AD=A111 261

UNCLASSIFIED

Vor | Dare
ana Fileo
u e
B2,
onc

WASHINGTON UNIV SEATTLE F/6 9/2
SACRIFICING SERIALIZABILIFY TO ATTAIN HIGH AVAILABILITY OF DATA—IYC(U)
FEB 82 M J FISCHER, A MICHAEL NO! 001“-60-@-02

RR=-221

END

g e O

DISTRIBUTIC & ST:-_';g}'a:::\: A \
& ‘ B RN 1 oM
App!ovaﬂ ot
Distribuion -0 ' o

e e

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

B L T I

SACRIFICING SERIALIZABILITY TO ATTAIN HIGH
AVAILABILITY OF DATA IN AN UNRELIABLE NETWORK*

by
Michael J. Fischer and Alan Michael
Research Report #221
February 1982

*This work was supported in part by the Office of Naval Research under

\ Contract N0001l4-80-C-0221 and by the National Science Foundation under
Grants MCS80-03337, MCS80-~04111, and MCS81-16678. The research was
carried out in part at the University of Washington.

£ i T A L bl - = 7 et NI

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

[T REPORT NUMBER 2. GOVT ACCESSION NOJ

REPORT DOCUMENTATION PAGE BEF e O ORM
3. RECIPIENT'S CATALOG NUMBER |

221 AD- 4 i/ 6T

7. AUTHOR(S)

4. TITLE (and Subtitle) 8. TYPE QF REPORT & PERIOD COVERED

SACRIFICING SERIALIZABILITY TO ATTAIN HIGH
AVATLABILITY OF DATA IN AN UNRELIABLE NETWORK [e=svmsomasone misors woness

8. CONTRACY OR GRANY NUMBER(e)
ONR(sub-contract from U.W.)

Michael J. Fischer and Alan Michael N00014-80-C-0221; NSF MCS80-
03337,MCS80-04111,MCS81-16678

e et
10, FROGIAH ELEMENT. PROJECT, TASK

3. PERPORMING ORGANIZATION “AME AND ADOAESS GRAM ELENENT. PROIECT
Department of Computer Science/Yale University
Dunham Lab./10 Hillhouse [NR 049-456/30 Oct 79 (437)
New Haven, Connecticut

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORY DATE
NSF, Washington, D.C. 20550/0ffice of Naval February, 1982
Research, 800 N. Wuincy, Arlington, VA 22237, 3. "W“'”;“‘“

ATTIN: Dr. R.B. Grafton
7T, MONITORING AGENCY NAME & ADDRESS(I! dilferent from Controlling Office) | 1S. SECURITY CLASS. (of this report)

Office of Naval Research Unclassified
800 N. Quincy ST e ST C AT 5 SowR SR RS o
Arlington, VA 22217 $e. DESESIVEICATION DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distributed unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if difierent frem Report)

18. SUPPLEMENTARY NOTES

re

19. KEY WOAOS (Continue on reverse side If y and idontily by block)

serializability, reliability, replicated data, availability, database,
. dictionary, timestamps

\

#_A.!TIACY (Continue en reverse side if y and 1d fy by block ber)

We present a simple algorithm for maintaining a replicated distributed dic-
tionary which achieves high availability of data, rapid processing of atomic
actions, efficient utilization of storage, and tolerance to node or network
failures including lost or duplicated messages. It does not require trans-
action logs, synchronized clocks, or other complicated mechanisms for its
operation. It achieves consistency contraints which are considerably weaker
than serial consistency but nonetheless are adequate for many dictionary

OIS
1473 zoimion OF 1 OV 6818 OBSOLETR /
$/N 0102-LP-014-4401

FORM
13AM 73

|

SECUMTY CLASMPICATION OF THIS PAGE (When Date Enforsd)

The degree of consistency achieved depends on the particular history of oper-~
ation of the system in a way that is intuitive and easily understood. The
algorithm implements a "best effort" approximation to full serial consistency,
relative to whatever internode communication has sucessfully taken place, so
the semantics are fully specified even under partial failure of the system.
Both the correctness of the algorithm and the utility of such weak semantics
depend heavily on special properties of the dictionary operations.

Vi \ SECURITY CLASSIFICATION OF THIS PAGE(Whan Dats Entered)

DISTRIBUTION LIST

Office of Naval Research Contract N00014-80-C0221
Michael J. Fischer, Principal Investigator

Defense Documentation Center
Cameron Station

Alexandria, VA 22314

(12 copies)

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217

Dr. R.B. Grafton, Scientific
Officer (1 copy)

Information Systems Programs (437)
(2 copies)

Code 200 (1 copy)

Code 455 (1 copy)

Code 458 (1 copy)

Office of Naval Research
Branch Office, Pasadena
1030 East Green Street
Pasadena, CA 91106

(1 copy)

Naval Research Laboratory
Technical Information Division
Code 2627

Washington, D.C. 20375

(6 copies)

Office of Naval Research
Resident Representative
University of Washington, JD-27
422 University District Building
1107 NE 45th Street

(1 copy)

Dr. A.L. Slafkosky

Scientific Advisor

Commandant of the Marine Corps
Code RD-1

Washington, D.C. 20380

(1 copy)

Naval Ocean Systems Center

Advanced Software Technology Division
Code 5200

San Diego, CA 92152

(1 copy)

Mr. E.H. Gleissner

Naval Ship Research and Development
Center

Computation and Mathematics Department
Bethesda, MD 20084

(1 copy)

Captain Grace M. Hooper (008)
Naval Data Automation Command
Washington Navy Yard
Building 166

Washington, D.C. 20374

(1 copy)

Defense Advance Research Projects Agency
ATTN: Program Management/MIS

1400 Wilson Boulevard

Arlington, VA 22209

(3 copies)

Mr. Alan Michael

Department of Computer Science
University of Wisconsin
Madison, Wisconsin

(1 copy)

R el ons & sttt ot et e B

SACRIFICING SERIALIZABILITY TO ATTAIN RIGH AVAILABILITY
OF DATA IN AN UMBELIABLE NETVORK®

Michael J. Fischer
Yale Univeraity
New Havea, Comnectiout

Alas Niochsel
University of Visconsin
Madison, Wisconsin

ABSTRACT

Wo prosent a simple algorithm for maintaining
a replicated distridoted dictionary vwhich
achieves high availability of dsta, rapid
processing of atomic astioms, efficient
stilization of storage, and tolersnoce to mode
or network failures including lost or
duplicated messages. It does pot require
transaction logs., synchromized olocks, or
other complicated aechanisms for its
operation. It schieves consistency
contraints which are consideradly wesker than
serial consistemcy but nonetheless are
adeguate for many diotionsry spplications
soch as electromic appointment caleadars and
nsil systems. The degres of oonsistency
schieved depends oan the pesrticular history of
operation of the system iz s way that is
intuitive and easily waderstood. The
algorithm implements s “best offort”
spprozimation So full serisl oomsistemecy,
relative to whatever iateracde communication
has successfully tsken place, so the
semantics are fully specified evezn under
paztisl fojlure 3f the aystem. Both tke
correotaess ¢? the algerithm snd the utility
of such wesk ssmasatics depead heavily on
special properties of the diotiomary
operations.

‘nu work was swpported iz part by the Office
of Naval Research mader Contract NO0014-80-C-0221
end by the Nationsl Science Foundation uader Orants
NCSB0-03337, MCS80-04111, and NCS81-16678, The
risearch was carcied ost ia part at the University
of Wsshiagton.

1, Introduction

A common axiom taken for the correctness of a
database system is that the tramsactions be
aexializable, that is, the results of any sequence
of transactions sbould be the same as if they had
been performed in some serial order {3, S, 17, 19]),
Berializability insures consistency of the database
when conosrrest tramsactions are bdeing processed
sssuming only that each tramsaction is correot whea
run alome.

Achieving serial comsistency in an unreliable
distriboted environment is comsiderably sore
d4fficult tdas in s central databsse, and wwch sork
has been dons addressing this probles

{2, 4, 9, 20]. (Cf. [16]) for a nice survey of
some of the issues.) Reasons for distributing dats
in the first place axe to incresse speed of access
aad to insmre aveiladbility of dats even vwhen
individusl nodes or the metwork itself fails., Both
of these gosls reguire zeplication of the dats,
which iatrodunges the mew prodlem of Xesping the
replicated ocopies up—~to—-date. (ct.

7, 8, 13, 18, 211.)

Unfortunately, the two goals of availability
and serial comsistency stsad somewbat in conflict.
Ror example, avsilabllity diotates that every node
with a ocopy of the datadase bde permitted to
contiawe perforsiag transsotions on its local oopy
even when the network fails, Serializadility, on
the other hand, regsires that st most one susd mode
be allowed to proceed under such conditioms, for
otherwise the coples begin diverging aend reads can
rotura velues imconsistent with any serisl ordering
of the tremssotioas.

Several asthors have noted that wmesaiagful
zosults cas oftea bde obtained evem withomut serisl
consisteacy vwhen additiomsl informatiom sbost the
partionlar tramsactions is available [10, 11, 12],
Also, strioct seriaslizabfility is oftes not regsired
for read—only tramssctioms [6, .8]. VWe presesnt aan
osample of s prodles whiok is adegsstely served by

To be presented at ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,
Los Angeles, CA, March 29-31, 1982

& datadase sstisfying mwch weaker conditions end
give an algorithm for its solution, Ouvr algorithm
schieves high avallability of dats, rapid
processiang of atomic actions, efficient utilization
of storage, and tolerance to mnode or nmetwork
failuores including lost or duplioated messages, It
doess not zequire tramsactioa logs, synchromized
clocks, or other ocomplicated mechanisas for its
operation.

The degres of oconsistency achieved by our
solution depends on the particular history of
operation of the system iz a wsy that is intuitive
and essily understood. The algoriths implements a
“best effort™ approxzimation to full serial
consistency, relative to whatever internode
communication has successfully taken place, so the
somantics are fuolly specified oven under partial
failore of the system,

Johnson snd Thomas [10] give an algozithm for
s similar prodblem which auses timestsmps to
serinlize updates (cf. [14]) but permits arditrary
resding. While it enjoys many of the same
advantages of omr algorithm, it requires deleted
dictionary entries to be retained until all
processes have uwpdsated their «copies of the
database. Also, their read semantics are somewhat
weaker thanm ours.

Algorithms such as {7, 21] which use voting
schemes are able to provide both serial comsisteaocy
and dats availability despite 1limited aode
failures, bdut like all serializadle algorithms,
updates iz all Dbat one subnet are {dissllowed when
the astwork becomes partitionmed.

2. Distriduted Dictiomaries

Abstrasctly, osr problem 1is to maintain a
dstsbase consisting of a dictionary, that is, a set
of elemests with two wpdate operations INSERT and
DELETE, and s single query operation LIST (eof.
1. INSERT(x) sdds element x to the set,
DELETE(z) removes x from the set if it was there
and does nothing otherwise, and LIST returns an
onumerstion of the elemests curreatly in the set,
All three operations are coasidexed to bde atomic
trasssotions,

The dstsbase is to de implemented on sn
unreliadle setvork of proscessors. Our gosl is to
sske the datadase Aighly availadle, eoven suader
cosditions ia whiech iadividual nodes and the
sstvork are s0t always operationmal. By

“avsilable”, we mear that asy operstiomal sode
shonld be sble to perfora amy of the basic datadase
eperations st any time, regardless of the status of

the rest of the systea.

Bach node maintains its own ocopy or yigy of
the database, and all operations are performed
initially oanly on the node’'s local view. From time
to time a mode sends information sbout its view to
one or wmore other nodes. A node receiving such
information thes updates its own view. Weo have in
offect sdded two nev operations: SEND(m) and
RECEIVE(a), where m is the message. As more and
|mOre messages are seat, informstion s thus
propegated thromghomt the nmetwork, aend the
individual views of the data tead to comverge to
the view that would bs “correot™ wers this all
taking place in s cestralized datadase.

Our notion of correctness depends not only on
the particular update and gquery operations
roquested by the users of the system but also on
the internsl communications that have taken place,
sbout which we make no sasumptions. The intenmtion
is that in & oorrectly functioning systes, enmoagh
communication will take place so that every node of
the systoem will know about sn insertion or deletion
shortly after it ocours, and no view will be far
out of date. However., our correctmess condition is
simply that an element x i3 {n node i’s view iff i
knows of its iasertion but does anot kmow of its
deletion.

We place two restrictions on the problem:

R1. Wo asssme that there is at most ome
occurrence of the operstion INSERT(x)
for esch elemsnt x, so that once an
olement hss been deleted from the set,
it osn never again de reinserted.

R2, DELETR(x) is only legal at a mode j if x
is ourrently in j's view.

We need bdoth restrictioans for technical ressons.
Among other things, they insure that INSERT(x) can
never follow DELEIE(x), so if a node discovers that
both operations were performed sometime in the
past, then x definitely does not belonmg in its
view, Also, both restrictions arise nsturally in
nany applications, One way to eaforce restriction
Rl is to tag the asctusl datum with a “timestamp”
which uniquely identifies the particular inmsertion,
Thus, two attempts to insert the same datam will in
faot give rise to two different elements x and x'
with differeat timestamps. Restriction R2 is
aatural ia applications where the only way to
specify sa argument to DELETE is to "poiat”™ at the
olement amoang the omes in the surrest view. Suoh
is generally the oase, for exasple, when the
olemeats are tagged vwith timestamps. Note that we
do permit sevezal deletions of the same element;
thoir offect i3 the same as a single ome,

This abstract prodlem wsas motivated by the
practical problem of building a highly avsailable
electronic appoimtmeat oslendar. Hore the dats
items sre iudividual appointments, and a=
sppointment calendar is just & set of appointments.
A user can read and wmodify his appointments from
any node. He will see every appointment that it is
possible to see, given the interprooess
communication thet has actually takem plsce. Ia s
fully working system he wonld see¢ all dut possibly
very recently eutered appointments. Anything he
osp see Be canm manipulate as if he were working on
a ocentralized aystem. Finally, sasny chaages he
makes will be reflected at the other nodes when the
system i3 again working, even if the network
bappeas to be onavailable while he is actually
doing the modifications. Note thet becaunse the
views are not aslvays up-to-date, conflioting
sppointments may not be discovered immediately.
Hence, it is necessary for the calendar system to
be adle to handle conflicts at times other than
when an appointment is first entered. (This 1is
probadly s desirsble property snyway.)

Other places where this problem arises are inm
distributed mail systems send distridbuted (file
directory systems, doth of wbich abstractly just
ssintain dictionsries. In s distridbuted mail
system, our solstion ocosld simplify the usual
network msiler. The netvork mailer wvould only have
to deliver a message to ous of & umser's masilboxes;
the distribution of msil to the user’'s other
mailboxes would then be haandled by our slgorithm.
Indeed, if the recipient had a locel masilbox, then
only the 1ocal mailer would be needed sad the
network mailer would not have to de invoked at all.

3. Formsl Problea Statement

For esach natural number N, let [N] = (1, 2,
.e-» N}). Let D be the domain of elements. Let OP
= (*INSERT(x)’, ‘DELETE(x)’ | x ¢ D) U ('LIST'} U
{'SEND(m)*, 'RECEIVE(m)’ | = is a messagsl. Ve
formulate onr correctness conditions ia terms of &
partial oxder of events whick represents the
bistory of iaformatiom flow in the system.

Fix a psrticular executios of the systea.
Esch instsnce of as operstioa { s OP corresponds to
an gvent ¢, vhere ople) = § and gode(e) is the node
at vhich ¢ ocours. Lot B be the set of all events
occurriag in the exeoution, asd let D(B) = {2 s D |
op(e) = INSERT(x) for some ¢ s B}, B is partially
ordersd by "%, which is the least reflexive amd
transitive relation such that:

Pi. Breats at the same node are totally
ordered;

—— «::r—-q-‘

P2, It oy ~ SEND(m) aud o = RECEIVE(m) for
the same message m, then L3 - ..

Ve now formalize & oorrect view of the
database. Ve represent our motion of “kmows about”
by —; Dhence, when { has just performed eveant o',
it knows sbout en event ¢ iff ¢ — o'. Let yiow:
B - 2“ be defined as follows: x s view(e') iff

V1. there is an event ¢ scck that # — o'
and op(e} = INSERT(xz), and

V2. for every event ¢, if ople) = DELETE(x),
then ¢ Mo’

Yo now define the N-node reduadant dictionary
problem to be the problem of finding s distributed
algoxithm on N nodes such that oschk node can
process the operstions of INSERT, DELETE, LIST,
SEND and RECEIVE, subject to restrictions R1 and
R2, and each node i maintains a correct view of the
data V. That is, in the partisl order of eovesnts
corresponding to the history of operstioms in the
systom, if o is am event at node i, then just after
the occurrence of that event, V, = view(e).

4. The Algoriths

An obvioss solution to ownr dictionscy problem
is the following: Bach pode i maintains twvo ssts,
Ii and Di' which are the ssts of elements that node
i knmows lsve Deen inserted and deleted,
respectively. 4’s view of the dictionary is Vi -
I, - D;. To implement SEND(m), node j sends o
message m containing IJ snd DJ. Vhen s node 1 does
s RECEBIVE(m), it updates its own sets simply by
taking unions.

The drawbaok to this solution is that the set
I‘ 1) D‘ contains every element that hes ever deen
in i's view, and this set grows withowt bound, even
if the sixs of the view is itsslf bdounded. Our
sigorithm gets by with keeping omly the ocurrent
viow, Vl. and & smsll amount of additional
information which will be desoribed shortly.

Clearly, it won’t do to update V1 by replscing
it with vV, © vj. for there cam be two reasons why
an slement x ¢ V‘ U V, might be missing from ome of
the sets V., k s {i,4):

1. x used to be ia Vk but it has sinoce been
deleted, or

2. x was imserted so recemtly that =mode k
has mot yeot heard about it.

In case 2, x belomgs ia V, (and ia v,. too), asd ia
eass 1, it should be is neither,

|
|

In order to be able to distinguish these two
cases, esch =m0de meistains the following
information in addition to its ocszrreat view of the
datadase:

1. Bach node 1 hss & ocell "olook“‘. Bach
reference to oloat’ returns 8 positive

number that §s larger than all previous
valses returamed. (Clock‘ can be

implemented by a phyaicsl clock or dy s
counter that gets incremented oa each
reference. Ve talk about the values of

¢:lm:l:1 as being "times”, but they need
bear no relation to real time mor to the
valoes of cloekJ for amy j ¥ i.)

2. Bach x in the view i3 tagged vwith s pair

{cre Tx)‘ where ere ., the “crestor” of

:l
x, is the node at whioch x was originally
insexted, and Tx is the time, according

to the clock of cre,, at which the
insertion took place,

3. Bach node { maintains a tsdle t. ti(j)
is 1’s postins time for imsertions which
took place st mode j.

The posting times tell how current i’'s knowledge is
abont imsertions that have occurred at the other
nodos: 41 knows about sn insertion at node j {ff
the time at which that operation occurred
(according to cloak‘) is € t,(4).

Given a viev V, 2 posting time vector t, and
an element x, we define a predicate:
del(V,t,x) i1ff [x £ V and T, £ t(orox)).

It will follow that dal(V!, ty, x) holds iff node i
knovs that x has been deleted. ¥We now describe how
node i processes each of the kinds of operatioans.

Algoritha

INSERT(x): t‘(l) := olocky;

cre, = i;

T, = t,(1);
Vl Had V‘ U (x).
DELETE(x): V; := ¥V, - (x}.

LIST: Retura V‘.

SEND(w) : Sead the message m = (V,, t,).

RECEIVE(m): Let m be the messsge <V, t);
v, :-(xt(VlUV) i
~4e1(V,,t,,2) and ~de1(V,E.x));
t;(x) := max{ t (k), T(X)) for all
k s IN).

Initially, t‘(j) = clock, = 0 and V, = ¢ for
all &, j}.

$. Proof of Correctaess

Before stating and proving the correctness of
this algorithm, we need some more notstion., PFor
each ovent ¢ & B, let V[e] (respectively tle]) de
the valne of Voode (¢) (respectively "node(o))
ismediately after completing e. Let iﬂl‘l.] be the
predicato T, S tlellcre,). Lot dei [e] = dol(Vlel,
tlel., x). Note that dolx[ol iff x 4 Viel and
ins_[e]. We will show that Vle)l corresponds to the
current view, incxlol means that x is known to have
been inserted and dolx[cl megns that x is known to

have been deleted.

Lot ¢« 2y’ iff ¢ — o', ¢ ¢ o', and for all
e”, if ¢ ~> o" —> o', then ¢” = ¢ or ¢” = o', If
e 1-).'. we ssy that o is an immediste predecessor
of o' and o’ is an jpmediato sunccessor of .

Lemma 1: If ¢ =~ o', then tlel(1) ¢
tle’) (1),

Thus, postimg times are monotone over “— 7,

Proof: Obvious by imspection of the algorithm
snd the conditions on olock,. O

Lemma 2: If x g V(e’], then there oxists e ¢
E such that op(e) = INSERT(x) and ¢ — o',

Preof: This follows by an easy iaduction oz
—>, using the faot that iaitislly all Vl =g. D

Lemma 3: Let x ¢ D(E), ¢’ ¢ E. Then tnxlc'l
iff there exists ¢ ¢ E such that op(e) = INSERT(x)
snd ¢ = o',

Proof: =): Assume hl.lo‘] asd x ¢ D(B).
First, tle'1l(ore,) 2 T, > 0. Lat ¢” be siniumsl in
E such thet o = o' and t[o"l(cn’) -
tle’l(ere,). Inspection of the cods shows that
node(e”) = ore, and op(e”) = INSERT(y) for some y &
D, for in every othe: case, at least ome f{mmediate
predecessor f of " has t[!l(cn’) - t(o"](uo’).
contrary to the minimality of o". 8ince x ¢ D(E),
there eoxists o ¢ B with op(e) = INSERT(x) and

node(e) = cre . By condition P1l, either o = %
or o — s. If &" —> s, we have T ¢ tle'])(cre,)
- tlo”](on‘) < t[o](cnx) - T, (sinoce ople) =
INSERT(x)), » ocontradictiosa. Bence, ¢ — "

-3 o'

[H Immediate by the code for INSERT and
Lesms 1. 0

Lemms 4:
dolxlo'].

If " — o' and dolx[o"]. then

Proof: It saffices to show that if e” 1-)0'
and dol le”], them del [e’']). Since del (o], then
z & Vle") and ins_[e"]. By inspection of the code
and restriction Rl, x £ Vie']. By Lemms 1,
ins_le’], wo del [e’] holds.]

Lemms 3: Lot x e D(E), ¢' s B, Then dolxlo'J
iff there eoxists e¢” ¢ B suck that op(e”) =
DELETE(x) and o" — o',

Proof: =)>: Assume dol‘l-'l holds. Let ¢” ¢ E
be minimal such that dol'[o"] snd o¥ — o'. Then
x d V[e”] and insxlc"], s0 by Lemms 3, there exists
o s E suoch that op(e) = INSERT(x) and ¢ — o".

Let £ be such that ¢ — ¢ 1y ,- (possible since ¢ ¥
¢”), ~del [f] by minimslity of e, and ins (] by
Lewma 3; hence, x ¢ VI[f]. Since x ¢ Vie”], then

op(e”) 1is DELETE(x) or RECRIVE(m) for some =.
HBowever, if op(e”) = RECEIVE(m), then x ¢ V[e”] by

the code for RECEIVE (sisce ~del holds for all

predecessors of e¢"), a comtrsdiction. We conclude
thst op(e”) = DELETE(x).

{=: Assume op{e"”) = DELETE(x) and e” — e’.
x 6 Vie”] by the ocods for DELFTE(x). By
restriction R2, there is an immediate predecessor f
of " such that x s view(f). By coandition Vi,
there is san ¢ s E such that op(e) = INSERT(x) and e
-> f. Thus, hnxlc"l by Lemms 3, so dolxlo"]. By
Lomms 4, d-l‘(o'l.)]

Ve now show the correctness of our algorithm:
Theorem: For all ¢’ ¢ E, view(e’) = Vie').

Preof: Suppose x ¢ view(e’). By condition V1,
there exists ¢ —» o' smck that ople) = INSERT(x).
By Lemms 3, ln‘lo'l. By coadition V2, for every
o” with op(e”) = DELETE(z), then o” />e’., Hence,
ve can spply Lemma 3 to ocomoclnde -‘ol‘h'], sox s
Vie'l.

Now suppose x & Vie’]. By Lemme 2, ¢ — o'
and ople) = INSERT(x) for soms ¢ s E. Hence.
condition V1 holds for e¢'. Also, inux(o‘] holds by
Lemma 3. Let op{e”) = DELETE(x). Since ~dol‘(o'),
wve conolude from Lemma 5 that o" A e¢'. Thus,
condition V2 holds for ¢', 20 z s view(s').

¥e conclude that view(e') = Vie']. 0

6. Remarks and Open Problems

We have not yet addressed the problem of
finding a good strategy for the nodes to use in
deciding when and how to commmnicate.

If each wmeossage can be received bdy oaly a
single process, then variouns strategies can be
imagined. At one extreme, s message transaission
from i to j could be attempted periodically for all
psirs i, j, i ¢ j, resuiting in s totsl of a(N?)
messsges to propagate information between all pairs
of nodes. On the other hand, given a spanning tree
in the network and a root, one oan propagate
information from every noda to every other using
only O(N) messages by first semding a wave of
messages up - o Che leaves to the root amd then
back down from the root to the leaves. However,
recovering from a network or node failure requires
a special recovery procedure since the spanning
tros must be rebuilt. Wo leave as ap open problem
to find a robust O(N)-message algorithm for
propagating data throughout the system.

If s broadcast facility is available, then
things are such simpler, for each mode need oaly
broadcast s single message. Thesre is still the
problem, however, of how often to do so. It is
alearly not sunfficient for s node to broadcast only
when it has sew informstion, for s node restarting
after s failure wmuost have some means for being
brought wp~to-date. Of course, various protocols
osn deo imsgined to handle such situations, and we
leave that glso as an open problem.

Acknovledgement

The suthors are grateful to Naney Lymnch for
bringing to their astteation several of the
roferences listed below,

Reforenoces

1. A.V. Abo, J.E, Hoporoft, and J.D, Uliman. Jhe

Desiza and Analysis of Computer
Addison-Vesley, Reading, Mass., 1974,

2. P,A, Bernstein, N. Goodman, J.B. Rothnie, and
C.B. Papadimitrioun. “Analysis of Serislizability
of SDD-1: A System of Distributed Databases (the

fully redundant osse).” IEFE Trans. op Software

Eps. SE-4. 3 (Msy 1978), 154-168.

3, P.A. Berunestein, D.¥. Shipman, and ¥.8. Vonp.
“Forma! Aspeots of Serislizadility im Datsbase

Concurrency Control.” IEEE Irans. oo Software Bas.
SB-5, 3 (May 1979), 203-216,

4, P.A. Bernstein, D.W. Shipman, and J.B. Rothnie.
"Concurrency Control in a System for Distributed

Databases (SDD-1).” on Datadase
Systems 5. 1 (March 1980), 18-51,

5, K.P. Egwaran, J,N. Gray, R.A. Lorie, and

I.L. Traiger., "The Notions of Consistency and
Predicate Locks in s Datadbsse System.” Comm. ACK
19. 11 (Nov. 1976), 624-633.

6. H. Garcia-MNolins and G, Wiederhold. Read-Only
Transactions in & Distributed Database. Tech.
Rept. STAN-CS-80-797, Computer Science Department,
Stanford University, April, 1980.

7. D.K. Gifford. Veighted Voting for Replicated
Data. Tech. Rept. CSL-79-14, XEROX Palo Alto
Reseasrch Center, Sept.., 1979.

8., MN. Hammer snd D, Shipman. “"Reliability
Mechanisms for SDD-1: A System for Distribated

Datsbases.” AQM T on Database Svstems
5, 4 (Dec. 1980), 431-466.

$. D. Jacobson and ¥, Chou. Synchrosization
Streategies for Updating Distributed Data Bases.
Toech. Rept. TR 80-17, North Carolina State
University, October, 1980.

10. P.R, Johuson and R.A, Thomas. The Maintensnce
of Duplicate Dats Bases. Network Information
Center (NIC) Document #31507, Bolt Beranek and
Newman, Inc., Jean., 1975, Also referred to as ARPA
Network Working Groop Request for Comments (RFC)
#677.

11, H.-T. Kong snd C,.H, Papadimitrion. An
Optimality Theory of Concurrency Conmtrol for
Databases. Tech., Rept. MIT/LCS/TW-185, Laboratory
for Computer Science, M.I.T., Nov,, 1980. Also
sppesared as Carnegie-~Mollon Univexsity Techmical
Report CMU-CS-80-147.

12, L. Lamport. Towsrds a Theory of Correctness
for Molti-user Dats Base Systems. Tech. Rept.
CA-7610-0712, Msssachusetts Computer Associates,
Inc., Oct,, 1976,

13, L. Lamport. "The Impliementation of Reliable
Distriduted Multiprocess Systems.” Compnter
Networks 2 (1978), 95-114.

14, L. Lamport., “Time, Clocks, and the Ordering
of Bvents in s Distriduted System.” Comm. ACM 21.
7 (July 1978), $558-365.

15. B.V. Lasupson and H.E, Sturgis., Crash Recovery
in s Distributed Dats Storage System. IEROX Palo
Alto Research Center, April, 1979. To be published
in Comm. of the AQN.

16. B.0. Lindsay et. al. Notes on Distributed
Databsses. Research Report RY2571(33471), IBM
Research, July, 1979,

17. C.H. Pspadimitrioas. “The Serislizadbility of
Concurrent Datsdase Updates.” J. AQM 26, 4 (Oot.
1979), 631-653,

18, G. Popek et. al. LOCUS: A Network
Transparent, High Reliability Distributed Systes.
Proo., Eighth Symp. on Opersting Systems Principles,
ACM (SIGOPS), Dec., 1981, pp. 169177,

19, D.J. Rosenkrentz, R.E. Stesrus, and P.M, Lewis
II. Consistency and Serializability in Concurrent
Datsbase Systems. Tech. Rept. B0-12, Department of
Computer Science, SUNY Albany, Avg., 1980,

20, J.B. Rothnie et. al. “Introduction to a
System for Distributed Databases (SDD-1).” ACN

Izansactions op Database Svstems 3, 1 (March 1980),
1-17.

21, R.BE., Thomas. ~A Majority Consensus Approach
to Concurrency Control for Multiple Copy

Databases.” AQM T ony on Database Svstems
4, 2 (June 1979), 180-209.

