SACRIFICING SERIALIZABILITY TO ATTAIN HIGH AVAILABILITY OF DATA IN AN UNRELIABLE NETWORK*

by

Michael J. Fischer and Alan Michael

Research Report #221

February 1982

*This work was supported in part by the Office of Naval Research under Contract N00014-80-C-0221 and by the National Science Foundation under Grants MCS80-03337, MCS80-04111, and MCS81-16678. The research was carried out in part at the University of Washington.
We present a simple algorithm for maintaining a replicated distributed dictionary which achieves high availability of data, rapid processing of atomic actions, efficient utilization of storage, and tolerance to node or network failures including lost or duplicated messages. It does not require transaction logs, synchronized clocks, or other complicated mechanisms for its operation. It achieves consistency contraints which are considerably weaker than serial consistency but nonetheless are adequate for many dictionary applications such as electronic appointment calendars and mail systems.
The degree of consistency achieved depends on the particular history of operation of the system in a way that is intuitive and easily understood. The algorithm implements a "best effort" approximation to full serial consistency, relative to whatever internode communication has successfully taken place, so the semantics are fully specified even under partial failure of the system. Both the correctness of the algorithm and the utility of such weak semantics depend heavily on special properties of the dictionary operations.
DISTRIBUTION LIST

Office of Naval Research Contract N00014-80-C0221
Michael J. Fischer, Principal Investigator

Defense Documentation Center
Cameron Station
Alexandria, VA 22314
(12 copies)

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217

Dr. R.B. Grafton, Scientific Officer (1 copy)
Information Systems Programs (437)
(2 copies)
Code 200 (1 copy)
Code 455 (1 copy)
Code 458 (1 copy)

Office of Naval Research
Branch Office, Pasadena
1030 East Green Street
Pasadena, CA 91106
(1 copy)

Naval Research Laboratory
Technical Information Division
Code 2627
Washington, D.C. 20375
(6 copies)

Office of Naval Research
Resident Representative
University of Washington, JD-27
422 University District Building
1107 NE 45th Street
(1 copy)

Dr. A.L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
Code RD-1
Washington, D.C. 20380
(1 copy)

Naval Ocean Systems Center
Advanced Software Technology Division
Code 5200
San Diego, CA 92152
(1 copy)

Mr. E.H. Gleissner
Naval Ship Research and Development Center
Computation and Mathematics Department
Bethesda, MD 20084
(1 copy)

Captain Grace M. Hooper (008)
Naval Data Automation Command
Washington Navy Yard
Building 166
Washington, D.C. 20374
(1 copy)

Defense Advance Research Projects Agency
ATTN: Program Management/MIS
1400 Wilson Boulevard
Arlington, VA 22209
(3 copies)

Mr. Alan Michael
Department of Computer Science
University of Wisconsin
Madison, Wisconsin
(1 copy)
SACRIFICING SERIALIZABILITY TO ATTAIN HIGH AVAILABILITY
OF DATA IN AN UNRELIABLE NETWORK

Michael J. Fischer
Tate University
New Haven, Connecticut

Alan Michael
University of Wisconsin
Madison, Wisconsin

ABSTRACT

We present a simple algorithm for maintaining a replicated distributed dictionary which achieves
high availability of data, rapid processing of atomic actions, efficient utilization of storage, and
tolerance to node or network failures including lost or duplicated messages. It does not require
transaction logs, synchronized clocks, or other complicated mechanisms for its
operation. It achieves consistency constraints which are considerably weaker than
serial consistency but nonetheless are adequate for many dictionary applications
such as electronic appointment calendars and mail systems. The degree of consistency
achieved depends on the particular history of operation of the system in a way that is
intuitive and easily understood. The algorithm implements a "best effort" approximation to full serial consistency.
relative to whatever intermode communication has successfully taken place, so the
semantics are fully specified even under partial failure of the system. Both the
correctness of the algorithm and the utility of such weak semantics depend heavily on
special properties of the dictionary operations.

1. Introduction

A common axiom taken for the correctness of a
database system is that the transactions be
serializable, that is, the results of any sequence
of transactions should be the same as if they had
been performed in some serial order [3, 5, 17, 19].
Serializability insures consistency of the database
when concurrent transactions are being processed
assuming only that each transaction is correct when
run alone.

Achieving serial consistency in an unreliable
distributed environment is considerably more
difficult than in a central database, and much work
has been done addressing this problem
[2, 4, 9, 20]. (Cf. [16] for a nice survey of
some of the issues.) Reasons for distributing data
in the first place are to increase speed of access
and to insure availability of data even when
individual nodes or the network itself fails. Both
of these goals require replication of the data,
which introduces the new problem of keeping the
replicated copies up-to-date. (Cf.
[7, 8, 15, 15, 21].)

Unfortunately, the two goals of availability
and serial consistency stand somewhat in conflict.
For example, availability dictates that every node
with a copy of the database be permitted to
continue performing transactions on its local copy
even when the network fails. Serializability, on
the other hand, requires that at most one such node
be allowed to proceed under such conditions, for
otherwise the copies begin diverging and reads can
return values inconsistent with any serial ordering
of the transactions.

Several authors have noted that meaningful
results can often be obtained even without serial
consistency when additional information about the
particular transactions is available [10, 11, 12].
Also, strict serializability is often not required
for read-only transactions [6, 18]. We present an
example of a problem which is adequately served by

This work was supported in part by the Office
of Naval Research under Contract N00014-80-C-0221
and by the National Science Foundation under Grants
MCS80-03927, MCS80-04111, and MCS81-16678. The
research was carried out in part at the University
of Washington.

To be presented at ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,
Los Angeles, CA, March 29-31, 1982
a database satisfying much weaker conditions and give an algorithm for its solution. Our algorithm achieves high availability of data, rapid processing of atomic actions, efficient utilization of storage, and tolerance to node or network failures including lost or duplicated messages. It does not require transaction logs, synchronized clocks, or other complicated mechanisms for its operation.

The degree of consistency achieved by our solution depends on the particular history of operation of the system in a way that is intuitive and easily understood. The algorithm implements a "best effort" approximation to full serial consistency, relative to whatever internode communication has successfully taken place, so the semantics are fully specified even under partial failure of the system.

Johnson and Thomas [10] give an algorithm for a similar problem which uses timestamps to serialize updates (cf. [14]) but permits arbitrary reading. While it enjoys many of the same advantages of our algorithm, it requires deleted dictionary entries to be retained until all processes have updated their copies of the database. Also, their read semantics are somewhat weaker than ours.

Algorithms such as [7, 21] which use voting schemes are able to provide both serial consistency and data availability despite limited node failures, but like all serializable algorithms, updates in all but one subset are disallowed when the network becomes partitioned.

2. Distributed Dictionaries

Abstractly, our problem is to maintain a database consisting of a dictionary, that is, a set of elements with two update operations INSERT and DELETE, and a single query operation LIST (cf. [11]). INSERT(x) adds element x to the set, DELETE(x) removes x from the set if it was there and does nothing otherwise, and LIST returns an enumeration of the elements currently in the set. All these operations are considered to be atomic transactions.

The database is to be implemented on an unreliable network of processors. Our goal is to make the database highly available, even under conditions in which individual nodes and the network are not always operational. By "available", we mean that any operational node should be able to perform any of the basic database operations at any time, regardless of the status of the rest of the system.

Each node maintains its own copy or view of the database, and all operations are performed initially only on the node's local view. From time to time a node sends information about its view to one or more other nodes. A node receiving such information then updates its own view. We have in effect added two new operations: SEND(m) and RECEIVE(m), where m is the message. As more and more messages are sent, information is thus propagated throughout the network, and the individual views of the data tend to converge to the view that would be "correct" were this all taking place in a centralized database.

Our notion of correctness depends not only on the particular update and query operations requested by the users of the system but also on the internal communications that have taken place, about which we make no assumptions. The intention is that in a correctly functioning system, enough communication will take place so that every node of the system will know about an insertion or deletion shortly after it occurs, and no view will be far out of date. However, our correctness condition is simply that an element x is in node i's view iff i knows of its insertion but does not know of its deletion.

We place two restrictions on the problem:

E1. We assume that there is at most one occurrence of the operation INSERT(x) for each element x, so that once an element has been deleted from the set, it can never again be reinserted.

E2. DELETE(x) is only legal at a node j if x is currently in j's view.

We need both restrictions for technical reasons. Among other things, they ensure that INSERT(x) can never follow DELETE(x), so if a node discovers that both operations were performed sometime in the past, then x definitely does not belong in its view. Also, both restrictions arise naturally in many applications. One way to enforce restriction E1 is to tag the actual datum with a "timestamp" which uniquely identifies the particular insertion. Thus, two attempts to insert the same datum will in fact give rise to two different elements x and x' with different timestamps. Restriction E2 is natural in applications where the only way to specify an argument to DELETE is to "point" at the element among the ones in the current view. Such is generally the case, for example, when the elements are tagged with timestamps. Note that we do permit several deletions of the same element; their effect is the same as a single one.
This abstract problem was motivated by the practical problem of building a highly available electronic appointment calendar. Here the data items are individual appointments, and an appointment calendar is just a set of appointments. A user can read and modify his appointments from any node. He will see every appointment that it is possible to see, given the interprocess communication that has actually taken place. In a fully working system he would see all but possibly very recently entered appointments. Anything he can see he can manipulate as if he were working on a centralised system. Finally, any changes he makes will be reflected at the other nodes when the system is again working, even if the network happens to be unavailable while he is actually doing the modifications. Note that because the views are not always up-to-date, conflicting appointments may not be discovered immediately. Hence, it is necessary for the calendar system to be able to handle conflicts at times other than when an appointment is first entered. (This is probably a desirable property anyway.)

Other places where this problem arises are in distributed mail systems and distributed file directory systems, both of which abstractly just maintain dictionaries. In a distributed mail system, our solution could simplify the usual network mailer. The network mailer would only have to deliver a message to one of a user’s mailboxes; the distribution of mail to the user’s other mailboxes would then be handled by our algorithm. Indeed, if the recipient had a local mailbox, then only the local mailer would be needed and the network mailer would not have to be invoked at all.

3. Formal Problem Statement

For each natural number \(N \), let \([N] = \{1, 2, \ldots, N\} \). Let \(D \) be the domain of elements. Let \(\text{OP} = \{\text{‘INSERT}(x)\}, \text{‘DELETE}(x)\} \times x \in D \cup \{\text{‘LIST}\} U \{\text{‘SEND}(m)\}, \text{‘RECEIVE}(m) | m \in \text{a message}\} \). We formulate our correctness conditions in terms of a partial order of events which represents the history of information flow in the system.

Fix a particular execution of the system. Each instance of an operation \(\xi \in \text{OP} \) corresponds to an event \(e \), where \(\text{op}(e) = \xi \) and \(\text{node}(e) \) is the node at which \(e \) occurs. Let \(E \) be the set of all events occurring in the execution, and let \(D(E) = \{x \in D | \text{op}(e) = \text{‘INSERT}(x) \text{for some } e \in E\} \). \(E \) is partially ordered by “\(\leq \)”, which is the least reflexive and transitive relation such that:

1. Events at the same node are totally ordered;

2. If \(\alpha_1 = \text{SEND}(m) \) and \(\alpha_2 = \text{RECEIVE}(m) \) for the same message \(m \), then \(\alpha_1 \rightarrow \alpha_2 \).

We now formalize a correct view of the database. We represent our notion of “knows about” by \(\rightarrow \); hence, when \(i \) has just performed event \(e \), it knows about an event \(e \) iff \(e \rightarrow e' \). Let \(\text{view}_i \colon E \rightarrow 2^D \) be defined as follows: \(x \in \text{view}_i(e) \) iff

1. there is an event \(e \) such that \(e \rightarrow e' \) and \(\text{op}(e) = \text{INSERT}(x) \), and
2. for every event \(e \), if \(\text{op}(e) = \text{DELETE}(x) \), then \(e \nleftrightarrow e' \).

We now define the \(N \)-node redundant dictionary problem to be the problem of finding a distributed algorithm on \(N \) nodes such that each node can process the operations of \(\text{INSERT}, \text{DELETE}, \text{LIST}, \text{SEND} \) and \(\text{RECEIVE} \), subject to restrictions \(EI \) and \(E2 \), and each node \(i \) maintains a correct view of the data \(V_i \). That is, in the partial order of events corresponding to the history of operations in the system, if \(e \) is an event at node \(i \), then just after the occurrence of that event, \(V_i = \text{view}(e) \).

4. The Algorithm

An obvious solution to our dictionary problem is the following: Each node \(i \) maintains two sets, \(I_i \) and \(D_i \), which are the sets of elements that node \(i \) knows have been inserted and deleted, respectively. \(i \)’s view of the dictionary is \(V_i = I_i - D_i \). To implement \(\text{SEND}(m) \), node \(j \) sends a message \(m \) containing \(I_j \) and \(D_j \). When a node \(i \) does a \(\text{RECEIVE}(m) \), it updates its own sets simply by taking unions.

The drawback to this solution is that the set \(I_i U D_i \) contains every element that has ever been in \(i \)’s view, and this set grows without bound, even if the size of the view is itself bounded. Our algorithm gets by with keeping only the current view, \(V_i \), and a small amount of additional information which will be described shortly.

Clearly, it won’t do to update \(V_i \) by replacing it with \(V_i U V_j \), for there can be two reasons why an element \(x \in V_i U V_j \) might be missing from one of the sets \(V_k \), \(k \in \{i,j\} \):

1. \(x \) used to be in \(V_k \) but it has since been deleted, or
2. \(x \) was inserted so recently that node \(k \) has not yet heard about it.

In case 2, \(x \) belongs in \(V_k \) (and in \(V_j \), too), and in case 1, it should be in neither.
In order to be able to distinguish these two cases, each node maintains the following information in addition to its current view of the database:

1. Each node i has a special "clock", which reference to clock_i returns a positive number that is larger than all previous values returned. (Clock_i can be implemented by a physical clock or by a counter that gets incremented on each reference. We talk about the values of clock_i as being "times", but they bear no relation to real time nor to the values of clock_j for any j ≠ i.)

2. Each x in the view is tagged with a pair (crex_i, T_x), where crex_i, the "creator" of x, is the node at which x was originally inserted, and T_x is the time, according to the clock of crex_i, at which the insertion took place.

3. Each node i maintains a table t_i, t_i(j) is i's posting time for insertions (and deletions) which took place at node j.

The posting times tell how current i's knowledge is about insertions that have occurred at the other nodes: i knows about an insertion at node j iff the time at which that operation occurred (according to clock_i) is ≤ t_i(j).

Given a view V, a posting time vector t, and an element x, we define a predicate:

\[\text{del}(V, t, x) \iff [x \notin V \text{ and } T_x \not\leq t(\text{crex}_x)]. \]

It will follow that del(V_i, t_i, x) holds iff node i knows that x has been deleted. We now describe how node i processes each of the kinds of operations.

Algorithm

INSERT(x):
- **t_i:** clock_i
- **crex_i:** i
- **T_x:** t_i(i)
- **V_i:** V_i U {x}

DELETE(x):
- **V_i:** V_i - {x}

LIST:
- **Return** V_i.

SEND(m):
- **Send** the message \(m = (V_i, t_i) \).

RECEIVE(m): Let m be the message \((V, t) \);
- \[V_1 := \{ x \in (V U V_i) \mid \text{del}(V_1, t_1, x) \text{ and } \text{del}(V, t, x) \}; \]
- \[t_i(k) := \max(t_i(h), \tilde{t}(k)) \text{ for all } k \in [N]. \]

Initially, \(t_i(j) = \text{clock}_j = 0 \) and \(V_i = \emptyset \) for all \(i, j \).

5. Proof of Correctness

Before stating and proving the correctness of this algorithm, we need some more notation. For each event \(e \in E \), let \(V[e] \) (respectively \(t[e] \)) be the value of \(V_{\text{node}}(e) \) (respectively \(t_{\text{node}}(e) \)) immediately after completing e. Let \(\text{ins}_e \) be the predicate \(T_x \not\leq t(\text{crex}_e) \). Let \(\text{del}_e \) be \(\text{del}(V[e], t[e], x) \). Note that \(\text{del}_e \) iff \(x \notin V[e] \) and \(\text{ins}_e \). We will show that \(V[e] \) corresponds to the current view, \(\text{ins}_e \) means that \(x \) has been inserted and \(\text{del}_e \) means that \(x \) has been deleted.

- Let \(e \xrightarrow{} e' \iff e \rightarrow e', x \neq y, \) and for all \(e' \), if \(e \xrightarrow{} e'' \rightarrow e', \) then \(e'' = e \) or \(e'' = e' \). If \(e \xrightarrow{} e' \), we say that \(e' \) is an immediate predecessor of \(e'' \) and \(e' \) is an immediate successor of \(e \).

Lema 1: If \(e \rightarrow e' \), then \(t[e](i) \not\leq t[e'](i) \).

Thus, posting times are monotone over \(\rightarrow \).

Proof: Obvious by inspection of the algorithm and the conditions on \(\text{clock}_i \). \(\Box \)

Lema 2: If \(x \in V[e] \), then there exists \(e \in E \) such that \(\text{op}(e) = \text{INSERT}(x) \) and \(e \rightarrow e' \).

Proof: This follows by an easy induction on \(\rightarrow \), using the fact that initially all \(V_i = \emptyset \). \(\Box \)

Lema 3: Let \(x \in D(E) \), \(e' \in E \). Then \(\text{ins}_e \) iff there exists \(e \in E \) such that \(\text{op}(e) = \text{INSERT}(x) \) and \(e \rightarrow e' \).

Proof: \(\Rightarrow \): Assume \(\text{ins}_e \) and \(x \in D(E) \). First, \(t[e](\text{crex}_e) \not\geq 0 \). Let \(e'' \) be minimal in \(E \) such that \(e'' \rightarrow e' \) and \(t[e''](\text{crex}_e) = t[e'](\text{crex}_e) \). Inspection of the code shows that \(\text{node}(e'') = \text{crex}_e \) and \(\text{op}(e'') = \text{INSERT}(y) \) for some \(y \in D \). For every other case, at least one immediate predecessor \(f \) of \(e'' \) has \(t(f)(\text{crex}_e) = t[e''](\text{crex}_e) \), contrary to the minimality of \(e'' \). Since \(x \in D(E) \), there exists \(e \in E \) with \(\text{op}(e) = \text{INSERT}(x) \) and
node(e) = ore; By condition Pl, either e → e" or e" → e. If e" → e, we have T_e ≤ t(e')(ore) = t(e"')(ore) ≤ t(e)(ore) = T_e (since op(e) = INSERT(x)), a contradiction. Hence, e → e" → e'.

(*): Immediate by the code for INSERT and Lemma 1.

Lemma 4: If e" → e' and del_x[e"], then del_x[e'].

Proof: It suffices to show that if e" ~ e' and del_x[e"], then del_x[e'] holds. Since del_x[e"], then x ∈ V(e") and ins_x[e"]. By inspection of the code and restriction R1, x ∈ V(e'). By Lemma 1, ins_x[e'], so del_x[e'] holds. □

Lemma 5: Let x ∈ D(E), e' ∈ E. Then del_x[e'] iff there exists e" ∈ E such that op(e") = DELETE(x) and e → e'.

Proof: Suppose del_x[e'] holds. Let e" ∈ E be the minimal such that del_x[e"] and e" → e'. Then x ∈ V(e") and ins_x[e"], so by Lemma 3, there exists e ∈ E such that op(e) = INSERT(x) and e → e". Let f be such that e → f → e' (possible since e ≠ e'). Thus, del_x[f] by minimality of e", and ins_x[f] by Lemma 3; hence, x ∈ V(f). Since x ∈ V(e"), then op(e") is DELETE(x) or RECEIVE(m) for some m. However, if op(e") = RECEIVE(m), then x ∈ V(e") by the code for RECEIVE (since del_x holds for all predecessors of e"), a contradiction. We conclude that op(e") = DELETE(x).

(*): Assume op(e") = DELETE(x) and e" → e'. Let x ∈ V(e") by the code for DELETE(x). By restriction R2, there is an immediate predecessor f of e" such that x ∈ view(f). By condition VI, there is an e ∈ E such that op(e) = INSERT(x) and e → f. Thus, ins_x[e"] by Lemma 3, so del_x[e"] holds. By Lemma 4, del_x[e'] holds. □

Now suppose x ∈ V(e'). By Lemma 2, e → e' and op(e) = INSERT(x) for some e ∈ E. Hence, condition VI holds for e'. Also, ins_x[e"] holds by Lemma 5. Let op(e") = DELETE(x). Since del_x[e"], we conclude from Lemma 5 that e" → e'. Thus, condition VI holds for e', so x ∈ view(e').

We conclude that view(e') = V(e'). □

6. Remarks and Open Problems

We have not yet addressed the problem of finding a good strategy for the nodes to use in deciding when and how to communicate.

If each message can be received by only a single process, then various strategies can be imagined. At one extreme, a message transmission from i to j could be attempted periodically for all pairs i, j, i ≠ j, resulting in a total of O(N^2) messages to propagate information between all pairs of nodes. On the other hand, given a spanning tree in the network and a root, one can propagate information from every node to every other using only O(N) messages by first sending a wave of messages up from the leaves to the root and then back down from the root to the leaves. However, recovering from a network or node failure requires a special recovery procedure since the spanning tree must be rebuilt. We leave as an open problem to find a robust O(N)-message algorithm for propagating data throughout the system.

If a broadcast facility is available, then things are much simpler, for each node need only broadcast a single message. There is still the problem, however, of how often to do so. It is clearly not sufficient for a node to broadcast only when it has new information, for a node restarting after a failure must have some means for being brought up-to-date. Of course, various protocols can be imagined to handle such situations, and we leave that also as an open problem.

Acknowledgement

The authors are grateful to Nancy Lynch for bringing to their attention several of the references listed below.

References

