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Preface

"It is not possible to predict with complete
accuracy and confidence the expected impact
area of an artificial Earth satellite after
unaided orbit decay. In fact, it has
usually been impossible to ascertain the
locations of the remains of most satellites
after their descent from orbit." (1)

This quotation is essentially as valid today as it was in 1965 when it

appeared in the report of a joint study by the USAF SPACETRACK System,

the Smithsonian Astrophysical Observatory, and the RAND Corporation.

This is particularly true when one considers the actual limitations

associated with the term "unaided". An unaided orbital decay repre-

sents a natural decay from Earth orbit due to the action of atmospheric

drag in a very ill-defined dynamics environment. The uncertainties

associated with this process include large, time and space dependent,

variations in atmospheric density and violent changes in vehicle

configuration and structure due to the ablative and dynamically

unstable process of reentry. With many hundreds or thousands of

artificial Earth satellites and pieces of launch booster debris

currently in orbit at various orbital inclinations, it is extremely

difficult to determine and predict the reentry impact locations.

The underlying limitation of determining the reentry trajectory

resides within the intractable mathematical nature of the true

dynamic processes of reentry. Standard atmosphere models often provide

valuable information on the magnitude of the atmospheric density and

its functional variation with altitude. Unfortunately, these models are

developed to represent a "mean" model of the atmosphere and, in the

reentry altitude regions are usually limited to data collected in the
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northern hemisphere. As such, the mean models of a standard atmosphere

do not properly represent the density variations along each individual

satellite decay trajectory. The decaying reentry body is also subject

to a wide variation in geometric forms as it passes through the

atmosphere. Factors such as ablation, random rotation, and fragmenta-

tion preclude definition of the vehicle configuration throughout the

reentry.

These circumstances present difficult problems if one attempts

to determine the reentry trajectory by developing a dynamic force

expression from standard aerodynamic theory. An accurate solution to

the hypersonic flow field surrounding the reentry body is not possible

in an environment where one cannot specify the atmospheric properties,

the time varying character of the vehicle geometry, and the location

and shape of the reentry shock wave.

The complexities associated with these processes force one to

consider using a more simplified representation of the reentry dynamics.

The inadequacies of these simple modeling techniques are evident in the

current ope'ational techniques of propagating the final orbit

determination state vector and state covariance matrix through to Earth

impact. Uncertainties of many hundreds or thousands of nautical miles

along the trajectory ground trace are apparent in the ultimate impact

location.(1)

Assuming the availability of trajectory observations during

reentry from an orbital sensor, one essentially has a global visibility

of the arbitrary decay trajectories. With a simplified definition of

the physical dynamics of reentry, one can incorporate the observations

into an estimation scheme to improve the knowledge of the ultimate

,..



Earth impact point. With frequent enough observations, one can

potentially use a model which would be inadequate over a long period of

time. The principal goal of this research was the development and

application of such an estimation technique. A linearized, differ-

ential corrector method is utilized which is directly applicable to

operational agencies such as the USAF SPACETRACK System which must

reconstruct the impact locations of many reentry objects with minimum

a priori knowledge of the given reentry dynamics.

The research approach was predicated on extending the existing

orbit determination methods into the reentry regions. This included

the use of specified observations from an orbital sensor assumed to

provide angular (azimuth and elevation) measurements from an infrared

(IR) source at a fixed, discrete data rate. The major limitations in

direct application of a differential corrector with a deterministic

dynamics model will be shown to be variations and uncertainties

associated with the reentry dynamics. Standard estimation methods

would consider adding a pseudo-noise compensation to the dynamic

equations of motion to incorporate the dynamic uncertainties present.

Unfortunately, the operational experience of agencies such as the USAF

SPACETRACK System shows that up to 100 orbital revolutions of

empirical tracking data have been required for proper "tuning" of such

a pseudo-noise compensation technique. The modified dynamics have then

been found to apply only to the given satellite in question.

In the more uncertain dynamics regions of reentry, with a

single short arc of empirical data from trajectory observations, even

less potential exists to apply a pseudo-noise compensation successfully

to the dynamics model of a given reentry. A basic contribution of this

vr



research will be shown to be the application of an "ad hoc" scalar

fading memory parameter which is adaptively determined from the

estimation process. This represents an extension of the Earlier work

of Morrison (2) and Sorrenson and Sacks (3) to the reentry estimation

application. This scalar parameter is used to multiply tne terms of

the estimator-computed state covariance matrix prior to an observation

update. This new matrix is referred to as a "deweighted" state

covariance matrix. The scalar deweighting parameter provides a fading

memory on the previous history of observations.

The magnitude of the fading memory parameter is selected to

force acceptable estimator performance relative to this "deweighted"

state covariance matrix. This acceptable performance is demonstrated

via a Monte Carlo analysis. The mean error in the estimator solutions

(mean state estimate - true state solution) is much smaller tham, the

standard deviations from the estimator-computed deweighted state

covariance matrix. The RSS (root sum square) of the mean square posi-

tion and velocity errors in the Monte Carlo solutions compares closely

to the standard deviations from the deweighted state covariance matrix.

With its successful application to reentry trajectories, the

proposed technique provides a valuable tool for astrodynamic research.

In the near term, estimated Earth impacts with reasonably valid

uncertainties can quickly be computed after orbit decay. In the long

term, the method offers an ability to construct an empirical data base

of reentry trajectories from which a pseudo-noise, or adaptively

determined pseudo-noise, compensation method can potentially be devel-

oped. This should afford a better means to understand the true

v IJ



dynamics of the decay trajectories, such that more sophisticated estima-

tion techniques can successfully be applied to this problem.
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Abstract

A technique was developed for estimation of decayed Earth satel-

lite reentry trajectories to provide impact locations for debris search

requirements. The technique used a linearized differential-corrector

as an extension of existing orbit estimation methods. The reentry

observations consisted of angular, infrared measurements from orbital

sensors. An eight dimension state vector was used with components for

position, velocity, a ballistic parameter, and the scale height from

an isothermal density model. Simulated data runs identified the

uncertain dynamics of the true reentry process as the most significant

impact on estimator performance. The uncertain dynamics pose signifi-

cant problems for standard model compensation methods such as adaptive

pseudo-noise compensation or more sophisticated techniques such as

statistical linearization or higher order filters. The adaptive

determination of an "ad hoc" scalar fading memory parameter was used to

modify the estimator-computed state covariance matrix. The bias in

the state estimates were well within the variance from this modified

covariance matrix. The standard dcviations from the modified

covariance compare closely to the root-mean-square errors of the true

solution over a range of simulated truth model data. The uncertainties

associated with the impact locations are anticipated to be at least one

order of magnitude better than propagation of the final orbit estima-

tion covariance matrix to Earth impact.
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Chapter I - Introduction

A. Research Overview

The objective of this research was to develop an application of

an estimation technique which would support debris search requirements

in the impact area of decayed Earth satellites. This necessitated

determining impact locations and defining the uncertainties associated

with those positions. The engineering considerations included the use

of specified orbital observer(s) providing angular infrared (IR) tra-

jectory observations at fixed, discrete time intervals and large

uncertainties in the mathematical character of the true reentry

dynamics. Angular observations were assumed since they could be

obtained from orbital satellites which view the reentry using a passive

IR sensor. The aerodynamic heating of the reentry satellite provides

a convenient infrared signature as it decays through the Earth atmos-

phere. While the additional use of range, or range-rate, observations

may improve the observability of the reentry trajectory, these would

necessitate a more complex active sensor system, such as a radar. The

power required for radar tracking varies as a function of range to the

fourth power between the radar and the reentry satellite. These

sensors would be much more costly to deploy in orbit to provide full

visibility of the Earth.

The uncertain dynamics of the reentry process present many

difficulties for existing estimation techniques. A significant portion

of this research was to identify the limits of the various estimation

techniques which might be considered for application to this problem.

The se'acted approach, which uses an adaptively determined, ad hoc,

= -,"- ----- - . .....A V



scalar fading memory parameter, is offered as an interim solution to

the problem. The research approach concentrated on extending existing

orbit determination methods into the reentry region. These techniques

generally use a deterministic dynamics model and linearize about a

reference trajectory in a Taylor's series expansion. The use of a

linearized approach was retained in this application to maintain

consistency with the existing orbit estimation methods. The line-

arized approach also allows one to concentrate on improving the first

order effects of the uncertain reentry dynamics. Once these are better

understood, a more accurate dynamics model may potentially be defined.

This more accurate model may require application of a more sophisti-

cated estimation technique to handle the higher order effects properly

within the reentry dynamics. Methods such as statistical linearization

and nonlinear estimation are best suited to applications where a good

definition exists for the functional form of the nonlinear terms in

the dynamics model.

21
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B. Background

Various operational space agencies - the National Aeronautics

and Space Administration (NASA), the USAF Space Defense Center

(SPACETRACK), and the USAF Satellite Control Facility (AFSCF) - have a

mission responsibility to determine impact locations of decayed Earth

satellites. Most of their respective orbit computation systems, with

minor differences, have a similar kind of data processing capability.

A weighted least-squares, differential correction algorithm is used to

process observational data to calculate an "optimal" estimate of the

satellite orbit. In the appropriate altitude regimes, the estimation

algorithm is capable of computing an estimate, for both the state

trajectory positions and velocities, and various perturbations to the

basic orbital motion (i.e., ballistic parameters, perturbations to

mean atmospheric density values, etc.) (4,5,6). Applications of the

differential correction technique have evolved from astrodynamic

applications where the basic assumptions of the methods apply. These

include: i) a deterministic dynamics model, ii) noise corrupted

observation measurements, and iii) batch processing of a large number

of obser ations at selected points in time to develop corrections and

covariance values for the state variables at an arbitrarily selected

point along the reentry trajectory referred to as an "epoch". The

estimates of the state vector and covariance are propagated forward to

a new epoch point where new observations are batch processed to update

the trajectory estimation.

In the orbital regime, this technique has met with considerable

success due to a number of factors:

3.
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1) The availability of sufficient and adequately spaced

observations from ground based radar or telemetry

measurements.

2) Relatively well defined satellite geometric configurations

and relative insensitivity to the small aerodynamic effects

of a rarefied atmosphere which allows one to use a

deterministic dynamics model.

3) The basic validity of linearizing about a reference

trajectory while processing observations in a batch

processing mode (where all observations are processed

together for an orbit update) or a sequential batch

processing mode (which processes a subset of the

observations of various sizes, along the trajectory or

orbit).

As one enters the reentry region (after a spiral decay from

orbit has commenced and at altitudes generally well below 125 KM), the

ability to extend the existing orbit estimation techniques becomes

appreciably more difficult. This difficulty is a direct consequence

of the following factors:

1) The lack of universally available tracking observations

of the final decay trajectory,

2) Significant uncertainties in the vehicle dynamics and in

the atmospheric density, which limit the use of a

deterministic dynamics model, and

3) A significantly more nonlinear set of dynamics within the

equations of motion.



Consider the aerodynamic acceleration expression most frequently

used in the orbital equations of motion. The dominant aerodynamic

acceleration term is due to atmospheric "drag" acting along the

instantaneous velocity vector of the satellite motion:

% = - 8 p VR VR (1)

where:

aD = Acceleration due to "drag", generally defined to be

the resolution of the aerodynamic accelerations along

the three spatial coordinates into one vector, opposite

in direction to, and along the instantaneous velocity

vector

p = Atmospheric density

VR = Scalar magnitude of the velocity vector relative to the

rotating atmosphere

VR = A column vector of the three components of the velocity

relative to the rotating atmosphere

a = "Ballistic parameter" which equals C DA/M, with

CD = "Drag" coefficient

A = Satellite reference area

M = Satellite mass

In the reentry regions, the uncertainties associated with the

geopotential forces are orders of magnitude smaller than the

uncertainties of the aerodynamic forces. In a relative sense, tlie

non-aerodynamic forces can be considered as deterministic geopotential

forces. These are quite adequately derived from a well developed set



of zonal and tesseral harmonics associated with the geopotential

function of a standard Earth model (7).

The two basic quantities which induce uncertainty into the aero-

dynamic acceleration expression are a and p. Because these two quanti-

ties appear as the product 8P within the dominant acceleration

expression, the result of uncertainty in either is magnified in this

multiplicative fashion.

As Reference 1 reports, a change of only ±10% in either or P

at the point of orbital decircularization, and the onset of spiral

decay from orbit, can ultimately result in up to a one-half Earth

revolution difference in the ultimate impact location of the reentry

satellite, when not updated by further observations beyond this reentry

point. This fact is particularly apparent if one thinks of the

sensitivity of the direction and magnitude of the velocity vector at

the onset of decay to variations in either or p. These uncertain-

ties are direct contributors to the many hundreds or thousands of

nautical mile uncertainties of the impact location when obtained by a

straightforward propagation of the last orbital vector and covariance.

B.1. Trajectory Observations:

With the availability of sufficiently dense and accurate

observations, significant improvements to the decayed satellite

trajectory estimation should be available. Tracking data from Earth

surface sites is generally limited due to: i) wide geometric

separation of a very few Earth tracking stations, and ii) short

trajectory spans of observability yielding few observations at any

site(s) which may fortunately be positioned to view the reentry. If

one postulates a network of synchronous tracking satellites, orbitally

6o
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positioned to provide a global visibility of the Earth, the limited

availability of observations for the general decay trajectory from

ground sources should be eliminated or minimized.

This orbitally positioned sensor is assumed to provide angle

only IR observations (i.e., no range measurement) at a fixed data rate

of every 10 seconds. The implications of these assumptions will be

examined in Chapters II and III With the availability of such obser-

vations in azimuth and elevation, one may define a coordinate

reference frame as shown in Figure 1.

B.2. Dynamic Uncertainties:

B.2.1. Vehicle Uncertainties:

The uncertainties in the ballistic parameter, 3, result from a

variety of sources for the arbitrary orbital decay. These include

unknown spacecraft orientation, asymmetric vehicle ablation, and

vehicle fragmentation. In the orbital regime, ablation and fragmenta-

tion are not factors. In the reentry regime, high deceleration and

aerodynamic heating occur. Abrupt and rapidly changing variations

result due to ablation and structural fragmentation. These effects

are further complicated by their coupling with the atmospheric density

term, P, and their irregular occurrence along the reentry trajectory.

In the orbital regime there usually exists a well defined space-

craft angular momentum vector derived from the spacecraft design or

developed from observations of the satellite or booster debris. This

allows definition of at least a "mean" value of the ballistic

parameter, a, for specified segments of the orbit. Even without

fragmentation, the behavior and definition of the angular momentum

vector is difficult to model in the highly variable force field

7
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experienced during reentry.

B.2.2. Atmospheric Density Uncertainties:

The uncertainties in atmospheric density are due to several

well documented perturbations to the mean values of the standard den-

sity models (8). These include:

1) Seasonal variations

2) Diurnal variations

3) Solar radiation effects

4) Magnetic storm effects

5) Auroral effects

6) Local climatology effects

The magnitude of these departures from the mean density pro-

files is well documented in Reference 9, which shows ±95% certainty

deviations of up to ±60% from the mean density of the standard

atmosphere.

The present understanding of the mathematical structure and

underlying physics of the standard atmosphere models is well docu-

mented in a number of references (9,10,11,12). However, the effects

of these variations are both difficult to quantify and difficult to

model on a spatial and temporal basis for the general decay trajectory.

This is a consequence of a number of factors. There generally is a

lack of detailed density measurements along the individual reentry

trajectory. These could be used to establish boundary conditions for

the mathematics which describe the propagation of the perturbations

through the atmosphere. Most mean density models have been developed

from a limited number of geographically distributed density measure-

ments. Most measurements below orbital altitudes and above normal



aircraft flight altitudes are from sounding rocket or balloon

instrumented flights densely grouped near 450 North latitude. The

mean density models are more accurate in this region. Accurate

specification of density is required for the particular reentry trajec-

tory being estimated, and this reentry may occur anywhere around the

Earth.

While many operational space agencies utilize corrections to the

standard atmosphere density values, these corrections are difficult to

determine due to their wide variation over time in the reentry

altitude regions. In the orbital applications, the three density

variations generally added to correct the mean density values include

(4,5,6):

1) Those due to magnetic flux variations, om

2) Those due to solar radiation variations, Ac
5

3) Those related to the geometry relationship between the

satellite position and the "diurnal bulge" of the Earth

atmosphere.

This area of most severe solar heating occurs along the vector between

the sun and Earth center. The intersection of this vector with the

Earth surface is referred to as the solar subpoint, or nadir.

In the orbital applications, the first two modifications are

usually added to the standard density values as a constant over a

segment of the orbit. The magnitude of these modifications are

determined from one of two separate computations. If they exist in the

orbital altitudes and inclinations of interest, special "calibration"

satellites (whose aerodynamic configurations and orbits are precisely

known) are used to determine the magnitude of the density modifications.

10"
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Alternately (often using the values from the calibration technique as

initial conditions), the density modifications are added to the state

vector and separately estimated along with the orbital trajectory of

interest. In either case this increases the complexity of the equations

of motion. If the modifications are also estimated along with the

satellite trajectory, this increases the dimension of the state vector.

For global applications in the reentry region, there is no systematic

means to establish the initial conditions of these density modifica-

tions which are valid over all altitude regions of the general decay

trajectory.

By default, therefore, attempts to apply the orbital methods to

the reentry regime have often been confined to estimating along with

the position and velocity variables. A state vector of seven

dimensions is used, with atmospheric density derived from a standard

density model. This approach attempts to group all the unmodeled

parameters within a. This approach is limited by attempting to estim3te

a variety of unknown functional forms as a constant over some short

trajectory span. This motivates one to consider a finite memory or

fading memory estimator. However, attempts to estimate many additional

physical parameters may also yield identification or observability

problems, particularly when observations are limited to angular

measurements only. The implications of these limitations will be

addressed in Chapter II with the proposed estimator formulation.

With the above considerations in mind, an eight dimensional state

vector was chosen for the reentry application. The basic three

position and three velocity components were augmented by the ballistic

parameter, a, and the density scale height, Q, from an exponential

. .. .,,11..'. - L .- _



density model. The azimuth and elevation measurements from the

orbiting sensor(s) were then incorporated within a differential

corrector to estimate the reentry trajectory. The discussion below

will summarize the research which is presented in more detail in the

subsequent chapters.

12!
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C. Research Approach

This report will first document the mode] definition consid-

erations and apply the basic differential corrector formulation to a

variety of simulated observations. Modifications to the existing

orbit determination methods are related to the basic underlying

principles of estimation theory throughout the text. One must

consider the limitations of operating in a regime of uncertain dynamics

with an inability to exploit the flexibility of many standard model

compensation methods of estimation theory. The physical circumstances

and factors which present these limitations are discussed, as

appropriate, within the subsequent chapters.

Using the ballistic parameter and the density scale height of

an exponential density model to augment the position and velocity

variables, a linearized technique was applied to estimate the reentry

trajectories. The derivation of the basic linearized differential

corrector and reentry dynamics model is provided in Chapter II.

Careful definition of the estimator dynamics model was neces-

sary to insure a valid linearization relative to the reference reentry

trajectory and valid specification of initial conditions for the state

variables and state covariance matrix entries. Even with a simplified

dynamics model, the differential corrector technique must be examined

to insure valid linearization for both state and covariance updates

and state covariance propagation over time. Restrictions on the time

span of valid linearization over the trajectory have also been

examined as part of this research. The ultimate effect of limiting

this time span is to restrict the number of observations one may

incorporate into a single update at the reference time epoch. In

Sif



regions of high dynamic uncertainty, the linearization assumptions of

the deterministic trajectory dynamics may require use of a sequential

processor (single observation updates). The implementation of a

linearization validity check is presented in Chapter II.

The physical environment within which the estimator would

ultimately operate was also given special attention. Extensive

simulation analyses were completed to examine estimator performance

when subjected to simulated observations derived from a realistic

"truth model". These analyses examined the effects of mismatch

between the truth model and the estimator model dynamics, accuracy

variations on the angular observations, multiple orbital observation

locations, and variations of the geometric relaiz_.~:!ns between the

observing satellite(s) and the reentry trajectory. The truth model

selections were chosen to simulate a full range of circumstances which

the estimator application would ultimately encounter.

A series of Monte Carlo analyses are presented which identify

the model dynamics as the most important item impacting the estimator

performance. This assessment was accomplished by first considering the

mean bias of the trajectory position and velocity estimates relative to

the magnitude of the standard deviations from the estimator-computed

state covariance matrix. A comparison was also made between the

magnitudes of the standard deviations from the estimator-computed state

covariance matrix and those derived from the Monte Carlo samples. This

allows an examination of the systematic error in the state estimate and

the validity of the random error indicated by the estimator state

covariance matrix.

~a& 12*.



With matched dynamics in the estimator and the truth model, the

bias in the estimator solution remains small relative to the standard

deviations from the estimator-computed state covariance matrix. Also,

the standard deviations from the estimator-computed covariance comTiare

closely to those derived from the Monte Carlo data. With a mismatch

between the estimator and the truth model dynamics, the bias and the

standard deviations derived from the Monte Carlo analyses grow large

relative to the standard deviations from the estimator-computed state

covariance matrix.

A review of several model compensation methods is presented

relative to this application. These include techniques for adding a

pseudo-noise compensation to the model dynamics, adaptive estimation

methods, and state covariance deweighting techniques. The limitations

associated with the use of each of these methods for the current

reentry application are discussed.

Chapter III presents the derivation of a fading memory

differential corrector analogous to the linear estimation developments

of previous researchers (2,3). Applications are made to a wide class

of dynamic variations in the reentry trajectory. Successful applica-

tion is achieved by an adaptive determination of an ad hoc scalar mul-

tiplier, y. This scalar parameter is used to multiply the terms of the

state covariance matrix prior to an observation update, and thus,

implements a fading memory on the processing of earlier observations.

This is accomplished by examination of the size of the change in state

variables, 6xi , at each update epoch along the reentry trajectory.

The magnitudes of each xi are compared to the magnitude of the

standard deviation of their respective terms in the deweighted state
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covarialce matrix, as computed in the estimation algorithm itself.

This affords a measure to determine which trajectory time points

require application of fading memory within the estimator.

A series of Monte Carlo results are presented, showing the

application of this adaptively determined, I hoc scalar fading memory

parameter for estimation of an anticipated true reentry dynamics

trajectory. An examination of bias within thQ estimator solution with

these simulated true dynamics is provided. The limitations associated

with using the estimator-computed covariance matrix for impact

uncertainties are also discussed.

Finally, a tangent plane projection of the Earth impacts of

several estimator applications will be shown, demonstrating the

ability of the fading memory method to provide impact locations with

bias magnitudes within the standard deviations of the "deweighted"

covariance matrix. The standard deviation of the position error from

the deweighted state covariance matrix provides a good definition of

the uncertainties in the estimated Earth impact location, thus it can

be used to define a search area for the recovery of the satellite

debris. These results illustrate the viability of the method to

estimate decayed satellite impact locations and uncertainties

significantly improved over existing astrodynamic applications.

The basic contribution of the research is to provide a

technique which will help to determine the satellite impact locations

with reasonable specification of their uncertainties in an Earth

tangent plane coordinate system projection. Standard estimation

techniques are applied, but in a unique manner as dictated by the needs

of this specific, difficult and heretofore inadequately resolved



problem area. Important highlights of the research include the

identification of the limitations associated with using the standard

differential corrector for this application. The research also

documents the problems which the decayed reentry problem poses for

more sophisticated estimation tehniques such as pseudo-noise

compensation or statistical linearization.

A secondary goal is achieved by providing an estimation

approach which can be used to develop a large empirical data base of

decayed trajectories. These may potentially be used to develop the

alternative of a pseudo-noise dynamic compensation to the model

dynamics. The estimator developed represents the first successful

exploitation of global tracking observations from an orbital sensor,

while simultaneously estimating an update of the atmospheric density

with angular observations.

A,
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Chapter 1I - The Reentry Estimator

As mentioned in the Introduction, the initial research approach

concentrated on extending the existing orbit estimation techniques to

the decayed satellite problem. These methods generally use a

deterministic dynamics model within a iifferential corrector. This

chapter will document the successes and limitations of using such a

technique, considering the dynamics uncertainties present in this

application.

The first step in applying the differential corrector to the

general decay trajectory estimation problem involves definition of

the reentry dynamics model and development of the estimator

structure. The dynamics model considerations were introduced in

Chapter I. This chapter will begin with a derivation of the basic

differential corrector as it will be applied to the estimation of the

reentry trajectory and Earth impact. A complete definition of the

dynamics model is also presented. This includes geopotential

accelerations from the Smithsonian Astrophysical Observatory SAO-III

Earth Model (7), utilization of an exponential atmosphere density

based upon a least-squares fit to the U.S. 1962 Standard Atmosphere,

and the issumption of a constant ballistic parameter, 6, over a given

segment of the reentry trajectory. The implementation details of the

estimator will then be discussed.

Numerical simulation results which help establish the limits

of the estimator performance are presented. These include single

sample simulation runs, selected Monte Carlo simulation results, and

special rxmerical examples peculiar to the observer geometry

18"

. .. , ... . .- " . --- '. "" - - .I..'



relationships and reentry dynamics of this application. The overall

impact of the Chapter II results will be to show the basic differential

corrector with deterministic dynamics as inadequate for processing true

reentry data. The deterministic dynamics and infinite memory of the

basic formulation cause the estimator to yield significantly biased

solutions relative to the standard deviations of the estimator-

computed state covariance matrix. These occur when processing data

reflecting the dynamic variations anticipated in true reentry

trajectories. The use of the estimator in this form would not provide

an accurate estimate of Earth impacts for satellite debris search

requirements. With a large systematic error (bias) in the state

estimate, the estimator state error covariance matrix could not be

utilized to define a search area around the impact location. The

position bias from the estimator solution may be significantly removed

from the actual impact location. It may also be much larger in

magnitude than the random error indicated by the estimator state

covariance matrix. The results of Chapter III will address this

limitation.



A. The Weighted Least-Squares Differential Corrector

The basic differential corrector includes a nonlinear dynamics

model:

x = f(x,t) (2)

where f(x,t) is a deterministic function of the state variables and a

continuous function of time. The overbar, x, denotes a vector

quantity. Such a deterministic dynamics model is appropriate when

f(x,t) provides a good definition of the true dynamics.

A set of discrete observations are related to the state

variables by the general nonlinear relationship:

z(t ) = h(x(tn ),tn) + r(t ) (3)

where r(t ) is a zero mean, corruptive noise term of covariance R(tn)

at the observation time t
n

Assume the availability of a reference trajectory, x (t), withO

initial conditions x (t ), at the epoch time, t . One seeks to find a

correction, 6x(t), which will minimize a weighted quadratic cost func-

tion of the observation residuals.

Assume that the true dynamics solution can be represented by:

x(t) = x (t) + 6x(t) (4)
0

The reference trajectory, x (t), satisfies the dynamics model as:0

x (t) = f(x (t),t) (5)

under the premise that the 6x(t) is a "small" deviation from the true

20
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solution, x(t). If one expands Equation 2 in a Taylor's series about

the reference trajectory, the following results are obtained:

x(t) = f (x (t) + 6x(t),t) (6)
0

or,

x(t) = f(x (t),t) + A(t) 5x(t) + H.O.T. (7)0I
x (t)

where: A(t) = is the matrix of partial

t) x xo(t)

derivatives with respect to the state variables evaluated along x (t),
0

the reference solution.

Subtracting Equation 5 from Equation 7 on both sides and

neglecting the higher order terms yields the basic perturbation state

relationship of the differential corrector:

6x(.)= A(t) 5x(t) (8)

x (t)
0

Since A(t) is evaluated along the reference solution

trajectory, one generally obtains a time dependent linear differential

equation which has the solution:

Sx(t) = (t,t ) 6x(t o ) (9)
0 0

The state transition matrix 4(t,t ), is obtained by solution of:0

2P
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d [ (t,t )] =A(t)l (t t )(10)

x 0 (t)

with initial conditions, ¢(to,t) I, the identity matrix.

The general observation relationship of Equation 3 yields a

similar linear perturbation relationship between the changes in the

observations and the state variables. Evaluating the observation

equation along the reference trajectory, x (t), at discrete times, t nO n

yields the nominal measurements:

z o (t n )  (Xo (tn),t n

which is defined without a corruptive noise term. Note that a random

noise corruption term is included on the actual observations, z(t ).n

These true observations satisfy:

z(tn) = h (x o(t n ) + 6x(t n),t ) + r (t ) (12)

Expanding about the reference solution in a Taylor's series

yields:

Z(tn ) h (x o (t n ),t n ) + H (x o(t n ),t n) 6x(t n) + H.O.T. + r(t ) (13)

Subtracting Equation 11 from both sides of Equation 13 yields a rela-

tionship for the residuals of the observations, v(tn ) - the difference

between the true and reference observations:

V(tn) z(t n ) - Zo(tn) = H (x (t ),t ) 6x(t n ) + r(t (14)
n n on o n n tn)+ n)

where: i) the H.O.T. have been neglected, and ii) H(x o(t n),t n ) is the

partial derivative matrix of the geometry relationship evaluated at

the observation times along the reference trajectory. Note that the

22



observation residuals of Equation 14 differ from what is often referred

to as the estimator residuals - the difference between the predicted

and the estimated state solutions.

Assuming the validity of the linearization process, one now has

a linear dynamics and geometry relationship from which the differential

corrector may be developed. To initiate this process, one seeks to

minimize the difference between the measured observations, z(t ), and
n

the set of reference observations, z (t), in a cost function which is
0 n

a weighted quadratic form. Expanded to first order, the cost function

is:

J z(t ) -Z o (t) - H(x (t n),t n ) 6x(t n ) 2  (15)
W

which in general is weighted by the weighting matrix, W.

As Reference 13 shows, if W is chosen to be the positive

definite inverse observation covariance matrix, R(t n)-1, the

minimization of J results in a first order approximation to a minimum

variance estimate for the state variables. For this application,

R(t n ) is chosen as diagonal under the conditions that the random errors

in azimuth and elevation are uncorrelated within a given observation.

The estimate is shown to be unbiased (13) under the

restrictive assumptions of:

- Exact dynamics

- Zero mean, random observations

- Valid linearization assumptions

The numerical results of Section II.D. will show the efficacy of these

assumptions for the current reentry application.
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In actual application, the batch processor seeks to find the

6x(t0 correction at a selected epoch, to, which will minimize the cost

function. For structuring this batch processor, it is more convenient

to formulate the above problem in matrix-vector form which incorporates

all n observations to be processed by the estimator for a given epoch

update. The notation below includes capital letters for matrices,

with subscripts reflecting the observation index being processed, T.,
n

and parenthetical subscripts for matrices including a collection of up

to n such observations, T(n

Define,

H(Xo(t n)'tn )  ( t 
n *t o

H (X o(t n l t n I  ¢ (t n l t o

T(n) (16)

H(x (t ),t1) (tlyt

and,

r(t n )

r (it_)

r = (17)(n)

r(tI)

The matrix equivalent to Equation 14 then becomes,

24



V(n) = T x(to) + r(n) (18)

Define R(n) as the matrix of the observation noise covariances in a

symmetric, block diagonal form:

R(tn )n

R(tn I

R n (19)
(n)

R(t I )

R(n) is block diagonal under the conditions that the random error in

successive observations (ie, at times tn_ and tn ) is uncorrelated.

This is a reasonable assumption for the 10 second interval between

olservations.

The weighted least-squares cost function J is now of the form:

T TJ = [V(n) - T(n) 6x(t )] T R(n) [vY(n) - T(n) 6x(t )] (20)

Since R (n)  is positive definite, the necessary and sufficient

condition for minimizing J is:

-0 T(21)
a6x(t o )

0

Solving for 6x(t ) yields (13):

(to) (T R n T T R v (22)
0 (n) (n) (n) (n) (n) (n)

By definition, for zero mean 6x(t ), the state covariance matrix for

the differential corrector is:

25
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S n,nt) = E (6x(t o ) 6X(to)T) (23)

S (t ) denotes the state covariance matrix, and E is the expectationn,n o

operator. Substituting 6x(t ) from Equation 22 yields:

TT 1S (t)= E [(T R T T T R v
n,n o (n) (n) (n) (n) (n) (n)

T R T (T T T (24)
(n) (n) (n) (n) (n) (n)

(T(n) R(n) " T(n))- T(n) R(n) -  E(V(n) V(n) T

R T (T T T )-1 (25)
(n) (n) (n) (n) (n)

Recall that v(n) is the accumulated vector of the observation

residuals. By definition, for zero mean observations:

- - T
R -E(v v )(26)
(n) (n)V(n)

Therefore, after substitution and simplification, the state covariance

expression becomes:

S (t) =(T T R 1 T (27)
n,n o (n) (n) (n)

Should a priori state covariance information (denoted here by S' (t ))
0

also be available, it can be shown that (14):

S (to) = (S'(to)-1 + T~n Rn) TCn)  (28)

Assuming a constant ballistic parameter, 8, over some portion of

the trajectory, the application of the differential corrector reduces

to the processing of a series of segments of observations. Each

update epoch may be designated with the index m. At an epoch, the
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estimator may process up to k observations for an update. In the

limiting case, only one observation per epoch update will be

processed. The figure below illustrates the notation for the

sequential estimator formulation. The state estimate at epoch time

t is denoted Xm(t ) prior to update. At time t , the estimatorm in-i mm

may process one or more observations. The updated state estimate,

x m(tm ), is obtained and is then propagated forward to the new epoch

time, tm. The process then repeats.

Xm~il(t m ) O 
t 

Epoch

m

xm(tm) " ~

m mn

Observations

t n=2m
* n

t n=k
M mn

x (t +i) tm+I Epoch

+ (tm+ 1 )
ti I n1l

* n

tm+1 n=2 Observations
• n

t ti+ 1 n=k
n

2?



Having propagated forward from an epoch at time t m , the a priori

state covariance at the new epoch, tm+ I , is Sm+l m . Using the

reference trajectory, x (t) propagated forward by integration of the

dynamics differential equation, one formulates the information and

weighted residuals matrices:

T T . -
(T n) R(nr T (n)) and T (n R(n) V (n)

where n = 1, . . , k, the number of observations used to update the

state estimate at the epoch t .m

An initial correction to the state epoch is then found from:

-) + T R * )1T T -mX(tm+l) = (Sm+l,m (n) (n) T(n))- (n) R(n)- (n) (29)

This 6x(t is added to the reference trajectory to form a new
m+l'

reference trajectory in an iterative fashion, such as:

Xm+l (tm+l)= Xm (tm+l) + 6x(tm + l i  (30)

Successive application of the differential corrector continues

until the convergence criteria on the observation residuals are

satisfied. The initial, a priori state covariance matrix remains

constant until the iterative process has converged. On the final

iteration, the following update results:

xm+l (t = ) m (tm+l) + E 6x(t m+l) (31)

= (S + TnT - T ) (32)
m+l,m+l m+l,m (n) (n )  (n)-

where k equals the number of iterations required for convergence. The

28

!A



information matrix, T T R 1 T is evaluated from the referenceinformatin matr n) T (n) " ~ )

trajectory on the last iteration.

For orbital applications, the standard convergence criterion of

the iterative process has been implemented by a magnitude check on the

observation residu.Is (5,13). One may define a norm of the observation

residuals within (n) on a given iteration as:

k p
vli [  vjZi (33)

i=l j=l

indexing over j for the components within a single observation residual

vector, and over i for all the observations being processed for the

current epoch update.

The convergence criteria have often been specified in terms of

either a relative or absolute criterion (5,13):

Illill - Ilvi+ 11H

< Ei Relative (34)

ll ill

or,

IIvi II < c2 Absolute (35)

When either of these conditions are satisfied, the iterative update is

considered to have converged. Note that Equations 34 and 35 do not

represent a sufficiency condition for convergence of an iterative

process. Kaper, et al (15) point out that the above criterion only

satisfy a necessary condition for convergence of an iterative process

of successive linearizations for a nonlinear system. They suggest
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that a "sufficiency criterion" must also be specified which examines the

magnitude of the resulting state correction, on the final iteration.

This 6 x i(t M+l), i = 1,... ,8 must also be small for the process to have

converged. In actual estimator application, the cl and C2 necessary

conditions were chosen empirically such that the state correction on

the converged iteration yielded values less than approximately .01

times their respective standard deviations from the estimator-computed

state covariance matrix. While not a true sufficiency condition in a

strict mathematical sense, this allows implementation on the digital

computer without generation of many additional iterations of the

estimator, whose solutions contribute little to modifying the state

estimate.

To summarize the conditions used to determine convergence:

1) Assure that the necessary criterion of the observation

residual magnitude of either Equations 34 or 35 is satisfied.

2) Assure that the individual 6x on the final iteration, Z,

are less than approximately .01 times the standard deviation

of their respective xm+l. terms.

Additionally, one should examine the following conditions:

3) Assure that the absolute value of the residuals is less than

the one sigma magnitude of the observation covariance:

Ivii < 1 i=l azimuth i=2 elevation (36)
n ii

Failure of the bound of Equation 36 indicates a potential

onset of divergence.

4) Assure that the total change in each state variable is less

than or equal to its one sigma a priori uncertainty:
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E 6x. < V i = 1,8 (37)
j=l 3 - Sm+lmii

This last criterion provides assurance that the state upd:--e at

a given epoch is consistent with the state uncertainties

defined by the use of Sm - 1 within the update expr -sion for

6x(tm+I ) as the dynamics weighting matrix.

As later discussions indicate, violation of this criterion offers

a valuable measure of the potential onset of divergence of the state

solution, for the non-exact dynamics cases. In the circumstance where

observation residuals do not grow unbounded, or are not non-zero mean,

this criterion may offer a measure which indicates a need to implement

a fading memory or other compensation method to the estimatcr.

Application of this batch processing algorithm to reentry esti-

mations has often resulted in poor estimator performance. This is

largely due to the more significant non-linear dynamics of reentry and

the use of a deterministic and simplistic dynamics model of Equation 2

in an uncertain dynamics region. Consider the effects of neglected

nonlinearities. Both dynamic and geometric nonlinearities can impact

the state vector and covariance update. As a means to insure the

validity of the linearization assumptions, a linearity check was

utilized which was applied to each iteration of the differential

corrector process (16). This was done to insure reasonable confidence

in the linear relationship between changes in the state variables and

the observations, as shown in Equation 14.

Consider the reference trajectory observations on two successive

iterations, i and i+l:
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z n(t ) =h((t ) t ) (38)
n n n

z (t h(x (t t (39)n tm )i+l Mmi+l'
n n n

Assuming,

x m(t) = Xm(t)i + 6x(t) (40)

and expanding about the ith reference trajectory yields:

z (t ) = h(x (t )it ) + H(xmCt )i t ) 6x(t ) + H.O.T. (41)
n in mn in 1 i M in 1n i

n n n n n n

Therefore-

6Zn z nt )i+l - z nt ) = H(x m(tm )itm ) 6x(tm ) + H.O.T. (42)
n n n n n

or as implemented relative to the epoch update of the state variables:

Szn = H(x mt )(t t )(tm t m) 6x(t ) + H.O.T. (43)

n n n

One may specify a H.O.T. magnitude check as:

IH.O.T.I
(44)

IT (n)6X(tm)

on each successive iteration of the iterative solution process. The

H.O.T. is obtained from Equation 43, since 6z andn

H(x m(tm )i tm ) 0(tm ,tm) are known quantities.
n n n
In actual application, e was chosen as 0.1 since this lineariza-

tion retains the first term in the Taylor's series expansion. This

linear term should be at least one order of magnitude greater than the
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H.O.T. in the expansion. If this criterion is violated, one could

abandon the linearized approach to estimation with a deterministic

dynamics model or reduce the time span over which the linearization is

assumed valid. Limiting the number of observations processed at a

given epoch update limits the time span over which the linearization

approximation is valid.

With exact dynamics, the later Monte Carlo results (Figures 6 -

13) illustrate the basic validity of the estimator performance using

this Taylor's series linearization approach. As the non-exact dynamics

cases substantiate, the dominant impact on estimator performance is

due to the uncertainties in the true reentry dynamics. This circum-

stance causes one to address the dynamic uncertainties first, prior to

pursuit of more sophisticated techniques such as a higher order

estimator or a statistical linearization approach. These points are

discussed in Chapter III.

To summarize, the estimator update and propagation equations are

provided below for an infinite memory formulation:

Propagations between epochs:

State: integrate, with initial conditions x m(t ), from the

epoch at tm

x(t) = f(x(t),t) (45)

to obtain m (t m+) at the epoch tmtin+ 1

Covariance:

S m+Im = '(t+,tm) S 4 (tm+l,tm)T (46)

33.
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Update at next epoch:

State:

xm~l( M+l )x (t m+i) + Z~ 6x(t M 1 ) 1  (47)

Covariance:

S = (S + +T R T )1 (48)
m+l,m+l m+l,M (n) (n) (n)

Recall that k. is the number of iterations required to satisfy conver-

gence and T ()TR ()-1 T ()is evaluated from the reference trajectory

on the final iteration, Z.
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B. Dynamics Model

B.l. Eight Dimensional Formulation

Previously stated, an exponential atmosphere and constant

ballistic parameter assumption were combined with the position and

velocity variables to construct an eight dimensional state vector,

x(t). In this manner, the estimator solution will contain two

distinctly quantifiable, physical parameters: the ballistic

parameter, S, and the atmospheric d'ensity scale height, Q.

Consider the influence of the atmospheric density model on the

estimator performance. A review of the standard atmosphere density

equations illustrates an increased complexity whe: compared to an

exponential (or isothermal) density model. The application of the

standard density model requires separate equations in several

altitude layers during reentry. All densities are defined relative to

base altitude values for density, pB' and temperature, T . In the non-

isothermal layers the density is functionally related to the direction

and rate of change of the temperature with altitude. This relationship

is characterized by the thermal lapse rate, L. Equation 49 defines the

non-isothermal standard density expression.

IB TB (1 13 {1 + (Mgo*/RL)}
P =  B 0B (49)

T B  + L (11 - B)

where:

H H B = geodetic altitude, and geodetic base altitude,

respectively

M = molecular weight ol air
0
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g = acceleration of gravity

R = universal gas constant

M and R are generally constant below 80 KM altitude where continuum gas0

dynamics apply, although the standard atmosphere equations are often

used well above 86 KM altitudes. (4,10)

Equation 50 defines the isothermal standard density expression.

Mgo* (H - H B)

P =P B exp {- 1 (50)
RTB

Within the linearized estimation technique one must linearize the

equations of motion relative to a reference trajectory. This involves a

Taylor's series expansion about the reference trajectory solution. This

requires partial derivatives of the density expressions with respect to

the trajectory position variables (x,yz). The position variables are

embodied within the geopotential altitude terms, H . Due to the
,

presence of H within the denominator of Equation 49, the complexity

and nonlinear character of the partial derivatives are more pronounced

within the non-isothermal layers of the atmosphere.

The derivatives of the density expression with respect to x, y

and z are also difficult to calculate across the altitude layers of a

standard density model. The linearization is often required to be

valid across layers of differing thermal lapse rate or between non-

isothermal and isothermal layers. This will impact the linearization

process since the density across these layer boundaries is a
,

continuous function of H , but the spatial first derivatives of the

density are not continuous. The alterate formulation of an isothermal

density model for the entire atmosphere can greatly simplify the

36

A



implementation aspects of the estimation technique.

p = p exp {- /Q} (51)0

where:

Po = Earth surface reference density

H = geodetic altitude

Q = RT is defined as a constant in the altitudes of0

Mo go reentry, called the density scale height.

(This is equivalent to Equation 50 if TB=To, H =0, and PB=Po.)
B BB

While this exponential model is an inherently poorer functional

description of the "mean" atmosphere density variations with altitude,

it is more easily incorporated into the reentry estimator. If

acceptable estimator performance can be available from this more sim-

plified expression, it will greatly reduce the complexities associated

with use of the standard atmosphere equations. The advantage of this

simplified implementation is a reduced mathematical complexity and the

availability of continuous valued density and partial derivatives of

density along the reentry trajectory.

The density scale height was chosen as an eighth state variable

since it is slowly changing within the altitudes of reentry (below 100

KM) as shown in Figure 2. It also is the basic independent variable

within the exponential atmosphere density expression (Equation 51).

Alternate state variable forms were considered to augment the

basic six position and velocity variables. An approach to estimating

the uncertain dynamic variables has been used by many authors which

incorporates a first order Gauss-Markov assumption for the unmodeled

accelerations. Tapley and Ingram (17) suggest such a first order
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Gauss-Markov process. In their formulation, the following expression

is used:

it) = -Bi (t) i + ui(t) i = 1,2,3 (52)

where:

C is a time correlated component

B are constant coefficients

and, u (t) is a white, Gaussian noise term with statistics:

E (U(t)] = 0 (53)

and,

TE [u(t),u(t + -)T] = Q(t) 6(t) (54)

Similarly, Myers and Tapley (18) formulate the unmodeled accelerations

as:

ci(t) = - ci(t)/T i + ui(t) (55)

where T. = a time correlation coefficient = 1/B.. This approach con-
1 1

tains several drawbacks for the general decay satellite application.

First, it requires a pseudo-noise compensation to the model dynamics,

while the deterministic estimator dynamics of Equation 2 do not. The

time correlation coefficients must be determined along with the Q(t)

covariance matrix elements, requiring extensive simulation analysis

for tuning. As the orbital experience indicates (5), this process does

not have high potential for success in the uncertain reentry dynamics

regions with short arcs of empirical data to assist the tuning process.

Secondly, if separately estimated along with the ci terms, the Ti or Bi
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coefficients can ultimately increase the state dimension from the

original six positions and velocities to 12 state variables. Lastly,

as Myers and Tapley (18) point out, the specification of initial

conditions and covariance values for these variables is not easily

related to the physical processes present in reentry. Minor errors

in specification of these initial values were found to have signifi-

cant impact on the estimator performance.

Initial values and covariance magnitudes for the ballistic

parameter, 8, and the density scale height, Q, are readily available.

The value of 8 and its associated covariance is generally available

from propagating the last SPACETRACK orbital estimation to the first

reentry epoch. The initial value of Q and its covariance can be

developed from a standard atmosphere model and modified with knowledge

of the local atmosphere properties which may possibly be known for the

specific reentry case of interest.

In the current application, the initial density scale height

was derived from a least squares fit to the base density values of the

altitude layers within the U.S. 1962 Standard Atmosphere (Appendix

B.I.). The resulting scale height was Q = 7.0031 KM.

A rectangular, inertial coordinate frame (Earth Centered

Inertial - ECI) was chosen to minimize the complexities of the

computational procedure (19). As such, the following state vector was

selected:
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Xl =x

x2
X 2 = ;

x = y

x4 =y
x - (56)

x5 =z

x6

x 7 = 0

x8  Q

The product Bp was chosen so that x would be of order one in the
07

kilometer, kilogram, second (KKS) system used for the dynamic computa-

tions. Use of the more standard meter, kilogram, second (MKS) system

would result in very small covariance terms for the x7 state ($p0) and

aggravate an already ill-conditioned state covariance matrix (to be

shown later in Section D.3.). The term p equals the Earth surface0

reference density model value, and Q is the density scale height of the

exponential density expression:

-(H /Q) 
(7S0o  (57)

The geodetic altitude, H , is developed from the Earth model parameters

as follows:

H =g/goH (58)

where: g is local gravitational acceleration obtained from the

magnitude of the geopotential acceleration components along

the x, y, and z coordinates.

go is the reference geoid level gravitational acceleration
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The H term represents a geocentric altitude:
0

H = R -R (59)
0 S

R is the local radius position relative to the Earth center,

R = (x2 + y2 + z2) , and R is the local Earth surface radius position:S

R = R (1 - f) [1 - (2f - f2 ) cos 2 6] (60)
5 0

where:

f = the flattening factor of the reference geoid whose

elliptical shape is consistent with the dominant non-

central gravity term, J2, due to the equitorial bulge.

6 = local latitude, cos 6 (x 2 
+ y2) /R0

R = radius of the reference geoid at the equator0

The estimator dynamics model includes both aerodynamic and

geopotential acceleration terms within the f(x(t),t) expression. In

this manner, the dynamics equation will have the form:

xi =x2
i 2

2 fd + f

x xx

3 x 4
4 =fd + f

y gy

y y (61)

5 = x6

X6  fd +  g
z gz

7 0

;8  0

The aerodynamic accelerations are derived from:
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ad - B VR VR (62)

where VR is the scalar magnitude of the velocity vector relative to a

rotating atmosphere. The decomposition of this aerodynamic accelera-

tion along the three coordinates x, y and z results in:

fd = - BVR (x+ wy)

fd = - VP VR (y - ,x) (63)

y

fd = VR z
z

where w is the scalar magnitude of the rotational velocity of the Earth,

about the z axis.

The following development yields the geopotential accelerations

(20). Consider the geopotential function:
rn

n GM Rn
Z p (61) [C cos (mA) + S sin (mX)] (64)

n=0 m=0 Rn+l n nm nm

where: G = universal gravitational constant

M = mass of Earth

R = mean equitorial Earth radiuso

R = distance from Earth center

p = associated Legendre functions of degree n and order m
n

C n,S = zonal, tesseral harmonic coefficients

6' = z/R

X = longitude

One may define a zonal and tesseral harmonic component such that:

GM R n
Um _ 0 Pm (6') cos (mA) (65)n Rn+l n
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nGM R
0Vm  -o m (P') sin (mX) (66)

n Rn+l n

The geopotential which results is:

n
= Z E (C Um + S Vm ) (67)

n~m=O m n nm nn=0 m=_0

Defining a as the Right Ascension (RA) of the Greenwich

Meridian, one obtains the following geopotential acceleration terms:

f = cos a VV -sin a 7V
xx s y

f = sin a VV + cosa VV (68)gy x x s y
9y

f = VV
gz z

where the gradient terms are defined by:

n au m  ;V
VV = ___nn +S

x Z Z (Cnm 6x nm ax
n=O m=O

n aUm  aVm
VV y= Z Y (Cnm a- + S (69)

Y n=Om0 nm ay

n ;U m  aV m

TV W ( n nVV z= E E (C nm----z- + S ;n
n=O m=O nm

The Smithsonian Astrophysical Observatory SAO-III (7) Earth

Model was used to define the model parameters and zonal and tesseral

coefficients. In actual estimator development and simulation only the

central gravity C00 term and Earth oblateness C20 (J2 ) term were used in

the reentry altitudes regions. The computer program code is easily

modified by changing dimensions and indexing to incorporate the full

SAO-III Earth Model. The retention of the J2 component, and no higher
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order geopotential terms, is consistent with the relative geopotential

and aerodynamic acceleration magnitudes and uncertainties in the reentry

altitude regions. An ability still exists to use the full SAO-III

Earth Model in propagating the final orbital vector to the first epoch

update point of the reentry observations. Consider the relative aero-

dynamic and geopotential acceleration magnitudes.

1) In a high altitude region above the reentry data

points (approximately 60 NM or 111 KM high):

Aerodynamic acceleration: aD = 5.75 x 10-13 K/s2

Central gravity term: aj .00947 K/s2

0

J2 gravity term: aJ2  1.48 x 10 - 5 K/s 2

J gravity term: aJ 4.32 x 10- K/s2

4 4
This illustrates the need to carry the higher order

geopotential terms when propagating the final orbital

solution forward to the first reentry data point. In

this region, the higher order geopotential terms yield

accelerations whose magnitudes are significant relative

to the magnitude of the aerodynamic acceleration. (All

harmonics of order J3 or higher exhibit accelerations

whose magnitudes are similar to or smaller than the

J4 term.)

2) In the reentry altitude region (IR data):

(approximately 40 NM or 74 KM high)

Aerodynamic acceleration: aD _ 5.41 x 10 -
5 K/s 2

Central gravity term: aj = .00957 K/s
2

0

J2 gravity term: a2 1.52 x 10
- K/s 2
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J 4 gravity term: a 7.4 x 10-8 K/s 2

4 1J4
The J2 acceleration contribution becomes of the same order

of magnitude as the aerodynamic acceleration. It is there-

fore necessary to retain the J2 term in the dynamics model.

The higher order terms may be neglected.

3) Typical Earth impact accelerations:

(assume V .15 K/s)

Aerodynamic acceleration: aD - 5.5 x l0- 3 K/s 2

Central gravity term: aj .009798 K/s
2

0

J2 gravity term: a 1 1.59 x 10
- ' K/s2

The aerodynamic accelerations dominate the higher order

geopotential terms and assume magnitudes of an order similar

to the central gravity accelerations. The J2 gravity term

accelerations become negligible relative to the central

gravity term and aerodynamic accelerations.

A similar comparison can be made between the acceleration

magnitudes of the incividual geopotential terms and the anticipated

uncertainties within the aerodynamic accelerations of a simulated true

reentry dynamics set. Using an example from a typical single run of

the Monte Carlo analysis (with a truth model containing the U.S. 1962

Standard Atmosphere and a as a function of Mach number) yields the

following two cases:

CASE 1: Assume x, y, z, po , Q to be one standard deviationo

from their mean estimator determined values

CASE 2: Assume only x, y, z to differ by one standard deviation

from their mean estimator determined values
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The deviations from the mean aerodynamic accelerations at a high

and low reentry altitude region of IR data are:

73.04 KM altitude -

CASE 1: AaD = 3.66 x 10
- 5 K/s2

CASE 2: AaD = 5.466 x 10
- 6 K/s 2

41.23 KM altitude -

CASE 1: AaD = 2.346 x 10- 3 K/s 2

CASE 2: AaD = 2.748 x 10- 4 K/s 2

In the beginning of the IR data region (73.04 KM), the aero-

dynamic un-ertainties can be of the same order as the J2 acceleration

magnitude. During the reentry data region (41.23 KM), the uncertain-

ties are of the same order or much greater than the J2 acceleration

magnitude depending on the random error in each of the pertinent state

variables. They can even become significant relative to the magnitude

of the central gravity accelerations (approximately .0096 - .0098 K/s2).

As a result of these relative acceleration considerations, the estima-

tor model used both the central gravity and Earth oblateness (J2 ) terms

from the geopotential expansion.

B.2. Seven Dimensional Formulation

As previously mentioned, the standard practice by operational

agencies such as the USAF SPACETRACK System (5) has been to use a seven

dimensional state vector for estimator formulation. The atmospheric

density ratios are then obtained from the standard density model of

Equations 49 and 50. The state vector becomes:
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Xl =X

x 2 =

x3 = y

x x y (70)

x = z

x 
6

x7 =Po

The U.S. 1962 Standard Atmosphere Model (10) was used for this

density information with the geopotential altitude values modified to

reflect the SAO=III Earth model values (see Appendix B.1). Following

the same development as the eight dimensional estimator formulation, a

complete seven dimensional estimator was constructed. Performance

implications of each formulation were made and will be discussed with

the numerical examples in Section D.3., later in this chapter.
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C. Observation Relationship

The observation relationship for the IR data from the orbital

sensor takes the form (see Figure 1):

n n nwhr:z(t )= h(x(tm )'t )=mnn m {hl(t) ) }htmn  (71)

qy

h (t si& 1  IZ, + TT measured within the (72)
1 m n (x'y' plane from the

negative z' axis as
in Figure 1.

xt
h 2(t m n sin "I  (x z + y ,7 + z - ) (73)

n

(measured frm the y'z' plane to the reentry satellite

position vector, r; see Figure 1.)

The relationships for the geometric partials matrix, H(t ) =
n

Dh(x,t)

and also the dynamics partials matrix, A(t)

x (t )
n

f(x,t)

ax for the basic eight dimensional estimator are shown

x m(t)

in Appendix A.
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D. Numerical Simulation Results

Having developed the basic estimator structure and dynamics

model, one must now quantify its performance with simulated reentry

data. As Reference 13 details, the application of such a successive

linearization technique results in an unbiased estimate only under the

following restrictive assumptions:

1) The inverse covariance matrix R (n)  is used as the

weighting matrix within the basic cost function of the

differential corrector (Equation 20).

2) The observations are randomly distributed and zero mean.

3) The changes in the observations are linear functions of

the changes in the state variables.

4) The dynamics model is exact.

In the simulated estimator runs which follow, the inverse

observation covariance matrix was used for weighting. The simulated

observation noise was generated from a computer based random number

generator. This noise was essentially zero-mean, uncorrelated, and

had a standard deviation equal to the standard deviation of the

observation covariance.

The simulated results show that Equatioii 44 can successfully be

used to limit the time spans of updates such that the relationship

between observations and state variables changes remains essentially

linear. Recall that c was chosen as 0.1 to insure that the linear

term of the Taylor's series expansion was at least one order of

magnitude greater than the neglected higher order terms.

Particular attention was given to non-exact dynamics and

variations in observation geometry as they impact the bias magnitude
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in the estimLtor solutions. The res!lts of Section D.3. will also show

that a limited observability of the system is provided with the angle

only observations from a single observer. This results in a very ill-

conditioned information matrix in the absence of a priori state

covariance data. An extensive series of simulated data runs was

completed with the basic, infinite memory estimator formulation

(Equations 45-48). These were selected to examine which factors

required further evaluation for improvements in the application.

A series of single sample simulated data runs were completed to

provide insight into the performance of the estimator while considering:

1) Estimator dynamics model limitations

2) Variations in observation noise levels

3) Variations in observation geometry relative to the

reentry trajectory

4) Observations from multiple observation sources on the same

reentry trajectory

A Monte Carlo analysis was then completed to examine estimator

performance with exact dynamics at two different levels of observation

noise. A third set of monte Carlo runs was completed with a signifi-

cant mismatch between the estimator dynamics and the dynamics of the

truth model, from which the simulated observations were derived.

The mismatch between the deterministic estimator and the truth model

dynamics model is shown to be significant. Chapter III presents a

discussion on the model compensation techniques considered to address

this problem.

Lastly, a number of special numerical investigations is pre-

sented. These include: a comparison of the seven and eight
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dimensional estimator formulations, single observation satellite

observability considerations, and an analysis of the propagation of

the final epoch state covariance matrix to Earth impact.

D.l. Single Sample Results

An extensive series of single sample runs were made to identify

the most significant performance aspects of the basic differential

corrector formulation. In the application of the estimator to

simulated data, the solutions for x7  ap 0 and x8 = Q are obtained

under the assumption that these quantities are locally constant over

the time span between the epoch update point, t and the observationsm

at times tm
n

Single sample simulation results will be shown with observations

from both single and dual observers being processed for each epoch

update. The basic criterion for evaluating gross performance trends

from the single sample runs was to determine the state variable

"error." This error is defined as the difference in magnitude between

the estimator state solution and the solution associated with the non-

noise corrupted "truth model" from which the simulated observations

were derived. Results which show an error significantly greater in

magnitude than the standard deviation of the estimator-computer state

covariance values were used for case selections for later Monte

Carlo simulations. For the sake of brevity this error assessment is

presented only at the time of the last observation along the reentry

trajectory.
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D.I.I. Dynamics Mismatch Results

A number of truth models were selected to examine the performance

aspects of the estimator with significant mismatch between the estima-

tor dynamics model and the functional form of the truth model dynamics.

These included truth models with dynamic variations of: i as a function

of Mach number, a high density exponential density profile, a standard

atmosphere density profile, a discrete change in ballistic parameter,

B, and various combinations of these dynamics. The truth model

trajectories and the dynamics mismatch profiles of the variable B and

atmospheric density profiles are contained in Appendix B.1. Appendix

B.2. contains the details of the single sample estimator runs which

are summarized below.

The initial epoch for this simulated, decayed satellite tra-

jectory was at an altitude of 73.82 KM with a 0.5 degree reentry angle.

Initial positions and velocities are identical, within both the

estimator and the truth model. Initial estimator conditions for x7 and

x8 vary from the truth model only if that particular case differs from

the estimator dynamics.

Most single sample cases included exact (non-noise corrupted),

truth model derived observations with a 10 -
5 radian one-sigma weighting

within the observation covariance matrix, R (n)  In selected cases,

corruptive random noise was added to the simulated observations to

examine the combined effect of dynamics mismatch and observation noise

on the solution process. With the observation satellite positioned in

a synchronous orbit this 10 radian noise represents a position

uncertainty of approximately 0.4 KM at the points along the reentry
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trajectory. The noise corrupted simulations were further examined in

the subsequent Monte Carlo analysis.

The single sample results are shown in Table I at the time of

the last observation, T = 330 seconds trajectory time, illustrating:

error, estimator covariance standard deviation (one sigma) values,

and the error/(one sigma) ratio for each pertinent state variable.

This single sample, error/(one sigma) ratio will be referred to as the

"performance ratio" in the text. The one sigma value is from the

estimator-computed state covariance matrix. (Note that in the cases of

a U.S. 1962 Standard Density truth model (ATM 62), no error or ratio

comparison was made for the exponential scale height, x8 , since the

results of interest are the position and velocity values determined by

using an exponential atmospheric density model while processing data

derived from the use of a standard atmosphere.)

Under Monte Carlo simulation analysis, significant performance

degradation of the estimator would be evidenced by a growth in the

bias/(one sigma) ratio much beyond one. These bias values represent

the mean error in state variables over the n Monte Carlo runs. With

the qualifications normally extended to single sample assessments, one

can draw some trend information by review of these results. Concen-

trating on the performance ratio, results of the various truth model

cases in Table I show the following:

1) The ratio generally increases with increasing mismatch

between the estimator and truth model dynamics, as

expected. There is a distinct variation in which states

are more or less effected which is related to the particular

truth model data being processed by the estimator.
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2) The ratio generally increases with the addition of random

noise to the observations. This is not a true indication

of the estimator performance with random noise on the

observations, since only a single sample trajectory is

used. The later Monte Carlo results present a more

complete illustration of the estimator performance with

noise corrupted observations.

3) The ratio generally decreases (improved performance) with

one observation per update compared to two observations.

This indicates an increasing ability of the deterministic

estimator dynamics model to match the truth model over

smaller time intervals between the epoch update point and

one set of observational data. This provides an indication

of the need to apply some form of dynamic compensation to

the deterministic estimator model. Under normal circum-

stances, one would anticipate an improved performance with

more observations. However, the deterministic estimator

dynamics model is valid over a very limited time period.

4) The large ratio and error values of the step change in

a at T = 300 seconds result from the small number of

observations after this discrete change in a and the small

state covariance values resulting from having already

processed a large number of observations. The dynamics

model was then excessively weighted in the update process

and did not fully accommodate the information content within

the final few observations. Also, the small number of

observations occurring after this step change were not
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sufficient for the effects of the transient nature of this

discrete change in dynamics to settle out in the estimator

solution. Again, this provides further evidence that some

dynamic compensation is required for the deterministic

dynamics model.

Residual monitoring, which is often used to help determine a

pseudo-noise matrix or fading memory parameter selection, was considered

to address the limitations in the estimator dynamics model. As

Morrison (2) and Sorenson & Sacks (3) point out: observation residual

testing is most valid when: i) the functional form of the model

dynamics is sound, and ii) sufficiently large numbers of residuals are

available over the time span of local dynamic model validity, for the

statistical analysis of the residuals to be valid. Unfortunately, as

the expanded discussion in Chapter III will show, the time span of

local model validity is often very short. The implications of residual

monitoring with a fading memory estimator are discussed in more detail

in Chapter III.
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D.1.2. Observation Noise Variations

With the same initial state conditions within the truth model and

the estimator, a sequence of simulated runs were completed to analyze

the effect of variations of the one sigma corruptive noise on the

observations. The same dynamics were modeled in both the estimator

and the truth model. Random noise with the same initial seed was

placed upon the simulated observations using three different levels of

observation noise. In each case the estimator observation covariance,

R(n) , was consistent with the level of random noise on the observa-

tions. The resulting error and performance ratio are shown in Table II

at T = 160 seconds trajectory time, the time of the final observation.

A more severe nonlinear trajectory (i.e., lower altitude, higher

atmospheric density) with an initial altitude of 53.73 KM was used in

this comparison.

The trends which may be observed from a review of the Table II

results include the following:

1) The estimator error magnitude improves going from 10- 4 to

10 -
5 radian noise levels.

2) Acceptable estimator solutions in terms of the performance

ratio are indicated with the exact dynamics in both the 10 -
4

and 10- 5 radian noise cases. The performance ratio is not

significantly greater than one. The onset of growth in this

ratio is evident with a 10- 5 radian noise level.

3) With an extremely accurate set of observations (10- 6 radian

noise), performance degrades when compared to the 10- 4 and

10
-
5 radian noise cases. This is likely due in large part

to the overweighting of the deterministic estimator
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dynamics model late in the trajectory data span, due to a

more rapid collapse in the magnitudes of the state

covariance terms with 10-6 radian observation noise. The

linearity check of Equation 44 was consistently satisfied

throughout the trajectory estimation. This provides a

reasonable assurance that the error in the state estimate

was not primarily due to higher order term corruption.

However, model compensation or a fading memory may be

required with extremely accurate observations.
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D.I.3. Observer Angle Variations Relative to the Reentry Trajectory

With the same dynamics and initial state conditions within the

estimator and the truth model, a sequence of runs was made to compare

the effects of variations in the orbital location of the observer

relative to the reentry trajectory. These runs were obtained with an

initial trajectory epoch at 53.73 KM and may be compared to their

respective noise level counterparts of Table II, where the observer was

in a synchronous orbit with an initial Right Ascension (RA) of +45'.

Figure 3 shows the variations in the initial observer orbital positions

relative to the reentry trajectory case considered.
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Table III shows the estimator results at the time of the final

observation, T = 160 seconds. A review of these results shows:

1) There are no drastic variations in estimator performance

with minor variations in the single observer location

relative to the reentry trajectory.

2) A subtle relationship between individual state variables

and observer location indicates some potential limitations

of observability with angle only observations. This is

apparent by examining the performance ratio results of the

10- 5 noise level cases at initial RA of 220 and 45'. For

example, the ratios are much higher for the x and y position

terms and the p 0 term with the 220 RA case. In all cases,

the ratio does not grow beyond one. These effects are more

clearly illustrated in Section D.1.4., below. As the

angular separation between the observer subpoint and the

reentry satellite becomes smaller, there is a loss in

observability available from the angular observations. This

is not an unanticipated result, but it is difficult to

examine analytically with the current observer. This is due

to the coupling of the geometric partials matrix and the

state transition matrix within the estimator T(n) term (see

Equation 16). The articles by Sivazlian and Green (21,22)

lend a useful insight into the accuracy considerations of

similar angles only data for the tracking of a stationary

target from multiple observers. Their formulation is more

easily expressed analytically. They show a general

deterioration in the accuracy of the target position
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estimates as a function in the angular separation of the

target from the observers and the angular separation

between the multiple observers. They also show that this

function relationship loses its dependence on the observer

locations if the observers are positioned at right angles

to the target. When extended to the dynamic case of the cur-

rent observer, similar results are obtained. Section D.1.4.

shows the loss in estimator performance as the reentry data

approaches the observer subpoint. Section D.l.5. shows the

improvement in estimator performance with data from dual

observers, orthogonally positioned relative to the reentry

trajectory.
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D.1.4. Reentry Trajectory Location Variations

Because of the trends apparent from Table III with observer

angle variations, a sequence of simulation runs was completed with

variations on the initial trajectory RA. Observations are from an

observer with an initial RA of ±450 in each case. The initial

conditions and the dynamics models were matched exactly within the

estimator and the truth model. A 10 - random noise was placed upon

each set of observations. A lower altitude (49.86 KM), high

inclination trajectory (approximately 850) was used for this

comparison. This would stress the estimator performance by

i) beginning in a more nonlinear dynamics region of higher atmospheric

density, and ii) proceeding on such a high inclination trajectory

would result in smaller changes in observation azimuth measurements,

with the reentry trajectory case more closely approaching the

observation satellite subpoint or nadir: the Earth surface location

intersecting with the vector between the observation satellite and the

ECI coordinatE system origin at the center of the Earth. These

variations in reentry trajectory geometry relative to the observation

satellite are shown in Figure 4.

From th,. synchronous altitude of the observer, the figure of

the Earth appears approximately as a 17' solid cone. Therefore in the

observer coordinate system, the angular observation of any reentry

trajectory can at most vary between ±8.5' relative to the observation

satellite nadir. The results of this "Earth limb to satellite nadir"

variation analysis are shown in Table IV at a trajectory time of 150

seconds, the time of the final bservation.

A review of the Table IV results reveals the following:
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1) There is a general deterioration in the estimator solutions

in terms of the performance ratio as the trajectory approaches

very close to the observation satellite subpoint.

2) With a single observation satellite, even with an exact

dynamics model, a subtle interrelationship exists between

the observer geometry and the trajectory geometry which may

affect the estimation of certain states more than others.

This may be seen by examining the differences between the

RA = 0' and 450 cases for the individual state variables.

As the observation aspect on the reentry trajectory varies,

there are different variations in both error and

performance ratio for the individual state variables.

A rigorous examination of these variations near the observer

subpoint is an extremely complex problem. The geometric relationships

are coupled to the particular trajectory via the product T nn

H(X m(t )) (tm ,t m ) in the state and covariance update expressions
n n

(Equations 39 and 47). A review of Appendix A.l. and Appendix A.2.

shows the complexity of the A(t) matrix used to generate and of the

geometry matrix, H(x m(tm )). However, one can obtain some insight into
n

these considerations by referring to the observation geometry of

Figure I and the R.A. = 420 results of Table IV.

Very near the subpoint, the y' and z' observer coordinates

approach zero. As Table IV shows, the estimator solutions deteriorate

most dramatically in the three state position terms (x, y and z) and

the 8p0 term. Very minor errors in y' and z' coordinates couple very
0

directly into the trajectory position coordinates x, y and z through

the geometry matrix, H(x m(t )). Observability of the velocity states
n 7
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is obtained principally from the state transition matrix, p, within the

T matrix. With minimal bias in the velocity and the density scale
(n)

height components, the errors in position generate errors in the

solution for Opo .

This illustration for the observer subpoint case was chosen for

examination of the observability limitations from a single observer

providing angular data in this region. The utilization of dual

observers may be advisable to improve these geometric performance

relationships between the observation satellite and reentry trajectory.

Since in the general satellite decay case, no control exists over these

geometry relationships, multiple observation satellites may be required

to insure acceptable estimator performance. Examination of the

contribution of a dual observation satellite set of measurements will

be explored in the next set of single sample results.
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D.1.5. Multiple Observation Satellites

To allow direct comparison to the Section D.1.3. results, the

53.73 KM initial altitude trajectory was used to complete a sequence of

single sample simulations. These runs included variations in the

observer initial RA and observation noise levels, with data from two

observers. Table V contains the results of these dual observer runs

with error and performance ratio values at T = 160 seconds trajectory

time. These results may be compared to the single observer satellite

results of Table III. Figure 5 shows the initial orientation of the

dual observers relative to the reentry trajectory. This observer

geometry depicts a situation where a set of four synchronous observers

are positioned in orbit to provide a full visibility of the Earth.

The two observers shown would be in a position to observe the selected

reentry trajectory.

A basic consistency with the previous single observer, single

sample analysis is apparent, with some additional performance benefits

evident using data from two observation sources. The ±450 initial RA

observers provided superior estimator performance in the 10- 4 radian

observation noise cases. The 10- 5 radian noise cases for ±45' observer

RA indicate a subtle combination of a number of factors,

1) higher observation accuracy,

2) different observation geometry, and

3) a higher weighting of the estimator dynamics model late

in the observation time span.

A more accelerated collapse ir the magnitudes of the estimator-computed

state covariance entries occurs due to processing twice the data of the
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single observer case. All of these factors begin to affect the

estimator solutions in terms of the performance ratio measure.

Although single sample runs are a dangerous basis for making firm

conclusions, one can reasonably expect superior estimator performance

from the dual observer solutions -- unless the combination of higher

data volume (more observations) and more accurate data combine to

generate extremely small state covariance magnitudes late in the

trajectory. In this event, the output of the deterministic estimator

dynamics model will be overly weighted, thereby ignoring some of the

information content of the later observations. Model compensation is

then required to correct for this effect.

The combination of data from two observation sources with mis-

matched dynamics and a fading memory estimator formulation will be more

extensively investigated in the Monte Carlo numerical results of

Chapter III.

D.2. Monte Carlo Analyses

As the previous single sample simulations indicate, the major

degradation of estimator performance occurs in the presence of mismatch

between estimator model and true trajectory dynamics. While other

factors, such as observation geometry, single observation satellite

data, and highly accurate observations (10- 6 radians), indicate the

performance limits of the estimator; the dynamics mismatch cases

clearly contain the most consistently biased solutions. The purpose of

the Monte Carlo runs presented in this section is to demonstrate a

statistically sound quantification of the performance impacts with an

exact match and a mismatch between the estimator and the truth model

dynamics.
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A baseline for the Monte Carlo analysis was established as

follows:

1) A high altitude (73.82 KM) initial epoch trajectory was used

with state covariance matrix values consistent with position

and velocity uncertainties propagated from a final predecay,

orbital solution. Covariance values for p0o(x7 ) and Q (xs)

were consistent with either nominal uncertainties for the

matched dynamics cases or with the initial conditions

represented by the dynamics mismatch between the estimator

and the truth model.

2) The values of the initial state variables were randomly varied

in accordance with the initial state covariance.

3) The simulated data consisted of a set of 33 angular observa-

tions for each case, at 10 second intervals, randomly

corrupted with either 10-4 or 10"5 radian observation noise.

All data came from a single, synchronous observation

satellite with an initial RA = +45'.

4) Each series of runs retained identical seeds on the random

initial state variables variations and the observational data

for valid comparison between cases.

5) Cases involving exact knowledge of the dynamics were completed

with two observations sets per update epoch. The dynamics

mismatch case was completed with one observation set per

update epoch to insure maximum local validity of the

estimator during state update and for propagation between

observations. Additional simulations showed that up to 5 or

10 observations could be processed for the initial epoch

76

-_,



update in the near circular orbit conditions early in the

trajectory. As the maximum aerodynamic deceleration regions

are reached, this time span over which the estimator update is

valid is very limited. For ease of implementation on the

digital computer, this update time span was restricted for the

worst case along the entire trajectory. An attempt was made

to dynamically limit the number of observations used to update

the trajectory epoch points by an application of the lineariza-

tion validity check of Equation 44. This proved difficult due

to variations which occurred in the numbers of admissible

observations changing as a function of the iteration number in

a given update. As the differential corrector converged,

different numbers of observations could be used without

violating the criteria of the linearization check.

6) The dynamics mismatch results included simulated observations

from a truth model with 6 = f(Mach no.) and atmospheric

density from the U.S. 1962 Standard Atmosphere. These

represented a first step towards processing the functional

variations representative of "true reentry dynamics" relative

to the more simplified estimator model.

7) The sequence of 30 samples was selected. This number was

chosen because a negligible change occurred , , the mean bias

values of the state estimates with higher numbers of

replications. An example will illustrate the relatively

insignificant change in the bias magnitude while processing

the Monte Carlo runs. The next page shows the infinite

memory bias magnitudes for the dynamics mismatch Monte Carlo
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results on runs number 27 through 30. These may be compared

to the mean value and standard deviations computed in the

Monte Carlo analysis to see there is a rather minor change in

mean bias value with a further increase in numbers of

replications: minor as compared to the mean and standard

deviation of the Monte Carlo results.
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10-5 Mismatch Dynamics CASE 3 INF

Monte Carlo Reduction

Bias after Bias after Bias after

#27 #28 #29

x 3.2410 3.1238 3.08196

1.810 X i0- 5 1.7823 X 10- ' 1.8093 X 10- '

y 3.3603 3.2378 3.1894

# 2.274 X i0 "5 2.2108 X 10- ' 2.3513 X 10- '

z .2514 .2446 .2457

2.6597 X 10- 6  2.5606 X 10- ' 2.5152 X 10- '

p 2.5596 X 10-
3  2.5095 X 10-

3  2.4766 X 10- '

Q 4.0485 X 10
- 3  4.0471 Y 10

- ' 4.1245 X 10
- 3

Bias after Estimator

#30 Mean Standard Deviation

x 3.0037 994.67 2.1958

1.7514 X 10-5 -3.6205 .0068142

y 3.1155 2053.8 2.1960

2.4319 X i0-5 4.2434 .004735

z .2375 5961.8 .6064

2.42996 X 10
-' -1.4195 .0017136

p 2.4688 X 10
- 3  .50675 .057406

Q 4.0343 X 10- ' 6.9917 .063271

Trajectory time T = 330 seconds

at last observation
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Specific details on the estimator model initial conditions are

shown in Table VI below.

Table VI

Estimator Initial Epoch Conditions
(Reference Trajectory)

Altitude: 78.82 KM

RA: 00

Declination: 68.10

Inclination: 10.90

x - 2396 KM p - .49

; - -3.905 KM/sec Q - 7.0031 KM

y - 0 KM

- 6.67 KM/sec

z - 5965 KM

- 1.49 KM/sec

Equivalent to 6 = 4 X l010 KM2 /KG

Complete details on the a = f(Mach no.) and U.S. 1962 Standard

Atmosphere are included in Appendix B.I.
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The specification of conditions for convergence of each iteration

of the estimator at the epoch updates was consistent with existing

orbital applications (5,13). Values were chosen to preclude generating

excessive numbers of estimator iterations with insignificant changes in

the 6x(t m). As mentioned earlier in Section A., the el and C2 were

empirically determined such that the change in individual state solu-

tions was small (less than approximately .01 times the standard devia-

tion) on the final, converged iteration. The estimator convergence

criteria were specified as follows:

- Relative converge criterion, (el Equation 34) equal to:

.20 Matched dynamics 10-4 observation noise (CASE lINF)

.15 Matched dynamics 10 - observation noise (CASE 21NF)

.15 Mismatched 10-5 observation noise (CASE 31NF)
dynamics

- Absolute convergence criterion of (E2 Equation 35):

.15 x 10-4 Matched dynamics 10 - 4 observation noise

.10 x 10 - 5 Matched dynamics 10 - 5 observation noise

.10 x 10 - s Mismatched dynamics 10 - 5 observation noise

The total change in the state variables 6x(t )i was then examined

relative to their a priori standard deviations, V Smm l. . This

criteria was violated on a significant number of updates only for the

mismatched dynamics case.

Each of the three Monte Carlo cases are denoted by case number

with their respective initial state covariance values in Table VII,

below. This table shows a number for each infinite memory case (e.g.,

IINF), the observation noise standard deviation, the number of observa-

tions per epoch update, and the standard deviations from the estimator
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Table VII

Monte Carlo Baselines

Initial one sigma
(10) covariance

Case No. Assumptions value

IINF 10- 4 obs noise x 4.511 KM
2 obs/epoch update .1 KM/sec
matched dynamics

y 9.268 KM

y .1 KM/sec

Total position la: 11.28 KM (mostly intrack) z 4.575 KM

Total velocity la: .173 KM/sec z .1 KM/sec

Sp°  .1 (20% from
mean)

Q .1 (16% from
mean
density p)

21NF 10- obs noise x 1.427 KM
2 obs/epoch update .0316 KM/sec

matched dynamics
y 2.931 KM

y .0316 KM/sec

Total position la: 3.566 KM (mostly intrack) z 1.447 KM

Total velocity la: .0548 KM/sec z .0316 KM/sec

8p °  .1

Q .1

31NF 10" ob s noise x 1.427 KM
I obs/epoch update .0316 KM/sec
mismatched dynamics

y 2.931 KM

y .0316 KM/sec

Total position lo: 3.566 KM (mostly intrack) z 1.447 KM

Total velocity lo: .0548 KM/sec .0316 KM/sec

OP .316 (65% from
mean)

Q .1
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state covariance matrix for the initial state conditions. The valucs

that these standard deviations represent for p and Q are shown as a

percent deviation from the mean values for p o and atmospheric density,

p.

The results of the Monte Carlo analysis are shown in Figures

6-17. Total position and velocity data are shown in the Monte Carlo

figures for ease of viewing the eight state system. The definitions

for the presentation and discussion of the Monte Carlo results are shown

below using the position as an example:

Total position bias:

BIAS E - + (Y Y + (z + z )) } (74)
n 1

where: xt true x position term

x. = single estimator run estimate for x position term1

n = 30 replications

1 sigma (standard deviation) measures:

1) From the estimator computed covariance:

1 sigma est. E [o 2 + o 2 + a 2]-
x y 2)

These values are derived from the average of the state

covariance magnitudes over the 30 estimator runs. They come

from the updated state covariance, S M m to maintain

consistency with the updated position and velocity values

used to present these results (Figures 6-17).

2) RSS = the root sum square of the Monte Carlo derived mean

square errors from the true value.
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n )2 n (yt -Y i) 2  (75)
n-l i t t 1 t i

+ n 'L ( t  - i ) 2

3) 1 sigma about mean solution = RSS of the variance about the

mean solution.

n 2 n
E (xm- Xi) + - E (Y - y.) (76)
i=1 (m + i=l (Ym i

n (zm - zi) ]
i=1

where: xm = mean estimator solution for x position term for

n runs

Similar expressions were developed for the total velocity magnitude

terms.

Two principal measures of merit were used to assess the Monte

Carlo results. In the figures labeled "ESTIMATOR PERFORMANCE", the

ratio of RSS of the mean square error about the true solution to ONE

SIGMA (average estimator-computed standard deviation value) are shown.

This ratio gives an, indication of the validity of the estimator

covariance matrix values. For acceptable estimator performance the

ratio should remain close to one.

In the set of figures labelled "MONTE CARLO RESULTS", the basic

objective was to illustrate the mean bias magnitude (over 30 samples)

relative to the estimator-computed standard deviation values. Two

additional measures of the estimator performance are also displayed to

assist in assessment of:
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i) The validity of the estimator-computer state covariance, and

2) The "apparent" divergence of the estimator solution in the

presence of mismatched dynamics models. This apparent

divergence is defined as a bounded divergence in the state

solution. This was the -haracter of the growth in the

position and velocity biases in the mismatched dynamics case

31NF. A "true" divergence, by contrast, would illustrate an

unbounded growth in the solution bias. By strict definition,

a true divergence would require some specific time to reach

an unbounded condition. Practically speaking for this appli-

cation, a true divergence would generate a skip trajectory

which does not reenter the Earth atmosphere.

The additional measures included the second order statistics

(standard deviation values) derived from the 30 Monte Carlo replicates.

One is from the mean square errors about the true solution (Equation

75) and the other is from the variance about the 30 sample mean solution

(from Equation 76). With the growth in bias in the estimator solution,

these two measures of the estimator performance will diverge. The

standard deviation about the true solution (Equation 75) should

increase with the bias in the estimator solution. If the standard

deviation about the mean solution (Equation 76) maintains levels

consistent with the estimator-computed values (Equation 51), the

estimator-computed variance will be indicative of the real random error

in the estimator solution. One then must address the impact of the

systematic error resulting from the bias in the estimator-computed

state variable solutions. Classical methods include tuning the

estimator so that its computed covariance matches actual mean square
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value errors, incorporating "bias" correction terms from higher order

filters, employing full scale higher order filters, etc. (23,24,25)

Examination of Figures 6-9 shows acceptable estimator statistics

are available from the estimator covariance matrix with matched

estimator and truth model dynamics. The vertical scale on these figures

is exaggerated to a ratio of 10 for comparison to the mismatch dynamics

results (Figures 14-15) shown later. Similarly, Figures 10-13 show the

position and velocity bias magnitudes well below the estimator one

sigma levels. The results also substantiate that the estimator variance

data follows a trend consistent with the variance data derived from the

Monte Carlo results (Equations 75 and 76).

The position variance results show a growth in magnitude as the

trajectory approaches the 170 second point. This is near the region of

the decayed trajectory departing the "near circular" orbit conditions

and into a committed reentry. As the maximum deceleration region is

passed and the denser lower altitudes are reached, the position

uncertainties decrease in magnitude (Figures 10,12).

The velocity variance values show an almost monotonic decrease

with increasing atmospheric density (Figures 11,13). The variations on

the Monte Carlo derived second order statistics used to validate the

estimator covariance data are due to the 30 sample replication set size.

While bias magnitude was extremely well represented by 30 samples, at

some specific time points the Monte Carlo derived variances do not

follow the smooth trend of the estimator-computed variance data. One

factor which may contribute to the smoother variations in estimator

variance data along the trajectory is the fact that the values shown

are average standard deviation levels over the 30 runs, rather than

86



standard deviations computed from a single run. In any event, the

trends are consistent among all three methods.

87



+

4 o

LH 0

I

i+ o
w+ 

C

H H+
0 .-31 +

LLo

.i ~ , !

-44 +

88

+



0
Lo

x
x

mxl

89x



L)

z2

4

+

+

90

a1

+ k4 H

x .4

H +

Wcu + .4 0

+ I-

+

+

i0 *
o a a fl. * 0 0 N~ ri 4 0
04

MIS 3vi/SS

90



0

Ir x
xzw
x

Ha x
on 0

x 0
1.14 p

x
It a N 4

MIS /SS

(~AJ91



0z

U

Lfl 0

.4 
w

Li I

a0  me

00

0

W3

04 .4

UlNII11

92



14

w L0
0ok H,

0

uJ 0

yrlot..
0z -11

0

LO 0 i

Jim

l 4 i44

I I I C -JO#+X

93



Uk

0

00
zz

z 461

IVog

Ijiw

94.4



00

u 0

x '4

z
0

W 0 ,4

0 0

95



Clearly, the results shown in Figures 6-13 demonstrate valid and

acceptable estimator performance with matched dynamics at two different

levels of observation noise and initial state covariance magnitudes.

Unfortunately, real decay trajectories are not so precisely modeled.

The results of the third set of Monte Carlo runs using the dynamic mis-

match truth model are shown in Figures 14-17.

As expected, an apparent divergence of the estimator solution is

evident in both the "ESTIMATOR PERFORMANCE" ratio of RSS/(ONE SIGMA)

results and the "MONTE CARLO RESULTS". Both bias and true solution

(Equation 75) derived standard deviation magnitudes depart from the

estimator computed variance levels. The estimator standard deviations

closely follow the Monte Carlo derived second order statistics (Equation

76) about the 30 sample mean solution. These results show a clearly

biased solution relative to the estimator indicated statistics. The

primary mechanism driving these results is the unmatched dynamics

between the estimator and truth model. The solution begins to diverge

as the trajectory bends from the "near circular orbit" conditions.

Early in the trajectory, the variations in 0 were relatively small and

the exponential density model of the estimator could locally represent

the U.S. 1962 Standard Atmosphere density profile, since most occur

within a single, non-isothermal layer of the standard atmosphere.

As the reentry proceeded, the exponential atmosphere model could

not completely locally accommodate the changing density gradients of the

standard atmosphere which contains altitude layers of positive and

negative thermal lapse rate, with an intervening isothermal altitude

band. Also, the more significant variations in the truth model

5 = f(Mach no.) occur later in the data span. Deceleration in the
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trajectory causes the velocity to decrease from high hypersonic values

to lower supersonic values (Appendix B.I.).

An additional factor which substantially influences this bias

effect is the inability of an infinite memory estimator with

deterministic dynamics to adjust to large changes late in the data span.

This is a natural consequence of both the deterministic dynamics and of

reductions in the estimator covariance terms (particularly velocity)

with the accumulation of more and more observations. The later observa-

tions become increasingly less influential on the state estimate, with

increased weighting on the output of the estimator dynamics model.

Unfortunately, this phenomenon occurs in a region of reentry where the

most marked difference between the truth model and the estimator

dynamics exists.

Ideally, one would desire to implement a pseudo-noise compensa-

tion to the deterministic model dynamics. The magnitudes of the noise

would then be tuned to minimize the bias in the state solution, by

matching the variances in the estimator-computed covariance to the true

mean square error. Unfortunately, this procedure has not met with much

success without significant amounts of empirical trajectory observations

to assist in the tuning process for the noise strength (5). The

discussions of Chapter III show the model compensation methods considered

to address this problem.
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D.3. Special Numerical Investigations

Several special simulation runs were completed to illustrate

important influences on the performance aspects of the basic estimator

formulation in addition to the dynamics mismatch of Figures 14-17. One

comparison shows the difference between the eight dimensional formula-

tion with an exponential atmosphere and a seven dimensional system,

where atmospheric density is obtained from a 1962 U.S. Standard

Atmosphere. Another investigation centers about the proposed eight

variable system. This illustrates the observability considerations and

ill-conditioned information matrix of the estimator with the use of

angle only observations from a single observation satellite. Lastly,

one must explore the validity of propagating the state covariance

matrix from the last epoch to impact via linear techniques (Equation

46).

An illustration of how the more complex standard atmosphere

equations contribute to corrupting the estimator solutions is shown in

Table VIII showing the results of a single trajectory estimation. Each

column reflects the error between integration of the nonlinear state

dynamics equation and a linear propagation of the 5x(t m) epoch

correction by use of the state transition matrix. These contrast the

results of the eight and seven dimensional formulations in propagation

of a typical Sx (x position term) from an epoch at 73.45 KM altitude.

Both of these infinite memory estimators had matching dynamics between

the estimacor and truth model. They each were used to process 10

observations in a single epoch update. The resulting state correction

was propagated forward by:
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1) Propagate forward from the epoch time, t , both the a priorim

and updated state estimates, x M(t M+l) and x m+l(t m+), by

integration of the state dynamics equation. One can find the

resulting 6x(t) by differencing these two solutions.

2) Propagate the Sx(t m) via linear methods, i.e., 6x(t) =

(t,tm ) 6x(t m). This is the form of the incorporation

within the state update, Equation 29.

The difference in these two propagations gives a measure of the error in

the linear approximation of the estimator.

Table VIII

ERROR in PROPAGATION

(x position term)

ERROR

Trajectory Time Observation 8 dimensional 7 dimensional

(sec) from Epoch Number system system

10 1 .00002 .0410

20 2 .00006 .0220

30 3 .00013 .0150

40 4 .00022 .0110

50 5 .00033 .0091

60 6 .00046 .0074

70 7 .00062 .0071

80 8 .00080 .0052

90 9 .00099 .0043

100 10 .00122 .0036

The errors in the eight dimensional formulation increase

monotonically with time, illustrating the accumulation of error over the

100 seconds from the update epoch. This underscores the previous

recommendations of using a linearity check between the state and
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observations changes during the update (Equation 44) to limit the

update data span. By limiting this time span, a small number of

observations are processed at each epoch to minimize the effects of

higher order term corruption on the state estimate.

The error in the seven dimensional formulation starts at a

larger magnitude and decreases with time. This is a reflection of the

more complex, nonlinear standard atmosphere density equations (49 and

50) in the various altitude layers covered by this propagation. Recall

that the eight dimensional algorithm estimates Q as in Equation 51, but

the seven dimensional estimator does not. At the 10 second point, the

thermal lapse rate is a -4.0, near the center of the 61-79 KM layer of

the standard atmosphere (Appendix B.I.). The remaining propagation

cuts across the 61-52 KM layer (-2.0 lapse rate), and into the

isothermal layer of 47-53 KM altitude. The errors are larger in the

higher thermal lapse rate regions and are higher throughout when com-

pared to the eight dimensional formulation. Since the magnitude of the

error can be large in a given non-isothermal atmosphere layer the use

of the standard atmosphere approach would yield significant error in

the state solution, even with a limit on the update data span. There-

fore, one must consider alternate estimator formulations (e.g.,

statistical linearization approaches) or a much higher observation

data rate to use this standard density model formulation.

The system observability limitations and information matrix ill-

conditioning are highlighted by examining the eight dimensional

formulation using different numbers of observations for an epoch update.

In the absence of a priori covariance matrix information, a minimum

number of observations must be processed at an epoch if the information
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matrix, (T R IT ), is to be inverted successfully, and therebymatrx, ((n) (n)" (n)

represent a valid covariance matrix. Table IX shows a typical example

of an eigenvalue analysis on the information matrix, contrasting a

single observation update with a 10 observation update at the same

epoch, t .
m

Table IX

Information Matrix Eigenvalues

Single Observation 10 Observation
Update Update

0 3.6973 X 10-6

0 7.4146 X 10-6

6.5225 X 1O-0 s  .2186

3.2239 X 10 "
1 12.6819

7.4055 X 10"12 176.5283

7.9587 X 10- 11 2247.3215

6.1812 X 10 -
3 231252.1497

1.2684 X 10-2 10098973.1735

( Values are approximately zero due to computer

roundoff in this application.)

The single observation update is numerically non-positive

definite. By contrast the 10 observation update is numerically

positive definite. In either case the information matrix is highly

ill-conditioned. This is a product ot the angle only observations

from a single synchronous observation satellite. The last two

eigenvalues of the single observation update reflect the observability

of the system available from a single two dimensional, angular

measurement. The remaining six states are practically nOL observable.

Even the 10 observation update shows a 13 order of magnitude difference
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in the size of the eigenvalues. The two smallest eigenvalues (of order

10-6) result from the inability of the angular measurements to observe

the position and velocity along a line of sight from the observer to

the reentry satellite.

The results of Table IX also illustrate that a certain minimum

number of observations must be included in the state update at the

initial epoch in the absence of a priori covariance data. Fortunately,

the early observations occur over a region with a small reentry angle

(near orbital conditions) where processing a number of observations in

a single update does not violate the linearization validity check.

This number of observations used for the initial epoch update will

depend upon the particular reentry case and observation geometry

being used. However, the poor observability from the single observer,

angles only data almost necessitates the existence of a priori covari-

ance data.

The final special numerical investigation of the basic estimator

concerns the comparison of the linear propagation of the last epoch

covariance to impact (Equation 46) or a Monte Carlo derived impact

covariance matrix. Use of a sequential estimator, processing small

numbers of observations per cpoch update, was necessary to avoid

accumulated nonlinear effects from corrupting the state update. The

propagation of the state covariance matrix often occurs over larger

time spaces between the final epoch and impact. While the state

update can be influenced by the joint nonlinearities within the

observation geometry and the model dynamics, the covariance propagation

is subject only to dynamic nonlinear effects on the state transition

matrix, 0(t,t m). If the nonlinearities within this nonobservable
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portion of the trajectory between the last observation update epoch and

Earth impact significantly affect the validity of (t,t ), Equation 46
m

cannot be used to propagate the state covariance over this region. The

alternative of a Monte Carlo derived impact covariance is then

available.

The Monte Carlo covariance is derived from a 90 replicate

integration of the state dynamics Equation 45 with the second order

statistics accumulated by use of Equation 76. A random sample of 90

variations on the initial conditions from the final epoch covariance

was chosen to provide a more true representation of the second order

statistics over the large time spans of the final non-observable

portion of the trajectory. Table X shows the comparison of these two

propagation options, by presenting the standard deviations in the

state variables. These were obtained by propagating from the last

epoch time (T=324 seconds) to impact, at T=387.77 seconds. This

comparison used the results of a typical estimator run with 10- 5

radian one sigma observation noise and exact dynamics.

The results of Table X support the use of a Monte Carlo

propagation to impact. With the linear propagation, the standard

deviations depart from the Monte Carlo derived values. This occurs

initially in the velocity terms, then also in the position terms as

the atmospheric density increases and the velocity magnitudes

decrease. This Monte Carlo propagation typically requires only 1.5

to 1.7 times the computer execution time over the linear propagation.

It preserves the integrity of the estimator statistics over the final

nonlinear region of the trajectory propagation.
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D. 4. Summary

To summarize the results of the basic estimator findings, key

points of the various performance investigations are detailed in

Table XI.

Table XI

Infinite Memory Estimator Performance

1. Increasing the mismatch between the estimator and the truth model

dynamics yields the most dramatic "bias" in the estimator state

solutions.

2. With deterministic dynamics, observation noise levels of less

than 10 - 5 radian (one oigma) begin to induce significant errors

into the estimator solution, relative to the standard deviations

of the estimator-computed state covariance matrix.

3. With identical dynamics in the estimator and truth model:

a. Estimator performance is acceptable. The bias in the solution

is well below the magnitudes of the standard deviations of the

estimator-computed state covariance matrix.

b. By limiting the number of observations used for an update, the

effect of higher order term corruption on the estimator

solutions can be minimized.

c. Estimator performance deteriorates as the reentry trajectory

approaches the subpoint of a single observation satellite.

d. The eight dimensional (exponential atmosphere) formulation is

superior to the seven dimensional (standard atmosphere)

formulation, in the current estimator using the Taylor's
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series linearization approach with a 10 second observation

interval. A statistical linearization approach may be more

appropriate for the seven dimensional system.

e. A marginal observability with the angle only observations from

a single source requires existence of a priori covariance

information prior to an epoch update. In the very early,

shallow reentry angle portion of reentry, a state covariance

matrix may be developed from batch processing a number of

observations at the initial epoch. The ability to obtain such

a covariance must be assessed for the specific observation

geometry and reentry trajectory being estimated, consistent

with the linearization assumptions check.

f. Performance is improved by simultaneously processing ouverva-

tions from two observation satellites, both from improved

observability and higher data content, unless this forces rapid

collapse in the magnitude of the state covariance matrix

entries. A more appropriate observation should also include

range, as well as angular, data.

4. With mismatch between the deterministic estimato,: dynamics and the

truth model derived data:

a. A single observation per update epoch is recommended to insure

local model validity.

b. At least a minimum number of observations after a discrete

change in state variables (i.e., a step change in 8) is

necessary to insure consistent state solutions.

c. in its present infinite memory, deterministic dynamics

formulation, significant bias exists in the estimator
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solutions. The next chapter will address this

fundamental limitation of the estimator for application to

true reentry trajectories.
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Chapter III - Model Compensation

A. Model Compensation Methods

As the previous numerical results indicated, the fundamental

limitation of the infinite memory estimator formulation with

deterministic dynamics is the biased estimator solutions which occur

when processing true reentry dynamics. With i) exact dynamics,

ii) an upper limit on the time span of valid linearization, and

iii) a lower limit on observation accuracy (greater than or equal to

10- 5 radians), acceptable estimator performance is available in terms

of bias and RSS/(ONE SIGMA) ratio. This was shown in the Monte Carlo

results of Figures 6-13.

If significant bias had existed with the exact dynamics,

utilization of methods which address the character of neglected higher

order terms of the Taylor's series linearization would be required.

This would entail examination of approximate nonlinear estimation

methods which retain selected higher order terms of the Taylor's

series expansions for the reentry application (19,23,24). Also, one

could consiaer extensions of a statistical linearization approach,

such as discussed by Gelb (26) for the scalar dynamics case, f(x).

These methods attempt to characterize the functional form of the

neglectad nonlinearities in a polynomial expansion of the state vari-

ables. Inherent within the application, however, is the assumption

that a valid first order functional description of the true dynamics

exists within the estimator model, f(x). In actual application, the

variations in global atmosphere changes and reentry vehicle
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fragmentation effects present a nearly intractable problem for mathe-

matical descriptions of all reentries within a deterministic dynamics

set.

The first step in improving the linearized estimator performance

concerns the impact of the uncertainties within and p. One must

consider model compensation methods which address the systematic error

resulting from the inexact and uncertain trajectory dynamics. The

addition of pseudo-noise to the state dynamics is a potential means to

compensate for dynamic uncertainties. This could take the form of an

additive noise term to the state dynamics equation, such as:

x(t) = f(x(t),t) + G(t)q(t) (77)

where:

G(t) is a time dependent coefficient matrix,

q(t) is a zero-mean random noise term.

In the linearized application, the dynamics equation would be

reduced to the variational form:

6x(t) = F(x (t),t) 6x(t) + G(t)q(t) (78)

Incorporation of the dynamic noise term in this manner, however,

complicates the state update expression (Equation 51). It also requires

an extensive tuning process, or an adaptive technique, to modify the

coefficients of the matrix G(t) to incorporate the time dependent

effects of the dynamic uncertainties properly for the general decay

trajectory.

An alternative to this formulation is discussed by Day & Schieb

(27) 'or application to the differential corrector. This also involves
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an additional noise covariance matrix to the state covariance matrix

during the propagation phase. In this approach, the state covariance

matrix is propagated to the next e,)och via:

Sm+l m = P(tm+ltm) [S + Q(tm )] 4(t t )T (79)

The determination of the Q(tm ) also requires extensive simulation

analysis to determine the noise covariance magnitudes applicable to the

widely varying dynamic uncertainties of a given reentry trajectory.

This approach also propagates the state covariance matrix forward based

on a different dynamics model than the state trajectory. Recall that

the state dynamics propagate according to Equation 2, without an

additive noise term. As noted previously, Pon (5) has pointed out that

tuning of an additive pseudo-noise matrix for orbiting satellites has

proven successful only when significant amounts of empirical trajectory

observations are available to aid in the tuning process. This pseudo-

noise matrix was not transferable to other satellites. With the more

uncertain dynamics and the short trajectory arcs of reentry,

sufficient empirical data is not available for each decaying satellite

of interest. As such, a more systematic approach which addresses the

time dependent character of the dynamic uncertainties is required.

Statistical adaptation methods offer a potential means to address

this highly time dependent nature of the dynamic uncertainties for a

specific decay trajectory. These could be employed in an approach

similar to Jazwinski (24) to allow adaptive estimation of noise

covariance terms, or in the more general sense of Maybeck (25) for

determination of selected uncertain state variables, dynamic noise

matrix, G(t), or the dynamic noise covariance, Q(tM).
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Unfortunately, the nature of the current application precludes

proper incorporation of these statistical methods. Statistical adapta-

tion often examines the character of non-zero mean residuals or an

unbounded growth in the residuals as a measure of when, and how much,

to tune the noise coefficients (24).

Alternately, the statistical adaptation methods may assume a

slowly varying state variable as a constant over n observations. Its

value is then determined from a maximum likelihood formulation for

estimation of the uncertain state variable (25), based on a finite

memory of measurements.

In either case, a sufficiently large number of observations are

required to establish the statistical validity of the adaptation. Due

to the i) rapidly varying dynamics (particularly b) and, ii) the need

to reduce the estimator to using small numbers of observations at an

update for linearization requirements, these methods would not provide

the most acceptable adaptive performance. As the numerical results of

this chapter show, the time constant of the variations in the true

dynamics is very short compared to the 10 second data rate of the

current observer. Such rapid variations in true dynamics make it

difficult to assume a constant value over the required n observations

for statistical analysis. At best one can assume, for example, is a

constant between successive observation points.

Pon (28) has suggested a technique of incorporating an additive

noise matrix whose terms are determined from a single orbit estimation

which he claims will avoid the need for a priori noise covariance

tuning. Pon alleges his technique to be responsive to the uncertain-

ties within the dynamics between successive epochs of the trajectory
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being estimated. At a given epoch t , one updates the state viam

Equation 47 by processing the next k observations in a single update.

Simultaneously at the next epoch, tm+, one obtains a second estimate

by processing the same k observations, now at times prior to tm+l . By

propagation of the t estimate forward in time and the tm+l estimatem

backward, two different state trajectory solutions exist over the same

time span.

By trajectory differencing these two solutions at many points

along this time span, Pon develops a matrix of second order statistics

which is assumed to represent the dynamics uncertainty between epochs.

In this manner he obtains a diagonal corruptive noise covariance matrix

for insertion into Equation 79 to propagate forward to the next epoch,

such as:

Cy2
x

2
x

Q(tm) (80)

2

°Sp
0

aQ2OQ
2

This constructed noise covariance matrix suffers from several

deficiencies. It would require a large number of numerical computa-

tions to develop statistically valid a2 terms. Also, it only

compensates the diagonal elements of the state covariance matrix at

the first epoch, t • In this "suboptimal" sense, it neglects them

cross-correlation between states in modifying the state covariance

matrix to represent the dynamic uncertainties. The off-diagonal terms
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are modified only during propagation between the epochs. A more

satisfying technique would apply a full pseudo-noise compensation, aIt

the update epoch and during propagation.

Pon (5) shows that the propagated state covariance expression

of Equation 79 is equivalent to premultiplying by an upper triangular

form matrix, D(t ), and postmultiplying by a lower triangular form
m

matrix, D(t )T, after simple state covariance propagation, but prior to

update as:

Sm m_1 = (tm,tm 1) [Sm-l'm_1 + Q(t ml)] c(tm,t m ) T (81)

T TE D(tm)'p(tm,tm I ) Sm l1 i 4(tmtm TD(tm)

This technique is often referred to as a "deweighting" method. Its

effect is to deweight the influence of the output of the dynamics

model when S m,m_ is used in the next epoch update (Equation 29). The

use of a deweighting matrix, D(t m), is an extension of the earlier

work of Fagin (29), Sorenson & Sacks (3), and Morrison (2), where a

scalar deweighting is used. With a scalar deweighting, the influence

of the old observations is exponentially deweighted in the estimator

solutions. (Section B will illustrate this effect in more detail.)

The use of the D(t ) matrix attempts to "deweight" selected states bym

differing amounts in the a priori state covariance matrix.

In some applications, the D(t ) matrix has been applied to
m

orbit determinations as a constant deweighting matrix (5). Similar

to tuning the noise coefficients within Q(t m), the diagonal elements

of D(t ) are developed by simulation analysis.
m
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d

d3

D(t ) (82)

d 8

This tuning process suffers the same drawbacks as the tuning of

the noise coefficients in Q(t ). Pon (5) states that translating the
m

D(t ) deweighting matrix from one satellite to another provedm

unsatisfactory for orbital applications. Its extension to the more

highly variable general reentry case would be at least as difficult,

if not more so. Also, acceptable estimator performance was achieved

only when emperical data from many orbital revolutions were available

to aid in the tuning process. These conditions simply do not exist

for the reentry application.

Use of a "suboptimal" diagonal deweighting matrix, however,

provides the genesis for a potentially acceptable adaptive means to

determine the terms of a deweighting matrix, D(t m). One has a means to

identify the potential onset of bias in the estimator solution. The

standard deviations from the a priori state covariance matrix reflect

the uncertainty in the state dynamics and previous observation history

when incorporated into the state update Equations 29 and 47. One

assumes local dynamic model validity over the time span between the

epoch and the observation(s) being processed for an update. The

magnitude of the total state correction, 6xi (from Equation 47), on

each state can be compared to its respective standard deviation from
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the a priori covariance matrix. If the state correction is greater in

magnitude, one can -onsider this as a t irst indication in the growth in

bias of the estimator solution which is inconsistent with the

uncertainty defined by the state covariance matrix. This yields a

measure to determine the onset of a bias in the solution, and the

direction of bias development along a particular state direction. The

advantage of this measure is that it will indicate the onset of a bias

in the solution - independent of its cause. Whether the bias results

due to dynamic mismatch, poor observation geometry, or excessive noise

on the observation being processed, it may appear as an excessively

large 6x(t ) in one or more state variables relative to their a priori

uncertainties.

This technique was chosen for its simplicity in the circumstances

where the single observation updates of the trajectory are reqtiired.

Because of the very short time span of the dynamics model validity, an

insufficient number of observations exist at the epoch update [oint for

valid statistical testing of the residuals. A valid statistical

determination of the residual mean and covariance cannot be made with

a single sample. The comparison of the 6x. estimate to its a priori
1

standard deviation offers no improvement in this statistical quantifi-

cation since the same information available in the single observation

is used to develop the state estimate. It does, however, provide a

mechanism for selection of the scalar deweighting which is easily

incorporated into the estimator structure.

In essence, since there are eight states, eight individual

conditions exist from which to develop a model compensation

methodology. Clearly, the use of these eight conditions alone do not
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allow one to determine a fully populated additive noise matrix from a

single trajectory, or a multiplicative upper and lower triangular

deweighting matrix. They do provide sufficient information to directly

modify the eight terms of a diagonal deweighting matrix. Therefore,

initial attempts were made to develop the diagonal elements of the

D(t ) deweighting matrix (Equation 82).m

Variations on the implementation of this deweighting approach

were made to examine the potential of deweighting only selected

variables (i.e., individual states) of the a priori covariance. These

included:

1) Deweight only ap and Q (x7,x8 ) by a constant magnitude at

each epoch throughout the trajectory since these states

contain the terms which most directly represent the dynamic

uncertainties. In this manner the deweighting matrix has

the form:

1
1

1

D(t) 1 (83)
m1

1
d7

d 8

2) Similarly, if the magnitude of the total state correction at

any given epoch is greater than its a priori standard

deviation, iteratively select the affected d. to be other

than unity, leaving the other d equal to one. An addi-
i

tional attempt was also made to adaptively deweight only

the x7 and x8 terms for ap and Q, leaving positions and
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velocities non-deweighted (e.g., d. = 1, i = 1 - 6).1

The D(t m ) deweighting matrix is used to modify the a priori

state covariance matrix, S from Equation 81. A state estimate is
m,m-l

obtained by use of Equations 29 and 47. This process repeats, until:

6x(t) i < V S i = 1,8 (84)- m,m-l..

Both attempts proved unsuccessful. The primary causes of these

methods failing to improve the biased estimator performance are the

following:

1) This is clearly a suboptimal approach to deweighting. The

diagonal deweighting matrix, D(t m), is not equivalent to

applying a full pseudo-noise matrix to the state covariance

matrix. A triangular form of D(t m) would be required for a

full pseudo-noise compensation.

2) The artificial deweighting of selected states, and not

others, improves the BIAS/(ONE SIGMA) ratio on the

deweighted states at the expense of aggravating the bias on

the other states.

3) The deweighting on only the x7 and x8 states by a constant

magnitude throughout reentry was not responsive to the time

dependent nature of the dynamic uncertainties.

As a consequence, the mismatch between state corrections, Sxi,

and their a priori standard deviations was used to determine a simple

scalar deweighting of the a priori covariance matrix. This scalar

deweighting can be considered as a special case of the diagonal

deweighting where all the di terms are equal. This scalar deweighting
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offered superior performance than the attempts to deweight the individ-

ual states by different amounts for a number of reasons.

1) It is strictly derivable as an exponential decay of the

filter memory. (2,3,29,30)

2) As the numerical results presented later will demonstrate,

it avoids the requirement for extensive simulation

analysis. The comparison of the 6x. magnitudes with their

a priori standard deviations successfully determines the

need for deweighting. With proper selection of the scalar

deweighting constant, acceptable estimator performance is

evident which responds to the time dependent nature of the

dynamics mismatch. As the Monte Carlo results show, the

deweighted state covariance matrix provides a satisfactory

measure of the RSS uncertainty in the estimator position

and velocity solutions, and the bias in the state estimate

is less than the a priori standard deviation from the

deweighted state covariance matrix.

The Monte Carlo results on the basic estimator with mismatched

dynamics (Figures 14-17 of the previous chapter) substantiate

acceptable estimator performance in the early trajectory phases, in

terms of bias and RSS/(ONE SIGMA) ratio relative to the estimator

computed standard deviations. This results since the deterministic

estimator dynamics model can locally represent the truth model

dynamics in this region. The truth model dynamics are adequately

approximated by the exponential atmosphere and constant p 0 between

epochs. Secondly, a small number of observations have been

processed. The terms of the state covariance matrix have not reached
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such a small magnitude that the output of the deterministic model

dynamics becomes overly weighted relative to the information matrix of

the new observations.

The more dramatic dynamics variations occur later in the

trajectory data span. In this region the magnitude of the terms in

the state covariance matrix continue to decrease in the velocity terms

and begin to also decrease in the position terms. The output of the

deterministic estimator model becomes increasingly weighted, thereby

causing the estimator to begin to ignore the complete information

content in the later observations.

The fading memory estimator alleviates much of this phenomena.

It allows greater flexibility of the estimator to accommodate the new

observations by increasing the magnitude of terms in the a priori

state covariance matrix at each new epoch update point. The effects

of this scalar deweighting technique are shown in Section D.2. of this

chapter with the presentation of the results of the Monte Carlo

analysis.

An alternate form of dynamic compensation was also considered

which would combine the use of an additional pseudo-noise matrix and

the scalar deweighting or "tuning" parameter, y, as Q(t) =

Q (t) + y A Q(t). One may adaptively determine the magnitude of the
0

scalar tuning parameter, perhaps from the techniques discussed above.

The problem still remains to construct the pseudo-noise matrix

properly at the initial reentry epoch point. In essence, the proposed

formulation is analogous to incorporating the Q(t) = Q0(t) + y A Q(t)

into the estimator structure. In the absence of more adequate infor-

mation to develop the initial Q and AQ terms, the estimator-computed,
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or a priori, state covariance matrix provides a description of the

uncertainties which is modified at succeeding epochs by the adaptive

selection of the scalar parameter, y. Section B., below, will show

the details of the fading memory estimator development.

B. The Fading Memory Differential Corrector

Based on an exponential decay of the observation weighting,

several authors have extended the early work of Fagin (29) for the age

weighting of scalar observations. Tarn and Zaborcky (30) report an

extension of age weighting to the vector observation case in 1970.

Sorenson and Sacks (3) develop an exponential aging technique for the

observations in a linear Kalman Filter formulation. They also point

out that the exponential aging applies to three distinct quantities

within the filter structure: i) the initial, a priori state

covariance matrix, i) the observation covariance, R(n) (previous

observations), and iii) the state covariance matrix prior to update

at each new observation. Morrison (2) shows a derivation for the

exponential aging from the initial weighted least-squares cost

function for both a Bayes Filter and Kalman Filter for linear applica-

tions.

The following derivation (Equations 85-103) will directly follow

Morrison's (2) for a linear, fading memory estimation technique which

is now applied to the differential - corrector estimation of the non-

linear reentry problem. The initial presentation will concentrate on

the batch processor. This formulation will then be modified to yield

a recursive formulation of the fading memory estimator which is

applicable to the uncertain dynamics of the reentry trajectory. The

differences in this development from Morrison (2) are only due to the
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iterative updates of the linearized differential corrector and the

development of an alternate expression for the "non-deweighted" state

covariance matrix expression, which may be obtained from the deweighted

covariance matrix expression.

One may define a modified cost function as follows:

J = [V(n) - T(n) 6(to0T R( 1 [v - T( 6x(to) [Y(tktn ]-1 (85)

where the scalar multiple, y_1 = [Y(tk,tn )- 1 takes on values:

0 < i/y < 1 (86)

based upon the age of the observations. In the batch formulation k

takes on the values k = 1,...,n-l, and y(tn~t) = 1, at the time of the
nn

latest observation. Recall that t is the epoch time, v(n ) is the

vector of observation residuals (Equation 18), and the T matrix
(n)

incorporates the observation geometry and the state transition matrix

between the epoch and the observations (Equation 16).

In matrix-vector formulation, the weighting matrix, R(n) , on the

observations may be redefined to reflect the accumulation of the

deweighting scalar in a slightly altered f,

R * I
n

Rn_ 1 y(tn,tn-1 )

R (y) (87)

R1 y(tnt)
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where n is the observation at the current epoch being updated, and the

Y = Y(tn9tk) reflects increasing uncertainty on the older observations.

In this manner, an exponential memory is established (2) when the

[R(n) (y)] inverse is incorporated into the estimator structure to

weight the observations.

The cost function may now be written in the matrix-vector form

where the argument on y has been neglected:

j = [v ( T X(t)]T [R [ - T 6x(t)] (88)
[(n)  T (n) 0xto  (n) (Y)]_ [V(n ) - T(n )  0

As before since [R(n) (y)] is positive definite, the necessary and

sufficient conditions for minimizing J are:

J[01 T (89)

adx(t )

Making use of the matrix identity, (AB) T BTAT and the symmetry of the

block diagonal weighting matrix, [R ()] [R(n) ()]-T the

minimization of J results in:

2_T(n)[R(n) (y)]-V (n) n) (n) - T(n)6X(t =0 (90)

Solving for 6x(t0) provides the batch processing update

expression:
CT R (n-T r (1

6x(to) = (n) T C(n) () T (n))- T(n)TIR(n) (Y) v(n) (91)

where now the "deweighted" state covariance matrix after update is

obtained, assuming a positive definite information matrix,
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(T (n)(TT[[(n) ()] 
n(n)2

P n,n= (T (n) T IR (n) T T())- (92)

Note that in this batch formulation, the covariance matrix, P , from
nin

Equation 92 assumes no existing a priori covariance matrix information,

but is simply derived from the estimator processing of the observations.

The non-deweighted state covariance matrix can also be derived. By

definition, for zero mean 6x(t ):

- TS n E(6x(t ) X(t )) (93)n,n0 0

where 6x(t ) is obtained from Equation 91.

Substitute for 6x(t ):

S n,n = E{[(T (n ) T [I R ( n ) ( Y T - I T (n) )-1 T (n) T R(n)(Y)- V (n) ]  (94)

0B

T T T

[T(n)T[R(n ) ( Y T1 T (n))- T(n)T[R(n)(T)I-1 V(n)]

Taking the transpose and simplifying yields:

T TrR-i(,y)] -1 (v( nT)

Sn, n  (T(n) T[R(n) (y)] T (n) T(n)T[R(n) E (95)

[R(n)(v)] - T (n)(T(n)T[R(n ) (Y)] -  T (n))-

where[R(n) (Y)] and (T(n)T[R(n)(y)]-1 T(n) )- are positive definite

matrices.

Using the definition for [R (n ) ( Y )]' and the definition

(n) E(v(n) v(n) ) , the middle term of Equation 96 becomes:

R(n ) ( Y ) I - I . R ( n ) ' [ R ( n ) ( Y ) ] - = [R(n ) ( Y )] - ' [ Y' - I  (96)

= (n) (Y
2 )1'1
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Therefore, the non-deweighted covariance can now be related to the

deweighted covariance by:

Sn,n (y ) = Pn,n ( ) [Pn,n (Y2T-1 " P n,n(Y )  (97)

Remember, the S matrix is a valid minimum variance expression
n,n

under the assumption that 6x(t ) is zero mean - or that the estimate of

the state yields an unbiased solution. This is an important considera-

tion which must be examined in the later numerical simulations. If the

Sx(t ) is not an unbiased solution, it may be imprudent to use the

second central moments S statistics for a measure of the error in
n,n

the estimator solution.

Now consider a recursive formulation where each epoch is

designated by the index m. The observations are designated by the index

n, where n=l,... ,k. One can partition the T (n) and R(n)(Y) matrices to

isolate the latest observation at time t and establish the update
mn

epoch t between the t and t observation times. Recall that H ism mn_ mn  n

defined in Equation 14.

tH (t m

T(n )  = (98)
T (n-) (tm n l' tm)

and

R (ny) (YT (99)
R(nl)y(tn t _l)] - }

By substitution, and after simplification, the inverse of the updated

deweighted covariance at epoch time, t , becomes (2)
m
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p -Im T T[R (y)]-. ( T (100)Pm'm T (n) (n) ( 'T (n).10

= TnT Rn-1 Tn + 1/y 4(tm,tm_1 ) T () (n_)(

T (nl- )  (tmptm-1

or

p -I (1/y P -i + T n R n- T ) (101)
m,m m,m-i n n n

where the a priori deweighted state covariance is obtained by propagat-

ing forward from a previous epoch at time t This epoch contains

the state estimate for the observations numbered 1 through n-l.

In recursive form, the state update on the next (non-deweighted)

observation(s) is now:

6x(t) = (/y P mm-l- + TT Rn- T n)- TnT R' v (102)

where:

y is now a one-step, deweighting scalar

P m = a priori deweighted covariance

As in the infinite memory case, Equation 102 is applied iteratively at

each epoch until the convergence criteria are satisfied. The

T T R - T and T T R - v matrices are evaluated from the reference
n n n n n n

trajectory on the final iteration, with R the covariance of then

observations at time t
m

n
The updated, deweighted state covariance matrix, P , is not' m ,m'

the non-deweighted covariance matrix, S . But it does represent themm

model uncertainty and the scalar deweighting of the old observations at

each epoch point and is so incorporated into Equation 102. This

provides the recursive differential corrector formulation which allows
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selection of y at each epoch to reflect the uncertainty in the previous

history of the dynamics model.

As the numerical results of Section D. show, the use of the

P covariance matrix yields a conservative estimate of the errors inm,m

the state solution. The use of the non-deweighted covariance, S , ism ,m

not necessary for on-line use of the estimator for this application.

It may, however, be implemented into the estimator structure. Should

improvements in the dynamics model become available such that zero mean

state estimates can be obtained, the S matrix would provide a minimumm,m

variance covariance matrix from the estimator computations.

Let the development now depart from following that of Morrison

(2), where he shows an alternate relationship between S and P in
m,m m,m

Equation 97. Doing so, he develops a recursive expression for Sm ,m

and S m,m I which will not be repeated here. Morrison's expression was

developed for a linear Bayes and Kalman Filter application. In its

differential corrector form, the update expression for the non-

deweighted covariance at each new observation would be structured as

follows:

S = (I - P T T Rn1Tn ) S (I - P T T Rn-1 Tn )T (103)m,m m,m n S n m,m-i m,m n n n

+P TT R-T P
m,m n n n m,m

Due to the highly ill-conditioned nature of the angle only

derived single observation information matrix, T T R -1 T , and the

lack of positive definiteaess for single observation updates discussed

earlier, this formulation was found to be numerically unstable. The

subtraction of P T T R - T from the identity matrix, I, involvesm,m n n n
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terms which are very close to zero or to one. The subtraction of these

nearly identical numbers results in an accumulation of error when

implemented on the finite word-length digital computer. These errors

are further aggravated when S is propagated forward to new epochs by
m,m

use of the state transition matrix, 4(t,t m). This instability results

from the limited observability of the single observer data used to

formulate the information matrix, T T R -1 T . Recall that Section D.3.
n n n

in Chapter II described the numerical difficulties associated with use

of the single observer angular data.

To correct for this implementation problem, consider the

T(I - P T R- T ) expression. From Equation 101, one may solve
m,m n n n

for:

TnT Rn-1 T = P m  -l/YP 1-
n n n mm mm-l(104)

TSubstituting into the [I - P T n R n T n expression yields:m,m n n n

[I - P (P _- l/y P -I) = [I I + P l/y P M ] (105)m,m m,m m,m-I ]=[-I+Pm,m i/ m,m-Il 15

[P i/y p
m,m m,m-I

Substituting back into the S expression of Equation 103, one obtains:

[P I/Y P -] [/x P - P 1 (106)m,m m,m mm-1 Mm-1 m,m-1 m,m

+P TT R- T P
m,m n n n m,m

which provides a more stable numerical expressiot, which allows update of

the non-deweighted covariance matrix at the new observation epoch.
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The illustration below will show the relative stability characteristics

of both Equations 103 and 106 for the total position standard deviations

from a typical estimator run.

Time S m (Eqn 106) PM'm

0. 1.9488 1.9488

14. 1.9260 1.9260

24. 2.0176 2.0176

34. 2.1572 2.1572

44. 2.3304 2.3304

*54. 2.5291 4.4113

64. 2.7625 4.7701

74. 2.9846 5.1573

84. 3.2287 5.5596

94. 3.4501 5.9511

104. 3.6922 6.2938

114, 4.0126 6.5576
Time S mm(Eqn 103) Pm'm

0. 1.9488 1.9488

14. 1.9260 1.9260

24. 2.0176 2.0176

34. 2.1572 2.1572

44. 2.3304 2.3304

*54 4.7177 4.4113

64. 4.7981 4.7701

74. 9.2541 5.1573

84. 13.896 5.5596

94. 100.92 5.9511

104. 566.62 6.2938

114. 1451.9 6.5576

point where fading commences, previous to this point the S
mm

and P standard deviations were computed from the infinite
imm

memory formulation and are therefore equal.
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With the above derivations for the state update and deweighted

covariance, a complete listing of the recursive form of the fading

memory differential corrector may be shown. Each epoch point will be

designated with the index m. In general, multiple observation updates

may be made at an epoch, therefore the observations are designated by

the index n, where n=l,... ,k. In application to the reentry

trajectory with uncertain dynamics, n often equals one, a recursive

formulation for each observation. Recall that the state update

equation is applied iteratively until convergence on iteration L.

Propagation Between Epochs:

State: via integration of x(t) = f(x,t) (107)

Covariance:

Deweighted:

Pm~- =  (tm't -l Pm-~ - (tm'tm-i T  (108)

Update at New Epoch:

State: x m(tm) = xm1(tm) + E 6x(t ) (109)
i=l

6x(t)= (y - + T T Rn1 Tn -  Tn T R - vn (110)Xtmi  (/Pm,Th-i n n n

Covariance:

Deweighted:

P = (i/y P -1 + T T R -1 T )- (111)
m,m m,m-l n n n

One may also compute the non-deweighted covariance matrix with the on-

line estimator software, if desired:
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Propagation:

Smm_ 1 = (tmitml) Smtlm_ (tm,t )T (112a)

Update:

S i l/y -1 ] Sm [l/y m -m'm [m ,m Pm,m-1 m,m-1 Pm'm-1 Mmm

+ P T T R- T P (112b)
m,m n n n m,m

Application of the estimator is similar to the use of the

infinite memory estimator where small numbers of observations must be

processed at each epoch update point. The number of observations

allowed are determined from the linearity check of Equation 44. The

fundamental difference is to select the scalar deweighting constant,

y, such that sufficient fading occurs to allow the estimator solution

to adjust to the newer observations. Proper selection of y allows the

estimator to deweight the output of the dynamics model via

(/y P m,m- at each new epoch.

Both Morrison (2) and Sorrenson and Sacks (3) suggest selection

of the scalar constant by analysis of the residuals of the solution

process. As noted earlier, they also point out that observation

residual testing is most valid when i) the functional form of the

dynamics model is fundamentally sound, and ii) sufficiently large

numbers of residuals are available over this span for statistical

analysis of the residuals to be valid. These conditions do not exist

for this reentry application. For the reentry application, local

model validity is assumed between epoch and the observation being

processed in a single or recursive formulation.
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If the 6x i(t ) < V Pmm-lii criterion is violated at any given

epoch, y may be chosen such that the resulting correction to any given

state variable is within the one sigma level of the a priori deweighted

covariance matrix. This enhances the consistency in the state estimate

with the uncertainty in the previous estimator solution, and provides

an ad hoc technique to determine the need for, and magnitude of, the

fading memory required. It also allows more freedom in the state

update by processing a new observation with a lesser weighting on the

output of the estimator dynamics model or history of previous

observations. This adaptive selection of a fading memory parameter is

very much like the scalar tuning parameter within a noise matrix

Q(t) = Qo(t) + y L Q(t) should the initial Q and LQ be capable of

being constructed.

A principal consideration of this adaptive selection of a fading

memory was to avoid the need for extensive simulation analysis for

tuning an additive pseudo-noise matrix. The numerical results which

follow later will illustrate acceptable estimator performance (bias

and RSS/(ONE SIGMA) ratio) is achieved relative to the deweighted

state covariance. However, there does exist some sensitivity in the

selection of this ad hoc scalar tuning parameter: One cannot allow a

large y to be selected early in the trajectory before the reentry is

committed, due to the stability considerations discussed below.

Fortunately, the dynamics uncertainties and observation accumulation

which contribute to biased estimator performance generally do not

require a fading memory in these very early trajectory phases.
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C. Stability Considerations

A rigorous stability analysis has not been accomplished for the

proposed estimation algorithm. Potential applications of the fading

memory estimator must consider this limitation. The following discus-

sion lends some insight into the question of estimator stability.

The question of estimator stability is a complex one for the

current application. The stability characteristics are dependent on

the underlying stability of the reentry dynamics process. Miller (29),

Morrison (2), and Sorrenson and Sacks (3) all discuss the stability

aspects of their respective linear estimator formulations which use a

fading memory. The three discussions center around the linear

character of the estimator, allowing reasonably straightforward

applications of linearized stability theory.

Miller (29) assumes a continuous, stationary system with linear,

constant coefficients while examining the stability of the inverse

covariance propagation via:

d/dt(P(t)-') a P(t)-' + FP(t) -' + P(t) - 1 FT (113)

- P(t) 1 HT R i H P(t)- I

where:

a = a constant fading memory parameter

F = a constant dynamics matrix

H = a constant geometry matrix

R = a constant observation covariance matrix

Also, in a continuous formulation, Sorrenson and Sacks (3)

analyze the stability of a linear (uniformly and completely controllable

and observable) system. They relate their findings to the asymptotic
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stability characteristics of the infinite memory Kalman Filter.

Morrison (2) discusses the stability aspects of a discrete

observation formulation for a fading memory estimator by examining:

p -.1 (/y) 4(tm,tm I ) P m-lm-I- (tmtm)- + HR H (114)
m,m ml mlmi m-

which assumes:

1) a constant coefficient, linear model

2) a constant coefficient, linear observation relationship

3) a constant input covariance matrix

4) a constant stepsize between observations

The basic tenet of any of these approaches is to show that the

state covariance matrix does not grow unbounded in an asymptotic sense;

and thereby, drive the state solution unbounded. In the current reentry

application the covariance matrix propagation and update equations

include both time dependent variables and a nonlinear combination of

state variables. A linearized, constant coefficient; linearized,

periodic coefficient; or perturbations theory stability approach is

not appropriate. The time dependent and nonlinear dynamics are the

reason that these techniques are not appropriate.

The structure of the current reentry estimator yields two facets

which merit investigation regarding the stability of the algorithm.

One is the state update expression which processes an observation to

modify the state estimate at an epoch. It is desirable to examine

the nature of the bound on the resulting state estimate as a function

of the observation data, the value of the fading memory parameter, and

the a priori state covariance matrix being used to update the state

estimate. The other stability consideration concerns the propagation
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of the state trajectory forward from an epoch by integration of the

system dynamics equation. Two different approaches to these stability

questions were considered. Safonov (32) offers a functional analysis

approach which may potentially be used to examine the numerical

stability of the system during the state update phase. The propaga-

tion phase may be better suited to the energy considerations of the

system dynamics using an asymptotic stability analysis of Liapunov (33).

Safonov's approach (32) suggests a topological separation of

spaces to identify regions of stable and unstable behavior relative to

the reference trajectory state solution. The state update equation

and observation equation may be cast into the form of a multivariable

feedback system. Each individual iteration of the estimator at an

epoch update point could be written in such a form. Since the

linearized equations are evaluated along the reference trajectory,

constant values of the geometric partials matrix and the state

transition matrix are available for examination at a given iteration.

The Safonov approach is a higher level of abstraction which

includes the Liapunov stability approach for the multivariable feedback

system. However, the stability characteristics of the system are

dependent on the adequacy of the linearization, the accuracy of the

estimator dynamics relative to the true dynamics, and require

continuous partial derivatives of the f(x) term. The reentry problem

has uncertain true dynamics, does not provide an exact linearization,

and does not have continuous partial derivatives for the true dynamics

due to vehicle fragmentation, although the estimator dynamics model

does have continuous partial derivatives of f(x). Substantial research

would be required to adapt the Safonov approach to the current
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application. Unfortunately, the examination for stability would also

need to be accomplished for each iteration at each update epoch due

to the re-linearization about a new reference trajectory as the

estimator converges.

The propagation of the state estimate forward from an epoch may

occur over regions where no observations are available and; therefore,

may not be suitable for expressions of the multivariable feedback form.

The energy considerations of the system dynamics may potentially be

examined for their asymptotic stability characteristics using a

Liapunov approach (33). One could potentially examine the asymptotic

stability characteristics of the state trajectory solution at each

epoch update point. A particular selection of the adaptively

determined fading memory parameter, y, in combination with the

asymptotic stability characteristics of x(t) = f(x(t),t) could be

examined at each epoch relative to the ECI coordinate system origin,

the Earth center.

The current dynamic system does not consider any rotational

energy or motion, but is simply a point mass formulation for the reentry

trajectory dynamics. This makes a formulation similar to

Meirovitch (33) appealing. The system kinetic energy, T, potential

energy, V, and the dissipative drag forces were considered to

formulate a system Hamiltonian, H', for use as a possible Liaponov

function. Meirovitch (33) shows the ability to conszruct a Rayleigh

dissipative function which is a quadratic function in the velocity

terms when the non-conservative dissipative forces are linearly

dependent only on the velocity terms:
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f = -c x (115)

The Rayleigh dissipative function takes the general form:

F E cij qi q (116)
i J J

where

c. constant coefficients
1J

qi = generalized velocity terms

In this manner, the system Hamiltonian, H' T + V, and the

quadratic form of the total time derivative of H' are examined, where:

H'=-2F (117)

If H' is positive definite and H' is positive semidefinite, the system

Hamiltonian may satisfy one of the basic Liapunov stability theorems

and a statement on its asymptotic stability can be made. Specifically,

4f the set of points where H' 0 contains no nontrivial solution

trajectory for the dynamic system x(t) = f(x,t), the solution is

asymptotically stable (33).

Unfortunately, the dissipative forces in the current estimator

model are more complex in the velocity terms and coupled to the

position terms due to the rotating Earth atmosphere as:

fd = - m 5P VR (x,+)y)
x

fd = - m fP VR (Y -Wx) (118)

y

fd = m p VRz
z

where: = Earth rotation rate, and VR = [(x+oy) 2 + (y-,x) 2 +
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While the system Hamiltonian, H' = T + V, is positive definite

in the velocity terms, the total time derivative, H', is not quadratic

in the velocity terms. It must therefore be examined at every point

along the reentry trajectory to gain any insight into the system

stability characteristics. To accomplish this, one must integrate the

system dynamics equation for each epoch solution. There is no apparent

quadratic form whose sign-definiteness could be examined to identify

the stability characteristics of the system. Early during reentry, for

a given value of y and observation geometry, the reentry dynamics may

indeed become unstable. The resulting state trajectory solution will

skip the Earth atmosphere.

From strict physical considerations, one can restrict the

estimator application in these upper altitude regions. The magnitude

of the total velocity at an epoch can be examined relative to the

escape velocity at that particular altitude (34):

SG(M+m)

v = (119)
e 

R

where: G = the universal gravitational constant

M = the mass of the Earth

m = the mass of the satellite

R = the magnitude of the radius vector to the Earth center

If the total estimator velocity estimate exceeds V e there is a high

potential for generating a solution which can skip the Earth

atmosphere. The escape velocity is the _2- times the minimum

velocity necessary to maintain a circular orbit at the given altitude,

or radial distance, R. A decaying Earth satellite has generally

followed a trajectory which has spiral led down from the lowest
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circular orbit which could be maintained in the presence of the

atmospheric drag. (1) Should some combination of the scalar fading

memory parameter, y, and the a priori state covariance matrix yield

a solution with velocity exceeding the circular velocity at an early

epoch, this solution may be discounted on physical grounds of the

true system dynamics. While it does represent an admissible solution

as defined by the magnitude of the deweighted state covariance, it

will generally not occur within the true reentry dynamics. One

alternative would be to omit these initial observations from the

estimator solution and begin the reentry data processing later during

reentry.

Fortunately, the infinite memory formulation shows acceptable

performance in these regions. Hence, the recommended application is to

restrict the use of fading memory until later, when a committed to

reentry solution is the only admissible estimator solution. This

approach still allows one to satisfy the basic goal of carrying the

solution forward to the Earth impact locations of interest. However,

additional research is recommended to develop a rigorous examination

of the stability of the proposed reentry estimator over a range of

reentry conditions.
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D. Numerical Simulation Results

D.l. Deweighting Technique Variations

The series of single sample simulation runs summarized in Table

XII illustrate some relative performance considerations of a number of

deweighting methods which were examined. All may generally be

compared to the basic infinite memory estimator results to discern a

gross measure of the estimator performance in terms of error and the

error/(ONE SIGMA) or performance ratio. A more complete indication of

the estimator performance will be shown later with the Monte Carlo

results. Complete details on these single sample results are contained

in Appendix B.2.

As discussed earlier in Section A., the results of this single

sample analysis implementing various deweighting methods indicate that

the adaptive selection of a scalar deweighting parameter, y, should

offer better performance than the infinite memory estimator, a

constant scalar deweighting, or an adaptive deweighting of only

selected states within S m'm_. The improvement is evident in both

error and ratio measures. Only in the constant scalar deweighting

Case 2c, does performance begin to compare with the time dependent

adaptive determination of y at each epoch. The selection of such a

constant deweighting for the entire trajectory requires some a

priori knowledge of the true trajectory dynamic variations. This is

partially shown by comparison of Case 2b and 2c results. A y = 1.56

produced better results than the y = 1.10 of Case 2b. In actual

reentry data processing, little a priori information for proper

selection of a constant y will exist.
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D.2. Monte Carlo Results

With the implementation of an adaptively determined scalar

deweighting, one must now quantify its contribution to the estimator

performance. A sequence of Monte Carlo dynamics mismatch runs and

some discussion on the implementation of the deweighting scalar will

demonstrate the estimator performance in terms of bias and RSS/(ONE

SIGMA) ratio. A Monte Carlo analysis is necessary due to the

complexity 9f the nonlinear dynamics and the uncertainty in the true

reentry dynamics in this application. These problems preclude a

simplified analytic development of bounds on the estimator performance.

The results of the Monte Carlo analysis lend insight into the viability

of the proposed technique for this application.

Three cases of Monte Carlo results were completed with the

fading memory estimator formulation:

1) A duplicate of the infinite memory mismatched dynamics case

now with an adaptively selected, scalar deweighting.

These runs use conditions identical to the infinite memory,

mismatched dynamics case shown in Figures 14-17, with data

from a single observational satellite positioned at an

initial Right Ascension (RA) of +45'.

2) A repeat of the mismatched dynamics case with observational

data partially overlapping in time from two observation

satellites at initial R.A. = ±45*. These results may be

compared to the one above to show the improvement in

estimator performance with data from more than one

observing satellite.

147



3) The results from a different dynamic mismatch truth model

which includes a step change in late in the trajectory.

Data comes from two observational satellites initially

positioned at ±45' R.A. This case was selected to provide

a functional representation of vehicle fragmentation. The

dual observations occur along the entire data span.

In all cases, the same baseline as used in the infinite memory

Monte Carlo runs apply. This includes maintaining the same initial

seeds on the state variable initial condition variations and on the

observation noise between sets of the 30 Monte Carlo runs. The fading

memory results will contrast the estimator performance to both the

"deweighted" covariance matrix and the non-deweighted covariance matrix

(Equations 111 and 112). The reference information for the three sets

of Monte Carlo cases is shown in Table XIII.
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Table XIII

Fading Memory Monte Carlo Runs

Observer

Truth Initial Observer Data Span
Case No. Model Trajectory R.A. (seconds)

1) IFAD ATM62 ALT = 73.82KM +450 10 - 330
(Single S=f(Mach no.) R.A. 00

observer) Decl 680
incl 100

2) 2FAD ATM62 ALT = 73.82KM t450 1) 40-300,
(Overlapping S=f(Mach no.) R.A. 0* 2) 10-140
dual Decl = 68'
observer data) incl Z 100

3) 3FAD ATM62 ALT = 73.82 ±450 1) 10-310,
(Dual step A at R.A. = 220 2) 10-310
observer T = 250 Decl = 0'
data incl Z 30.5
throughout)

,

Observer times from initial epoch

Observer 1) at R.A. = + 450

Observer 2) at R.A. = - 450
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The fading memory selection criteria for each case are shown in

Table XIV. The fading memory scalar selection criteria differ very

slightly from case to case, simply to explore the computer mechaniza-

tion. As the later numerical results will show, the dominant

contribution is from the max (6xi/i/Pm term within y, and not

its leading numerical coefficient, a, in the expression:

y = (a max 16xil/F/Vm,m-l)2 (120)

The form of the expression for y was chosen to allow the estimator

software to optionally use a scalar deweighting or the more general

diagonal deweighting of Equation 81.

In all three cases the same relative convergence criterion on

the residuals is applied. From Equation 34, cl = .15. This relative

convergence criterion was empirically determined in conjunction with

the absolute convergence criterion (C2 from Equation 35) to obtain

small changes in the state variable estimates on the final iteration.

The fading memory was not allowed to operate in the early, near

circular orbit trajectory phases to prevent divergence in the initial

estimator solutions. This was accomplished by maintaining the

infinite memory formulation until the ratio of aerodynamic to

gravitational acceleration exceeded a certain minimum value, as shown.

The values were chosen to examine the sensitivities of the estimator

performance in the upper altitude region. With the use of the

"fescape velocity" test discussed in the stability considerations of

Section C, a systematic means to select this value will be available

for application to real reentry data.
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Table XIV

Fading Memory Criteria

CASE IFAD

1) Do not apply fading memory unless the ratio of aerodynamic/

gravitational acceleration > 0.10

2) The absolute convergence criterion:

mean residual < 0.5 x one sigma observation noise

3) Apply fading for the current epoch update if:

- one 6x. > 1.05 rPm
1 m~m.lii

- two or more x i > P

4) Fading parameter, y = {l.l[maxI6xi//7P m,m-11]2
11

CASE 2FAD

1) Do not apply fading memory unless the ratio of aerodynamic/

gravitational acceleration > 0.15

2) The absolute convergence criterion:

mean residual < 0.5 one sigma observation noise

3) Apply fading for the current epoch update if:

- one 6x i > V P

4) Fading parameter, y = {l.08[maxjxiI/ FP i}2

151



CASE 3FAD

1) Do not apply fading memory unless the ratio of aerodynamic!

gravitational acceleration > 0.5

2) Absolute convergence criterion

mean residual < 0.6 one sigma observation noise

3) Apply fading for the current epoch update if:

- one 6x. > V P

4) Fading parameter, y = ix m, ml ]} 2

The leading coefficients for the fading memory criteria were arbitrar-

ily selected to implement the estimator on the digital computer without

multiple selections of a scalar fading memory at any given epoch point.

Only for the third set of Monte Carlo results was the value of the

leading coefficient, a, chosen specifically to be significantly

greater than one (a = 1.80). This selection was made to illustrate

the potential of applying sufficient fading such that the S matrixm,m

could yield covariance data with acceptable RSS performance.
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The results of the Monte Carlo sets are shown in Figures 18-41.

The deweighted covariance one sigma values were used for plotting the

results in Figures 18-29. For comparison, the non-deweighted

covariance one sigma values derived from Equation 112 are shown in

Figures 30-41. Because of the dynamics uncertainties, the deweighted

variance values offer a more conservative estimate of the uncertain-

ties in the state solution than the non-deweighted expression. In all

cases the non-deweighted variance data shows a marked improvement in

RSS performance when compared to the infinite memory, mismatched

dynamics results of Figures 14-17 in Chapter II. However, no system-

atic technique is apparent for selecting the leading coefficient, a,

such that a zero-mean bias is obtained in the state estimate. With a

zero-mean bias, the S expression would represent a minimum variancem ,m

covariance. With the collection of data from many reentries, a

systematic technique may potentially be developed for selecting a,

such that a zero-mean estimator solution is available. This poses

much the same problems for the estimator as does the proper

construction of a pseudo-noise compensation to the dynamics. The

presentation of the results for the S statistic is to illustratem ,m

the potential for use of S , should proper tuning be successful.m ,m

In all cases the results for the estimator are displayed in the

same format as the infinite memory Monte Carlo cases. This includes

presentation of position and velocity bias and variance data from the

estimator solutions. The RSS of the mean square errors about the true

solution (Equation 75) are contained in the figures labeled

"ESTIMATOR PERFORMANCE" within the RSS term of the ratio RSS/

(ONE SIGMA). The standard deviation about the mean solution (Equation
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76) is shown only in Figures 20/21, 24/25, 28/29 to illustrate the

consistency with the estimator-computed deweighted covariance data.

Additional Monte Carlo derived standard deviations are not plotted

for ease of viewing of the fading memory results. In both cases the

standard deviations derived from these Monte Carlo computed covariance

matrices followed a trend consistent with the estimator-computed,

deweighted state covariance matrix. However, the deweighted state

covariance matrix provides a conservative estimate of the RSS error in

the state estimate. The use of the standard deviations from this

deweighted covariance is recommended since a trajectory dependent bias

still exists in the estimator solutions.

Figures 18-19 show the RSS/(ONE SIGMA) ratio. As before, the RSS

is derived from the Monte Carlo data (Equation 75). The ONE SIGMA

values are the deweighted covariance position or velocity uncertain-

ties obtained from the application of the fading memory estimator.

Figures 20-21 show the estimator mean position and velocity bias

magnitudes relative to the average value of the estimator deweighted

covariance "one sigma" or standard deviation values.

For this fading memory duplicate of the infinite memory

mismatched dynamics, single observation satellite case, a marked

performance improvement is evident, compared to Figures 14-17. Only

very near to the last observation does the RSS/(ONE SIGMA) ratio grow

beyond a value close to one. When this does occur it is principally

within the velocity terms. Similar results are apparent in Figures

20-21. Only in the velocity term does the bias exceed the estimator

one sigma levels, and then on just two observations. By the
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final observation, the bias is within the estimator covariance one

sigma level.

In Figures 20-21, one can observe the onset of the deweighting

at the 54 second point, and the general ability of the estimator to

minimize the divergent behavior of the infinite memory results in

Figures 16-17.
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Having illustrated an improved estimator performance for the

single observation satellite, one must explore the higher data content

and improved observability offered by the dual observation satellite

data. Figures 22-25 contain these results, with data overlap from the

two observation satellites between 40 - 140 seconds of trajectory time.

This data overlap region was selected to simulate one possible orbital

deployment of the observation satellites. Doing so, it includes

regions of both single and dual observation of the reentry trajectory.

As the results in Figures 22-25 show, there is a marked improvement in

both RSS/(ONE SIGMA) and the bias magnitude compared to the deweighted

covariance, single observer results. This improved performance results

with the dual observations of the trajectory between the 40 and 140

second points. This indicates that an acceptable estimator solution

should then be available for propagation to Earth impact. The bias is

well below the standard deviation from the deweighted covariance. The

deweighted covariance yields a conservative measure of the RSS error

for the position and the velocity terms.
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The final set of Monte Carlo results with the deweighted

covariance are shown in Figures 26-29. In this case, a different

truth model was used to generate the simulated observations. This

included a step change by 50% in a at T = 250 seconds to simulate

reentry object fragmentation. The region of dual observation data

included the entire data span from T = 10 to T = 310 seconds. The

specification on fading memory selection did not allow fading to begin

until the ratio of aerodynamic to gravitational acceleration was

greater than 0.5. This value was selected to allow examination of

where the RSS/(ONE SIGMA) ratio grew beyond a value of one with the

infinite memory formulation for this different truth model case.

The effect of this restriction is evident in Figure 26-29.

Prior to the trajectory time of approximately 174 seconds, the solution

is simply an infinite memory solution with dual observational data.

After 174 seconds of trajectory time, the adaptive fading memory

selection of y is then applied. This fact is shown most clearly in

Figures 26-27 where a slight growth in the RSS/(ONE SIGMA) ratio is

evident prior to the point where deweighting commences. After this

point, the RSS/(ONE SIGMA) ratio shows acceptable performance using

the deweighted covariance values. The RSS/(ONE SIGMA) ratio is less

than or equal to one. The bias in position and velocity is well below

the standard deviation from the deweighted covariance. The

relatively conservative values available from the deweighted

covariance are evident in Figure 27, where the velocity RSS/(ONE SIGMA)

ratios are consistently much lower than one with the use of the

fading memory.
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The availability of dual observations through, and beyond, the

step change in a at T - 250 seconds, enhances the ability of the

estimator to accommodate this simulated fragmentation effect. This

verifies the speculation raised while examining the infinite memory

single sample runs of Table I. That is, given sufficient data, the

estimator can adapt its local model to large discrete changes when

employed in the adaptive, fading memory formulation.
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Having illustrated the validity of adaptive selection of a

scalar deweighting by examining the bias and RSS performance relative

to the deweighted covariance matrix, one must also consider the

magnitude of the non-deweighted covariance matrix, S , and itsm,m'

ability to provide acceptable estimator statistics. Figures 30-41

repeat the Monte Carlo results for the non-deweighted covariance

matrix (Equation 112). One can see a marked improvement in the esti-

mator performance with the non-deweighted covariance:

1) Relative to the infinite memory results, and

2) Increasing with the enhanced observability and data content

of the dual observer cases (Figures 34-41).

In the first two cases, the RSS/(ONE SIGMA) non-deweighted ratio

grows slightly above one near the end of the data span. The single

observer, mismatched dynamics case has several data points where the

bias exceeds the non-deweighted covariance one sigma (Figures 32 and

33). With the addition of dual observational data, only two velocity

bias points exceed the non-deweighted covariance one sigma levels

(Figure 37). Lastly in the dual data case with a step change in B,

one can see the potential for developing a deweighting selection

criterion which can possibly deliver acceptable estimator statistics

from the non-deweighted covariance matrix, S . The RSS/(ONE SIGMA)m,m

velocity ratio grows beyond a value of one (Figure 39), while the

position ratio is remarkedly close to one throughout the entire data

span (Figure 38). The position bias is consistently inside the non-

deweighted covariance one sigma magnitudes (Figure 40). The velocity

bias only exceed the non-deweighted covariance one sigmas at the very

last few data points.
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One must recall that the deweighting, criterion of Table XIV

were developed solely to insure acceptable estimator perfonnance

relative to the deweighted covariance matrix. Therefore, all tht.

results with the non-deweighted covariance macrix, S , shown herem ,m

are simply a by-product of those scalar deweighting criterion. Thu

potential does exist, however, to iteratively select the scalar

deweighting with a more stringent selection criterion, such as the

6x. < V S, or 6x. < bV P (b A 1.0). Examination of
I m,m-l.

this potential was not completely investigated in the current analysis,

since acceptable estimator statistics were available from the

deweighted covariance.

One must also recall the circumstances under which the non-

deweighted covariance is expected to yield an accurate measure of the

random error in the estimator solution for the state trajectory. In

the deterministic dynamics model formulation, the model must be exact

to yield an unbiased estimate of the trajectory (13). This may never

be the case when applied to the relatively unknown dynamics of real

reentry trajectories. The random error indicated by the non-deweighted

state covariance matrix does not yield a good definition in the total

estimator error due to the bias in the state estimate.

There is a very short time span of validity for the deterministic

dynamics model to represent the truth model dynamics locally between

epochs. This can be illustrated by considering the magnitude of the

adaptively selected scalar deweighting parameter, y. One may define a

half-life on the covariance matrix as follows:

P = (/Y)At P (121)
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Solving for the time constant yields:

In( )
In ( i /y) (122)

This _'t, gives an indication of the time span of local model validity

as measured by the half-life of the a priori covariance matrix at each

epoch where a new y is adaptively determined. Table XV shows typical

estimator runs from the dual observer Monte Carlo runs. The magnitude

of -y and the approximate half-life from Equation 122 are listed.

A review of Table XV shows the following:

1) The dominant contribution to the magnitude of the adaptively

determined scalar, y, is the !xi//P term; and not,
:im i

the leading numerical coefficient, a.

2) The time span of local model validity is very short,

indicating one should not anticipate unbiased estimator

solutions.

As a result of these considerations, one would not recommend the

utilization of the non-deweighted covariance, S , as an indication ofm ,m

the random error in the trajectory solution. In light of the uncertain

dynamics of true reentries, a systematic means to modify the leading

coefficient within the expression for y to drive the RSS performance

within the standard deviation of S is also not apparent. Sincem ,m

acceptable RSS performance was evident with the deweighted covariance

matrix, it is considered prudent to use the estimator deweighted

covariance matrix for a measure of the uncertainty in the estimator

solution.
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Table XV

Fading Memory, Covariance Half-Life

CASE 2FAD B = f(M) + ATM 62

Y=(1.0 8 maxi6xiI/v Pm,m-l.o) 2

Approximate

Covariance
Time Half-Life

84. 2.907 .650 (secs)

94. 5.503 .406

104. 2.634 .710

124. 1.935 1.050

134. 1.545 1.590

154. 1.633 1.413

214. 3.920 .507

254. 5.253 .418

274. 2.409 .788

284. 3.717 .528

294. 7.161 .352

CASE 3FAD A at T = 250 + ATM 62

(1.80 mix 6 m,ml.. ) 2

164. 33.907 .197 (secs)

174. 21.455 .226

184. 15.179 .254

204. 14.296 .261

214. 16.704 .246

234. 20.784 .229

254. 26.420 .212

284. 48.066 .180

294. 22.734 .222

304. 44.676 .182

Note: omitted epoch points at 10 sec data rate did not

generate additional fading, via the dynamically

selected y.
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The deweighted covariance, Pm ,m' has characteristics which are

analogous to the covariance from a properly tuned estimator, with

pseudo-noise strength chosen such that the estimator-computed and true

mean square errors agree well.

These considerations are particularly apparent when one

considers the magnitude of the ultimate covariance matrix when propa-

gated to impact. The results of the next section show a marked reduc-

tion in even the deweighted covariance matrix one sigma position

uncertainties relative to previous operational experience. The

deweighted covariance provides an acceptable and conservative measure

of the uncertainties in the ultimate satellite impact point.
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D.3. Propagation to Impact

Table XVI shows various methods of propagating the two mismatched

dynamics cases using dual observation data to impact with one sigma

uncertainties for each state variable. Similar to the infinite

memory impact covariance results, the linear propagation methods do

not reflect a completely accurate portrayal of the second order

statistics at the ultimate impact point. In both cases, the non-

deweighted variance data have one sigma values which are smaller than

the average bias in selected state variables. This is particularly

true for the velocity terms. It is also true for the p term,
0

principally since the CASE 2FAD truth model had a variable p . Also,

the discrete step change of $p in CASE 3FAD still reflects the mis-

match between the estimator and the truth model.

With the selected deweighting criteria, the accuracy of the non-

deweighted covariance values is anticipated to be a less conservative

measure of the random state uncertainty than that available from the

deweighted state covariance. The linear propagation of the deweighted

state covariance is often overly conservative, with very large one

sigma values relative to the bias on selected state variables. This is

particularly true for the final case which included a step change in ,

where the deweighted one sigmas are much larger than the bias solution

for all state variables. For these reasons, a Monte Carlo derived

impact covariance for the final propagation phase is recommended. The

ratio of the RSS of the mean square errors to one sigma about mean

solutions provide the best indication that a Monte Carlo derived

covariance provides the most accurate reflection of the RSS uncertainty

in the state solution at Earth impact.
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In both these cases, the impact uncertainties are orders of

magnitude less than previous operational experience of propagating the

last orbital estimate to impact. This offers the most convincing

evidence of the chosen deweighting estimation technique affording

significant improvements to previous impact location and uncertainty

determinations.

Figures 42 and 43 show the Earth tangent plan projections of the

estimator solutions for two cases of dynamics mismatch relative to the

estimator dynamics model. The mean estimator impact location is shown

as point 0, with the truth model impact at point X. The difference in

distance between these points show the bias in the ultimate impact

solution. Both one (1o) and two (2) standard deviation error ellipses

from the "deweighted" state covariance matrix are plotted. These were

developed by a Monte Carlo propagation of trajectories from the final

reentry data point. As can be seen, consistent impact locations and

statistical descriptions of the uncertainties are provided. The

magnitude of bias is less than the one standard deviation magnitude.

The magnitude of the position uncertainties is significantly improved

over the many hundreds or thousands of kilometer uncertainty of Earth

impact available from existing operational methods of such agencies as

the USAF SPACETRACK System.

Figure 44 provides an illustration of how large the impact

uncertainties would be with a simple propagation of the initial epoch

(73.82 km altitude) covariance to impact. The initial epoch contained

a standard deviation of position of approximately 3.5 km, mostly in-

track error along the trajectory. This results in over a 400 km one

sigma uncertainty along the path of the reentry ground trace, at
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Earth impact. Figure 44 may be directly compared to the one sigma

error ellipse of Figure 42 to see the significance of the proposed

technique in identifying the satellite debris search area.
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Chapter IV - Conclusions

The principal. goal of this research was not Lo enhauce the

existing estimation theory or reentry dynamrics theory by a significant

amount. The principal goal was to bridge the considerable gap between

theory and engineering practice. A valuable tool for astrodynamlcs

research has been developed as a product of this dissertation. One

could have foresaken this effort by saying that the original research

constraints were too severe. The use of an orbital observer as-..'ed

angles only (IR) data at a 10 second data rate. The angular

observations provide a limited observability of the system. The 10

second data rate does not capture many of the rapidly varying dynamics

changes of reentry. The research approach concentrated on extending

existing orbit estimation methods, which often use a deterministic

dynamics model, into the reentry regions. The deterministic estimator

formulation is difficult to apply in an uncertain dynamics region.

Perhaps this is why this particular problem has perplexed

astronautical engineers for the better part of 20 years. With the

collection of many additional true reentry trajectory estimates, the

issues presented in this dissertation can be married to more

sophisticated estimation theory to provide further advances in this

complex area of research.

A basic objective or this research was to extend the existing

orbit determination methods into the high dynamic model uncertainty

regions of reeatry. A differential correction estimation technique

was utilized to process angular infrared (IR) observations of a

reentry trajectory to reconstruct the Earth impact locations and
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uncertainties of arbitrary decayed satellite trajectories. The azimuth

and elevation IR observations were obtained from an orbiting sensor

viewing the reentry from a synchronous orbit. The linearized,

differential corrector used a deterministic dynamics model in a Taylor's

series expansion about a reference trajectory. The technique provided

state variable updates and covariance data for the reentry trajectory

positions, velocities, a vehicle ballistic parameter, and the density

scale height of an exponential atmospheric density model.

Previous operational experience (5) has shown that extreme

difficulty exists with application of a pseudo-noise compensation to

the estimator model dynamics for orbital satellite applications. Up to

100 Earth revolutions of tracking data of the orbiting satellite have

been required to tune the dynamic pseudo-noise coefficients and

covariance matrix elements properly for a specific satellite of

interest. With the short time spans and limited tracking data of the

reentry trajectories, this task is even more difficult to implement.

Using a fading memory, recursive estimator formulation, the adaptive

estimation of an ad hoc scalar fading memory parameter provided

estimates significantly improved over existing techniques for reentry

trajectory and Earth impact estimation.

The structure of this technique is similar to using a scalar

tuning parameter to adaptively tune a noise covariance such as

Q(t) = Q0(t) + yAQ(t). In the current formulation, the estimator-

computed, or a priori, covariance is utilized as the starting

definition of uncertainty, and modified by the adaptively determined

scalar parameter, y.
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Specific conclusions of the research included the following:

1) Monte Carlo simulation analyses show that the dynamics

uncertainties of the general satellite decay trajectories to

significantly affect the estimator performance. Without

model compensation, significant bias exists in the state

variable solutions relative to the standard deviation of the

estimator-computed state covariance matrix.

2) With a deterministic dynamics model, angular observation

accuracies with standard deviations less than 10 - 5 radia.s

induce significant error in the state estimate relative to

the standard deviations of the state covariance matrix.

3) Due to the dynamics uncertainties anticipated in real reentry

applications, a recursive formulation of the estimator is

recommended which uses a short time span between the

trajectory update point (epoch) and the observation(s) being

processed. Monte Carlo analyses of the estimator bias and

RSS performance demonstrated that successful linearization

(as defined by Equation 44) relative to the reference

trajectory is obtained by limiting the time span between

epoch update point and the observations used for this

trajectory update.

4) For acceptable estimator performance in terms of bias and

RSS/(ONE SIGMA) ratio, observations from more than a single

orbital source are required to provide higher data content

over similar time spans and improved observability of the

/
reentry trace. The additional use of range, or range rate,

observations should improve the observability of the system.
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5) An eight dimensional formulation (3 positions, 3 velocities,

ballistic parameter, density scale height) provided superior

estimator performance to a seven dimensional formulation.

The standard orbit determination approach which uses a seven

dimensional state vector (3 positions, 3 velocities,

ballistic parameter), with density from a standard density

model, proved inadequate in the current estimator formulation.

The improvement in the performance for the eight dimensional

system derives from simpler mathematics in the estimator

dynamics model and continuous valued partial derivatives of

the dynamics over the trajectory space for the Taylor's

series linearization.

6) With a deterministic dynamics model, the time span of model

validity relative to true reentry dynamics is very short. A

very limited number of observations are available over this

short time span. A proper statistical testing of these

observation residuals is not available for adaptive

compensation of the estimator dynamics. A magnitude check

on the state variable changes, 6x., at each update epoch1

relative to the standard deviation of the state covariance

matrix provides a satisfactory measure to determine which

trajectory points required additional fading on the

estimator memory. This is demonstrated by examining the

bias and RSS performance of the estimator in a Monte Carlo

analysis. This adaptive selection of a scalar fading memory

parameter is easily incorporated into the estimator structure.
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7) Lastly, a Monte Carlo propagation to impact preserves the

integrity solution stat. tics over the final non-observable

portion of the trajectory. The Monte Carlo derived

covariance about the mean and the true impact solutions

compare very closely. Both these measures yield values

significantly different than those obtained from a linear

propagation of the final epoch covariance to impact.

Application to general decay trajectories of the fading memory

estimator provides impact locations and covariance data consistent with

the RSS uncertainties of those locations. The magnitudes of the impact

location uncertainties are between one to two orders of magnitude

smaller than those available from current operation techniques. The

method is applicable to world-wide impact locations with the

availability of the orbital reentry observations.

Users of the proposed estimation algorithm are cautioned to refer

to the stability considerations of Chapter III, Section C. A rigorous

stability analysis has not been completed for the estimator algorithm.
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Chapter V - Recommendations

1) Investigations which vary the observation data rate and the

time varying character of true reentry dynamics are

necessary to examine the estimator performance extensions.

This should be conducted with an investigation of using more

accurate observations (much less than i0 radians) in

conjunction with higher data rates and higher frequency

variations in reentry dynamics. Examination of using

alternative measurements, such as range or range rate, is

also recommended.

2) Further analysis of a means to apply the fading memory

estimator to very high altitude and shallow reentry angle

reentries is recommended. Should violent dynamics changes,

such as vehicle fragmentation, occur in these very early

data regions, the suggested fading memory scalar

determination may result in divergent estimator performance

due to atmospheric "skip" trajectories being admissible

solutions within a large magnitude deweighted state

covariance matrix. A rigorous stability analysis approach

needs to be defined for both the state update and

propagation equations.

3) Further investigation of implementing the fading memory

would be of interest. It is desireable to minimize the

bias in the estimator solution such that the non-deweighted

state covariance matrix provides a minimum variance

covariance for the state errors (with zero mean 6x(t)
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estimates). However, since the size of the impact

uncertainties from the deweighted state covariance matrix

provide such a marked improvement over existing methods,

they are acceptable for most reentry debris search and

recovery requirements.

4) The application of this suggested estimation technique to a

wide class of reentry trajectories should provide a large

empirical data base for improvement of the estimator

dynamics model. Subsequent investigations should then be

pursued such as dynamic model pseudo-noise compensation,

statistical linearization, or higher order filters. These

may then be compared to the recommended fading memory tech-

nique for comparison of relative performance.
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Appendix A Partial Derivatives

A.l. Dynamic Partial Derivatives

X= f(x) A = (Al)

ax

fl = X2

f2 = d + gx

f 3 = X4

f4 = d  f/+ gfy (A2)

f 5 = X6

f6 = d z+ g z

o 7 0

f7 = 0

A=

0 1 0 0 0 0 0 0

af2/x af2/x af2/3y ff/ y f2/3Z af2/Z 3f2/3O 0  af2/3Q

S0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

3f6/3x Df6/ af6/3y 3f6/9Y 3f6/3Z afl/3z 3f6/36P0o  af6/3Q

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(A3)

206

. ... .. .il ll . . .. Il rl . . ...



A.1.l. Partial Derivatives of Drag Accelerations

Recall d , d , d E drag accelerations in x, y. z components,x y z

therefore take the partial derivatives by chain rule -

3/ x. H /Q:1

R (1-f) (2xR 2 (l-2f+f 2 ) + xz 2 (2f-f 2 )

7M/Qg R3 ((l-2f+f 2 )(x 2 
+ y2 ) + Z2)3/2 R3

R (1-f) (2yR 2 (l-2f+f2 ) + yz 2 (2f-f 2 ) y

-y(H /Q) = M/Qg ° R3 ((l-2f+f 2 )(x 2 + y2 ) + z2)3/
2  R 3  (A4)

a *
-z (H /Q) =

R (1-f) (2zR 2 (l-2f+f 2 ) + zR 2 (2f-f 2 ) + z3 (2f-f 2 ) zGM/Qg °

0 R3 ((l-2f+f 2 )(x 2 + y 2 ) + z2)3/2 R3

VR = Lo( + y) 2 + (y - wx + z2] (A5)

iR
/3x 

i  VR:

VR/ax = -(y wx)/VR

av R/x = (x + wy)/VR

aVR/aY = w(x + uy)/V R  (A6)

aVR/ a = (;-wx)/VR

avR/DZ = 0

av R3;=1/R
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Drag Partials:

3f +w(x )[V 9/ -H/ Q +-H/IQ 
(A7)e = e (AVR

S-H I
-12Epe (x+-y) ?3/Dx V R

3yd _ =_ Bp e- 'Q vR (A9)

s ~p 0(x-hy[v R a/ny eH IQ + -H IQ /Dy VR]

ad * HI
=____ -H/Q)y (xy 3/ny VR (All)

3z ~0R

afd

x =_ - 0 e Q (x+-Y) a/Dz VR (A12)

Xfd? = _ e jH * IQV R(x+cy) 
(A13)

300

af d x H* Q* 2x -HQ =/Qp0 (\,y H' (A14)

a f y= 8 p e - * VI w (A 1 5 )
ax 0oV

- ap 0 (y;.Wx)tVR a/ax eH*/Q + -H*/Q a/ax V R]
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=- - p e (y-wx) 3/3x v R(A6

=f d Y (y;-Wx)[VR 3/ eH /Q + e11 H Q33 (A17)
3y 0 R VR

dH (A18)
0 R

H p ~ /Q (y-wx) 9/ay V

3z -Z0 (Y*wx)[V R 3/Dz e H/Q+ e- /Q I /z V R] A9

=H J/Q VR(A20)

f -d eH *Q (-~i)V (A21)

y 0 1 eH/ (y-wx) VR H/Q2  
(A22)

a(Q)0R

d ~ -~H /Q ~P R+V /ax H/](A23)

oaf d eHQ 
(A24)

af d *

aZ _J H ~ / /y V R + V R ;/y H Q (A25)
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d -H/IQ 9/ vR (A16)

* 0

3fdy =-16P0  3y/3[V --H /Q + -H IQ 3/'y VR~ (Al7)

3fdy= -sp e IQv (A 1)
0 R

e'.s H e (Y-w~x) 9/3; V R

3fdy= - F sp (Y,-Wx)[VR iz j-H/Q + e H IQ /9z V] (A19)

-fdH * (A 20)
= sP0e- (Y-x) 3/3z V R(A0

3f d

=a -0 2HI vyx VR (A21)

yf _ p e H Q ; w* / (A22)

3(Q) 0 (-)VR HQ

;x= p -H/Q 3/;x VR + VR

afdz H I e' /a VR (A24)

afd - p*-H /'Q + ay-H /Q(2)
aZ zlo e )/ay v R +V R ;ye
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fd*z= e- H /Q; 3  VR (A26)

z • e -

f d ,
Z e - H /Q v R  A8

02~ R (A28)
J R

0 e - H /Q z 3/d VR

= eH /QVR z (A29)

z eH/Q VR z /Q /Q 2  

(A30)
D(Q) 0 R(A
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i/

A.2.2. Geopotential Partial Derivatives: (Ref: DMAAC Network Analysis

Program, Vol I, Part I - Mathematical Analysis, Sep 1970)

Define partial derivative matrix of geopotential function W.R.T.

state variable position coordinates:

A = xx xy xz where xy = 9 /x~y etc. (A31)

lyx yy yz

zx zy zz

Define A)T where j = rotation matrix back to E.C.I. Greenwich

Meridian reference (note: actually required only if tesseral harmonics

are used)

xx 1 /4R ZE {C [m+2 Cm (Cm-2 um-2 2m

~xx 0/4 Ro n,m n,m Un+2 +n n+1 n+ n+2

Sn[V++2 + Cm (Cm- Vm-2
n,m n+2 n n+l n+2 n+2)]} (A32)

1 Z /R2 E C m [ m + n+2]

S 0 n [C n U+ 2 +Sn,m +2
n,m

0 0-( +~
yy xx ZZ

-- 2 m rn-i rn+
xz ZX 1 I/2R 0  - (n-m+l) [Cnm (C n+ 1 Un+ 2  Un+ 2 +

n,m

S (Cm m- +V m4 -l

n,m n+l n+2 n+2)]
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U m

n i (_Cm V m_1 +vm+1

3Y 2R + + n+I / (A34)

a)vm
__n= 1 m m-I .m+1

(C1 U  + Un+l
V 2R 1+1 n1

0

DU
M

n 1 (-2(n-m+1) Um,)
az 2R n+

0

aV 
M

n 1 (-2(n-m+l) Vn )
az 2R n+1

0

where: Cm = (n-m+1)(n-m+2)
n
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A.2. Geometry Partials

h, sin-1  y + i'(A35)

(yI 
2+Z 1 ) -2

h2 sin- xV+I+V)- (A36)

(Prim - Observer Coordinate Frame)

By simply chain rule H = 3E/ax .

h = Dh/D ?hl/ax' )x'/Dx + Dh1 /3x'' Dy'/Dx + £ hI/ z' 9z'/3x

h1 3 = 3h,/3y = hj/3x' Wx/ay + Dhj/Dy' 3y'/3y + 9h1 /Dz' Dz'/;iy

h15 = )h/3 h1/3x' ?Dx'/23z + 3h1 /D3v' ay'IDz + h1 /3z' z'/ z (A37)

h = =h-O Dh 2 /aX' Dx'/ax + 3h 2 / Y' 3y'I3x + h2 / Z' DZ'J X

h23 = 3h 2/3Y = h2/3X' 9x'/3y + ah2/DY' WIY/y + ah2/qz' Zaz'/3y

h2 5 = =h/3 3h 2/DX' 3xt/ z + 3h 2/3Y' 3y'/3z + 3h2/3Z' az'/3h

All other h.. elements =0.
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Appendix B Numerical Data

B.I. Truth Models

B.I.I. 6 f(Mach no.)

B Mach no.

5.80 X 10- 11 0.

10.98 X 10 - I  1.

6.90 X 10 -'0 2.

3.30 X 10 - 1' 3.

2.65 X 10 -l 4.

2.35 X 10 -1 5.

2.55 X 10 - 1' 6.

2.75 X 10 - ' 7.

2.95 X .-0-  8.

3.15 X 10-1 9.

3.35 X 10 - °  10.

3.75 X 10 "  12.

4.15 X 10-10 14.

4.55 X 10 -' 16.

4.95 X 10 - " 17.

5.35 X 10-1' 20.

5.60 X 10-"  22.

5.80 X 10-10 23.

Nominal B = 4.0 X 10 "10 KM 2 /KG equates to Bp = .49
2
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B.1.2. U.S. 1962 Standard Atmosphere (Relative to SAO-III Earth

Model Geopotential Altitude)

ATM62

Geopotential Alt Base Temp Lapse Rate

0. KM 288.15 OK

-6.50 0K/KM
11. 216.65

0.00

20. 
216.65

+1.0
32. 228.65

+2.8
47. 270.65

0.00
52. 270.65

-2.00

61. 252.65
-4.00

79. 180.65
0.00

87.513 180.65

B.1.3. High Density Exponential Multipliers

Alt (KM) /* p/o

0. 1.05

10. 1.10

20. 1.15

30. 1.19

40. 1.28

50. 1.35

60. 1.42

70. 1.52

80. 1.42

Ii
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B.2. Single Sample Analysis Results
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B.3. SAO III Earth Model Parameters

RE = 6378.14 KM Mean Equatorial Radius

go = 9.798 X 10 - 3 KM/sec
2

f = 1/229.256 Flattening Factor

GM = 398601.3 Gravitational Constant

B.3.1. Zonal and Tesseral Harmonic Coefficients

Normalization Factor = - 2n+

Where n = coefficient subscript, i.e., C or Snm nm

Example J2 Term:

Unnormalized J2 = C = - 4.8417 X 10
"
-

Normalization Factor = - F4T = -

Therefore, J2 = 2.1653 X 10-4
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