T( 1 ( 0 (ixl))x dominates 60.

The next doination result was given by Berliner [5]. at- Orivation

of this result is based on an integration by parts technique for risk

analysis first introduced by Stein [8]. See Berliner [5) for e discussion

and recent references.

For any differentiable function i(r) let

d*(r)

dr

Also, for all real ? define the quantities C(Y) and C() by

.0d (p+l 1
C() ; f irrCTP(l)~ exg( %')Iexp~rn)dr

0

t(P) = [r(P+l)y2(r)exp(- )exp(rn)12O.

RESULT 3. (Berliner [5]). et (x) f(Ixl)x and 60(x) = D%(Ixl)x.

Suppose that both P and TP a continuous, piece-wise differentiable

functions on (0,t) such that, for all real n, the following conditions

hold: Ci) C(O) < -, (ii) WC() < -, (iii) JC()j < , and (iv)

C(Y )1 < w- If

(2.2) '(r){2rW'(r) + (p+l-r2)T(r) + 2) >

'%(r){2r%(r) + (p+l-r2 )N'(r) + 2}

for all r > 0, and with strict inequality on a set of positive Lebesgue

measue, then 6 dominates 60 *

3. Main Results. Theoremr i and 2 below present classes of procedures

which I mte 6 . These theort-s arne direct applications of Result 3.

44
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TIEORE1 1. Assume p > 6. Let 6(x) = (CxI)x where T(r) = (r-g(r))

Suppose that

i) g(r) is continuous, piece-wise differentiable, and non-decreasing,

ii) g(r) is not identically zero,

and iii) 0 < g(r) < min{2(p-5); h(r2 ,p)}, where h(r2 p) is a y

2 r2[r2+3(p-3) - ((r2+1l-p)2 + 32(p-5))
1 / 2]

h(r , p) 2( 2+P32Cr2+p-3)

Then 5 dominates 6m

Proof: First, note that 6 clearly satisfies the requiremnts of

Result 3 (when p > 3). It is also easy to verify that 6 satisfies these

requirements.

Step 1. To apply Result 3, let T 0(r) r 2 and (r) (r 2-g(r))-1,

Computing (2.2) in this case yields

(1)2_ -1 2_ -2
(3.1) (rg(r)) J-2r(2r-g'(r))(r -g(r))

+ (p+l-r2 )(r 2 C)) -1  2} >

r-2{2r(- 2r- 3) + (p+l-r 2 )r - 2 + 2}.

Simplification of (3.1) yields

(3.2) " -g(r) ) {2r(g' Cr)-2r)

+ [(p+l-r 2 ) + 2(r2 -g(r))](r2-g(r))} >

r-2 [(p-3)r - 2 + 1].

It is easy to check that g(r) < hr 2 ,p) implies that g(r) < r

2
for all r > 0. Using this fact, an algebraic manipulation of (3.2)

implies the equivalent inequality

5



(3.3) 2rg'(r) + r-4g(r){[2(p-5)-g(r)r ] 4

+ [g(r)-3(p-3)]g(r)r2 + (D-3)g2(r)) > 0.

Since g'(r) > 0 it is sufficient to verify that

(3.4) [2(p-5)-g(r)]r 4 + [g(r)-3(p-3)]g (r)r2 + (p-3)g2 (r) > 0.

Step 2: Let Q(g) denote the L.H.S. of (3.4). Note that Q(g) can

be written as (suppressing the dependence of g on r)

( . )2 2 2 4(3.5) Q(g) (r +p3)g' - r (r +3(p3))g + 2(p-S)r

Clearly Q(g) is an upward opening quadratic function of g. Consider

the srallest root, say g, of Q(g). The quadratic formula implies that

g: h~r 2 ,p). Next, inspection of h(r2 p) implies that h(r 2 ,p) > 0

when r > D (and, of course, p > 6). Hence, Q(g) > 0 for allg< .
Finally, the dominance assertion then follows directly, !)

The reminder of tIus section is devoted to the development of a

readily applicable version of Theorem 1. The motivation of this discussion
is t ofold. First, the function h(r 2 ,p) in Condition iii) of Theorem 1

is rather cumbersome. Second, "the specific g functions to be discussed

in Section 4 are easily bounded by linear functions of r 2 .

7HOFD 11 2. Assume p > 6. Let 5 be defined as in Theorem 1.
Suppose that the eorrespndin_ g function satisfies Conditions i) and

ii) of Theorem 1. If

0 < g(r) < (p-S)mrin{l;r 2/yY}

wh ere y* > 0 satisfies h(y*,p) z p-5, then 6 dominates 6

... ... .. . . . . .. .. . . .



The prcof is based on the following lerma.

LM-A 1. For p > 6 and y > 0, h(y,p) is an increasLng, concave

function of y.

The prcxof of Lemmra 1 is a straightforward differentiation arguTmnt

and is omitted.

Proof of Theorem 2: By Theorem 1 it is sufficient to verify that

g(r) < mLn{(p-5); h(r 2,p)).

22

First, by Lemma 1, h(r2 ,p) < p-5 iff r < y*. Now consider a

2 2
graph of h(r2 ,p) as a function of r . The formula for the line connecting

2 2
the origin and the point at which h(r ,p) = p-5 is [(p-5)/y*]r

TInerefore, by concavity, [(p-5)/y*]r 2 < h(r 2 ,p) for all r 2 < y*.l

We close this section with a few remarks. First, the limit as

r 2 _ of h(r ,p) is 3(p-3)/2 . Lemma 1 implies that if p > 11, Condition

2iii) of Theorem 1 simply reduces to 0 < g(r) < h(r ,p). (Since 3 (p- 3 )/ 2 < 2 (p-5)

when p ) 11.)

Second, Theorem 2 can be generalized in the following sense. Theorem 2

is an application of Theorem 1 where the implicit upper bound on g is

lowered from 2(p-S) to p-5. The same analysis could be performed for

other upper bounds (moderated by the remark inmediately above) if desired.

However, Theorem 2 does include the important asymptotically optimal

case.

Finally, the computation of y* is required. For convenience,

a partial list of the values of y* (computed numrically) is given in

Table 1.

7I



Table 1. Selected Values of y*

p y* p y*

6 7.605551 15 20.000000
7 9.123106 16 21.280110
8 10.582576 17 22.549834
9 12.000000 18 23.810250

10 13.385165 19 25.062258
11 14.744563 20 26.306624
12 16.082763 25 32.433981
13 17.403124 30 38.440307
14 18.708204 40 50.206556

4. Proposed Control Rules. First, the following limitation in

the application of Result 3 is noted. Substitution of T0 = Ym in (2.2)

forces the R.H.S. of the inequality to be (positive) unbounded as r - 0

(see (3.2)). eaunUhile, the L.H.S. of (2.2) remains bounded as r , 0

for any admissible (or nearly admissible, in the sense of Result 1;

i), ii)) rule. Hence, the differential inequality (2.2) cannot yield

admissible alternatives to 6 . In the case of Theorems 1 and 2, this

fact is reflected in the implicit restriction that the Y functions

satisfying the conditions of these theorems are bounded from below by

Kjxf-2, for some constant K, as Ixl - 0. H7wever, the combination of

Result 2 and these theorem leads to reasonable alternatives to 6 form

p> 6.

PROPOSITION 1. Assume D > 6. Let 6(x) = (Ixl)x. Suppose 6

satisfies the assumptions of Theorem I (or 2). Then 6 T i

6T(X) T1(MI'(x))x

do.mn-,nates 5m"

8



Proof: Obvious. fl

REMARK: Unfortunately, the rules 6T are also inadmissibl- 1 -t ey

violate the smoothness requixrent of Result 1.

The final point of this discussion is the suggestion of functions

g(xIj) for actual use in the application of Theorem 2 and Proposition 1.

The functions described below arise raturally as parts of a certain class

of generalized Bayes rules. The reader is referred to Berger [3] and

Berliner [51 for discussions. Only the required facts are given here.

Let n > 1/2. For v > 0 define the function rn (v) by
in

v/lnexp( - yjx)cl

vnexp(- ~VX)dX0

0

The following facts concerning rn are needed here:

LEMMA 2. (Berger [31.) If n > 1/2, then

i) 0 < r (v) < 2n.

ii) r'(v) > 0.
n -

iii) lim r (v) = 2n.

iv) lir r (v)/v = n/(n+l).

v) rn(v)/v < n/(n+l).

Now, let v ajxl 2 for some constant a > 0. Next, for p > 6, define

r*(v) by r*(v) = rn(v) for n (p-5)/2. Then, clearly, by Lemma 2,

r*ajxj 2) p-5 as 1X 2 
+ Hence, the rule 6(x) = (Ix2-r(ajx,2))-lx is

asynptotically optimal.

9



Also, by Lemma 2, note that

r*(al x12) < [(p-5)/(p-3) ]alxI
2

Then, to apply Theorem 2, we require that

a < (p-3 )/y*.

PROPOSITION 2. AssuTw p > 6. Let 6 * be gven by

6*(×) :: T I([Ixl 2-r*(a lxl2)]-!)x"

Then for any constant a such that 0 < a < (p-3)/y*, 6* dominates 6m

Proof: The proof is a direct application of the above arguments,

Len=r 2, and Proposition 1.11

S. Comments. i) The rules 6* proposed above display desirable properties:

a) They are relatively easy to compute.

b) Their behavior for Ixj F arge is similar to that of the generalized

Bayes, admissible rules discussed in Berliner [5].

c) They are asymptotically optimal.

However, they are not admissible since the smoothness requirement of

Result I is violated.

ii) A common criterion for choosing among decision rules is

minm ty. We simply note here that 6 is minimax when p > 3. Hence,
m

6 is also minimax. See Berliner [5] for proofs and dicussion.

iii) Another natural control procedure often considered is the
2

w.niform measure, generalized Bayes rule 
6u(x) = (i+IxI )-'x. This rule

is admissible for p < 4, but inadmissible for p > 5. Several authors

hivc shown that 5u is doniJnated by 6m when p > 5. Hence, the rules 6*

10



proposed above a LSO dominate 6 when p > 6. For further discussion,

references for the above results, and another class of rules which

dominate 6, see Berliner [5].
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