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Preface

"It is not possible to predict with complete

accuracy and confidence the expected impact

area of an artificial Earth satellite after

unaided orbit decay. In fact, it has

usually been impossible to ascertain the

locations of the remains of most satellites

after their descent from orbit.” (1)
This quotation is essentially as valid today as it was in 1965 when it
appeared in the report of a joint study by the USAF SPACETRACK Svstem,
the Smithsonian Astrophysical Observatory, and the RAND Corporation.
This is particularly true when one considers the actual limitations
associated with the term "unaided". An unaided orbital decay repre-
sents a natural decay from Earth orbit due to the action of atmospheric
drag in a very ill-defined dynamics environment. The uncertainties
associated with this process include large, time and space dependent,
variations in atmospheric density and violent changes in vehicle
configuration and structure due to the ablative and dynamically
unstable process of reentry. With many hundreds or thousands of
artificial Earth satellites and pieces of launch booster debris
currently in orbit at various orbital inclinations, it is extremely
difficult to determine and predict the reentry impact locations.

The underlying limitation of determining the reentry trajectory

resides within the intractable mathematical nature of the true
dynamic processes of reentry. Standard atmosphere models often provide
valuable information on the magnitude of the atmospheric density and
its functional variation with altitude. Unfortunately, these models are

developed to represent a ''mean" model of the atmosphere and, in the

reentry altitude regions are usually limited to data collected in the

iv




northern hemisphere. As such, the mean models of a standard atmosphere
do not properly represent the density variations along each individual
satellite decay trajectory. The decaying reentry body is also subject
to a wide variation in geometric forms as it passes through the
atmosphere. Factors such as ablation, random rotation, and fragmenta-
tion preclude definition of the vehicle configuration throughout the
reentry.

These circumstances present difficult problems if one attempts
to determine the reentry trajectory by developing a dynamic force
expression from standard aerodynamic theory. An accurate solution to
the hypersonic flow field surrounding the reentry body is not possible
in an environment where one cannot specify the atmospheric properties,
the time varying character of the vehicle geometry, and the location
and shape of the reentry shock wave.

The complexities associated with these processes force one to
consider using a more simplified representation of the reentry dynamics.
The inadequacies of these simple modeling techniques are evident in the
current operational techniques of propagating the final orbit
determination state vector and state covariance matrix through to Earth
impact. Uncertainties of many hundreds or thousands of nautical miles
along the trajectory ground trace are apparent in the ultimate impact
location. (1)

Assuming the availability of trajectory observations during
reentry from an orbital sensor, one essentially has a global visibility
of the arbitrary decay trajectories. With a simplified definition of

the physical dynamics of reentry, one can incorporate the observations

into an estimation scheme to improve the knowledge of the ultimate




Earth impact point. With frequent enough observations, one can
potentially use a model which would be inadequate over a long period of
time. The principal goal of this research was the development and
application of such an estimation technique. A linearized, differ-
ential corrector method is utilized which is directly applicable to
operational agencies such as the USAF SPACETRACK System which must
reconstruct the impact locations of many reentry objects with minimum
a priori knowledge of the given reentry dynamics.

The research approach was predicated on extending the existing
orbit determination methods into the reentry regions. This included
the use of specified observations from an orbital sensor assumed to
provide angular (azimuth and elevation) measurements from an infrared
(IR) source at a fixed, discrete data rate. The major limitations in
direct application of a differential corrector with a deterministic
dynamics model will be shown to be variations and uncertainties
associated with the reentry dynamics. Standard estimation methods
would consider adding a pseudo-noise compensation to the dynamic
equations of motion to incorporate the dynamic uncertainties present.
Unfortunately, the operational experience of agencies such as the USAF
SPACETRACK System shows that up to 100 orbital revolutions of
empirical tracking data have been required for proper "tuning" of such
a pseudo-noise compensation technique. The modified dynamics have then
been found to apply only to the given satellite in question.

In the more uncertain dynamics regions of reentry, with a
single short arc of empirical data from trajectory observations, even

less potential exists to apply a pseudo-noise compensation successfully

to the dynamics model of a given reentry. A basic contribution of this




research will be shown to be the application of an "ad hoc" scalar
fading memory parameter which is adaptively determined from the
estimation process. This represents an extension of the earlier work
of Morrison (2) and Sorrenson and Sacks (3) to the reentry estimation
application. This scalar parameter is used to multiply the terms of
the estimator~-computed state covariance matrix prior to an observation
update. This new matrix is referred to as a 'deweighted" state
covariance matrix. The scalar deweighting parameter provides a fading
memory on the previous history of observations.

The magnitude of the fading memory parameter is selected to
force acceptable estimator performance relative to this '"deweighted"
state covariance matrix. This acceptable performance is demonstrated
via a Monte Carlo analysis. The mean error in the estimator solutions
(mean state estimate — true state solution) is much smaller than the
standard deviations from the estimator-computed deweighted state
covariance matrix. The RSS (root sum square) of the mean square posi-
tion and velocity errors in the Monte Carlo solutions compares closely
to the standard deviations from the deweighted state covariance matrix.

With its successful application to reentry trajectories, the
proposed technique provides a valuable tool for astrodynamic research.
In the near term, estimated Earth impacts with reasonably valid
uncertainties can quickly be computed after orbit decay. 1In the long
term, the method offers an ability to construct an empirical data base
of reentry trajectories from which a pseudo-noise, or adaptively
determined pseudo-noise, compensation method can potentially be devel-

oped. This should afford a better means to understand the true
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dynamics of the decay trajectories, such that more sophisticated estima-

tion techniques can successfully be applied to this problem.
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Abstract

A technique was developed for estimation of decayed Earth satel-
lite reentry trajectories to provide impact locations for debris search
requirements. The technique used a linearized differential~corrector
as an extension of existing orbit estimation methods. The reentry
observations consisted of angular, infrared measurements from orbital
sensors. An eight dimension state vector was used with components for
position, velocity, a ballistic parameter, and the scale height from
an isothermal density model. Simulated data runs identified the
uncertain dynamics of the true reentry process as the most significant
impact on estimator performance. The uncertain dynamics pose signifi-
cant problems for standard model compensation methods such as adaptive '
pseudo-noise compensation or more sophisticated techniques such as
statistical linearization or higher order filters. The adaptive
determination of an "ad hoc'" scalar fading memory parameter was used to
modify the estimator-computed state covariance matrix. The bias in
the state estimates were well within the variance from this modified
covariance matrix. The standard dcviations from the modified
covariance compare closely to the root-mean-square errors of the true
solution over a range of simulated truth model data. The uncertainties
associated with the impact locations are anticipated to be at least one

order of magnitude better than propagation of the final orbit estima-

tion covariance matrix to Earth impact.




Chapter I - Introduction

A. Research Overview

The objective of this research was to develop an application of

an estimation technique which would support debris search requirements

in the impact area of decayed Earth satellites. This necessitated

f determining impact locations and defining the uncertainties associated

with those positions. The engineering considerations included the use

of specified orbital observer(s) providing angular infrared (IR) tra-

jectory observations at fixed, discrete time intervals and large !

uncertainties in the mathematical character of the true reentry

dynamics. Angular observations were assumed since they could be

obtained from orbital satellites which view the reentry using a passive

IR sensor. The aerodynamic heating of the reentry satellite provides
a convenient infrared signature as it decays through the Earth atmos-
phere. While the additional use of range, or range-rate, observations
may improve the observability of the reentry trajectory, these would

necessitate a more complex active sensor system, such as a radar. The

power required for radar tracking varies as a function of range to the

fourth power between the radar and the reentry satellite. These

sensors would be much more costly to deploy in orbit to provide full

visibility of the Earth.

The uncertain dynamics of the
difficulties for existing estimation
of this research was to identify the
techniques which might be considered

The se” 2cted approach, which uses an

reentry process present many
techniques. A significant portion
limits of the various estimation
for application to this problem.

adaptively determined, ad hoc,
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scalar fading memory parameter, is offered as an interim solution to
the problem. The research approach concentrated on extending existing
orbit determination methods into the reentry region. These techniques
generally use a deterministic dynamics model and linearize about a
reference trajectory in a Taylor's series expansion. The use of a
linearized approach was retained in this application to maintain
consistency with the existing orbit estimation methods. The line-
arized approach also allows one to concentrate on improving the first
order effects of the uncertain reentry dynamics. Once these are better
understood, a more accurate dynamics model may potentially be defined.
This more accurate model may require application of a more sophisti-
cated estimation technique to handle the higher order effects properly
within the reentry dynamics. Methods such as statistical linearization
and nonlinear estimation are best suited to applications where a good

definition exists for the functional form of the nonlinear terms in

the dynamics model.




B. Background

Various operational space agencies - the National Aeronautics
and Space Administration (NASA), the USAF Space Defense Center
(SPACETRACK), and the USAF Satellite Control Facility (AFSCF) - have a
mission responsibility to determine impact locations of decayed Earth
satellites. Most of their respective orbit computation systems, with
minor differences, have a similar kind of data processing capability.
A weighted least~squares, differential correction algorithm is used to
process observational data to calculate an "optimal" estimate of the
satellite orbit. 1In the appropriate altitude regimes, the estimation
algorithm is capable of computing an estimate, for both the state
trajectory positions and velocities, and various perturbations to the
basic orbital motion (i.e., ballistic parameters, perturbations to
mean atmospheric density values, etc.) (4,5,6). Applications of the
differential correction technique have evolved from astrodynamic
applications where the basic assumptions of the methods apply. These
include: 1i) a deterministic dynamics model, ii) noise corrupted
observation measurements, and iii) batch processing of a large number
of obser ations at selected points in time to develop corrections and
covariance values for the state variables at an arbitrarily selected

point along the reentry trajectory referred to as an '

‘epoch”. The
estimates of the state vector and covariance are propagated forward to
a new epoch point where new observations are batch processed to update

the trajectory estimation.

In the orbital regime, this technique has met with considerable

success due to a number of factors:




1) The availability of sufficient and adequately spaced

observations from ground based radar or telemetry
measurements.

2) Relatively well defined satellite geometric configurations
and relative insensitivity to the small aerodynamic effects
of a rarefied atmosphere which allows one to use a
deterministic dynamics model.

3) The basic validity of linearizing about a reference
trajectory while processing observations in a batch
processing mode (where all observations are processed
together for an orbit update) or a sequential batch
processing mode (which processes a subset of the
observations of various sizes, along the trajectory or
orbit).

As one enters the reentry region (after a spiral decay from
orbit has commenced and at altitudes generally well below 125 KM), the
ability to extend the existing orbit estimation techniques becomes
appreciably more difficult. This difficulty is a direct consequence
of the following factors:

1) The lack of universally available tracking observations

of the final decay trajectory,

2) Significant uncertainties in the vehicle dynamics and in
the atmospheric density, which 1limit the use of a
deterministic dynamics model, and

3) A significantly more nonlinear set of dynamics within the

equations of motion.




Consider the aerodynamic acceleration expression most frequently
used in the orbital equations of motion. The dominant aerodynamic
acceleration term is due to atmospheric "drag’ acting along the

instantaneous velocity vector of the satellite motion:

= _1
ap = =% B o Vo Vo (1)

where:
a, = Acceleration due to "drag", generally defined to be
the resolution of the aerodynamic accelerations along
the three spatial coordinates into one vector, opposite

in direction to, and along the instantaneous velocity

vector

p = Atmospheric density

VR = Scalar magnitude of the velocity vector relative to the
rotating atmosphere

VR = A column vector of the three components of the velocity
relative to the rotating atmosphere

B = "Ballistic parameter" which equals CDA/M, with

CD = "Drag" coefficient

A = Satellite reference area

M = Satellite mass

In the reentry regions, the uncertainties associated with the
geopotential forces are orders of magnitude smaller than the
uncertainties of the aerodynamic forces. In a relative sense, tiie
non-aerodynamic forces can be considered as deterministic geopotential

forces. These are quite adequately derived from a well developed set

o T I G MR L L A
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of zonal and tesseral harmonics associated with the geopotential
function of a standard Earth model (7).

The two basic quantities which induce uncertainty into the aero-
dynamic acceleration expression are B and p. Because these two quanti-
ties appear as the product Bp within the dominant acceleration
expression, the result of uncertainty in either is magnified in this
multiplicative fashion.

As Reference 1 reports, a change of only *10% in either B or p
at the point of orbital decircularization, and the onset of spiral
decay from orbit, can ultimately result in up to a one-half Earth

revolution difference in the ultimate impact location of the reentry

satellite, when not updated by further observations beyond this reentry
point. This fact is particularly apparent if one thinks of the
sensitivity of the direction and magnitude of the velocity vector at
the onset of decay to variations in either B or p. These uncertain-
ties are direct contributors to the many hundreds or thousands of
nautical mile uncertainties of the impact location when obtained by a
straightforward propagation of the last orbital vector and covariance.

B.1. Trajectory Observations:

With the availability of sufficiently dense and accurate
observations, significant improvements to the decayed satellite
trajectory estimation should be available. Tracking data from Earth
surface sites is generally limited due to: i) wide geometric
separation of a very few Earth tracking stations, and ii) short
trajectory spans of observability yielding few observations at any
site(s) which may fortunately be positioned to view the reentry. If

one postulates a network of synchronous tracking satellites, orbitally




positioned to provide a global visibility of the Earth, the limited
availability of observations for the general decay trajectory from
ground sources should be eliminated or minimized.

This orbitally positioned sensor is assumed to provide angle
only IR observations (i.e., no range measurement) at a fixed data rate
of every 10 seconds. The implications of these assumptions will be
examined in Chapters I1 and 1I1I. With the availability of such obser-
vations in azimuth and elevation, one may define a coordinate
reference frame as shown in Figure 1.

B.2. Dynamic Uncertainties:

B.2.1. Vehicle Uncertainties:

The uncertainties in the ballistic parameter, £, result from a
variety of sources for the arbitrary orbital decay. These include
unknown spacecraft orientation, asymmetric vehicle ablation, and
vehicle fragmentation. In the orbital regime, ablation and fragmenta-
tion are not factors. In the reentry regime, high deceleration and
aerodynamic heating occur. Abrupt and rapidly changing variations
result due to ablation and structural fragmentation. These effects
are further complicated by their coupling with the atmospheric density
term, p, and their irregular occurrence along the reentry trajectory.

In the orbital regime there usually exists a well defined space-
craft angular momentum vector derived from the spacecraft design or
developed from observations of the satellite or booster debris. This
allows definition of at least a '"mean' value of the ballistic
parameter, B, for specified segments of the orbit. Even without
fragmentation, the behavior and definition of the angular momentum

vector is difficult to model in the highly variable force field
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experienced during reentry.

B.2.2. Armospheric Density Uncertainties:

The uncertainties in atmospheric density are due to several
well documented perturbations to the mean values of the standard den-
sity models (8). These include:

1) Seasonal variations

2) Diurnal variations

3) Solar radiation effects

4) Magnetic storm effects

5) Auroral effects

6) Local climatology effects

The magnitude of these departures from the mean density pro-
files is well documented in Reference 9, which shows *95% certainty
deviations of up to *607% from the mean density of the standard
atmosphere.

The present understanding of the mathematical structure and
underlying physics of the standard atmosphere models is well docu-
mented in a number of references (9,10,11,12). However, the effects
of these variations are both difficult to quantify and difficult to
model on a spatial and temporal basis for the general decay trajectory.
This is a consequence of a number of factors. There generally is a
lack of detailed density measuremente along the individual reentry
trajectory. These could be used to establish boundary conditions for
the mathematics which describe the propagation of the perturbations
through the atmosphere. Most mean density models have been developed
from a limited number of geographically distributed density measure-

ments. Most measurements below orbital altitudes and above normal
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aircraft flight altitudes are from sounding rocket or balloon

instrumented flights densely grouped near 45° North latitude. The
mean density models are more accurate in this region. Accurate
specification of density is required for the particular reentry trajec-
tory being estimated, and this reentry may occur anywhere around the
Earth.

While many operational space agencies utilize corrections to the
standard atmosphere density values, these corrections are difficult to
determine due to their wide variation over time in the reentry
altitude regions. In the orbital applications, the three density
variations generally added to correct the mean density values include
(4,5,6):

1) Those due to magnetic flux variations, Aom

2) Those due to solar radiation variations, Aos
3) Those related to the geometry relationship between the
satellite position and the "diurnal bulge' of the Earth
atmosphere.
This area of most severe solar heating occurs along the vector between
the sun and Earth center. The intersection of this vector with the
Earth surface is referred to as the solar subpoint, or nadir.

In the orbital applications, the first two modifications are

usually added to the standard density values as a constant over a

segment of the orbit. The magnitude of these modifications are
determined from one of two separate computations. If they exist in the
orbital altitudes and inclinations of interest, special '"calibration"
satellites (whose aerodynamic configurations and orbits are precisely

known) are used to determine the magnitude of the density modifications.

10°
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Alternately (often using the values from the calibration technique as
initial conditions), the density modifications are added to the state
vector and separately estimated along with the orbital trajectory of
interest. In either case this increases the complexity of the equations

of motion. If the modifications are also estimated along with the

satellite trajectory, this increases the dimension of the state vector.
For global applications in the reentry region, there is no systematic
means to establish the initial conditions of these density modifica-
tions which are valid over all altitude regions of the general decay
trajectory.

By default, therefore, attempts to apply the orbital methods to
the reentry regime have often been confined to estimating B along with
the position and velocity variables. A state vector of seven
dimensions is used, with atmospheric density derived from a standard
density model. This approach attempts to group all the unmodeled
parameters within B. This approach is limited by attempting to estimate
a variety of unknown functional forms as a constant over some short
trajectory span. This motivates one to consider a finite memory or
fading memory estimator. However, attempts to estimate many additional
physical parameters may also yield identification or observability
problems, particularly when observations are limited to angular

measurements only. The implications of these limitations will be

addressed in Chapter II with the proposed estimator formulation.
With the above considerations in mind, an eight dimensional state

vector was chosen for the reentry application. The basic three

position and three velocity components were augmented by the ballistic

parameter, B, and the density scale height, Q, from an exponential
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density model. The azimuth and elevation measurements from the

orbiting sensor(s) were then incorporated within a differential

corrector to estimate the reentry trajectory. The discussion below
will summarize the research which is presented in more detail in the

subsequent chapters.
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C. Research Approach

This report will first document the model definition consid-
erations and apply the basic differential corrector formulation to a
variety of simulated observations. Modifications to the existing
orbit determination methods are related to the basic underlying
principles of estimation theory throughout the text. One must
consider the limitations of operating in a regime of uncertain dynamics
with an inability to exploit the flexibility of many standard model
compensation methods of estimation theory. The physical circumstances
and factors which present these limitations are discussed, as
appropriate, within rhe subsequent éhapters.

Using the ballistic parameter and the density scale height of
an exponential density model to asugment the position and velocity
variables, a linearized technique was applied to estimate the reentry
trajectories. The derivation of the basic linearized differential
corrector and reentry dynamics model is provided in Chapter II.

Careful definition of the estimator dynamics model was neces-
sary to insure a valid linearization relative to the reference reentry
trajectory and valid specification of initial conditions for the state
variables and state covariance matrix entries. Even with a simplified
dynamics model, the differential corrector technique must be examined
to insure valid linearization for both state and covariance updates
and state covariance propagation over time. Restrictions on the time
span of valid linearization over the trajectory have also been
examined as part of this research. The ultimate effect of limiting
this time span is to restrict the number of observations one may

incorporate into a single update at the reference time epoch. In

13
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regions of high dynamic uncertainty, the linearization assumptions of
the deterministic trajectory dynamics may require use of a sequential
processor (single observation updates). The implementation of a
linearization validity check is presented in Chapter II.

The physical environment within which the estimator would
ultimately operate was also given special attention. Extensive
simulation analyses were completed to examine estimator performance
when subjected to simulated observations derived from a realistic
“truth model". These analyses examined the effects of mismatch
between the truth model and the estimator model dynamics, accuracy
variations on the angular observations, multiple orbital observation
locations, and variations of the geometric relari:.:hins between the
observing satellite(s) and the reentry trajectory. The truth model
selections were chosen to simulate a full range of circumstances which
the estimator application would ultimately encounter.

A series of Monte Carlo analyses are presented which identify
the model dynamics as the most important item impacting the estimator
performance. This assessment was accomplished by first considering the
mean bias of the trajectory position and velocity estimates relative to
the magnitude of the standard deviations from the estimator-computed
state covariance matrix. A comparison was also made between the

magnitudes of the standard deviations from the estimator-computed state

covariance matrix and those derived from the Monte Carlo samples. This
allows an examination of the systematic error in the state estimate and
the validity of the random error indicated by the estimator state

covariance matrix.

14
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With matched dynamics in the estimator and the truth model, the
Bias in the estimator solution remains small relative to the standard
deviations from the estimator-computed state covariance matrix. Also,
the standard deviations from the estimator-computed covariance comnare
closely to those derived from the Monte Carlo data. With a mismatch
between the estimator and the truth model dynamics, the bias and the
standard deviations derived from the Monte Carlo analyses grow large
relative to the standard deviations from the estimator-computed state
covariance matrix.

A review of several model compensation methods is presented
relative to this application. These include techniques for adding a
pseudo-noise compensation to the model dynamics, adaptive estimation
methods, and state covariance deweighting techniques. The limitations
associated with the use of each of these methods for the current
reentry application are discussed.

Chapter III presents the derivation of a fading memory
differential corrector analogous to the linear estimation developments
of previous researchers (2,3). Applications are made to a wide class
of dynamic variations in the reentry trajectory. Successful applica-
tion is achieved by an adaptive determination of an ad hoc scalar mul-
tiplier, y. This scalar parameter is used to multiply the terms of the
state covariance matrix prior to an observation update, and thus,
implements a fading memory on the processing of earlier observations.
This is accomplished by examination of the size of the change in state
variables, Gxi, at each update epoch along the reentry trajectory.

The magnitudes of each 8x, are compared to the magnitude of the

i

standard deviation of their respective terms in the deweighted state
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covariance matrix, as computed in the estimation algorithm itself.
This affords a measure to determine which trajectory time points
require application of fading memory within the estimator.

A series of Monte Carlo results are presented, showing the
application of this adaptively determined, <1 hoc scalar fading memory
parameter for estimation of an anticipated true reentry dynamics
trajectory. An examination of bias within the estimator solution with
these simulated true dynamics is provided. The limitations associated
with using the estimator~computed covariance matrix for impact
uncertainties are also discussed.

Finally, a tangent plane projection of the Earth impacts of

several estimator applications will be shown, demonstrating the

ability of the fading memory method to provide impact locations with

bias magnitudas within the standard deviations of the "deweighted"
covariance matrix. The standard deviation of the position error from
the deweighted state covariance matrix provides a good definition of
the uncertainties in the estimated Earth impact location, thus it can
be used to define a search area for the recovery of the satellite
debris. These results illustrate the viability of the method to
estimate decayed satellite impact locations and uncertainties
significantly improved over existing astrodynamic applications.

The basic contribution of the research is to provide a
technique which will help to determine the satellite impact locations
with reasonable specification of their uncertainties in an Earth
tangent plane coordinate system projection. Standard estimation

techniques are applied, but in a unique manner as dictated by the needs

of this specific, difficult and heretofore inadequately resolved
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problem area. Important highlights of the research include the
identification of the limitations associated with using the standard
differential corrector for this application. The research also
documents the problems which the decayed reentry problem poses for
more sophisticated estimation techniques such as pseudo~noise
compensation or statistical linearization.

A secondary goal is achieved by providing an estimation
approach which can be used to develop a large empirical data base of
decayed trajectories. These may potentially be used to develop the
alternative of a pseudo-noise dynamic compensation to the model
dynamics. The estimator developed represents the first successful
exploitation of global tracking observations from an orbital sensor,
while simultaneously estimating an update of the atmospheric density

with angular observations.
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Chapter 11 - The Reentry Estimator

As mentioned in the Introduction, the initial research approach
concentrated on extending the existing orbit estimation techniques to
the decayed satellite problem. These methods generally use a
deterministic dynamics model within a .ifferential corrector. This
chapter will document the successes and limitations of using such a
technique, considering the dynamics uncertainties present in this
application.

The first step in applying the differential corrector to the
general decay trajectory estimation problem involves definition of
the reentry dynamics model and development of the estimator
structure. The dynamics model considerations were introduced in
Chapter I. This chapter will begin with a derivation of the basic
differential corrector as it will be applied to the estimation of the
reentry trajectory and Earth impact. A complete definition of the
dynamics model is also presented. This includes geopotential
accelerations from the Smithsonian Astrophysical Observatory SAO-III
Earth Model (7), utilization of an exponential atmosphere density
based upon a least-squares fit to the U.S. 1962 Standard Atmosphere,
and the ussumption of a constant ballistic parameter, B8, over a given
segment of the reentry trajectory. The implementation details of the
estimator will then be discussed.

Numerical simulation results which help establish the limits
of the estimator performance are presented. These include single
sample simulation runs, selected Monte Carlo simulation results, and

special rumerical examples peculiar to the observer geometry
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relationships and reentry dynamics of this application. The overall
impact of the Chapter II results will be to show the basic differential
corrector with deterministic dynamics as inadequate for processing true
reentry data. The deterministic dynamics and infinite memory of the
basic formulation cause the estimator to yield significantly biased
solutions relative to the standard deviations of the estimator-
computed state covariance matrix. These occur when processing data
reflecting the dynamic variations anticipated in true reentry
trajectories. The use of the estimator in this form would not provide
an accurate estimate of Earth impacts for satellite debris search
requirements. With a large systematic error (bias) in the state
estimate, the estimator state error covariance matrix could not be
utilized to define a search area around the impact location. The
position bias from the estimator solution may be significantly removed
from the actual impact location. It may also be much larger in
magnitude than the random error indicated by the estimator state
covariance matrix. The results of Chapter III will address this

limitation.
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A. The Weighted Least-Squares Differential Corrector

The basic differential corrector includes a nonlinear dynamics

model:
x = £(x,t) (2)

where f(Q,t) is a deterministic function of the state variables and a
continuous function of time. The overbar, x, denotes a vector
quantity. Such a deterministic dynamics model is appropriate when
f(x,t) provides a good definition of the true dynamics.

A set of discrete observations are related to the state

variables by the general nonlinear relationship:
z(t ) = hx(t ).t ) + r(t) (3)

where ;(tn) is a zero mean, corruptive noise term of covariance R(tn)
at the observation time tn.

Assume the availability of a reference trajectory, §o(t), with
initial conditions ;o(to)’ at the epoch time, t, One seeks to find a
correction, 6x(t), which will minimize a weighted quadratic cost func-
tion of the observation residuals.

Assume that the true dynamics solution can be represented by:

x(t) = x_(t) + 6x(t) (%)
The reference trajectory, §0(t), satisfies the dynamics model as:

’:‘o(t) = f(x_(t),t) (5)

under the premise that the 6x(t) is a "small" deviation from the true

20




solution, x(t). If one expands Equation 2 in a Taylor's series about

the reference trajectory, the following results are obtained:

x(t)

f &O&)-+6§u)m) (6)

or,

x(t) = F(x (1),t) + A(L) §%(t) + H.O.T. (7)

xo(t)

where: A(t) = is the matrix of partial

@w |w
LA Rl

% ) %, (6
s}

derivatives with respect to the state variables evaluated along §O(t),
the reference solution.
Subtracting Equation 5 from Equation 7 on both sides and

neglecting the higher order terms yields the basic perturbation state

relationship of the differential corrector:

§x(x) = A(t) $x(t) (8)
io(t)

Since A(t) 1s evaluated along the reference solution

x (t)
trajectory, one generally obtains a time dependent linear differentijal

equation which has the solution:
Sx(t) = 9(t,t ) 6X(r ) 9)

The state transition matrix ¢(t,to), is obtained by solution of:

2r
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d [¢(r,t )] = A(r) (t,t ) (10)
ac o _ o

x (t)

o

with initial conditions, ¢(to,to) = I, the identity matrix.
| The general observation relationship of Equation 3 yields a
similar linear perturbation relationship between the changes in the
observations and the state variables. Evaluating the observation

equation along the reference trajectory, ;o(t)’ at discrete times, t

yields the nominal measurements:
zo(tn) =h (x (e ).t ) (11)

which is defined without a corruptive noise term. Note that a random

noise corruption term is included on the actual observations, E(tn).

These true observations satisfy:
z(tn) = h (xo(tn) + 6x(tn),tn) + r (tn) (12)

Expanding about the reference solution in a Taylor's series

yields:
E(tn> = h (io(tn),tn) +H (io(tn),:n) 8x(t ) + H.O.T. + ?(:n) 13)

Subtracting Equation 11 from both sides of Equation 13 yields a rela-
tionship for the residuals of the observations, Q(tn) - the difference

between the true and reference observations:

vt ) = z(e ) -z (t) = H (x (£ ),t ) 8x(c ) +r(t ) (14)

where: 1) the H.0.T. have been neglected, and ii) H(§O(tn),tn) is the

[ partial derivative matrix of the geometry relationship evaluated at

the observation times along the reference trajectory. Note that the
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observation residuals of Equation 14 differ from what is often referred
to as the estimator residuals - the difference between the predicted
and the estimated state solutions.

Assuming the validity of the linearization process, one now has
a linear dynamics and geometry relationship from which the differential
corrector may be developed. To initiate this process, one seeks to
minimize the difference between the measured observations, E(tn), and
the set of reference observations, Eo(tn), in a cost function which is
a weighted quadratic form. Expanded to first order, the cost function :

is:

—
it

HE .y - = 2
[ 2(t)) -z (t) - HGe (t ).t ) 8x(t ) Hw , (15)

which in general is weighted by the weighting matrix, W. \
As Reference 13 shows, if W is chosen to be the positive
definite inverse observation covariance matrix, R(tn)'l, the

minimization of J results in a first order approximation to a minimum

variance estimate for the state variables. For this application,
R(tn) is chosen as diagonal under the conditions that the random errors
in azimuth and elevation are uncorrelated within a given observation.
The estimate is shown to be unbiased (13) under the
restrictive assumptions of: n
- Exact dynamics
- Zero mean, random observations
- Valid linearization assumptions
The numerical results of Section II.D. will show the efficacy of these

assumptions for the current reentry application.
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In actual application, the batch processor seeks to find the
6§(to) correction at a selected epoch, to, which will minimize the cost
function. For structuring this batch processor, it is more convenient
to formulate the above problem in matrix-vector form which incorporates
all n observations to be processed by the estimator for a given epoch
update. The notation below includes capital letters for matrices,
with subscripts reflecting the observation index being processed, Tn,
and parenthetical subscripts for matrices including a collection of up

to n such observations, T<“).

Define,
/ H(x (e )t ) d(t st )
HGx (e qot,p) ot o)
oo - w0
\ ‘ .
Hix (e1),6,) ¢t ,t )
and,
/ ;(tn)
§(tn_1)
?(n) z < . 17

?(tl)

The matrix equivalent to Equation 14 then becomes,
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v(n) =T

() Gx(to) + r(n) (18)

Define R(n) as the matrix of the observation noise covariances in a

symmetric, block diagonal form:

7 R(t) \

R(n) = < . P (19)

\ R(t;)

R(n) is bliock diagonal under the conditions that the random error in

successive observations (ie, at times tn and tn) is uncorrelated.

-1

This is a reasonable assumption for the 10 second interval between

ohservations.

The weighted least-squares cost function J is now of the form:

- I3 z T =105 X
J = [v(n) - T 8x(t )] R [v(n) - T x(t )] (20)

Since R(n)‘l is positive definite, the necessary and sufficient

condition for minimizing J is:

3J
— =07 (21)
aéx(to)

Solving for 6§(to) yields (13):

T -1

-1 T -1 -
Ry Ty T

6?(:0) = ( R(n) v(n)

T(n) (22)

By definition, for zero mean 6§(t0), the state covariance matrix for

the differential corrector is:




Sn’n(to) = E (aE(co) 5§(to)T) (23)

Sn n(to) denotes the state covariance matrix, and E is the expectation
b g

operator. Substituting 6§(to)from Equation 22 yields:

Sn(Co) T E LTy Ry T T TR
Y@ Ry T T Ry T (24)
= Ty Ry T Ty Ry BV Yy )
Ry Ty Ty Ry T (25)

Recall that ;(n) is the accumulated vector of the observation
residuals. By definition, for zero mean observations:

R = E(v

) (26)

7.5
(n) ()
Therefore, after substitution and simplification, the state covariance

expression becomes:

_ T -1 -
S (t ) = (T(n) R(n) T(n)) ! (27)

n,n o

Should a priori state covariance information (denoted here by S'(to))

also be available, it can be shown that (14):

= ' -1 T -1 -1
Sn,n(to) = (S (to) + T(n) R(n) T(n)) (28)

Assuming a constant ballistic parameter, B, over some portion of
the trajectory, the application of the differential corrector reduces
to the processing of a series of segments of observations. Each

update epoch may be designated with the index m. At an epoch, the
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estimator may process up to k observations for an update. 1In the
limiting case, only one observation per epoch update will be
processed. The figure below illustrates the notation for the
sequential estimator formulation. The state estimate at epoch time
t is denoted im_l(tm) prior to update. At time € the estimator

may process one or more observations. The updated state estimate,

im(tm), is obtained and is then propagated forward to the new epoch

time, tm+l' The process then repeats.
xm—l(tm)
) (o) tn Epoch
xm(tm)
A
t n=1
[ mn ¢
} Observations
t n=2
m
. n
/
t n=
. n
x (t_..)
m mtl
(o) tm+l Epoch
Xr1 (Epa1) \
tm+l n=1
@
tm+1 n=2 Observations
° n
) t n=k /
° m+l
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Having propagated forward from an epoch at time tm’ the a priori

state covariance at the new epoch, t is § Using the

m+l’ m+1,m

reference trajectory, Qm(t) propagated forward by integration of the
dynamics differential equation, one formulates the information and

weighted residuals matrices:

T -1 , T -1 -
R(n) T(n)) and 7 R %

T @ Ra Vo)

where n =1, . . . , k, the number of observations used to update the
state estimate at the epoch tm.

An initial correction to the state epoch is then found from:

T -1 =

= - -1 -1 -1 o [
) = Cpitn YT P T T R Ve 9

- 3
This 6x(tm+l) is added to the reference trajectory to form a new
reference trajectory in an iterative fashion, such as:

Xpe1 () = %y () + 0 (e ) (30)

Successive application of the differential corrector continues
until the convergence criteria on the observation residuals are
satisfied. The initial, a priori state covariance matrix remains
constant until the iterative process has converged. On the final

iteration, the following update results:

'
Xory (Eppn) = Fp (g + T 8xCe ), L
i=1
= -] T -] -]
Sm+l,m+1 - (Sm+l,m + T(n) R(n) T(n)l) (32)

where £ equals the number of iterations required for convergence. The

28




A

[

i
{
j
;
{
H
!
§
2

information matrix, T T R, T , is evaluated from the reference
(n) (n) (n)

trajectory on the last iteration.
For orbital applications, the standard convergence criterion of
the iterative process has been implemented by a magnitude check on the

observation residuiis (5,13). One may define a norm of the observation

residuals within :(n) on a given iteration as:

k p
[z (2 v.2
i=1 j=1 3

Ik (33)

I .

indexing over j for the components within a single observation residual
vector, and over i for all the observations being processed for the

current epoch update.

The convergence criteria have often been specified in terms of

either a relative or absolute criterion (5,13):

15,01 = (17,11
< g1 Relative (34)

1%, 11
or,

ll;ill < €, Absolute (35)

When either of these conditions are satisfied, the iterative update is
considered to have converged. Note that Equations 34 and 35 do not
represent a sufficiency condition for convergence of an iterative
process. Kaper, et al (15) point out that the above criterion only
satisfy a necessary condition for convergence of an iterative process

of successive linearizations for a nonlinear system. They suggest
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that a "sufficiency criterion" must also be specified which examines the
magnitude of the resulting state correction, on the final iteration.

This Sxi(tm+l) , 1 =1,...,8 must also be small for the process to have

2
converged. In actual estimator application, the ¢; and ¢; necessary
conditions were chosen empirically such that the state correction on
the converged iteration yielded values less than approximately .01
times their respective standard deviations from the estimator-computed
state covariance matrix. While not a true sufficiency condition in a
strict mathematical sense, this allows implementation on the digital
computer without generation of many additional iterations of the
estimator, whose solutions contribute little to modifying the state
estimate.
To summarize the conditions used to determine convergence:
1) Assure that the necessary criterion of the observation
residual magnitude of either Equations 34 or 35 is satisfied.
2) Assure that the individual Gxi on the final iteration, £,
are less than approximately .01 times the standard deviation
of their respective xm+1i terms.
Additionally, one should examine the following conditions:
3) Assure that the absolute value of the residuals is less than
the one sigma magnitude of the observation covariance:

lvi] </ Rn i=) azimuth i=2 elevation (36)
ii

Failure of the bound of Equation 36 indicates a potential
onset of divergence.
4) Assure that the total change in each state variable is less

than or equal to its one sigma a priori uncertainty:
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i=1,8 (37

This last criterion provides assurance that the state upd..e at

a given epoch is consistent with the state uncertainties

-1

1.m within the update expr- -sion for
’

defined by the use of Sm+

G§(tm+1) as the dynamics weighting matrix.

As later discussions indicate, violation of this criterion offers
a valuable measure of the potential onset of divergence of the state
solution, for the non-exact dynamics cases. In the circumstance where
observation residuals do not grow unbounded, or are not non-zero mean,
this criterion may offer a measure which indicates a need to implement
a fading memory or other compensation method to the estimater.

Application of this batch processing algorithm to reentry esti-
mations has often resulted in poor estimator performance. This is
largely due to the more significant non-linear dynamics of reentry and
the use of a deterministic and simplistic dynamics model of Equation 2
in an uncertain dynamics region. Consider the effects of neglected
nonlinearities. Both dynamic and geometric nonlinearities can impact
the state vector and covariance update. As a means to insure the
validity of the linearization assumptions, a linearity check was
utilized which was applied to each iteration of the differential
corrector process (16). This was done to insure reasonable confidence
in the linear relationship between changes in the state variables and
the observations, as shown in Equation 14.

Consider the reference trajectory observations on two successive

iterations, 1 and i+1l:
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z (t ), =hGx (c )t ) (38)
n n n :
- - |
206y i1 = BOG(E Dyppoty ) (39)
n n n
Assuming,
;m(t)i+l = ;m(c)i + 6x(t) (40)

and expanding about the ith reference trajectory yields:

zn(tm )i+I = h(xm(tm )i,tm )y + H(xm(tm )i,tm ) 6x(tm ) + H.O.T. (41)
n n n n n n
Therefore-
Gzn = zn(cm )i+1 - zn(tm )i = H(xm(tm )i’tm ) 6x(tm ) + H.O0.T. (42)
n n n n n

or as implemented relative to the epoch update of the state variables:

5;n = H(;m(tm ) oty de(e Lt ) 5§(tm) + H.0.T. (43)
n n n

One may specify a H.0.T. magnitude check as:

|H.0.T.]
< € (44)

IT(n)GE(tm)[

on each successive iteration of the iterative solution process. The
H.0.T. is obtained from Equation 43, since GEn and
H(Xm(tmn)i’tmn) ¢(tmn.tm) are known quantities.

In actual application, € was chosen as 0.1 since this lineariza-

tion retains the first term in the Taylor's series expansion. This

linear term should be at least one order of magnitude greater than the
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H.0.T. in the expansion. 1f this criterion is violated, one could
abandon the linearized approach to estimation with a deterministic
dynamics model or reduce the time span over which the linearization is
assumed valid. Limiting the number of observations processed at a
given epoch update limits the time span over which the linearization
approximation is valid.

With exact dynamics, the later Monte Carlo results (Figures 6 -
13) illustrate the basic validity of the estimator performance using
this Taylor's series linearization approach. As the non-exact dynamics
cases substantiate, the dominant impact on estimator performance is
due to the uncertainties in the true reentry dynamics. This circum-~
stance causes one to address the dynamic uncertainties first, prior to
pursuit of more sophisticated techniques such as a higher order
estimator or a statistical linearization approach. These points are
discussed in Chapter III.

To summarize, the estimator update and propagation equations are
provided below for an infinite memory formulation:

Propagations between epochs:

State: integrate, with initial conditions §m(tm), from the

epoch at t
P ®

x(t) = f(x(t),t) (45)

to obtain xm(tm+l) at the epoch tm+1’

Covariance:

T
S = ¢(tm+l,tm) Su d;(tm+1.tm) (46)

m+1l,m s
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Update at next epoch:

State:
- -~ 2{ —
X1 (Epp) = X (g izl Sx(t 1’4 (47
Covariance:
_ -1 -1 -1
sm+l,m+1 h (Sm+1,m + T(n)R(n) T(n)) (48)

Recall that 2 is the number of iterations required to satisfy conver-

T -1
@)

on the final iteration, %.

gence and T T(n) is evaluated from the reference trajectory




B. Dynamics Model

B.1. Eight Dimensional Formulation

Previously stated, an exponential atmosphere and constant
ballistic parameter assumption were combined with the position and
velocity variables to construct an eight dimensional state vector,
x(t). In this manner, the estimator solution will contain two
distinctly quantifiable, physical parameters: the ballistic
parameter, B, and the atmospheric lersity scale height, Q.

Consider the influence of the atmospheric density model on the
estimator performance. A review of the standard atmosphcre density
equations illustrates an increased complexity whea compared to an
exponential (or isothermal) density model. The application of the
standard density model requires separate equations in several
altitude layers during reentry. All densities are defined relative to

. In the non-

base altitude values for density, Pg? and temperature, TB

isothermal layers the density is functionally related to the direction
and rate of change of the temperature with altitude. This relationship
is characterized by the thermal lapse rate, L. Equation 49 defines the

non-isothermal standard density expression.

T {1+ Mg */RL)?
_ B o”o (49)

p = py o 4
T + L H* 1*
g FLOV -

where:
* %
H ,H B geodetic altitude, and geodetic base altitude,
respectively
MO = molecular weight of air
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g * = acceleration of gravity
0

R = universal gas constant
MO and R are generally constant below 80 KM altitude where continuum gas
dynamics apply, although the standard atmosphere equations are often

used well above 86 KM altitudes. (4,10)

Equation 50 defines the isothermal standard density expression.

M * H* *
680 ( - B B)
exp {- } (50)

RTB

p = OB

Within the linearized estimation technique one must linearize the
equations of motion relative to a reference trajectory. This involves a
Taylor's series expansion about the reference trajectory solution. This
requires partial derivatives of the density expressions with respect to
the trajectory position variables (x,y,z). The position variables are
embodied within the geopotential altitude terms, H*. Due to the
presence of H* within the denominator of Equation 49, the complexity
and nonlinear character of the partial derivatives are more pronounced
within the non-isothermal layers of the atmosphere.

The derivatives of the density expression with respect to x, y
and z are also difficult to calculate across the altitude layers of a
standard density model. The linearization is often required to be
valid across layers of differing thermal lapse rate or between non-
isothermal and isothermal layers. This will impact the linearization
process since the density across these layer boundaries is a
continuous function of H*, but the spatial first derivatives of the
density are not continuous. The alterate formulation of an isothermal

density model for the entire atmosphere can greatly simplify the
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implementation aspects of the estimation technique.

*
p = o, exp (- 1 /Q) (51)
where:
Py = Earth surface reference density
*
H = geodetic altitude
Q = RTO is defined as a constant in the altitudes of

*
Mogo reentry, called the density scale height.

*
(This is equivalent to Equation 50 if T =To, H =0, and pB=po.)

B B

While this exponential model is an inherently poorer functiomal
descrintion of the "mean'" atmosphere density variations with altitude,
it is more easily incorporated into the reentry estimator. If
accertable estimator performance can be available from this more sim-
plified expression, it will greatly reduce the complexities associated
with use of the standard atmosphere equations. The advantage of this
simplified implementation is a reduced mathematical complexity and the
availability of continuous valued density and partial derivatives of
density along the reentry trajectory.

The density scale height was chosen as an eighth state variable
since it is slowly changing within the altitudes of reentry (below 100
KM) as shown in Figure 2. It also is the basic independent variable
within the exponential atmosphere density expression (Equation 51)..

Alternate state variable forms were considered to augment the
basic six position and velocity variables. An approach to estimating
the uncertain dynamic variables has been used by many authors which
incorporates a first order Gauss-Markov assumption for the unmodeled

accelerations. Tapley and Ingram (17) suggest such a first order
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Gauss-Markov process. In their formulation, the following expression

is used:

1,2,3 (52)

éi(t) = —Bi e(t)i + ui(t) i

where:
ei is a time correlated component

Bi are constant coefficients

and, ui(t) is a white, Gaussian noise term with statistics:

E [G(t)] =0 (53)
and,

E [3(t),ult + 1)°] = Q(t) 6(x) (54)

Similarly, Myers and Tapley (18) formulate the unmodeled accelerations

as.
éi(c> = - e (B)/T, + u (¢) (55)

where '1‘i = a time correlation coefficient = l/Bi' This approach con-
tains several drawbacks for the general decay satellite application.
First, it requires a pseudo-noise compensation to the model dynamics,
while the deterministic estimator dynamics of Equation Z do not. The
time correlation coefficients must be determined along with the Q(t)
covariance matrix elements, requiring extensive simulation analysis

for tuning. As the orbital experience indicates (5), this process does
not have high potential for success in the uncertain reentry dynamics
regions with short arcs of empirical data to assist the tuning process.

Secondly, if separately estimated along with the ey terms, the Ti or Bi
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coefficients can ultimately increase the state dimension from the
original six positions and velocities to 12 state variables. Lastly,
as Myers and Tapley (18) point out, the specification of initial
conditions and covariance values for these variables is not easily
related to the physical processes present in reentry. Minor errors
in specification of these initial values were found to have signifi-
cant impact on the estimator performance.

Initial values and covariance magnitudes for the ballistic
parameter, B, and the density scale height, Q, are readily available.
The value of B and its associated covariance is generally available
from propagating the last SPACETRACK orbital estimation to the first
reentry epoch. The initial value of Q and its covariance can be
developed from a standard atmosphere model and modified with knowledge
of the local atmosphere properties which may possibly be known for the
specific reentry case of interest.

In the current application, the initial density scale height
was derived from a least squares fit to the base density values of the
altitude layers within the U,S. 1962 Standard Atmosphere (Appendix
B.1.). The resulting scale height was Q = 7.0031 KM.

A rectangular, inertial coordinate frame (Earth Centered
Inertial ~ ECI) was chosen to minimize the complexities of the
computational procedure (19). As such, the following state vector was

selected:

40




X3=_Y
_ X, =Y
x = 4 (56)
X5=Z
x6=:':
X5 = Bp
x8 = Q
L y

The product Bpo was chosen so that Xy would be of order one in the
kilometer, kilogram, second (KKS) system used for the dynamic computa-
tions. Use of the more standard meter, kilogram, second (MKS) system
would result in very small covariance terms for the x7 state (Bpo) and
aggravate an already ill-conditioned state covariance matrix (to be
shown later in Section D.3.). The term Py equals the Earth surface

reference density model value, and Q is the density scale height of the

exponential density expression:

*
o= o (H/Q) (57)

*
The geodetic altitude, H , is developed from the Earth model parameters

where: g is local gravitational acceleration obtained from the
magnitude of the geopotential acceleration components along
the x, y, and z coordinates.

8, is the reference geoid level gravitational acceleration
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The Ho term represents a geocentric altitude:

H =R - R (59)

R is the local radius position relative to the Earth center,

1
R = (x2 + y2 + 22)4, and RS is the local Earth surface radius position:

1
R, =R (1-£) [1- (2 - £%) cos® 8] * (60)
where:
f = the flattening factor of the reference geoid whose
elliptical shape is consistent with the dominant non-
central gravity term, JZ, due to the equitorial bulge.
2 2y%
§ = local latitude, cos § = (x° + y*©) /Ro
R = radius of the reference geoid at the equator )

The estimator dynamics model includes both aerodynamic and
geopotential acceleration terms within the £(x(t),t) expression. In

this manner, the dynamics equation will have the form:

Xi = X2

x, =f. +f
2 dx gx
X3 = )(4

xa = fd + fg
. y Y (61)
X5 = Xg

x, =f. + ¢
6 dZ gZ
;'(7 =0

{(8 =0

The aerodynamic accelerations are derived from:
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- _
ay = - Bo Vi VR (62)

where VR is the scalar magnitude of the velocity vector relative to a

rotating atmosphere. The decomposition of this aerodynamic accelera-

tion along the three coordinates x, y and z results in:
= —l .
£4 s Bo Vo (x + wy)
X
= _1 ’ -_— t
fd 2 Bp Vo (y 0xX) (63)
y
= —l .
£4 3 B Vg
z

where w is the scalar magnitude of the rotational velocity of the Earth,

about the z axis.

The following development yields the geopotential accelerations
(20). Consider the geopotential function: ¢

GMR"

n
[ m ' .
o mio —-;;;i——-Pn (") [Cnm cos (m)) + Snm sin (mA)) (64)

<
]
it 48

n

where: G = universal gravitational constant

M = mass of Earth
R0 = mean equitorial Earth radijus
R = distance from Earth center
P: = associated Legendre functions of degree n and order m
S = zonal, tesseral harmonic coefficients

nm’ nm !
§' = z/R
A = longitude

One may define a zonal and tesseral harmonic component such that:

GM R "

m_ o m .
Un ~;EIT—— Pn (8') cos (mi) (65)
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e —————

eM R "

_ o Mo, .,
= ———;5;;I—— Pn (8") sin (m)) (66)

=1

The geopotential which results is:

n
m m
E (cnm Un + snm vn) 67

{ Defining ag as the Right Ascension (RA) of the Greenwich

Meridian, one obtains the following geopotential acceleration terms:

f =cos a VYV - sina ©V
g s X s y
X
f =gina VW <4+ cos a WV (68)
24 X X s y
y
f = VVz
g,

where the gradient terms are defined by: t

w D SU: BVE

va = nEO mEO (Cnm 9x + nm 9x ) ]
L n Clig v

VW = ¢ ¥ S e 69

y n=0 m=0 ( nm Jy nm 3y ) (69)

o M BU: av™

VVz - nEO mio (Cnm 9z + nm dz )

The Smithsonian Astrophysical Observatory SAO-III (7) Earth

Model was used to define the model parameters and zonal and tesseral

coefficients. In actual estimator development and simulation only the

central gravity C00 term and Earth oblateness CZO(JZ) term were used in

the reentry altitudes regions. The computer program code is easily

modified by changing dimensions and indexing to incorporate the full

SAO-111 Earth Model. The retention of the JZ component, and no higher
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order geopotential terms, is consistent with the relative geopotential
and aerodynamic acceleration magnitudes and uncertainties in the reentry

altitude regions. An ability still exists to use the full SAO-III

Earth Model in propagating the final orbital vector to the first epoch
update point of the reentry observations. Consider the relative aero-
dynamic and geopotential acceieration magnitudes.
1) In a high altitude region above the reentry data
points (approximately 60 NM or 111 KM high):

Aerodynamic acceleration: ap = 5.75 x 10713 K/s?

Central gravity term: a; = .00947 K/s?®
)
J2 gravity term: aj = 1.48 x 1075 K/s?
2
J, gravity term: a. = 4.32 x 10°°% K/s?
4 J4 ,

This illustrates the need to carry the higher order

geopotential terms when propagating the final orbital
solution forward to the first reentry data point. In
this region, the higher order geopotential terms yield

accelerations whose magnitudes are significant relative

to the magnitude of the aerodynamic acceleration. (All
harmonics of order J3 or higher exhibit accelerations
' whose magnitudes are similar to or smaller than the
JA term.)
2) In the reentry altitude region (IR data):
(approximately 40 NM or 74 KM high)

Aerodynamic acceleration: ap = 5.41 x 107°% K/s?

Central gravity term: a; = .00957 K/s?

(o}

J, gravity term: a; = 1.52 x 1075 K/s?

2




J, gravity term: a_, = 7.4 x 107% K/s?

4 J4

The J2 acceleration contribution becomes of the same order
of magnitude as the aerodynamic acceleration. It is there~-

fore necessary to retain the J_, term in the dynamics model.

2
The higher order terms may be neglected.

3) Typical Earth impact accelerations:
(assume Ve ® o15 K/s)

Aerodynamic acceleration: aj = 5.5 x 107% K/s?

Central gravity term: a; = .009798 K/s?

[e]

J, gravity term: a; = 1.59 x 107° K/s?
2

The aerodynamic accelerations dominate the higher order
geopotential terms and assume magnitudes of an order similar
to the central gravity accelerations. The J2 gravity term '
accelerations become negligible relative to the central
gravity term and aerodynamic accelerations.
A similar comparison can be made between the acceleration

magnitudes of the inuividual geopotential terms and the anticipated

uncertainties within the aerodynamic accelerations of a simulated true
reentry dynamics set. Using an example from a typical single run of
the Monte Carlo analysis (with a truth model containing the U.S. 1962
Standard Atmosphere and B as a function of Mach number) yields the
following two cases:
CASE 1: Assume x, ;, z, Bpo, Q to be one standard deviation
from their mean estimator determined values

CASE 2: Assume only i, ;, z to differ by one standard deviation

from their mean estimator determined values
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=

The deviations from the mean aerodynamic accelerations at a high
and low reentry altitude region of IR data are:
73.04 KM altitude -

3.66 x 10™° K/s?

CASE 1: AaD

CASE 2: day = 5.466 x 107% K/s?

41.23 KM altitude -

2.346 x 107% K/s?

CASE 1: AaD

2.748 x 107" K/s?

CASE 2: AaD
In the beginning of the IR data region (73.04 KM), the aero-

dynamic unrertainties can be of the same order as the J2 acceleration

magnitude. During the reentry data region (41.23 KM), the uncertain~-

ties are of the same order or much greater than the JZ acceleration )

magnitude depeunding on the random error in each of the pertinent state

variables. They can even become significant relative to the magnitude

of the central gravity accelerations (approximately .0096 - .0098 K/s?).

As a result of these relative acceleration considerations, the estima-

tor model used both the central gravity and Earth oblateness (Jz) terms
from the geopotential expansion. i

B.2. Seven Dimensional Formulation

As previously mentioned, the standard practice by operational
agencies such as the USAF SPACETRACK System (5) has been to use a seven
dimensional state vector for estimator formulation. The atmospheric
density ratios are then obtained from the standard density model of

Equations 49 and 50. The state vector becomes:
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o s =

[~ i
Xl = X
X2 = )'(
Xy =Y

x = x, =¥ (70)

Xs = 2
Xg = 2
Xy = By

L g

The U.S. 1962 Standard Atmosphere Model (10) was used for this
density information with the geopotential altitude values modified to
reflect the SAO=III1 Earth model values (see Appendix B.1l). Following
the same development as the eight dimensional estimator formulation, a
complete seven dimensional estimator was constructed. Performance
implications of each formulation were made and will be discussed with

the numerical examples in Section D.3., later in this chapter.
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C. Observation Relationship

The observation relationship for the IR data from the orbital

sensor takes the form (see Figure 1):

=~ == ho(t )
| = =
r z(tm ) h(x(tm ),tm ) o (71)
! n n n
hz(t )
n
where:
o
yl
hy(t ) = sin™?} —~—7———7~1r— + 7 measured within the (72)
! Y "7+ 203 x'y' plane from the
negative z' axis as
in Figure 1.
X‘
- -1
hz(tmn) = sin (sz + yyz + zﬂ)!ﬁ (73)
(measured fr-m the y'z' plane to the reentry satellite f
position vector, E; see Figure 1.)
The relationships for the geometric partials matrix, H(tm )y =
n
dh(x,t)
3% and also the dynamics partials matrix, A(t) =
xm(tm )
n
IE(x,t)
ax for the basic eight dimensional estimator are shown
%, (€)

in Appendix A.
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D. Numerical Simulation Results

Having developed the basic estimator structure and dynamics
model, one must now quantify its performance with simulated reentry
data. As Reference 13 details, the application of such a successive
linearization technique results in an unbiased estimate only under the
following restrictive assumptions:

-l jis used as the

1) The inverse covariance matrix R(n)
weighting matrix within the basic cost function of the
differential corrector (Equation 20).

2) The observations are randomly distributed and zero mean.

3) The changes in the observations are linear functions of
the changes in the state variables.

4) The dynamics model is exact.

In the simulated estimator runs which follow, the inverse
observation covariance matrix was used for weighting. The simulated
observation noise was generated from a computer based random number
generator. This noise was essentially zero-mean, uncorrelated, and
had a standard deviation equal to the standard deviation of the
observation covariance.

The simulated results show that Equatioun 44 can successfully be
used to limit the time spans of updates such that the relationship
between observations and state variables changes remains essentially
linear. Recall that ¢ was chosen as 0.1 to insure that the linear
term of the Taylor's series expansion was at least one order of
magnitude greater than the neglected higher order terms.

Particular attention was given to non-exact dynamics and

variations in observation geometry as they impact the bias magnitude
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in the estimator solutions. The restlts of Section D.3. will also show
that a limited observability of the system is provided with the angle
only observations from a single observer. This results in a very ill-
conditioned information matrix in the absence of a priori state
covariance data. An extensive series of simulated data runs was
completed with the basic, infinite memory estimator formulation
(Equations 45-48). These were selected to examine which factors
required further evaluation for improvements in the application.

A series of single sample simulated data runs were completed to
provide insight into the performance of the estimator while considering:

1) Estimator dynamics model limitations

2) Variations in observation noise levels

3) Variations in observation gecmetry relative to the

reentry trajectory
4) Observations from multiple observation sources on the same
reentry trajectory

A Monte Carlo analysis was then completed to examine estimator
performance with exact dynamics at two different levels of observation
noise. A third set of monte Carlo runs was completed with a signifi-
cant mismatch between the estimator dynamics and the dynamics of the
truth model, from which the simulated observations were derived.
The mismatch between the deterministic estimator and the truth model
dynamics model is shown to be significant. Chapter III presents a

discussion on the model compensation techniques considered to address

this problem.

Lastly, a number of special numerical investigations is pre-

sented. These include: a comparison of the seven and eight




R

dimensional estimator formulations, single observation satellite
observability considerations, and an analysis of the propagation of
the final epoch state covariance matrix to Earth impact.

D.1. Single Sample Results

An extensive series of single sample runs were made to identify
the most significgnt performance aspects of the basic differential
corrector formulation. In the application of the estimator to
simulated data, the solutions for X, = Bpo and Xg = Q are obtained
under the assumption that these quantities are locally constant over
the time span between the epoch update point, tm, and the observations
at times tm .

n

Single sample simulation results will be shown with observations
from both single and dual observers being processed for each epoch
update. The basic criterion for evaluating gross performance trends
from the single sample runs was to determine the state variable
"error." This error is defined as the difference in magnitude between
the estimator state solution and the solution associated with the non-
noise corrupted "truth model" from which the simulated observations
were derived. Results which show an error significantly greater in
magnitude than the standard deviation of the estimator-computer state
covariance values were used for case selections for later Monte
Carlo simulations. For the sake of brevity this error assessment is

presented only at the time of the last observation along the reentry

trajectory.
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D.1.1. Dynamics Mismatch Results

A number of truth models were selected to examine the performance
aspects of the estimator with significant mismatch between the estima-
tor dynamics model and the functional form of the truth model dynamics.
These included truth models with dynamic variations of: B as a function
of Mach number, a high density exponential density profile, a standard
atmosphere density profile, a discrete change in ballistic parameter,

8, and various combinations of these dynamics. The truth model
trajectories and the dynamics mismatch profiles of the variable g and
atmospheric density profiles are contained in Appendix B.l. Appendix
B.2. contains the details of the single sample estimator runs which
are summarized below.

The initial epoch for this simulated, decayed satellite tra-
jectory was at an altitude of 73.82 KM with a 0.5 degree reentry angle.
Initial positions and velocities are identical, within both the
estimator and the truth model. Initial estimator conditions for X, and

X, vary from the truth model only if that particular case differs from

8
the estimator dynamics.

Most single sample cases included exact (non-noise corrupted),
truth model derived observations with a 107° radian one-sigma weighting
within the observation covariance matrix, R(n). In selected cases,
corruptive random noise was added to the simulated observations to
examine the combined effect of dynamics mismatch and observation noise
on the solution process. With the observation satellite positioned in

a synchronous orbit this 10”% radian noise represents a position

uncertainty of approximately 0.4 KM at the points along the reentry
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trajectory. The noise corrupted simulations were further examined in
the subsequent Monte Carlo analysis.

The single sample results are shown in Table 1 at the time of
the last observation, T = 330 seconds trajectory time, illustrating:
error, estimator covariance standard deviation (one sigma) values,
and the error/(one sigma) ratio for each pertinent state variable.
This single sample, error/{one sigma) ratio will be referred to as the
"performance ratio' in the text. The one sigma value is from the
estimator-computed state covariance matrix. (Note that in the cases of
a U.S. 1962 Standard Density truth model (ATM 62), no error or ratio
comparison was made for the exponential scale height, Xg5 since the
results of interest are the position and velocity values determined by
using an exponential atmospheric density model while processing data
derived from the use of a standard atmosphere.)

Under Monte Carlo simulation analysis, significant performance
degradation of the estimator would be evidenced by a growth in the
bias/(one sigma) ratio much beyond one. These bias values represent
the mean error in state variables over the n Monte Carlo runs. With
the qualifications normally extended to single sample assessments, one
can draw some trend information by review of these results. Concen-
trating on the performance ratio, results of the various truth model
cases in Table I show the following:

1) The ratio generally increases with increasing mismatch

between the estimator and truth model dynamics, as
expected. There is a distinct variation in which states
are more or less effected which is related to the particular

truth model data being processed by the estimator.

54

- - W PR 7P T . .
S T S e
s o et il it RNt . .




anTeA oaaz

A730BX2 JO DATIEOIPUT 3J0u ‘SITBTIP XYXXX'0 03 sIusuodwod
uoT3Tsod 103 jyyopunoli 3Inolutiad 1eIndwod woiy (°'Q 3JO SanTep 1930y
¥

Ge’¢ SL°¢C ov°'1 9T°1 ST 71 0'1 VAN oTaEey
?durWIOIABYJ 2aaydsouyy
. . . . . . . . Terausauodxy
€20 %0 %100 £y 200 €2°T 200 89°1 Bu3TS 2up £118usq 4STH %6
%S0° 1T° ¢00° 0s* £00° 6 ¢ 200 VAR 1011y 4 (rou ydeR)3y = ¢
- €'y 6°9T 1¢° 6°0¢ £€8° 6°1 Gg8° OTaey
JoUBWIO I
- 9L¢0" €£€100° 6€° L%00" S%*'T L[900° rA AN ewsTS 2ug £31suaq
- ¢9T” 0c¢zo° (\r A 860° 07°1 €10° 0C°'T 10113 T 79 KLV :
00T % oLE” 0000°T 1¢° LT°1 T £8° s¢* oTiey '
3dUBWIOFIDG v .
. . . . . . . . eus au azsydsomzy ‘" .
L20 Seo 0700 8y 0900 86°T 900 L6°T TS 0 TeT3IusuOdxg
1T’ £10° 0200° 1° 0L00° G* S00° 0s* 10113 Z AL1tsusqg y3TH %66
6°1 0L6° 00sT” A 0080° 15 ‘0 1% oTiey
aourPWIO JIIJ
720° L%0° £€T00° ' 0s00° 0°¢ S00° 0°¢ eudI§ dup
9%0° Lzo: ¢000° T° %000° 9°* *.o 9° 1013y 4 (cou yseR)3 = ¢
b °ag Z Z X X X X Juaulag T2POK
: ' ) aag yanig,

sq0 *ON

yojeusTy oTweukg ‘Arowdl 93ITUTFuyl :sS3Insdy aTdweg 9T8ufrg

I =21498] H




o

98"

se’

¢

0°s

9¢”
8°'1

o%°
ot

89°

e
0¢”’

€'C

6¢"

6L°G

9L00°
7%0°

'€

0010’

oteo’

006¢*

TZ00°

9000°

0'T

6100°

6T00°

ST

Z00°
£00°

o>

91

L1

9°1

0L

L2°1

6°8

w1

£S°T

(AN

6"

9L°1

L1

8°¢

I6°1
8°§

0°01

T1900°
190°

'€

0800°

0620°

00TY"

a4

6000°

0008*

0200°

9100°

S°1

¢00°
£00°

o>

8171
Lzt
S'T
6°9
XA
8°8
661
871
£°C
66"
L1
[AN1
6°¢€
8v°1
8°S

oTIEy
2oUPWIOI Dy

ewdrg aug
1011y

oriey
20UPmMIOFId]
ewdTs dug
I0xag

oTI®RY
3DUBWIO JIADJ
eudIs 2up
10113y

oTlvy
9oUBWIO JIDJ
ewdTg auQ
0113

OTaey
aourwi0Iaad
ewd8Tg 9up

10aay

S99s 00¢ = L

Je gy deais

T°POK
TeTiuauodxy
£31susq y3TH ¥S6

S93S Q¢ = 1 1e
gv dois

aasydsouwly
Teriuauodxy
£31suaq Y3TH %56
("ou ydeR)3 = ¢

aasydsomly
1eT3usuodxy
A3tsuag y3TH %56
(‘ou yoER) 3 = ¢

axaydsouwly
TeTIuduodxy
£31susq y3TH %56
(tou yde)3 = ¢

T2POK
yanag

56




2) The ratio generally increases with the addition of random
noise to the observations. This is not a true indication
of the estimator performance with random noise on the
observations, since only a single sample trajectory is
used. The later Monte Carlo results present a more

complete illustration of the estimator performance with

noise corrupted observations.

3) The ratio generally decreases (improved performance) with

one observation per update compared to two observations.

This indicates an increasing ability of the deterministic

estimator dynamics model to match the truth model over
smaller time intervals between the epoch update point and
one set of observational data. This provides an indication
of the need to apply some form of dynamic compensation to
the deterministic estimator model. Under normal circum-
stances, one would anticipate an improved performance with
more observations. However, the deterministic estimator
dynamics model is valid over a very limited time period. 1

4) The large ratio and error values of the step change in
B at T = 300 seconds result from the small number of

observations after this discrete change in B8 and the small

state covariance values resulting from having already
processed a large number of observations. The dynamics
model was then excessively weighted in the update process
and did not fully accommodate the information content within
the final few observations. Also, the small number of

1
ol
J
observations occurring after this step change were not j
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sufficient for the effects of the transient nature of this
discrete change in dynamics to settle out in the estimator
solution. Again, this provides further evidence that some
dynamic compensation is required for the deterministic
dynamics model.

Residual monitoring, which is often used to help determine a
pseudo-noise matrix or fading memory parameter selection, was considered
to address the limitations in the estimator dynamics model. As
Morrison (2) and Sorenson & Sacks (3) point out: observation residual
testing is most valid when: i) the functional form of the model
dynamics is sound, and ii) sufficiently large numbers of residuals are
available over the time span of local dynamic model validity, for the
statistical analysis of the residuals to be valid. Unfortunately, as
the expanded discussion in Chapter III will show, the time span of
local model validity is often very short. The implications of residual
monitoring with a fading memory estimator are discussed in more detail

in Chapter III.
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D.1.2. Observation Noise Variations

With the same initial state conditions within the truth model and s
the estimator, a sequence of simulated runs were completed to analyze
the effect of variations of the one sigma corruptive noise on the

observations. The same dynamics were modeled in both the estimator

and the truth model. Random noise with the same initial seed was
placed upon the simulated observations using three different levels of
observation noise. In each case the estimator observation covariance,
R(n)’ was consistent with the level of random noise on the observa-
tions. The resulting error and performance ratio are shown in Table II

at T = 160 seconds trajectory time, the time of the final observation.

A more severe nonlinear trajectory (i.e., lower altitude, higher

- atmospheric density) with an initial altitude of 53.73 KM was used in

this comparison.

The trends which may be observed from a review of the Table II
results include the following:
1) The estimator error magnitude improves going from 107" to ,

10~° radian noise levels.

2) Acceptable estimator solutions in terms of the performance
ratio are indicated with the exact dynamics in both the 1074

and 10~° radian noise cases. The performance ratio is not

’ significantly greater than one. The onset of growth in this

ratio is evident with a 10~° radian noise level.
3) With an extremely accurate set of observations (107% radian

noise), performance degrades when compared to the 10=" and

107° radian noise cases. This is likely due in large part

to the overweighting of the deterministic estimator
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dynamics model late in the trajectory data span, due to a
more rapid collapse in the magnitudes of the state
covariance terms with 107° radian observation noise. The
linearity check of Equation 44 was consistently satisfied
throughout the trajectory estimation. This provides a
reasonable assurance that the error in the state estimate
was not primarily due to higher order term corruption.
However, model compensation or a fading memory may be

required with extremely accurate observations.
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D.1.3. Observer Angle Variations Relative to the Reentry Trajectory

With the same dynamics and initial state conditions within the
estimator and the truth model, a sequence of runs was made to compare
the effects of variations in the orbital location of the observer
relative to the reentry trajectory. These runs were obtained with an
initial trajectory epoch at 53.73 KM and may be compared to their
respective noise level counterparts of Table 11, where the observer was
in a synchronous orbit with an initial Right Ascension (RA) of +45°.
Figure 3 shows the variations in the initial observer orbital positions

relative to the reentry trajectory case considered.
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V = REENTRY TRAJECTORY INITIAL VECTOR

X,Y,2 = ECI COORDINATES

R.A. = RIGHT ASCENSION

DECL = DECLINATION

OBSERVATION SATELLITE INITIAL POSITION, O

DECAYING SATELLITE

X |
R.A. = 22°, DECL = 0°
|
R.A. 0
z vA
Y Y
\ \
v\ v\
X \
\ DECL
0
R.A.
R.A, = 45° - 0°
A 5°, DECL = 0 R.A. = 45°, DECL = 2°

OBSERVER ANGLE VARIATIONS

FIGURE 3




Table IIT1 shows the estimator results at the time of the final

observation, T = 160 seconds. A review of these results shows:

1)

2)

There are no drastic variations in estimator performance
with minor variations in the single observer location
relative to the reentry trajectory.

A subtle relationship between individual state variables

and observer location indicates some potential limitations
of observability with angle only observations. This is
apparent by examining the performance ratio results of the
10”% noise level cases at initial RA of 22° and 45°. For
example, the ratios are much higher for the x and y position
terms and the Bpo term with the 22° RA case. In all cases,
the ratio does not grow beyond one. These effects are more
clearly illustrated in Section D.l.4., below. As the
angular separation between the observer subpoint and the
reentry satellite becomes smaller, there is a loss in
observability available from the angular observations. This
is not an unanticipated result, but it is difficult to
examine analytically with the current observer. This is due
to the coupling of the geometric partials matrix and the
state transition matrix within the estimator T(n) term (see
Equation 16). The articles by Sivazlian and Green (21,22)
lend a useful insight into the accuracy considerations of
similar angles only data for the tracking of a stationary
target from multiple observers. Their formulation is more
easily expressed analytically. They show a general

deterioration in the accuracy of the target position

64




estimates as a function in the angular separation of the
target from the observers and the angular separation

between the multiple observers. They also show that this
function relationship loses its dependence on the observer
locations if the observers are positioned at right angles

to the target. When extended to the dynamic case of the cur-
rent observer, similar results are obtained. Section D.1l.4.
shows the loss in estimator performance as the reentry data
approaches the observer subpoint. Section D.1.5. shows the
improvement in estimator performance with data from dual

observers, orthogonally positioned relative to thz reentry

trajectory.
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D.1.4. Reentry Trajectory Location Variations

Because of the trends apparent from Table III with observer
angle variations, a sequence of simulation runs was completed with

variations on the initial trajectory RA. Observations are from an

observer with an initial RA of #45° in each case. The initial
conditions and the dynamics models were matched exactly within the
estimator and the truth model. A 10~° random noise was placed upon
each set of observations. A lower altitude (49.86 KM), high
inclination trajectory (approximately 85°) was used for this
comparison. This would stress the estimator performance by

i) beginning in a more nonlinear dynamics region of higher atmospheric
density, and ii) proceeding on such a high inclination trajectory
would result in smaller changes in observation azimuth measurements,
with the reentry trajectory case more closely approaching the
observation satellite subpoint or nadir: the Earth surface location
intersecting with the vector between the observation satellite and the
ECI coordinate system origin at the center of the Earth. These
variations in reentry trajectory geometry relative to the observation
satellite are shown in Figure 4.

From the synchronous altitude of the observer, the figure of
the Earth appears approximately as a 17° solid cone. Therefore in the
observer coordinate system, the angular observation of any reentry
trajectory can at most vary between *8,5° relative to the observation
satellite nadir. The results of this "Earth limb to satellite nadir"
variation analysis are shown in Table IV at a trajectory time of 150
seconds, the time of the final observation.

A review of the Table IV results reveals the following:
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vy DECAYING SATELLITE

INITIAL OBSERVER POSITION \
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0
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REENTRY TRAJECTORY POSITION VARIATIONS
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1) There is a general deterioration in the estimator solutions

in terms of the performance ratio as the trajectory approaches

very close to the observation satellite subpoint.

2) With a single observation satellite, even with an exact
dynamics model, a subtle interrelationship exists between
the observer geometry and the trajectory geometry which may
affect the estimation of certain states more than others.
This may be seen by examining the differences between the
RA = 0° and 45° cases for the individual state variables.

As the observation aspect on the reentry trajectory varies,
there are different variations in both error and
performance ratio for the individual state variables.

A rigorous examination of these variations near the observer
subpoint is an extremely complex problem., The geometric relationships
are coupled to the particular trajectory via the product '1‘n =
H()_(m(tm )) ¢(tm ,tm) in the state and covariance update expressions

n
(Equations 39 azd 47). A review of Appendix A.l. and Appendix A.2.
shows the complexity of the A(t) matrix used to generate ¢ and of the
geometry matrix, H(;m(tm )). However, one can obtain some insight into
these considerations by Zeferring to the observation geometry of
Figure 1 and the R.A. = 42° results of Table IV.

Very ncar the subpoint, the y' and z' observer coordinates
approach zero. As Table IV shows, the estimator solutions deteriorate
most dramatically in the three state position terms (x, y and z) and
the Bpo term. Very minor errors in y' and z' coordinates couple very

directly into the trajectory position coordinates x, y and z through

the geometry matrix, H(im(tm )). Observability of the velocity states
n
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is obtained principally from the state transition matrix, ¢, within the
T(n) matrix. With minimal bias in the velocity and the density scale
height components, the errors in position generate errors in the
solution for Bpo.

This illustration for the observer subpoint case was chosen for
examination of the observability limitations from a single observer
providing angular data in this region. The utilization of dual
observers may be advisable to improve these geometric performance
relationships between the observation satellite and reentry trajectory.
Since in the general satellite decay case, no control exists over these
geometry relationships, multiple observation satellites may be required
to insure acceptable estimator performance. Examination of the
contribution of a dual observation satellite set of measurements will

be explored in the next set of single sample results.
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D.1.5. Multiple Observation Satellites

To allow direct comparison to the Section D.1.3. results, the
53.73 KM initial altitude trajectory was used to complete a sequence of

single sample simulations. These runs included variations in the

observer initial RA and observation noise levels, with data from two

observers. Table V contains the results of these dual observer runs

i e schmpcpenitgrdioowet

with error and performance ratio values at T = 160 seconds trajectory
time. These results may be compared to the single observer satellite

results of Table III. Figure 5 shows the initial orientation of the

dual observers relative to the reentry trajectory. This observer
geometry depicts a situation where a set of four synchronous observers
are positioned in orbit to provide a full visibility of the Earth.
The two observers shown would be in a position to observe the selected '
reentry trajectory.
A basic consistency with the previous single observer, single
sample analysis is apparent, with some additional performance benefits

evident using data from two observation sources. The *45° initial RA

observers provided superior estimator performance in the 10~ radian
observation noise cases. The 107° radian noise cases for t45° observer
RA indicate a subtle combination of a number of factors,

1) higher observation accuracy,

2) different observation geometry, and

3) a higher weighting of the estimator dynamics model late
in the observation time span.
A more accelerated collapse in the magnitudes of the eostimator-computed

state covariance entries occurs due to processing twice the data of the
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DECAYING SATELLITE

V = INITIAL REENTRY TRAJECTORY VECTOR
0y = OBSERVER NO. 1: R.A. = -45°, DECL = 0°

0y = OBSERVER NO. 2, R.A. = +45°, DECL = 0°

DUAL OBSERVATION SATELLITE POSITIONS

FIGURE 5
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single observer case. All of these factors begin to affect the
estimator solutions in terms of the performance ratio measure.

Although single sample runs are a dangerous basis for making firm
conclusions, one can reasonably expect superior estimator performance
from the dual observer solutions -- unless the combination of higher
data volume (more observations) and more accurate data combine to
generate extremely small state covariance magnitudes late in the

trajectory. In this event, the output of the deterministic estimator

dynamics model will be overly weighted, thereby ignoring some of the
information content of the later observations. Model compensation is
then required to correct for this effect.

The combination of data from two observation sources with mis-

matched dynamics and a fading memory estimator formulation will be more

extensively investigated in the Monte Carlo numerical results of

Chapter I11I.

D.2. Monte Carlo Analyses

As the previous single sample simulations indicate, the major
degradation of estimator performance occurs in the presence of mismatch
between estimator model and true trajectory dynamics. While other
factors, such as observation geometry, single observation satellite
data, and highly accurate observations (].0'6 radians), indicate the
performance limits of the estimator; the dynamics mismatch cases
clearly contain the most consistently biased solutions. The purpose of
the Monte Carlo runs presented in this section is to demonstrate a

statistically sound quantification of the performance impacts with an

exact match and a mismatch between the estimator and the truth model

dynamics.
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A baseline for the Monte Carlo analysis was established as

follows:

1)

2)

3)

4)

5)

A high altitude (73.82 KM) initial epoch trajectory was used
with state covariance matrix values consistent with position
and velocity uncertainties propagated from a final predecay,
orbital solution. Covariance values for Bpo(x7) and Q (x8)
were consistent with either nominal uncertainties for the
matched dynamics cases or with the initial conditions
represented by the dynamics mismatch between the estimator

and the truth model.

The values of the initial state variables were randomly varied
in accordance with the initial state covariance.

The simulated data consisted of a set of 33 angular observa-
tions for each case, at 10 second intervals, randomly
corrupted with either 10~" or 10~% radian observation noise.
All data came from a single, synchronous observation

satellite with an initial RA = +45°.

Each series of runs retained identical seeds on the random
initial state variables variations and the observational data
for valid comparison between cases.

Cases involving exact knowledge of the dynamics were completed
with two observations sets per update epoch. The dynamics
mismatch case was completed with one observation set per
update epoch to insure maximum local validity of the

estimator during state update and for propagation between

observations. Additional simulations showed that up to 5 or

10 observations could be processed for the initial epoch
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i update in the near circular orbit conditions early in the

trajectory. As the maximum aerodynamic deceleration regions

are reached, this time span over which the estimator update is
valid is very limited. For ease of implementation on the
digital computer, this update time span was restricted for the
worst case along the entire trajectory. An attempt was made
to dynamically limit the number of observations used to update
the trajectory epoch points by an application of the lineariza-
tion validity check of Equation 44. This proved difficult due
to variations which occurred in the numbers of admissible
observations changing as a function of the iteration number in
a given update. As the differential corrector converged,
different numbers of observations could be used without
violating the criteria of the linearization check,

6) The dynamics mismatch results included simulated observations
from a truth model with 8 = f(Mach no.) and atmospheric
density from the U.S. 1962 Standard Atmosphere. These
represented a first step towards processing the functional
variations representative of ''true reentry dynamics' relative
to the more simplified estimator model.

7) The sequence of 30 samples was selected. This number was
chosen because a negligible change occurred {u the mean bias
values of the state estimates with higher numbers of
replications. An example will illustrate the relatively
insignificant change in the bias magnitude while processing
the Monte Carlo runs. The next page shows the infinite

memory bias magnitudes for the dynamics mismatch Monte Carlo

77

el e e maacdi e YA L e




results on runs number 27 through 30. These may be compared
to the mean value and standard deviations computed in the

Monte Carlo analysis to see there is a rather minor change in

mean bias value with a further increase in numbers of

replications: minor as compared to the mean and standard

deviation of the Monte Carlo results.
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Bias after
#27

3.2410

1.810 X 1073

3.3603

2.274 X 1073

.2514

2.6597 X 107°

2.5596 X 10-3

4.,0485 X 103

Bias after

#30
3.0037
1.7514 X 1073
3.1155
2.4319 X 10°°
.2375
2.42996 X 10°°
2.4688 X 1073
4.0343 X 1073

105 Mismatch Dynamics CASE 3 INF

Monte Carlo Reduction

Bias after
#28

3.1238

1.7823 X 10™°

3.2378

2.2108 X 107°

. 2446

2.5606 X 10~°

2.5095 X 10~°

4.0471 X 1073

Mean

994.67
~-3.6205
2053.8
4.2434
5961.8
~1.4195
.50675
6.9917

Trajectory time T = 330 seconds

at last observation

79

Bias after
#29

3.08196

1.8093 X 10-°

3.1894

2.3513 X 107°

L2457

2.5152 X 10°%

2.4766 X 1073

4.1245 X 1073

Estimator
Standard Deviation

2.1958
.0068142
2.1960
.004735
.6064
.0017136
.057406
.063271




Specific details on the estimator model initial conditions are

shown in Table VI below.

Table VI
Estimator Initial Epoch Conditions
(Reference Trajectory)
Altitude: 78.82 KM
RA: O°
Declination: 68.1°

Inclination: 10.9°

*
x - 2396 KM Bo, - 49
x - =3.905 KM/sec Q - 7.0031 KM
y - 0 KM !

y - 6.67 KM/sec

5965 KM

N
[}

1.49 KM/sec

N
1

*
Equivalent to 8 = 4 X 107!% kM?/KG

Complete details on the 8 = f(Mach no.) and U.S. 1962 Standard

Atmosphere are included in Appendix B.1.
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The specification of conditions for convergence of each iteration
of the estimator at the epoch updates was consistent with existing
orbital applications (5,13). Values were chosen to preclude generating
excessive numbers of estimator iterations with insignificant changes in
the 6§(tm). As mentioned earlier in Section A., the ¢; and ¢, were
empirically determined such that the change in individual state solu~-
tions was small (less than approximately .0l times the standard devia-
tion) on the final, converged iteration. The estimator convergence
criteria were specified as follows:

- Relative converge criterion, (e¢1 Equation 34) equal to:

.20 Matched dynamics 10~"* observation noise (CASE 11INF)
.15 Matched dynamics 107° observation noise (CASE 2INF)

.15 Mismatched 1075 observation noise  (CASE 3INF)
dynamics

~ Absolute convergence criterion of (e, Equation 35}):
.15 x 10~* Matched dynamics 10~"% observation noise
.10 x 10”° Matched dynamics 10™°% observation noise
.10 x 10™% Mismatched dynamics 10~° observation noise
The total change in the state variables Gx(tm)i was then examined

relative to their a priori standard deviations, v Sm m-l ° This
sI—=1 .,
ii

criteria was violated on a significant number of updates only for the
mismatched dynamics case.

Each of the three Monte Carlo cases are denoted by case number
with their respective initial state covariance values in Table VII,
below. This table shows a number for each infinite memory case (e.g.,

1INF), the observation noise standard deviation, the number of observa-

tions per epoch update, and the standard deviations from the estimator



Case No.

1INF

Total position lo:

Total velocity lao:

2INF

Total position 1lo:

Total velocity 1lg:

3INF

Total position lo:

Total velocity lo:

Table VII

Monte Carlo Baselines

Assumptions

10" obs noise
2 obs/epoch update
matched dynamics

11.28 KM (mostly intrack)

.173 KM/sec

10~% obs noise
2 obs/epoch update
matched dynamics

3.566 KM (mostly intrack)

.0548 KM/sec

10”3 obs noise
1 obs/epoch update
mismatched dynamics

3.566 KM (mostly intrack)

.0548 KM/sec
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Initial one sigma
(lo) covariance

value

X 4.511 KM

x .1 KM/sec

y 9.268 KM

y .1 KM/sec

z 4.575 KM

z .1 KM/sec

Bpo .1 (20% from
mean)

Q .1 (167% from
mean
density p)

X 1.427 KM

x .0316 KM/sec

y 2.931 KM

v .0316 KM/sec

z 1.447 KM

z .0316 KM/sec

Bpo .1

Q .1

X 1.427 KM

x .0316 KM/sec

y  2.931 KM

§ .0316 KM/sec

z 1.447 XM

z .0316 KM/sec

Bpo .316 (65% from

mean)
Q .1




state covariance matrix for the initial state conditions. The values
that these standard deviations represent for Bpo and Q are shown as a
percent deviation from the mean values for Spo and atmospheric density,
P

The results of the Monte Carlo analysis are shown in Figures
6-17. Total position and velocity data are shown in the Monte Carlo
figures for ease of viewing the eight state system. The definitions
for the presentation and discussion of the Monte Carlo results are shown
below using the position as an example:

Total position bias:

n
21 2Nz SN2 S N214
BIAS = — - + - +
a4 f T - %) (e =y + (2, +2)7) (74)
i=1
1
where: X, = true x position term t
;< single estimator run estimate for x position term
n = 30 replications

1 sigma (standard deviation) measures:

1) From the estimator computed covariance:

-5
1 sigma est. = [0 2 + 0 % + 0 2)*
X y z

These values are derived from the average of the state
covariance magnitudes over the 30 estimator runs. They come
from the updated state covariance, Sm,m’ to maintain
consistency with the updated position and velocity values

used to present these results (Figures 6-17).

2) RSS = the root sum square of the Monte Carlo derived mean

square errors from the true value.




- y.)? (75)

n n
- L _ 2 - 2
=17 E (x, = %) + == _i (y ¥.) (76)

where: X = mean estimator solution for x position term for
n runs
Similar expressions were developed for the total velocity magnitude
terms.

Two principal measures of merit were used to assess the Monte
Carlo results. Iu the figures labeled "ESTIMATOR PERFORMANCE'", the
ratio of RSS of the mean square error about the true solution to ONE
SIGMA (average estimator-computed standard deviation value) are shown.
This ratio gives an indication of the validity of the estimator
covariance matrix values. For acceptable estimator performance the
ratio should remain close to one.

In the set of figures labelled "MONTE CARLC RESULTS'", the basic
objective was to illustrate the mean bias magnitude (over 30 samples)
relative to the estimator-computed standard deviation values. Two
additional measures of the estimator performance are also displayed to

assist in assessment of:




1) The validity of the estimator-computer state covariance, and

2) The "apparent' divergence of the estimator solution in the
presence of mismatched dynamics models. This apparent
divergence is defined as a bounded divergence in the state
solution. This was the ~haracter of the growth in the
position and velocity biases in the mismatched dynamics case
3INF. A '"true" divergence, by contrast, would illustrate an
unbounded growth in the solution bias. By strict definition,
a true divergence would require some specific time to reach
an unbounded condition. Practicaily speaking for this appli-
cation, a true divergence would generate a skip trajectory
which does not reenter the Earth atmosphere.

The additional measures included the second order statistics
(standard deviation values) derived from the 30 Monte Carlo replicates.
One is from the mean square errors about the true solution (Equation
75) and the other is from the variance about the 30 sample mean solution

(from Equation 76). With the growth in bias in the estimator solution,

these two measures of the estimator performance will diverge. The
standard deviation about the true solution (Equation 75) should
increase with the bias in the estimator solution. If the standard
deviation about the mean solution (Equation 76) maintains levels
consistent with the estimator-computed values (Equation 51), the
estimator-computed variance will be indicative of the real random error
in the estimator solution. One then must address the impact of the

systematic error resulting from the bias in the estimator~computed

state variable solutions. Classical methods include tuning the

estimator so that its computed covariance matches actual mean square




value errors, incorporating ''bias" correction terms from higher order
filters, employing full scale higher order filters, etc. (23,24,25)

Examination of Figures 6-9 shows acceptable estimator statistics
are available from the estimator covariance matrix with matched
estimator and truth model dynamics. The vertical scale on these figures
1s exaggerated to a ratio of 10 for comparison to the mismatch dynamics
results (Figures 14-15) shown later. Similarly, Figures 10-13 show the
position and velocity bias magnitudes well below the estimator one
sigma levels. The results also substantiate that the estimator variance
data follows a trend consistent with the variance data derived from the
Monte Carlo results (Equations 75 and 76).

The position variance results show a growth in magnitude as the
trajectory approaches the 170 second point. This is near the region of
the decayed trajectory departing the 'mear circular” orbit conditions
and into a committed reentry. As the maximum deceleration region is
passed and the denser lower altitudes are reached, the position
uncertainties decrease in magnitude (Figures 10,12).

The velocity variance values show an almost monotonic decrease
with increasing atmospheric density (Figures 11,13). The variations on
the Monte Carlo derived second order statistics used to validate the
estimator covariance data are due to the 30 sample replication set size.
While bias magnitude was extremely well represented by 30 samples, at
some specific time points the Monte Carlo derived variances do not
follow the smooth trend of the estimator-computed variance data. One
factor which may contribute to the smoother variations in estimator
variance data along the trajectory is the fact that the values shown

are average standard deviation levels over the 30 runs, rather than
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standard deviations computed from a single run. In any event, the

trends are consistent among all three methods.
[ ]
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Clearly, the results shown in Figures 6-13 demonstrate valid and
acceptable estimator performance with matched dynamics at two different
levels of observation noise and initial state covariance magnitudes.
Unfortunately, real decay trajectories are not so precisely modeled.
The results of the third set of Monte Carlo runs using the dynamic mis-
match truth model are shown in Figures 14-17.

As expected, an apparent divergence of the estimator solution is
evident in both the "ESTIMATOR PERFORMANCE' ratio of RSS/(ONE SIGMA)
results and the "MONTE CARLO RESULTS". Both bias and true solution
(Equation 75) derived standard deviation magnitudes depart from the
estimator computed variance levels. The estimator standard deviations
closely follow the Monte Carlo derived second order statistics (Equation
76) about the 30 sample mean solution. These results show a clearly
biased solution relative to the estimator indicated statistics. The

primary mechanism driving these results is the unmatched dynamics

between the estimator and truth model. The solution begins to diverge

as the trajectory bends from the "near circular orbit" conditions.

Early in the trajectory, the variations in 8 were relatively small and .
the exponential density model of the estimator could locally represent

the U.S. 1962 Standard Atmosphere density profile, since most occur

within a single, non-isothermal layer of the standard atmosphere.

As the reentry proceeded, the exponential atmosphere model could
not completely locally accommodate the changing density gradients of the
standard atmosphere which contains altitude layers of positive and
negative thermal lapse rate, with an intervening isothermal altitude

band. Also, the more significant variations in the truth model

B = f(Mach no.) occur later in the data span. Deceleration in the




trajectory causes the velocity to decrease from high hypersonic values

to lower supersonic values (Appendix B.l.).

An additional factor which substantially influences this bias
effect is the inability of an infinite memory estimator with
deterministic dynamics to adjust to large changes late in the data span.
This is a natural consequence of both the deterministic dynamics and of
reductions in the estimator covariance terms (particularly velocity)
with the accumulation of more and more observations. The later observa-
tions become increasingly less influential on the state estimate, with

increased weighting on the output of the estimator dynamics model.

Unfortunately, this phenomenon occurs in a region of reentry where the
most marked difference between the truth model and the estimator
dynamics exists. '
Ideally, one would desire to implement a pseudo-noise compensa-
tion to the deterministic model dynamics. The magnitudes of the noise

would then be tuned to minimize the bias in the state solution, by

matching the variances in the estimator-computed covariance to the true
mean square error. Unfortunately, this procedure has not met with much
success without significant amounts of empirical trajectory observations
to assist in the tuning process for the noise strength (5). The
discussions of Chapter III show the model compensation methods considered

to address this problem.
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D.3. Special Numerical Investigations

Several special simulation runs were completed to illustrate
important influences on the performance aspects of the basic estimator
formulation in addition to the dynamics mismatch of Figures 14-17. One
comparison shows the difference between the eight dimensional formula-~
tion with an exponential atmosphere and a seven dimensional system,
where atmospheric density is obtained from a 1962 U.S. Standard
Atmosphere. Another investigation centers about the proposed eight
variable system. This illustrates the observability considerations and
ill-conditioned information matrix of the estimator with the use of
angle only observations from a single observation satellite. Lastly,
one must explore the validity of propagating the state covariance
matrix from the last epoch to impact via linear techniques (Equation
46).

An illustration of how the more complex standard atmosphere
equations contribute to corrupting the estimator solutions is shown in
Table VIII showing the results of a single trajectory estimation. Each
column reflects the error between integration of the nonlinear state
dynamics equation and a linear propagation of the 6§(tm) epoch
correction by use of the state transition matrix. These contrast the
results of the eight and seven dimensional formulations in propagation
of a typical Sx (x position term) from an epoch at 73.45 KM altitude.
Both of these infinite memory estimators had matching dynamics between
the estimacor and truth model. They each were used to process 10
observations in a single epoch update. The resulting state correction

was propagated forward by:




-  FTTET TWTRE T e

The dif

1) Propagate forward from the epoch time, tm, both the a priori

and updated state estimates, x (t ) and X ( ), by

n tmtl o+l el

integration of the state dynamics equation. One can find the
resulting 6x(t) by differencing these two solutions.

2) Propagate the 6§(tm) via linear methods, i.e., 8x(t) =
¢(t,tm) 6§(tm). This 1s the form of the incorporation
within the state update, Equation 29.

ference in these two propagations gives a measure of the error in

the linear approximation of the estimator.

Table VIIIL

ERROR in PROPAGATION
(x position term)

ERROR

Trajectory Time Observation 8 dimensional 7 dimensional
(sec) from Epoch Number system system

10 1 .00002 L0410

20 2 .00006 .0220

30 3 .00013 .0150

40 4 .00022 .0110

50 5 .00033 .0091

60 6 . 00046 .0074

70 7 .00062 .0071

80 8 .00080 .0052

90 9 .00099 .0043

100 10 .00122 .0036

monoton

The errors in the eight dimensional formulation increase

ically with time, illustrating the accumulation of error over the

100 seconds from the update epoch. This underscores the previous

recommendations of using a linearity check between the state and
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observations changes during the update (Equation 44) to limit the
update data span. By limiting this time span, a small number of
observations are processed at each epoch to minimize the effects of
higher order term corruption on the state estimate.

The error in the seven dimensional formulation starts at a
larger magnitude and decreases with time. This is a reflection of the
more complex, nonlinear standard atmosphere density equations (49 and
50) in the various altitude layers covered by this propagation. Recall
that the eight dimensional algorithm estimates Q as in Equation 51, but
the seven dimensional estimator does not. At the 10 second point, the
thermal lapse rate is a -4.0, near the center of the 61-79 KM layer of
the standard atmosphere (Appendix B.l.). The remaining propagation
cuts across the 61-52 KM layer (-2.0 lapse rate), and into the
isothermal layer of 47-53 KM altitude. The errors are larger in the
higher thermal lapse rate regions and are higher throughout when com-
pared to the eight dimensional formulation. Since the magnitude of the

error can be large in a given non-isothermal atmosphere layer the use

of the standard atmosphere approach would yield significant error in
the state solution, even with a limit on the update data span. There-
fore, one must consider alternate estimator formulations (e.g.,
statistical linearization approaches) or a much higher observation
data rate to use this standard density model formulation.

The system observability limitations and information matrix ill-
conditioning are highlighted by examining the eight dimensional

formulation using different numbers of observations for an epoch update.

In the absence of a priori covariance matrix information, a minimum

number of observations must be processed at an epoch if the information
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represent a valid covariance matrix. Table IX shows a typical example

matrix, (T ), is to be inverted successfully, and thereby

—

of an eigenvalue analysis on the information matrix, contrasting a
single observation update with a 10 observation update at the same

epoch, tm.

Table IX

Information Matrix Eigenvalues

Single Observation 10 Observation
Update Update

* - &

0 3.6973 X 10

*

0 7.4146 X 10°°
6.5225 X 10-%% .2186
3.2239 X 10°%* 12.6819
7.4055 X 10°? 176.5283
7.9587 X 10~1! 2247.3215
6.1812 X 10-3 231252.1497
1.2684 X 1072 10098973.1735

*
( Values are approximately zero due to computer

roundoff in this application.)

The single observation update is numerically non-~positive
definite. By contrast the 10 observation update is numerically
positive definite. In either case the information matrix is highly
ill-conditioned. This is a product of the angle only observations

from a single synchronous observation satellite. The last two

eigenvalues of the single observation update reflect the observability ‘
of the system available from a single two dimensional, angular I

measurement. The remaining six states are practically no. observable.

Even the 10 observation update shows a 13 order of magnitude difference ﬁ
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in the size of the eigenvalues. The two smallest eigenvalues (of order
10'5) result from the inability of the angular measurements to observe
the position and velocity along a line of sight from the cobserver to
the reentry satellite.

The results of Table IX also illustrate that a certain minimum
number of observations must be included in the state update at the
initial epoch in the absence of a priori covariance data. Fortunately,
the early observations occur over a region with a small reentry angle
(near orbital conditions) where processing a number of observations in
a single update does not violate the linearization validity check.

This number of observations used for the initial epoch update will
depend upon the particular reentry case and observation geometry

being used. However, the poor observability from the single observer,
angles only data almost necessitates the existence of a priori covari-
ance data.

The final special numerical investigation of the basic estimator
concerns the comparison of the linear propagation of the last epoch
covariance to impact (Equation 46) or a Monte Carlo derived impact
covariance matrix. Use of a sequential estimator, processing small
numbers of observations per cpoch update, was necessary to avoid
accumulated nonlinear effects from corrupting the state update. The
propagation of the state covariance matrix often occurs over larger
time spaces between the final epoch and impact. While the state
update can be influenced by the joint nonlinearities within the
observation geometry and the model dynamics, the covariance propagation
is subject only to dynamic nonlinear effects on the state transition

matrix, ¢(t,tm). If the nonlinearities within this nonobservable
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portion of the trajectory between the last observation update epoch and
Earth impact significantly affect the validity of ¢(t,tm), Equation 46
cannot be used to propagate the state covariance over this region. The
alternative of a Monte Carlo derived impact covariance is then
available.

The Monte Carlo covariance is derived from a 90 replicate
integration of the state dynamics Equation 45 with the second order
statistics accumulated by use of Equation 76. A random sample of 90
variations on the initial conditions from the final epoch covariance
was chosen to provide a more true representation of the second order
statistics over the large time spans of the final non-observable
portion of the trajectory. Table X shows the comparison of these two
propagation options, by presenting the standard deviations in the
state variables. These were obtained by propagating from the last
epoch time (T=324 seconds) to impact, at T=387.77 seconds. This
comparison used the results of a typical estimator run with 107°
radian one sigma observation noise and exact dynamics.

The results of Table X support the use of a Monte Carlo
propagation to impact. With the linear propagation, the standard
deviations depart from the Monte Carlo derived values. This occurs
initially in the velocity terms, then also in the position terms as
the atmospheric density increases and the velocity magnitudes
decrease. This Monte Carlo propagation typically requires only 1.5
to 1.7 times the computer execution time over the linear propagation.
It preserves the integrity of the estimator statistics over the final

nonlinear region of the trajectory propagation.
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D.4. Summary
To summarize the results of the basic estimator findings, key

points of the various performance investigations are detailed in

Table XI.
Table XI

5‘ Infinite Memory Estimator Performance
1. Increasing the mismatch between the estimator and the truth model

dynamics yields the most dramatic 'bias'" in the estimator state

solutions.
2. With deterministic dynramics, observation noise levels of less
than 1075 radian (one sigma) begin to induce significant errors

into the estimator solution, relative to the standard deviations

of the estimator-computed state covariance matrix.
3. With identical dynamics in the estimator and truth model:
a. Estimator performance is acceptable. The bias in the solution
is well below the magnitudes of the standard deviations of the
estimator-computed state covariance matrix.

b. By limiting the number of observations used for an update, the

effect of higher order term corruption on the estimator
solutions can be minimized.

c. Estimator performance deteriorates as the reentry trajectory
approaches the subpoint of a single observation satellite.

d. The eight dimensional (exponential atmosphere) formulation is
superior to the seven dimensional (standard atmosphere)

formulation, in the current estimator using the Taylor's
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serles linearization approach with a 10 second observation
interval. A statistical linearization approach may be more
appropriate for the seven dimensional system.

A marginal observability with the angle only observations from
a single source requires existence of a priori covariance
information prior to an epoch update. 1In the very early,
shallow reentry angle portion of reentry, a state covariance
matrix may be developed from batch processing a number of
observations at the initial epoch. The ability to obtain such
a covariance must be assessed for the specific observation
geometry and reentry trajectory being estimated, consistent
with the linearization assumptions check.

Performance is improved by simultaneously processing ouvserva-
tions from two observation satellites, both from improved
observability and higher data content, unless this forces rapid
collapse in the magnitude of the state covariance matrix
entries. A more appropriate observation should aiso include

range, as well as angular, data.

With mismatch between the deterministic estimato» dynamics and the

truth model derived data:

a.

A single observation per update epoch is recommended to insure
local model validity.

At least a minimum number of observations after a discrete
change in state variables (i.e., a step change in B) is
necessary to insure consistent state solutions.

In its present infinite memory, deterministic dynamics

formulation, significant bias exists in the estimator
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solutions. The next chapter will address this
fundamental limitation of the estimator for application to

true reentry trajectories.

rtonshton i v o 1 e S &
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Chapter III - Model Compensation

A. Model Compensation Methods

As the previous numerical results indicated, the fundamental

limitation of the infinite memory estimator formulation with

deterministic dynamics is the biased estimator solutions which occur

when processing true reentry dynamics. With i) exact dynamics,
ii) an upper limit on the time span of valid linearization, and
iii) a lower limit on observation accuracy (greater than or equal to
10~5 radians), acceptable estimator performance is available in terms
of bias and RSS/(ONE SIGMA) ratio. This was shown in the Monte Carlo

results of Figures 6-13.

' If significant bias had existed with the exact dynamics,
utilization of methods which address the character of neglected higher
order terms of the Taylor's series linearization would be required.

’ This would entail examination of approximate nonlinear estimation
methods which retain selected higher order terms of the Taylor's
series expansions for the reentry application (19,23,24). Also, one
could consider extensions of a statistical linearization approach,
such as discussed by Gelb (26) for the scalar dynamics case, f(x).
These methods attempt to characterize the functional form of the
neglectad nonlinearities in a polynomial expansion of the state vari-
ables. Inherent within the application, however, is the assumption
that a valid first order functional description of the true dynamics

exists within the estimator model, f(kX). In actual application, the

variations in global atmosphere changes and reentry vehicle




fragmentation effects present a nearly intractable problem for mathe-
matical descriptions of all reentries within a deterministic dynamics
set.

The first step in improving the linearized estimator performance
concerns the impact of the uncertainties within B and p. One must
consider model compensation methods which address the systematic error
resulting from the inexact and uncertain trajectory dynamics. The
addition of pseudo-noise to the state dynamics is a potential means to
compensate for dynamic uncertainties. This could take the form of an

additive noise term to the state dynamics equation, such as:

x(t) = F(x(t),t) + G(t)q(r) an

where:
G(t) is a time dependent coefficient matrix,
a(t) is a zero-mean random noise term.
In the linearized application, the dynamics equation would be

reduced to the variational form:

8x(t) = F(x_(t),t) 8x(t) + G()q(t) (78)
Incorporation of the dynamic noise term in this manner, however,
complicates the state update expression (Equation 51). It also requires
an extensive tuning process, or an adaptive technique, to modify the
coefficients of the matrix G(t) to incorporate the time dependent
effects of the dynamic uncertainties properly for the general decay
trajectory.

An alternative to this formulation is discussed by Day & Schieb

(27) for application to the differential corrector. This also involves
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an additional noise covariance matrix to the state covariance matrix
during the propagation phase. In this approach, the state covariance

matrix is propagated to the next epoch via:
T
Sm+l.m - ¢(tm+l’tm) [Sm,m + Q(tm)] ¢(tm+l’tm) (79)

The determination of the Q(tm) also requires extensive simulation
analysis to determine the noise covariance magnitudes applicable to the
widely varying dynamic uncertainties of a given reentry trajectory.
This approach also propagates the state covariance matrix forward based
on a different dynamics model than the state trajectory. Recall that
the state dynamics propagate according to Equation 2, without an
additive noise term. As noted previously, Pon (5) has pointed out that
tuning of an additive pseudo-noise matrix for orbiting satellites has
proven successful only when significant amounts of empirical trajectory
observations are available to aid in the tuning process. This pseudo-
noise matrix was not transferable to other satellites. With the more
uncertain dynamics and the short trajectory arcs of reentry,
sufficient empirical data is not available for each decaying satellite
of interest. As such, a more systematic approach which addresses the
time dependent character of the dynamic uncertainties is required.

Statistical adaptation methods offer a potential means to address
this highly time dependent nature of the dynamic uncertainties for a
specific decay trajectory. These could be employed in an approach
similar to Jazwinski (24) to allow adaptive estimation of noise
covariance terms, or in the more general sense of Maybeck (25) for
determination of selected uncertain state variables, dynamic noise

matrix, G(t), or the dynamic noise covariance, Q(tm).
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Unfortunately, the nature of the current application precludes
proper incorporation of these statistical methods. Statistical adapta-
tion often examines the character of non-zero mean residuals or an
unbounded growth in the residuals as a measure of when, and how much,
to tune the noise coefficients (24).

Alternately, the statistical adaptation methods may assume a
slowly varying state variable as a constant over n observations. Its
value is then determined from a maximum likelihood formulation for
estimation of the uncertain state variable (25), based on a finite
memory of measurements.

In either case, a sufficiently large number of observations are
required to establish the statistical validity of the adaptation. Due
to the 1) rapidly varying dynamics (particularly b) and, ii) the need
to reduce the estimator to using small numbers of observations at an
update for linearization requirements, these methods would not provide
the most acceptable adaptive performance. As the numerical results of
this chapter show, the time constant of the variations in the true
dynamics is very short compared to the 10 second data rate of the
current observer. Such rapid variations in true dynamics make it
difficult to assume a constant value over the required n observations
for statistical analysis. At best one can assume, for example, B is a
constant between successive observation points.

Pon (28) has suggested a technique of incorporating am additive
noise matrix whose terms are determined from a single orbit estimation
which he claims will avoid the need for a priori noise covariance
tuning. Pon alleges his technique to be responsive to the uncertain-

ties within the dynamics between successive epochs of the trajectory

115
e T s ’-.,_..‘%V . R SO A
' PRETNORNB === S




being estimated. At a given epoch tn? one updates the state via
Equation 47 by processing the next k observations in a single update.

Simultaneously at the next epoch, t one obtains a second estimate

m+1’

by processing the same k observations, now at times prior to tm . By

+1

propagation of the tm estimate forward in time and the t:m+1 estimate

backward, two different state trajectory solutions exist over the same
time span.

By trajectory differencing these two solutions at many points
along this time span, Pon develops a matrix of second order statistics
which is assumed to represent the dynamics uncertainty between epochs.
In this manner he obtains a diagonal corruptive noise covariance matrix
for insertion into Equation 79 to propagate forward to the next epoch,

such as:

Qe ) (80)

3
.
.
T

This constructed noise covariance matrix suffers from several
deficiencies. It would require a large number of numerical computa-
tions to develop statistically valid o? terms. Also, it only |
compensates the diagonal elements of the state covariance matrix at
the first epoch, tm. In this "suboptimal’ sense, it neglects the
cross-correlation between states in modifying the state covariance

matrix to represent the dynamic uncertainties. The off-diagonal terms
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are modified only during propagation between the epochs. A more
satisfying technique would apply a full pseudo-noise compensation, at

the update epoch and during propagation.

Pon (5) shows that the propagated state covariance expression |
of Equation 79 is equivalent to premultiplying by an upper triangular
form matrix, D(tm), and postmultiplying by a lower triangular form

. T . . . .
matrix, D(tm) , after simple state covariance propagation, but prior to

update as:

T
+ Qe )] e(e .t 1) (81)

w
]

m,m-1 ¢)(tm’trr:—l) [Sm—l,m—l

T T
D(t )-¢(t >t ;) S 1 eCe e 1) D(e)

m-1 m-1,m-

‘ This technique is often referred to as a ''deweighting' method. Its
effect is to deweight the influence of the output of the dynamics
model when Sm -1 is used in the next epoch update (Equation 29). The

use of a deweighting matrix, D(tm), is an extension of the earlier

work of Fagin (29), Sorenson & Sacks (3), and Morrison (2), where a

|

i scalar deweighting is used. With a scalar deweighting, the influence

| of the old observations is exponentially deweighted in the estimator
solutions. (Section B will illustrate this effect in more detail.)

| The use of the D(tm) matrix attempts to ''deweight' selected states by

l differing amounts in the a priori state covariance matrix.

[ In some applications, the D(tm) matrix has been applied to

; orbit determinations as a constant deweighting matrix (5). Similar
to tuning the noise coefficients within Q(tm), the diagonal elements

of D(tm) are developed by simulation analysis.
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(82)

D(tm)

This tuning process suffers the same drawbacks as the tuning of
the noise coefficients in Q(tm). Pon (5) states that translating the
D(tm) deweighting matrix from one satellite to another proved
unsatisfactory for orbital applications. Its extension to the more
highly variable general reentry case would be at least as difficult,
if not more so. Also, acceptable estimator performance was achieved
only when emperical data from many orbital revolutions were available
to aid in the tuning process. These conditions simply do not exist
for the reentry application.

Use of a "suboptimal' diagonal deweighting matrix, however,
provides the genesis for a potentially acceptable adaptive means to
determine the terms of a deweighting matrix, D(tm). One has a means to
identify the potential onset of bias in the estimator solution. The
standard deviations from the a priori state covariance matrix reflect
the uncertainty in the state dynamics and previous observation history
when incorporated into the state update Equations 29 and 47. One
assumes local dynamic model validity over the time span between the
epoch and the observation(s) being processed for an update. The
magnitude of the total state correction, éxi (from Equation 47), on

each state can be compared to its respective standard deviation from
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the a priori covariance matrix. 1f the state correction is greater in

mignitude, one can consider this as a first indication in the growth in
bias ot the estimator solution which is inconsistent with the
uncertainty defined by the state covariance matrix. This yields a

measure to determine the onset of a bias in the solution, and the

direction of bias development along a particular state direction. The
advantage of this measure is that it will indicate the onset of a bias
in the solution - independent of its cause. Whether the bias results
due to dynamic mismatch, poor observation geometry, or excessive noise
on the observation being processed, it may appear as an excessively
large 6x(tm)i in one or more state variables relative to their a priori
uncertainties.

This technique was chosen for its simplicity in the circumstances
where the single observation updates of the trajectory are reguired.
Because of the very short time span of the dynamics model validity, an
insufficient number of observations exist at the epoch update point for
valid statistical testing of the residuals. A valid statistical
determination of the residual mean and covariance cannot be made with
a single sample. The comparison of the Gxi estimate to its a priori
standard deviation offers no improvement in this statistical quantifi-
cation since the same information available in the single observation
is used to develop the state estimate. It does, however, provide a
mechanism for selection of the scalar deweighting which is easily
incorporated into the estimator structure.

In essence, since there are eight states, eight individual
conditions exist from which to develop a model compensation

methodology. Clearly, the use of these eight conditions alone do not
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allow one to determine a fully populated additive noise matrix from a
single trajectory, or a multiplicative upper and lower triangular
deweighting matrix. They do provide sufficient information to directly
modify the eight terms of a diagonal deweighting matrix. Therefore,
initial attempts were made to develop the diagonal elements of the
D(tm) deweighting matrix (Equation 82).

Variations on the implementation of this deweighting approach
were made to examine the potential of deweighting only selected
variables (i.e., individual states) of the a priori covariance. These
included:

1) Deweight only Bpo and Q (x7,x8) by a constant magnitude at
each epoch throughout the trajectory since these states
contain the terms which most directly represent the dynamic
uncertainties. In this manner the deweighting matrix has

the form:

D(tm) = 1 (83)

2) Similarly, if the magnitude of the total state correction at
any given epoch is greater than its a priori standard
deviation, iteratively select the affected di to be other

than unity, leaving the other d, equal to one. An addi-

i
tional attempt was also made to adaptively deweight only

the Xy and x8 terms for Bpo and Q, leaving positions and
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velocities non-deweighted (e.g., di =1, 1=1-6).
The D(tm) deweighting matrix is used to modify the a priori
state covariance matrix, Sm o1 from Equation 81. A state estimate is
b

obtained by use of Equations 29 and 47. This process repeats, until:

Sx(t )., <V 8 i=1,8 (84)
m'i ~ m,m-lii

Both attempts proved unsuccessful. The primary causes of these
methods failing to improve the biased estimator performance are the
following:

1) This is clearly a suboptimal approach to deweighting. The
diagonal deweighting matrix, D(tm), is not equivalent to
applying a full pseudo-noise matrix to the state covariance
matrix. A triangular form of D(tm) would be required for a
full pseudo-noise compensation.

2) The artificial deweighting of selected states, and not
others, improves the BIAS/(ONE SIGMA) ratio on the
deweighted states at the expense of aggravating the bias on
the other states.

3) The deweighting on only the Xy and Xg states by a constant
magnitude throughout reentry was not responsive to the time
dependent nature of the dynamic uncertainties.

As a consequence, the mismatch between state corrections, 6xi,
and their a priori standard deviations was used to determine a simple
scalar deweighting of the a priori covariance matrix. This scalar
deweighting can be considered as a special case of the diagonal

deweighting where all the di terms are equal. This scalar deweighting
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offered superior performance than the attempts to deweight the individ-
ual states by different amounts for a number of reasons.

1) It is strictly derivable as an exponential decay of the
filter memory. (2,3,29,30)

2) As the numerical results presented later will demonstrate,
it avoids the requirement for extensive simulation
analysis. The comparison of the 6xi magnitudes with their
a priori standard deviations successfully determines the
need for deweighting. With proper selection of the scalar
deweighting constant, acceptable estimator performance is
evident which responds to the time dependent nature of the
dynamics mismatch. As the Monte Carlo results show, the
deweighted state covariance matrix provides a satisfactory
measure of the RSS uncertainty in the estimator position
and velocity solutions, and the bias in the state estimate
is less than the a priori standard deviation from the
deweighted state covariance matrix.

The Monte Carlo results on the basic estimator with mismatched
dynamics (Figures 14-17 of the previous chapter) substantiate
acceptable estimator performance in the early trajectory phases, in
terms of bias and RSS/(ONE SIGMA) ratio relative to the estimator
computed standard deviations. This results since the deterministic
estimator dynamics model can locally represent the truth model
dynamics in this region. The truth model dynamics are adequately
approximated by the exponential atmosphere and constant Bpo between
epochs. Secondly, a small number of observations have been

processed. The terms of the state covariance matrix have not reached
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such a small magnitude that the output of the deterministic model
dynamics becomes overly weighted relative to the information matrix of
the new observations.

The more dramatic dynamics variations occur later in the
trajectory data span. In this region the magnitude of the terms in

the state covariance matrix continue to decrease in the velocity terms

and begin to also decrease in the position terms. The output of the
deterministic estimator model becomes increasingly weighted, thereby
causing the estimator to begin to ignore the complete information
content in the later observatioms.

The fading memory estimator alleviates much of this phenomena.
It allows greater flexibility of the estimator to accommodate the new
observations by increasing the magnitude of terms in the a priori
state covariance matrix at each new epoch update point. The effects
of this scalar deweighting technique are shown in Section D.2. of this
chapter with the presentation of the results of the Monte Carlo
analysis.

An alternate form of dynamic compensation was also considered
which would combine the use of an additional pseudo-noise matrix and
the scalar deweighting or "tuning' parameter, vy, as Q(t) =
Qo(t) + v A Q(t). One may adaptively determine the magnitude of the
scalar tuning parameter, perhaps from the techniques discussed above.
The problem still remains to construct the pseudo-noise matrix
properly at the initial reentry epoch point. In essence, the proposed

formulation is analogous to incorporating the Q(t) = Qo(t) + v A Q(t)

into the estimator structure. In the absence of more adequate infor-

mation to develop the initial Qo and AQ terms, the estimator-computed,
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or a priori, state covariance matrix provides a description of the
uncertainties which is modified at succeeding epochs by the adaptive
selection of the scalar parameter, Y. Section B., below, will show
the details of the fading memory estimator development.

B. The Fading Memory Differential Corrector

Based on an exponential decay of the observation weighting,
several authors have extended the early work of Fagin (29) for the age
weighting of scalar observations. Tarn and Zaborcky £30) report an
extension of age weighting to the vector observation case in 1970.
Sorenson and Sacks (3) develop an exponential aging technique for the
observations in a linear Kalman Filter formulation., They also point
out that the exponential aging applies to three distinct quantities
within the filter structure: 1) the initial, a priori state
covariance matrix, 1i) the observation covariance, R(n) (previous
observations), and iii) the state covariance matrix prior to update
at each new observation. Morrison (2) shows a derivation for the
exponential aging from the initial weighted least-squares cost
function for both a Bayes Filter and Kalman Filter for linear applica-
tions.

The following derivation (Equations 85-103) will directly follow
Morrison's (2) for a linear, fading memory estimation technique which
is now applied to the differential - covrector estimation of the non-
linear reentry problem. The initial presentation will concentrate on
the batch processor. This formulation will then be modified to yield
a recursive formulation of the fading memory estimator which is
applicable to the uncertain dynamics of the reentry trajectory. The

differences in this development from Morrison (2) are only due to the
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iterative updates of the linearized differential corrector and the
development of an alternate expression for the 'nmon-deweighted" state
covariance matrix expression, which may be obtained from the deweighted

covariance matrix expression.

One may define a modified cost function as follows:

- - T — - - -
I = Wiy = Teny 0%(egs1 Repy t ey = Ty x(t )1y (ry .t )] 1 (85)

where the scalar multiple, y~! = [Y(t:k,tn)]"1 takes on values:

0<1l/y <1 (86)

based upcn the age of the observations. 1In the batch formulation k
takes on the values k = 1,...,n-1, and Y(tn,tn) = 1, at the time of the
latest observation. Recall that t, is the epoch time, G(n) is the
vector of observation residuals (Equation 18), and the T(n) matrix
incorporates the observation geometry and the state transition matrix
between the epoch and the observations (Equation 16).

In matrix-vector formulation, the weighting matrix, R(n), oun the
observations may be redefined to reflect the accumulation of the

deweighting scalar in a slightly altered f.

R -1
(" )

Rn—l Y(tn’tn—l)

R(n) (v) = 4 (87)

\ R, Y(tn,tl)
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where n is the observation at the current epoch being updated, and the
Y = Y(tn,tk) reflects increasing uncertainty on the older observations.
In this manner, an exponential memory is established (2) when the
[R(n) (Y)} inverse is incorporated into the estimator structure to
weight the observations.

The cost function may now be written in the matrix-vector form

where the argument on y has been neglected:
J=[v,, ~T,  6x(t )]T[R (Y)]‘1 v, . - T, . 6x(t )] (88)
(n) (n) o (n) (n) (n) o

As before since [R(n) (’Y):]'1 is positive definite, the necessary and
sufficient conditions for minimizing J are:
9J
. = (01% (89)
Béx(to)

Making use of the matrix identity, (AB)T = BTAT and the symmetry of the

[R(n) (y)] “T, the

1

block diagonal weighting matrix, [R(n) (Y)]"1

minimization of J results in:

-1 = T -1 s =
2 (—T(n) [R(n) (y)] Y@ Ty [R(n) (Y)] T(n)Gx(to)> 0 (90)

Solving for 6§(to) provides the batch processing update

expression:
- _ T ~-1 -1 T -1 =

where now the "deweighted' state covariance matrix after update is

obtained, assuming a positive definite information matrix,
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T -1 .
Ty [Rem) 0] Ty
= T -1 -
Pon ™ T [R(n) (Y)] Tiay) ™ (92)

Note that in this batch formulation, the covariance matrix, Pn n’ from

b}

Equation 92 assumes no existing a priori covariance matrix information,
but is simply derived from the estimator processing of the observations.
The non-deweighted state covariance matrix can also be derived. By

definition, for zero mean Gi(to):

Spon = E(G;c(to) 5;((1:0)T) (93)

where 6§(to) is obtained from Equation 91,

Substitute for Gi(to):

_ T -1 -1 T -1z
Syn = BT, [R(n)(Y)] T Temy [R(n)(Y)] V! OO0
T -1 -1 T -1 3 T
Ty Ry ™)™ T ™ Ty Ry @)™ ¥my?)
Taking the transpose and simplifying yields:
s = (r, IR )t T, 0"t RO ] EG, LV, D 99)
n,n (n) [ (n) ] (n) (n) [ (n) ] (n) " (n)

[R(n) (Y)] o () (T(n)T[R(n) (Y)} o N 1

where[R(n)(y)}'1 and (T(n)T[R(“)(y)]"1 ’I‘(n))'1 are positive definite
matrices.
Using the definition for [R(n)(y)]‘1 and the definition

R(n) = E(C(n)G(n)T), the middle term of Equation 96 becomes:
-1, ] -1 _ -1p -1 .
R O] Ry [Reay @] = [Remy @] 7701 (96)
- -1
- [R(n)(YZ)]
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Therefore, the non~deweighted covariance can now be related to the

deweighted covariance by:

S I T L R A 0 (97)

Remember, the S n matrix is a valid minimum variance expression
under the assumption that éi(to) is zero mean - or that the estimate of
the state yields an unbiased solution. This is an important considera-
tion which must be examined in the later numerical simulations. If the
6§(to) is not an unbiased solution, it may be imprudent to use the
second central moments Sn, statistics for a measure of the error in
the estimator solution.

Now consider a recursive formulation where each epoch is
designated by the index m. The observations are designated by the index

n, where n=1,...,k. One can partition the T(n) and R(n)(y) matrices to

isolate the latest observation at time t:m and establish the update

n
epoch t between the t and t observation times. Recall that H_ is
m L) o n
defined in Equation 1l4.
H ¢(tmn,tm)
T(n) = (98)
T, .y ¢(t »t )
(n-1) mo_, m
and
R |
n
R = 99
(P (99)

]—1

R(n—l)[Y(tn’tn—l)

By substitution, and after simplification, the inverse of the updated

deweighted covariance at epoch time, tm, becomes (2)
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P T T(n)T[R(n) (Y)]'1 T (100)
= TR LY eyt ) T(n-l)T[R(n—l)(Y)]-l
*Ten) Hoprtay)
or
IR TS TR S R (101)

where the a priori deweighted state covariance is obtained by propagat-
ing forward from a previous epoch at time tm—l' This epoch contains
the state estimate for the observations numbered 1 through n-1.

In recursive form, the state update on the next (non-deweighted)

observation(s) is now:

T T

R™'v (102)

- — -1
Gx(tm) = (1/y Pm, + 'rn . n

-1 -1
m-1 Rn Tn) Tn

where:
Y is now a one-step, deweighting scalar

= a priori deweighted covariance
m,m-1

As in the infinite memory case, Equation 102 is applied iteratively at

each epoch until the convergence criteria are satisfied. The

T T R™YT and T T R ~! v matrices are evaluated from the reference
n n n n n n

trajectory on the final iteration, with Rn the covariance of the
observations at time tm .

n
The updated, deweighted state covariance matrix, Pm n’ is not

14

the non-deweighted covariance matrix, Sm . But it does represent the
bl
model uncertainty and the scalar deweighting of the old observations at

each epoch point and is so incorporated into Equation 102. This

provides the recursive differential corrector formulation which allows
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selection of y at each epoch to reflect the uncertainty in the previous
history of the dynamics model.
As the numerical results of Section D. show, the use of the

P covariance matrix yields a conservative estimate of the errors in

the state solution. The use of the non-deweighted covariance, Sm o’ is
’

not necessary for on-line use of the estimator for this application.
It may, however, be implemented into the estimator structure. Should
improvements in the dynamics model become available such that zero mean

state estimates can be obtained, the Sm o matrix would provide a minimum

»

variance covariance matrix from the estimator computations.
Let the development now depart from following that of Morrison

(2), where he shows an alternate relationship between Sm and Pm n in

s 3

Equation 97. Doing so, he develops a recursive expression for S

bl

and Sm,m-l which will not be repeated here. Morrison's expression was
developed for a linear Bayes and Kalman Filter application. 1In its
differential corrector form, the update expression for the non-
deweighted covariance at each new observation would be structured as

follows:

_ _ T -1 _ T -1 T
Sm’m = (I Pm’m Tn Rn Tn) Sm,m—l (1 Pm,m Tn Rn Tn) (103)

+P T TR-Ir p
m,m n n n m,in

Due to the highly ill~conditioned nature of the angle only

derived single observation information matrix, TnT Rn'1 Tn, and the

lack of positive definiteness for single observation updates discussed

earlier, this formulation was found to be numerically unstable. The

subtraction of Pm m TnT Rn"1 Tn from the identity matrix, I, involves
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terms which are very close to zero or to one. The subtraction of these
nearly identical numbers results in an accumulation of error when
implemented on the finite word-length digital computer. These errors
are further aggravated when Sm,m is propagated forward to new epochs by
use of the state transition matrix, ¢(t,tm). This instability results
from the limited observability of the single observer data used to
formulate the information matrix, TnT Rn'1 Tn. Recall that Section D.3.
in Chapter II described the numerical difficulties associated with use
of the single observer angular data.

To correct for this implementation problem, consider the

(r-vp T T R~! T ) expression. From Equation 101, one may solve
m,m ©m n n

for:

T, -1 - -1_ -1
Tn Rn Tn Pm,m l/YPm,m—l (104)

Substituting into the [I - P T T R™YT ) expression yields:
m,m n n n

’

-1
1/y Pm ] (105)

-— -1 -
(I -P_ (p 1/y B_ el

-l _ _
w,m" m,m -1 )P =11 -1+ Pm m

’m bl

- [Pm m I/Y pm m-

3 ’

1-1]

Substituting back into the Sm m expression of Equation 103, one obtains:

= -17 ¢ . -1
S SN VAR S S a1 (/v P P (106)

»m »m-1 m,m

+ P TTR=1T p
m n n n m,m

which provides a more stable numerical expressior which allows update of

the non-deweighted covariance matrix at the new observation epoch.
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The illustration below will show the relative stability characteristics

of both Equations 103 and 106 for the total position standard deviations

from a typical estimator run.

Sm,m(Eqn 106)

Time

0. 1.9488 1
14. 1.9260 1
24. 2.0176 2
34. 2,1572 2
L4, 2.3304 2

*54. 2.5291 4
64. 2.7625 4
74, 2.9846 5
84, 3.2287 5
94, 3.4501 5

104, 3.6922 6

114, 4.0126 6

Time Sm’m(Eqn 103)

0. 1.9488 1
14, 1.9260 1
24, 2.0176 2
34. 2.1572 2
44, 2.3304 2

*54., 4.7177 4
64. 4.7981 4
74. 9.2541 5
84. 13.896 5
94. 100.92 5

104. 566.62 6

114. 1451.9 6

*
point where fading commences, previous to this point

and Pm standard deviations were computed from the infinite

’
memory formulation and are therefore equal.
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P
m,m

.9488
.9260
.0176
L1572
.3304
L4113
L7701
.1573
.5596
.9511
.2938
.5576

m,m

.9488
.9260
.0176
.1572
.3304
.4113
L7701
.1573
.5596
.9511
.2938
.5576
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With the above derivations for the state update and deweighted
covariance, a complete listing of the recursive form of the fading
memory differential corrector may be shown. Each epoch point will be
designated with the index m. In general, multiple observation updates
may be made at an epoch, therefore the observations are designated by
the index n, where n=1,...,k. 1In application to the reentry
trajectory with uncertain dynamics, n often equals one, a recursive
formulation for each observation. Recall that the state update
equation is applied iteratively until convergence on iteration &.

Propagation Between Epochs:

State: via integration of x(t) = f(x,t) (107)
Covariance:
Deweighted:
P = ¢(t_ ,t_ )P o(t ,t )T (108)
m,m-1 m’ »-1" m-1,m-1 m’ m-1

Update at New Epoch:

2
State: xm(t ) = xm_l(tm) +‘Z dx(cm)i (109)
i=1
6%t ). = (1/y P _ ~t+TTR-*T)lrTR-'S (110)
i m,m-1 n n n
Covariance: q
Deweighted:
P = (1/y P st ypTp-1qy-t (111)
m,m m,m-1 n n n

One may also compute the non-deweighted covariance matrix with the on-

line estimator software, if desired:




Propagation:

T

sm’m_l = ¢(tm,tm_l) Sne1.m-1 ot »t 1) (112a)
Update:
= -1 -1
Sm’m [Pm'm Al Pm»m'l ] Sm,m-l[l/Y Pm,m—l Pm,m]
T, -1
+ P T " R T P (112b)
m,m n n n m,m

Application of the estimator is similar to the use of the
infinite memory estimator where small numbers of observations must be
processed at each epoch update point. The number of observations
allowed are determined from the linearity check of Equation 44. The
fundamental difference is to select the scalar deweighting constant,
Y, such that sufficient fading occurs to allow the estimator solution
to adjust to the newer observations. Proper selection of y allows the
estimator to deweight the output of the dynamics model via
(1/vy Pm,m—l-l) at each new epoch.

Both Morrison (2) and Sorrenson and Sacks (3) suggest selection
of the scalar constant by analysis of the residuals of the solution
process. As noted earlier, they also point out that observation
residual testing is most valid when i) the functional form of the
dynamics modzl is fundamentally sound, and ii) sufficiently large
numbers of residuals are available over this span for statistical
analysis of the residuals to be valid. These conditions do not exist
for this reentry application. For the reentry application, local
model validity is assumed between epoch and the observation being

processed in a single or recursive formulation.
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If the Gxi(to) < /_F;j;jzzz-criterion is violated at any given
epoch, y may be chosen such that the resulting correction to any given
state variable is within the one sigma level of the a priori deweighted
covariance matrix. This enhances the consistency in the state estimate
with the uncertainty in the previous estimator solution, and provides
an ad hoc technique to determine the need for, and magnitude of, the
fading memory required. It also allows more freedom in the state
update by processing a new observation with a lesser weighting on the
output of the estimator dynamics model or history of previous
observations. This adaptive selection of a fading memory parameter is
very much like the scalar tuning parameter within a noise matrix

Q(t) = Qo(t) + v & Q(t) should the initial Q0 and AQ be capable of
being constructed.

A principal consideration of this adaptive selection of a fading
memory was to avoid the need for extensive simulation analysis for
tuning an additive pseudo-noise matrix. The numerical results which
follow later will illustrate acceptable estimator performance (bias
and RSS/(ONE SIGMA) ratio) is achieved relative to the deweighted
state covariance. However, there does exist some sensitivity in the
selection of this ad hoc scalar tuning parameter: One cannot allow a
large vy to be selected early in the trajectory before the reentry is
committed, due to the stability considerations discussed below.
Fortunately, the dynamics uncertainties and observation accumulation

which contribute to biased estimator performance generally do not

require a fading memory in these very early trajectory phases.
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C. Stability Considerations

A rigorous stability analysis has not been accomplished for the

proposed estimation algorithm. Potential applications of the fading

memory estimator must consider this limitation. The following discus-
sion lends some insight into the question of estimator stability.

The question of estimator stability is a complex one for the

current application. The stability characteristics are dependent on
the underlying stability of the reentry dynamics process. Miller (29),
Morrison (2), and Sorrenson and Sacks (3) all discuss the stability
aspects of their respective linear estimator formulations which use a
fading memory. The three discussions center around the linear
character of the estimator, allowing reasonably straightforward
applications of linearized stability theory.

Miller (29) assumes a continuous, stationary system with linear,
constant coefficients while examining the stability of the inverse

covariance propagation via:

d/de(P(e)=1) = a P(t)~% + FP(t)~* + P(e)~! F! (113)
- p(e)~! HY R-Y H P(r)-?
where:
a = a constant fading memory parameter
F = a constant dynamics matrix
H = a constant geometry matrix
R = a constant observation covariance matrix

Also, in a continuous formulation, Sorrenson and Sacks (3)
analyze the stability of a linear (uniformly and completely controllable

and observable) system. They relate their findings to the asymptotic
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stability characteristics of the infinite memory Kalman Filter.
Morrison (2) discusses the stability aspects of a discrete

observation formulation for a fading memory estimator by examining:

T T

- -1 -1
)y P 1 ¢>(tm,tm_l) + H

-1
N R H (114)

O S VAR IC I

m,m m~-1

which assumes:

1) a constant coefficient, linear model

2) a constant coefficient, linear observation relationship

3) a constant input covariance matrix

4) a constant stepsize between observations

The basic tenet of any of these approaches is to show that the
state covariance matrix does not grow unbounded in an asymptotic sense;
and thereby, drive the state solution unbounded. In the current reentry ,
application the covariance matrix propagation and update equations
include both time dependent variables and a nonlinear combination of
state variables. A linearized, constant coefficient; linearized,
periodic coefficient; or perturbations theory stability approach is
not appropriate. The time dependent and nonlinear dynamics are the
reason that these techniques are not appropriate.

The structure of the current reentry estimator yields two facets
which merit investigation regarding the stability of the algorithm.
One is the state update expression which processes an observation to
modify the state estimate at an epoch. 1t is desirable to examine
the nature of the bound on the resulting state estimate as a function
of the observation data, the value of the fading memory parameter, and
the a priori state covariance matrix being used to update the state

estimate. The other stability consideration concerns the propagation
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of the state trajectory forward from an epoch by integration of the
system dynamics equation. Two different approaches to these stability
questions were considered. Safonov (32) offers a functional analysis
approach which may potentially be used to examine the numerical
stability of the system during the state update phase. The propaga-
tion phase may be better suited to the energy considerations of the
system dynamics using an asymptotic stability analysis of Liapunov (33).
Safonov's approach (32) suggests a topological separation of
spaces to identify regions of stable and unstable behavior relative to
the reference trajectory state solution. The state update equation
and observation equation may be cast into the form of a multivariable
feedback system. Each individual iteration of the estimator at an
epoch update point could be written in such a form. Since the
linearized equations are evaluated along the reference trajectory,
constant values of the geometric partials matrix and the state
transition matrix are available for examination at a given iteration.
The Safonov approach is a higher level of abstraction which
includes the Liapunov stability approach for the multivariable feedback
system. However, the stability characteristics of the system are
dependent on the adequacy of the linearization, the accuracy of the
estimator dynamics relative to the true dynamics, and require
continuous partial derivatives of the f(x) term. The reentry problem
has uncertain true dynamics, does not provide an exact linearization,
and does not have continuous partial derivatives for the true dynamics
due to vehicle fragmentation, although the estimator dynamics model
does have continuous partial derivatives of f(x). Substantial research

would be required to adapt the Safonov approach to the current
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application. Unfortunately, the examination for stability would also
need to be accomplished for each iteration at each update epoch due
to the re-linearization about a new reference trajectory as the
estimator converges.

The propagation of the state estimate forward from an epoch may
occur over regions where no observations are available and; therefore,
may not be suitable for expressions of the multivariable feedback form.
The energy considerations of the system dynamics may potentially be

examined for their asymptotic stability characteristics using a

Liapunov approach (33). One could potentially examine the asymptotic

stability characteristics of the state trajectory solution at each

epoch update point. A particular selection of the adaptively
determined fading memory parameter, y, in combination with the
asymptotic stability characteristics of x(t) = £(x(t),t) could be

examined at each epoch relative to the ECI coordinate system origin,

the Earth center.

The current dynamic system does not consider any rotational
energy or motion, but is simply a point mass formulation for the reentry
trajectory dynamics. This makes a formulation similar to
Meirovitch (33) appealing. The system kinetic energy, T, potential H
energy, V, and the dissipative drag forces were considered to
formulate a system Hamiltonian, H', for use as a possible Liaponov
function. Meirovitch (33) shows the ability to conscruct a Rayleigh
dissipative function which is a quadratic function in the velocity

terms when the non-conservative dissipative forces are linearly

dependent only on the velocity terms:
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X (115)

F=k2lic, &i &J (116)
1]
where
Cij = constant coefficients
ii = generalized velocity terms
In this manner, the system Hamiltonian, H' = T + V, and the

quadratic form of the total time derivative of H' are examined, where:

H' = -2F (117)

If H' is positive definite and H' is positive semidefinite, the system
Hamiltonian may satisfy one of the basic Liapunov stability theorems
and a statement on its asymptotic stability can be made. Specifically,
if the set of points where H' = 0 contains no nontrivial solution
trajectory for the dynamic system i(t) = f(x,t), the solution is
asymptotically stable (33).

Unfortunately, the dissipative forces in the current estimator

model are more complex in the velocity terms and coupled to the

position terms due to the rotating Earth atmosphere as:

= _L o .
fd == m Bp VR (x +wy)
X
f, = -%mBp Vp (y -wx) (118)
y
= —l :
£q 2 m Bp Vp oz
z
. R . .o}
where: w = Earth rotation rate, and VR = [(x+wy)“ + (y—mx)2 + 22]6.
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While the system Hamiltonian, H' = T + V, is positive definite
in the velocity terms, the total time derivative, ﬁ', is not quadratic
in the velocity terms. It must therefore be examined at every point
along the reentry trajectory to gain any insight into the system
stability characteristics. To accomplish this, one must integrate the
system dynamics equation for each epoch sclution. There is no apparent
quadratic form whose sign-definiteness could be examined to identify
the stability characteristics of the system. Early during reentry, for
a given value of y and observation geometry, the reentry dynamics may
indeed become unstable. The resulting state trajectory solution will i
skip the Earth atmosphere. |

From strict physical considerations, one can restrict the
estimator application in these upper altitude regions. The magnitude

of the total velocity at an epoch can be examined relative to the

escape velocity at that particular altitude (34):
G (M+4m)
v = _ (119)
R
where: G = the universal gravitational constant
M = the mass of the Earth
m = the mass of the satellite
R = the magnitude of the radius vector to the Earth center
If the total estimator velocity estimate exceeds Ve’ there is a high
potential for generating a solution which can skip the Earth

atmosphere. The escape velocity is the v 2 t

imes the minimum
velocity necessary to maintain a circular orbit at the given altitude,

or radial distance, R. A decaying Farth satellite has generally

followed a trajectory which has spiralled down from the lowest
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circular orbit which could be maintained in the presence of the
atmospheric drag. (1) Should some combination of the scalar fading
memory parameter, Y, and the a priori state covariance matrix yield

a solution with velocity exceeding the circular velocity at an early
epoch, this solution may be discounted on physical grounds of the
true system dynamics. While it does represent an admissible solution
as defined by the magnitude of the deweighted state covariance, it
will generally not occur within the true reentry dynamics. One
alternative would be to omit these initial observations from the
estimator solution and begin the reentry data processing later during
reentry.

Fortunately, the infinite memory formulation shows acceptable
performance in these regions. Hence, the recommended application is to
restrict the use of fading memory until later, when a committed to
reentry solution is the only admissible estimator solution. This
approach still allows one to satisfy the basic goal of carrying the
solution forward to the Earth impact locations of interest. However,
additional research is recommended to develop a rigorous examination
of the stability of the proposed reentry estimator over a range of

reentry conditions.

142

sl




D. Numerical Simulation Results

D.1. Deweighting Technique Variations

The series of single sample simulation runs summarized in Table
X11 illustrate some relative performance considerations of a number of
deweighting methods which were examined. All may generally be
compared to the basic infinite memory estimator results to discern a
gross measure of the estimator performance in terms of error and the
error/(ONE SIGMA) or performance ratio. A more complete indication of
the estimator performance will be shown later with the Monte Carlo
results. Complete details on these single sample results are contained
in Appendix B.2.

As discussed earlier in Section A., the results of this single
sample analysis implementing various deweighting methods indicate that
the adaptive selection of a scalar deweighting parameter, y, should
offer better performance than the infinite memory estimator, a {
constant scalar deweighting, or an adaptive deweighting of only

selected states within S The improvement is evident in both

m,m-1"°

error and ratio measures. Only in the constant scalar deweighting

Case 2¢, does performance begin to compare with the time dependent
adaptive determination of y at each epoch. The selection of such a

constant deweighting for the entire trajectory requires some a

priori knowledge of the true trajectory dynamic variations. This is
partially shown by comparison of Case 2b and 2¢ results. A y = 1.56
produced better results than the y = 1.10 of Case 2b. 1In actual
reentry data processing, little a priori information for proper

selection of a constant y will exist.
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; D.2. Monte Carlo Results

With the implementation of an adaptively determined scalar
deweighting, one must now quantify its contribution to the estimator
performance. A sequence of Monte Carlo dynamics mismatch runs and

some discussion on the implementation of the deweighting scalar will

demonstrate the estimator performance in terms of bias and RSS/(ONE
SIGMA) ratio. A Monte Carlo analysis is necessary due to the
complexity of the nonlinear dynamics and the uncertainty in the true
reentry dynamics in this application. These problems preclude a
simplified analytic development of bounds on the estimator performance.
The results of the Monte Carlo analysis lend insight into the viability
of the proposed technique for this application.

Three cases of Monte Carlo results were completed with the

fading memory estimator formulation:

1) A duplicate of the infinite memory mismatched dynamics case
now with an adaptively selected, scalar deweighting.

These runs use conditions identical to the infinite memory,
mismatched dynamics case shown in Figures 14-17, with data
from a single observational satellite positioned at an
initial Right Ascension (RA) of +45°.

2) A repeat of the mismatched dynamics case with observational
data partially overlapping in time from two observation
satellites at initial R.A. = *45°. These results may be
compared to the one above to show the improvement in
estimator performance with data from more than one

observing satellite.
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3) The results from a different dynamic mismatch truth model
which includes a step change in B late in the trajectory.
Data comes from two observational satellites initially
positioned at #45° R.A. This case was selected to provide
a functional representation of vehicle fragmentation. The
dual observations occur along the entire data span.
In all cases, the same baseline as used in the infinite memory
Monte Carlo runs apply. This includes maintaining the same initial
seeds on the state variable initial condition variations and on the
observation noise between sets of the 30 Monte Carlo runs. The fading
memory results will contrast the estimator performance to both the
"deweighted" covariance matrix and the non-deweighted covariance matrix
(Equations 111 and 112). The reference information for the three sets

of Monte Carlo cases is shown in Table XIII,
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Table XIII

Fading Memory Monte Carlo Runs

Observer
Truth Initial Observer Data Span
Case No. Model Trajectory R.A. (seconds)
1) 1FAD ATM62 ALT = 73.82KM +45° 10 - 330*
(Single B=f (Mach no.) R.A. = 0°
observer) Decl = 68°
incl I 10°
2) 2FAD ATM62 ALT = 73.82KM  #45° 1) 40-300,
(Overlapping B=f(Mach no.) R.A. = 0° 2) 10-140
dual Decl = 68°
observer data) incl - 10°
3) 3FAD ATM62 ALT = 73.82 +45° 1) 10-310,
(Dual step AB at R.A. = 22° 2) 10-310
observer T = 250 Decl = 0° .
data inecl I 30.5
throughout)

*
Observer times from initial epoch

Observer 1) at R.A. = + 45°
Observer 2) at R.A. = - 45°
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The fading memory selection criteria for each case are shown in
Table XIV. The fading memory scalar selection criteria differ very

slightly from case to case, simply to explore the computer mechaniza-

tion. As the later numerical results will show, the dominant

contribution is from the max (6x,/Y P ) term within y, and not
i m,m—lii

its leading numerical coefficient, a, in the expression:

Y = (a max [éx_|/Y Pl )? (120)
ii

The form of the expression for y was chosen to allow the estimator
software to optionally use a scalar deweighting or the more general
diagonal deweighting of Equation 81.

In all three cases the same relative convergence criterion on
the residuals is applied. From Equation 34, ¢; = .15. This relative
convergence criterion was empirically determined in conjunction with
the absolute convergence criterion (g2 from Equation 35) to obtain
small changes in the state variable estimates on the final iteration.
The fading memory was not allowed to operate in the early, near
circular orbit trajectory phases to prevent divergence in the initial

estimator solutions. This was accomplished by maintaining the

infinite memory formulation until the ratio of aerodynamic to
gravitational acceleration exceeded a certain minimum value, as shown.
The values were chosen to examine the sensitivities of the estimator
performance in the upper altitude region. With the use of the
"escape velocity' test discussed in the stability considerations of
Section C, a systematic means to select this value will be availabtle

for application to real reentry data.
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CASE 1FAD

1

2)

3)

4)

CASE 2FAD

1)

2)

3)

4)

Table X1V

Fading Memory Criteria

Do not apply fading memory unless the ratio of aerodynamic/
gravitational acceleration > 0.10

The absolute convergence criterion:

mean residual < 0.5 x one sigma observation noise

Apply fading for the current epoch update if:
- one Gxi >1.05v P

m,m—lii

- two or more 8x, > ¥V P

i m,m-1,,
11

Fading parameter, y = {1.1[max|éx [/V P . 1}?
iy

Do not apply fading memory unless the ratio of aerodynamic/
gravitational acceleration > 0.15

The absolute convergence criterion:

mean residual < 0.5 one sigma observation noise

Apply fading for the current epoch update if:

- one 6x, > v P

i m,m—lii

Fading parameter, Yy = {l.OB[max[dxi{/V Pm a1 1172
* ii
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CASE 3FAD
1) Do not apply fading memory unless the ratio of aerodynamic/
gravitational acceleration > 0.5
2) Absolute convergence criterion
mean residual < 0.6 one sigma observation noise
3) Apply fading for the current epoch update if:

- one 6x. > P
i m,m-1, .
ii

4) Fading parameter, y = {1.80[max]6xillv Pm a-1 112
’ ii

The leading coefficients for the fading memory criteria were arbitrar-
ily selected to implement the estimator on the digital computer without
multiple selections of a scalar fading memory at any given epoch point.
Only for the third set of Monte Carlo results was the value of the
leading coefficient, a, chosen specifically to be significantly

greater than one (a = 1.80). This selection was made to illustrate

the potential of applying sufficient fading such that the Sm o matrix

3

could yield covariance data with acceptable RSS performance.
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The results of the Monte Carlo sets are shown in Figures 18-41.
The deweighted covariance one sigma values were used for plotting the
results in Figures 18-29. For comparison, the non-deweighted
covariance one sigma values derived from Equation 112 are shown in
Figures 30~41. Because of the dynamics uncertainties, the deweighted
variance values offer a more conservative estimate of the uncertain-
ties in the state solution than the non-deweighted expression. 1In all
cases the non-deweighted variance data shows a marked improvement in
RSS performance when compared to the infinite memory, mismatched
dynamics results of Figures 14-17 in Chapter II. However, no system-
atic technique is apparent for selecting the leading coefficient, a,
such that a zero-mean bias is obtained in the state estimate. With a
zero-mean bias, the Sm,m expression would represent a minimum variance
covariance. With the collection of data from many reentries, a
systematic technique may potentially be developed for selecting a,
such that a zero-mean estimator solution is available. This poses
much the same problems for the estimator as does the proper
construction of a pseudo-noise compensation to the dynamics. The
presentation of the results for the Sm o statistic is to illustrate

the potential for use of Sm,m’ should proper tuning be successful.

In all cases the results for the estimator are displayed in the
same format as the infinite memory Monte Carlo cases. This includes
presentation of position and velocity bias and variance data from the
estimator solutions. The RSS of the mean square errors about the true
solution (Equation 75) are contained in the figures labeled

"ESTIMATOR PERFORMANCE" within the RSS term of the ratio RSS/

(ONE SIGMA). The standard deviation about the mean solution (Equation
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76) is shown only in Figures 20/21, 24/25, 28/29 to illustrate the
consistency with the estimator-computed deweighted covariance data.
Additional Monte Carlo derived standard deviations are not plotted

for ease of viewing of the fading memory results. In both cases the
standard deviations derived from these Monte Carlo computed covariance

matrices followed a trend consistent with the estimator~computed,

deweighted state covariance matrix. However, the deweighted state
covariance matrix provides a conservative estimate of the RSS error in
the state estimate. The use of the standard deviations from this
deweighted covariance is recommended since a trajectory dependent bias
still exists in the estimator solutioms.

Figures 18-19 show the RSS/(ONE SIGMA) ratio. As before, the RSS
is derived from the Monte Carlo data (Equation 75). The ONE SIGMA
values are the deweighted covariance position or velocity uncertain-
ties obtained from the application of the fading memory estimator.

Figures 20-21 show the estimator mean position and velocity bias

magnitudes relative to the average value of the estimator deweighted

covariance '"one sigma'" or standard deviation values.

For this fading memory duplicate of the infinite memory

mismatched dynamics, single observation satellite case, a marked

performance improvement is evident, compared to Figures 14-17. Only
very near to the last observation does the RSS/(ONE SIGMA) ratio grow
beyond a value close to one. When this does occur it is principally
within the velocity terms. Similar results are apparent in Figures
20-21., Only in the velocity term does the bias exceed the estimator

one sigma levels, and then on just two observations. By the

154

e e -




P !

e et e s =

final observation, the bias is within the estimator covariance one

sigma level.

In Figures 20-21, one can observe the onset of the deweighting
at the 54 second point, and the general ability of the estimator to
minimize the divergent behavior of the infinite memory results in

Figures 16-17.
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Having illustrated an improved estimator performance for the
single observation satellite, one must explore the higher data content
and improved observability offered by the dual observation satellite
data. Figures 22-25 contain these results, with data overlap from the
two observation satellites between 40 - 140 seconds of trajectory time.
This data overlap reg.on was selected to simulate one possible orbital
deployment of the observation satellites. Doing so, it includes
regions of both single and dual observation of the reentry trajectory.
As the results in Figures 22-25 show, there is a marked improvement in i
both RSS/(ONE SIGMA) and the bias magnitude compared to the deweighted
covariance, single observer results. This improved performance results
with the dual observations of the trajectory between the 40 and 140
second points. This indicates that an acceptable estimator solution

should then be available for propagation to Earth impact. The bias is

well below the standard deviation from the deweighted covariance. The
deweighted covariance yields a conservative measure of the RSS error

for the position and the velocity terms.
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The final set of Monte Carlo results with the deweighted
covariance are shown in Figures 26-29. 1In this case, a different
truth model was used to generate the simulated observations. This
included a step change by 50% in B at T = 250 seconds to simulate
reentry object fragmentation. The region of dual observation data
included the entire data span from T = 10 to T = 310 seconds. The
specification on fading memory selection did not allow fading to begin
until the ratio of aerodynamic to gravitational acceleration was
greater than 0.5. This value was selected to allow examination of
where the RSS/(ONE SIGMA) ratio grew beyond a value of one with the
infinite memory formulation for this different truth model case.

The effect of this restriction is evident in Figure 26-29.

Prior to the trajectory time of approximately 174 seconds, the solution !
is simply an infinite memory solution with dual observational data.

After 174 seconds of trajectory time, the adaptive fading memory

selection of y is then applied. This fact is shown most clearly in

Figures 26-27 where a slight growth in the RSS/(ONE SIGMA) ratio is

evident prior to the point where deweighting commences. After this

point, the RSS/(ONE SIGMA) ratio shows acceptable performance using ;
the deweighted covariance values. The RSS/(ONE SIGMA) ratio is less

than or equal to one. The bias in position and velocity is well below

the standard deviation from the deweighted covariance. The

relatively conservative values avajlable from the deweighted

covariance are evident in Figure 27, where the velocity RSS/(ONE SIGMA)

ratios are consistently much lower than one with the use of the

fading memory.
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The availability of dual observations through, and beyond, the
step change in B at T = 250 seconds, enhances the ability of the
estimator to accommodate this simulated fragmentation effect. This
verifies the speculation raised while examining the infinite memory
single sample runs of Table I. That {s, given sufficient data, the
estimator can adapt its local model to large discrete changes when

employed in the adaptive, fading memory formulation.
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Having illustrated the validity of adaptive selection of a
scalar deweighting by examining the bias and RSS performance relative

to the deweighted covariance matrix, one must also consider the

magnitude of the non-deweighted covariance matrix, Sm’m, and its
ability to provide acceptable estimator statistics. Figures 30-41
repeat the Monte Carlo results for the non-~deweighted covariance
matrix (Equation 112). One can see a marked improvement in the esti-
mator performance with the non-deweighted covariance:

1) Relative to the infinite memory results, and

2) Increasing with the enhanced observability and data content
of the dual observer cases (Figures 34-41).

In the first two cases, the RSS/(ONE SIGMA) non-deweighted ratio

grows slightly above one near the end of the data span. The single
observer, mismatched dynamics case has several data points where the
bias exceeds the non-deweighted covariance one sigma (Figures 32 and
33). With the addition of dual observational data, only two velocity
bias points exceed the non~deweighted covariance one sigma levels
(Figure 37). Lastly in the dual data case with a step change in B,
one can see the potential for developing a deweighting selection \
criterion which can possibly deliver acceptable estimator statistics

from the non-deweighted covariance matrix, Sm o The RSS/(ONE SIGMA)

3y

velocity ratio grows beyond a value of one (Figure 39), while the i

position ratio is remarkedly close to one throughout the entire data

span (Figure 38). The position bias is consistently inside the non-

deweighted covariance one sigma magnitudes (Figure 40). The velocity
bias only exceed the non-~deweighted covariance one sigmas at the very

last few data points.
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One must recall that the deweighting. criterion of Table X1V

were developed solely to insure acceptable estimator performance
relative to the deweighted covariance matrix. Therefore, all the
results with the non-deweighted covariance mactrix, Sm’m, shown here
are simply a by-product of those scalar deweighting criterion. The

potential does exist, however, to iteratively select the scalar

deweighting with a more stringent selection criterion, such as the

Gxi <vSs , Or 8x, < bv¥ P (b # 1.0). Examination of

m,m-1, . i m,m-1
ii ii

this potential was not completely investigated in the current analysis,
since acceptable estimator statistics were available from the
deweighted covariance.

One must also recall the circumstances under which the non-
deweighted covariance is expected to yield an accurate measure of the
random error in the estimator solution for the state trajectorv. In
the deterministic dynamics model formulation, the model must be exact
to yield an unbiased estimate of the trajectory (13). This mav never
be the case when applied to the relatively unknown dynamics of real
reentry trajectories. The random error indicated by the non-deweighted
state covariance matrix does not yield a good definition in the total
estimator error due to the bias in the state estimate.

There is a very short time span of validity for the deterministic
dynamics model to represent the truth model dynamics locally between
epochs. This can be illustrated by considering the magnitude of the
adaptively selected scalar deweighting parameter, y. One may define a

half-life on the covariance matrix as follows:

wp = (1/7)20y P (121)
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Solving for the time constant yields:

. _1n(y)
In(1l/y)

>
(nd
N

(122)

This LtLz gives an indication of the time span of local model validity
as measured by the half-life of the a priori covariance matrix at each
epoch where a new vy is adaptively determined. Table XV shows typical
estimator runs from the dual observer Monte Carlo runs. The magnitude
of y and the approximate half-life from Equation 122 are listed.
A review of Table XV shows the following:
1) The dominant contribution to the magnitude of the adaptively
determined scalar, y, is the ldxill/_F;j;:ITT term; and not,
the leading numerical coefficient, a. N

2) The time span of local model validity is very short,
indicating one should not anticipate unbiased estimator
solutions.

As a result of these considerations, one would not recommend the
utilization of the non~deweighted covariance, Sm,m, as an indication of
the random error in the trajectory solution. In light of the uncertain
dynamics of true reentries, a systematic means to modify the leading
coefficient within the expression for y to drive the RSS performance
within the standard deviation of Sm, is also not apparent. Since
acceptable RSS performance was evident with the deweighted covariance
matrix, it is considered prudent to use the estimator deweighted

covariance matrix for a measure of the uncertainty in the estimator

solution.
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Fading Memory, Covariance Half-Life

CASE 2FAD B = f(M) + ATM 62
y=(1.08 max{éxil/v P

Table XV

2
m)m'l - )
11

Time X
84. 2.907
94. 5.503

104. 2.634

124, 1.935

134. 1.545

154. 1.633

214 3.920

254. 5.253

274. 2.409

284. 3.717

294, 7.161

CASE 3FAD AB at T = 250 + ATM 62

= Py 2
y = (1.80 maxléxi|/ Pm’m'lii)

164. 33.
174. 2]
184. 15.
204. 14.
214. 16.
234, 20.
254, 26.
284. 48.
294. 22.
304. . 44.

907

.455

179
296
704
784
420
066
734
676

Approximate
Covariance

. 650
. 406
.710
1.050
1.590
1.413
.507
.418
.788
.528
.352

.197
.226
.254
.261
. 246
.229
.212
.180
.222
.182

Note: omitted epoch points at 10 sec data rate did not

generate additional fading, via the dynamically

selected vy.
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The deweighted covariance, Pm,m’ has characteristics which are
analogous to the covariance from a properly tuned estimator, with
pseudo-noise strength chosen such that the estimator-computed and true
mean square errors agree well.

These considerations are particularly apparent when one
considers the magnitude of the ultimate covariance matrix when propa-
gated to impact. The results of the next section show a marked reduc-
tion in even the deweighted covariance matrix one sigma position
uncertainties relative to previous operational experience. The

deweighted covariance provides an acceptable and conservative measure

of the uncertainties in the ultimate satellite impact point.
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D.3. Propagation to Impact

Table XVI shows various methods of propagating the two mismatched
dynamics cases using dual observation data to impact with one sigma
uncertainties for each state variable. Similar to the infinite
memory impact covariance results, the linear propagation methods do
not reflect a completely accurate portrayal of the second order
statistics at the ultimate impact point. In both cases, the non-
deweighted variance data have one sigma values which are smaller than
the average bias in selected state variables. This is particularly
true for the velocity terms. It is also true for the Bpo term,
principally since the CASE 2FAD truth model had a variable Bpo. Also,
the discrete step change of Bpo in CASE 3FAD still reflects the mis-~
match between the estimator and the truth model.

With the selected deweighting criteria, the accuracy of the non-
deweighted covariance values is anticipated to be a less conservative
measure of the random state uncertainty than that available from the
deweighted state covariance. The linear propagation of the deweighted
state covariance is often overly conservative, with very large one
sigma values relative to the bias on selected state variables. This is
particularly true for the final case which included a step change in 8,
where the deweighted one sigmas are much larger than the bias solution
for all state variables. For these reasons, a Monte Carlo derived
impact covariance for the final propagation phase is recommended. The
ratio of the RSS of the mean square errors to one sigma about mean
solutions provide the best indication that a Monte Carlo derived
covariance provides the most accurate reflection of the RSS uncertainty

in the state solution at Earth impact.
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In both these cases, the impact uncertainties are orders of
magnitude less than previous operational experience of propagating the
last orbital estimate to impact. This offers the most convincing
evidence of the chosen deweighting estimation technique affording
significant improvements to previous impact location and uncertainty
determinations.

Figures 42 and 43 show the Earth tangent plan projections of the
estimator solutions for two cases of dynamics mismatch relative to the
estimator dynamics model. The mean estimator impact location is shown
as point 0, with the truth model impact at point X. The difference in
distance between these points show the bias in the ultimate impact
solution. Both one (lo) and two (20) standard deviation error ellipses
from the "deweighted" state covariance matrix are plotted. These were
developed by a Monte Carlo propagation of trajectories from the final
reentry data point. As can be seen, consistent impact locations and
statistical descriptions of the uncertainties are provided. The
magnitude of bias is less than the one standard deviation magnitude.
The magnitude of the position uncertainties is significantly improved
over the many hundreds or thousands of kilometer uncertainty of Earth
impact available from existing operational methods of such agencies as
the USAF SPACETRACK System.

Figure 44 provides an illustration of how large the impact
uncertainties would be with a simple propagation of the initial epoch
(73.82 km altitude) covariance to impact. The initial epoch contained
a standard deviation of position of approximately 3.5 km, mostly in~
track error along the trajectory. This results in over a 400 km one

sigma uncertainty along the path of the reentry ground trace, at
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Earth impact. Figure 44 may be directly compared to the one sigma
error ellipse of Figure 42 to see the significance of the proposed

technique in identifying the satellite debris search area.
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Chapter IV - Conclusions

The principal goal of this research was not to enhance the
existing estimation theory or reentry dynamics theoryvby a significant
amount. The principal goal was to bridge the considerable gap between
theory and engineering practice. A valuable tool for astrodynamics
research has been developed as a product of this dissertaticn. One
could have foresaken this effort by saying that the original research
constraints were too severe. The use of an orbital observer as-..'ed
angles only (IR) data at ¢ 10 second data rate. The angular
observations provide a limited observability of the system. The 10
second data rate does not capture many of the rapidly varying dynamics
changes of reentry. The research approach concentrated on extending
existing orbit estimation methods, which often use a deterministic
dynamics model, into the reentry regions. The deterministic estimator
formulaﬁion is difficult to apply in an uncertain dynamics region.
Perhaps this is wnv this particular problem has perplexed
astronautical engineers for the better part of 20 years. With the
collection of many additional true reentry trajectbry estimates, the
issues presented in this dissertation can be married to more
sophisticated estimation theory to provide further advances in this
complex area of research.

A basic objective of this research was to extend‘the existing
orbit determinat%on-methods into the high dynamic model uncertainty
regions of reent;y. A differential correction estimation technique
was utilized to process angular infrarad (IR) observations of a

reentry trajectory to reconstruct the karth impact locations and
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uncertainties of arbitrary decayed satellite trajectories. The azimuth
and elevation IR observations were obtained from an orbiting sensor
viewing the reentry from a synchronous orbit. The linearized,
differential corrector used a deterministic dynamics model in a Taylor's
series expansion about a reference trajectory. The technique provided
state variable updates and covariance data for the reentry trajectory
positions, velocities, a vehicle ballistic parameter, and the density
scale height of an exponential atmospheric density model.

Previous operational experience (5) has shown that extreme
difficulty exists with application of a pseudo-noise compensation to
the estimator model dynamics for orbital satellite applications. Up to
100 Earth revolutions of tracking data of the orbiting satellite have
been required to tune the dynamic pseudo-noise coefficients and
covariance matrix elements properly for a specific satellite of
interest, With the short time spans and limited tracking data of the
reentry trajectories, this task is even more difficult to implement.
Using a fading memory, recursive estimator formulation, the adaptive
estimation of an ad hoc scalar fading memory parameter provided
estimates significantly improved over existing techniques for reentry
trajectory and Earth impact estimation.

The structure of this technique is similar to using a scalar
tuning parameter to adaptively tune a noise covariance such as
Q(t) = Qo(t) + vAQ(t). 1In the current formulation, the estimator-
computed, or a priori, covariance is utilized as the starting
definition of uncertainty, and modified by the adaptively determined

scalar parameter, Y.
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Specific conclusions of the research included the following:

1) Monte Carlo simulation analyses show that the dynamics
uncertainties of the general satellite decay trajectories to
significantly affect the estimator performance. Without
model compensation, significant bias exists in the state
variable solutions relative to the standard deviation of the

estimator-computed state covariance matrix.

2) With a deterministic dynamics model, angular observation
accuracies with standard deviations less than 1077 radiaus
induce significant error in the state estimate relative to
the standard deviations of the state covariance matrix.

3) Due to the dynamics uncertainties anticipated in real reentry
applications, a recursive formulation of the estimator is
recommended which uses a short time span between the
trajectory update point (epoch) and the observation(s) being
processed. Monte Carlo analyses of the estimator bias and
RSS performance demonstrated that successful linearization
(as defined by Equation 44) relative to the reference
trajectory is obtained by limiting the time span between
epoch update point and the observations used for this
trajectory update.

4) For acceptable estimator performance in terms of bias and

RSS/(ONE SIGMA) ratio, observations from more than a single
orbital source are required to provide higher data content
over similar time spans and improved observability of the

! / reentry trace. The additional use of range, or range rate,

: observations should improve the observability of the system.
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5) An eight dimensional formulation (3 positions, 3 velocities,

ballistic parameter, density scale height) provided superior

estimator performance to a seven dimensional formulation.

The standard orbit determination approach which uses a seven

dimensional state vector (3 positions, 3 velocities,

ballistic parameter), with density from a standard density
model, proved inadequate in the current estimator formulation.
The improvement in the performance for the eight dimensional
system derives from simpler mathematics in the estimator
dynamics model and continuous valued partial derivatives of
the dynamics over the trajectory space for the Taylor's
series linearization.

6) With a deterministic dynamics model, the time span of model
validity relative to true reentry dynamics is very short. A
very limited number of observations are available over this
short time span. A proper statistical testing of these
observation residuals is not available for adaptive
compensation of the estimator dynamics. A magnitude check

on the state variable changes, dxi, at each update epoch

relative to the standard deviation of the state covariance
matrix provides a satisfactory measure to determine which
trajectory points required additional fading on the
estimator memory. This is demonstrated by examining the
bias and RSS performance of the estimator in a Monte Carlo
analysis. This adaptive selection of a scalar fading memory

parameter is easily incorporated into the estimator structure.
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7) Lastly, a Monte Carlo propagation to impact preserves the
integrity solution statistics over the final non-observable
portion of the trajectory. The Monte Carlo derived
covariance about the mean and the true impact solutions
compare very closely. Both these measures yield values
significantly different than those obtained from a linear
propagation of the final epoch covariance to impact.

Application to general decay trajectories of the fading memory

estimator provides impact locations and covariance data consistent with
the RSS uncertainties of those locations. The magnitudes of the impact

location uncertainties are between one to two orders of magnitude

smaller than those available from current operation techniques. The
method is applicable to world-wide impact locations with the
availability of the orbital reentry observations.

Users of the proposed estimation algorithm are cautioned to refer
to the stability considerations of Chapter III, Section C. A rigorous

stability analysis has not been completed for the estimator algorithm.
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i Chapter V - Recommendations

time varying character of true reentry dynamics are

h‘ 1) Investigations which vary the observation data rate and the

necessary to examine the estimator performance extensions.

This should be conducted with an investigation of using more
accurate observations (much less than 107° radians) in
conjunction with higher data rates and higher frequency
variations in reentry dynamics. Examination of using
alternative measurements, such as range or range rate, is
also recommended.

2) Further analysis of a means to apply the fading memory
estimator to very high altitude and shallow reentry angle
reentries is recommended. Should violent dynamics changes,
such as vehicle fragmentation, occur in these very early
data regions, the suggested fading memory scalar
determination may result in divergent estimator performance
due to atmospheric "skip" trajectories being admissible
solutions within a large magnitude deweighted state

covariance matrix. A rigorous stability analysis approach

needs to be defined for both the state update and

propagation equations.

3) Further investigation of implementing the fading memory
would be of interest. It is desireable to minimize the
bias in the estimator solution such that the non-deweighted
state covariance matrix provides a minimum variance

covariance for the state errors (with zero mean Gi(t)
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4)

estimates). However, since the size of the impact
uncertainties from the deweighted state covariance matrix
provide such a marked improvement over existing methods,
they are acceptable for most reentry debris search and
recovery requirements.

The application of this suggested estimation technique to a
wide class of reentry trajectories should provide a large
empirical data base for improvement of the estimator
dynamics model. Subsequent investigations should then be
pursued such as dynamic model pseudo-noise compensation,
statistical linearization, or higher order filters. These
may then be compared to the recommended fading memory tech-

nique for comparison of relative performance.
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Appendix A  Partial Derivatives
' A.l1. Dynamic Partial Derivatives
o= f
x = f(x) A= 3— (A1)
3xX
| f1 = X2
f, = dx + gx
‘] f3 = Xy
’ f, = d + A2
4 y 8y (A2)
fs = Xg¢
fe = dz + gz
f7 =0
fa =0
!
A=
0 1 0 0 0 0 0 0

af,/ax  3f,/dx 3f./3y of./dy 0f,/3z 3f,/dz 3f2/38p_ 3f2/3Q

0 0 0 1 0 0 0 0
3fL/3x AEL/3% 3f./dy 3f./dy 3f,/dz 3f,/dz 9fu/3Bp 3f4/3Q
0 0 0 0 0 1 0 0

, 3fs/0x dfe/dx 9fe/dy 3fe/dy 0fe/dz 3f¢/dz 3fe/380 3fe/dQ

0 0 0 0 0 0 0 0

o 0 o 0 0 0 0 0
b -
(A3)
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A.l1.1. Partial Derivatives of Drag Accelerations

Recall dx' dy’ dz = drag accelerations in x, y, z components,
therefore take the partial derivatives by chain rule -~

* -
3/3x; H /Q:

R (1-f) (2xR?(1-2f+f2) + xz?(2f-f?)

3 * [¢) X
—(H /Q) = GM/Qg - —
ax O RI((1-2£4+52)(x2 + y2) + 22372 R3
3 % R, (1-£) (2yR? (1-2f+£°%) + yz2(2f-£?)
35(H/Q) = GM/Qz 7 -— (A4)
y R3 ((1-2f+£2) (x? + y?) + 22)?%/2 R3
3 *
3—Z(H/Q)=
R (1-f) (2zR2(1-2f+f2) + zR?(2f-£%) + z3(2f-£f?) z
GM/QgO ; 7 - —
RYI((1-2£4£2) (%% + y2) + 2%)3/? R®
| Vg = LG+ up)? + (v - wxf + 2°)° (45)
3/0% Vp:

BVR/SX = —m(y—mx)/VR

avR/ai (x + wy) Vg

[}

3V /3y w(x + wy)/Vg (A6)
aVp/oy = (y-ux)/Vy

BVRlaz =0

QVR/az = z/VR

207

:
|
|
|
4




Drag Partials:

o~ -
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6600 (x+wy) VR 3/3z e
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4380 sH/Q (x+wy) 3/3z V
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1

1
1800

~4Bp (y-wx) [V, 3/3x &
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H /Q
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SHy
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e-H Q VR W
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H/Q
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A.2.2. CGeopotential Partial Derjvatives: (Ref: DMAAC Network Analysis

Program, Vol I, Part 1 ~ Mathematical Analysis, Sep 1970)

Define partial derivative matrix of geopotential function W.R.T.

state variable position coordinates:

A= ¢xx ¢xy ¢xz where ¢xy = 3¢/oxoy etc. (A31)
¢yx ¢yy ¢yz
®x ¢)zy 22

T \ . .
Define wAw where w = rotation matrix back to E.C.I. Greenwich

Meridian reference (note: actually required only if tesseral harmonics

are used)
o = ARG Iy o 16, VLD + € (0T U - ) ¢
ool Voig * Cp €01 VRS - 2w ) (432)
~zz = l/R02 L C: [ n,m :+2 + Sn,m Vﬁ+2]
n,m
Oy = = (e + 9,,)
ixz = ;’zx = 1/2R ? z’m - (-ml) [C ., u::é - u;"g) +

m m-1 m+-1
Sn,m (Cn+1 Un+2 + Vn+2)]
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hl = sin'l !' .
(),|2+Z|2)"2
h; = sin™! x'

. .k
(x|2+yu+zu)‘2

(Prime - Observer Coordinate Frame)

By simply chain rule H

dhy/3x

3hy /3y

dhy/3z

ah: /9}(

3ho /3y

3h2/32

All o

= 3h;/3x"' 3x'/dx

= 3h1/3x"' 3ax'/3y

= 3h;/3x' 3x'/3z
= 3hy /ax' ax'/ax
= dh,/3x’ 3x'/ady
= 3h,/3x" 3¥x'/3z

ther h,, elements
1]

+

+

+

Bh/axi
ahl/a_\"

dh, /3y’

3h, /3y’
3h, /3y
3h,/3y'
dho/oy!

0.
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+ oh;/3z'

+ Bhl/az'
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9z'/3x
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Appendix B Numerical Data

B.1l. Truth Models

B.1.1. 8 = f(Mach no.)

B Mach no.
5.80 X 107'° 0.
10.98 X 107'° 1.
6.90 X 107!° 2.
3.30 X 107!° 3.
2.65 X 1071° 4.
2.35 X 10710 5.
2.55 X 10719 6.
2.75 X 1071° 7.
2.95 X 071° 8.
3.15 X 107*° 9.
3.35 X 10°1° 10.
3.75 X 10°1° 12.
4.15 X 1071° 14,
4.55 X 1071° 16.
4.95 X 1072° 17.
5.35 X 10°1° 20.
5.60 X 1071° 22.
5.80 X 10~1'° 23.
Nominal B = 4.0 X 107!% KM?/KG equates to Bo = .49
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ATM62

U.S. 1962 Standard Atmosphere (Relative to SAO-II1 Earth

Model Geopotential Altitude)

Geopotential Alt
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Single Sample Analysis Results
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B.3. SAO II1 Earth Model Parameters

RE = 6378.14 KM Mean Equatorial Radius
g8, = 9.798 X 107° KM/sec’

f =1/229.256 Flattening Factor

GM = 398601.3 Gravitational Constant

B.3.1. 2Zonal and Tesseral Harmonic Coefficients

Normalization Factor = - v 2n+l

Where n = coefficient subscript, i.e., C or §
nm nm

Example J2 Term:

T =- = - -“
Unnormalized J2 CZ,O 4,8417 X 10
Normalization Factor = - vV 441 = -V 5

Therefore, J, = 2.1653 X 107" .
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