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Preface

I chose this topic because I am interested in {luid flow,
but my main field of study at AFIT was structures, Solving
a fluid flow problem using a structural method satisfied the
requirements of both the school and myself. 1 would like to
thank my advisor Capt J.E. Marsh and my typist Pat Sawdy who

patiently helped me to finish this thesis.

Dennis L. Hunt
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Abs tract

The finite clement mcthod was used to solve the two-
dimensional, non-linear, small-disturbance, velocity-potential
equation for steady transonic flow over a thin airfoil. Two

finite element upwind techniques were investigated to see 1if

either could accurately moedel the supersonic (hyperbolic)

zone that is embedded in the subsonic flow field. The two
techniques are: wupwind functions and an alternative integra=-
tion scheme. Both techniques used Galerkin's Method of Weighted
Residuals, but differed in the supcrsonic region.

The upwind method involves adding an upwind functicn to
the weight function in order to weight the upstream nodes of
an element more than the downstream nodes. The alternative
integration method involves Galerkin's method for all ele-
ments. In the hyperbolic region, the elemental stiffness
matrix is integrated only over the area inside the forward
mach cones of the elemental nodes. Both these methods account
for thé-physics involved in supersonic flow. That is, the
solution at a point in supersonic flow can only be influenced
by points inside the forward mach cone whose apex is located
at that point. )

Neither of these methods produced results that agree with
experimental data or other solutions. The alternative inte-

gration method never converged. 7The upwind method convergcd,

but did not converge to an acceptable solution.
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INVESTICGATILON OF UPWIND SCHEMILS FOR
FINITE ELEMENT ANALYSIS OF TRANSORIC

FLOW OVLER THIN AIRFOILS

I. Introduction

In transonic flow, nonlincar cquations with changing
characteristics pose major problems in solving the governing
equations. These equations nced to be solved since many of
today's high performance aircraft encounter some form of
transonic flow, Over the last fifteen years, investigators
have published many papers in this area.

Transonic flow calculations are important, because in
this region, violent oscillatory motion is often encountered.
If the effects of transonic flow are not incorporated into
an aircraft's design, the results could be detrimental to
its mission. Whether it be an F-16 going from subsonic to
supersonic flight, or the tip of a helicopter blade, the
need for transonic flow calculations are evident in today's
high technology aircraft,

Most of the work done in transonic flow involves the
use of potential flow theory and finite difference methods.
The velocity potential equation is used, because for steady,
irrotational, frictionless, isentropic flow of a perfect gas,
it is a single equation which satisfies the law of- conserva-
tion of mass, Newton's second principle of motion, and the
laws of thermodynamics. Finite difference methods are used,

because they have becn around for a long time, and have proved




Dl it ¢ e

e TR

to be a realistic way to solve fluid flow problems. Only

recently has the finite clement method (FEM) been employed
to solve these types of problems. Initially, a method used
for structural problems, the FEM 1s now being investigated

to sce how well it solves {luid flow problems.

Finite Element Backuground/Previous Work

The finite element method (FEM) is a numcrical method
uscd to solve partial diiferential ecquations, and has becen
around for about thirty years. Prior to the mid 1960's,
the FEM was used to solve for static forces 1n structures,
The method was used, becausc structures are nothing more
than an asscmblage of finite parts connected at a finite
number of points or nodes. Then, forcing equilibrium was
enough to determine the loading at each node.

When the mid 1960's came, the FEM had alrcady proved ]
itself useful in solving structural problems using energy
principles like the Rayliegh-Ritz mcthod, and was now intro-

duced to non-structural problems such as fluid flow. This

worked out very well for simple problems in subsonic flow,
and slowly has been proved useful in more complicated non-
linear problems such as transonic flow. Now, the FEM is
used to solve many types of boundary and initial value
problems.

Mathematicians have linked the FEM closely with varia-
tional energy concepts with are found in many fields of
structures. Since variational principles cannct be fcund

for every problem, the weighted residual method can be used.
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This scheme uses such methods as collocation, least sq
and Galerkin's. In this study, Calerkin's Mcthod of W
Residuals will be used for the analysis,

Previous work in solving ficld problems using the
goces back to 1965 when Zienkiewlez (Ref 1) published a
on how to solve Laplace and Poisson cquations., A few
later, incompressible flow problems were solved using
tional methods and produced encouraging results. For
sonic flow, the non-linearity of the equations causcd
gence problems in an iterative solution scheme, It wa
until 1975, when Shen and Habashi (Ref 2) were able to
converged solutions for mach numbers ncar critical. S
then, others have obtained converged solutions for tra
flow using different methods. Wellford and Hafez (Ref
and 4) used Galerkin's method with iterative solution

gorithms based on a velocity approximation. They were

uares,

cighted

FEM
paper
years
varia-
tran-—
conver-
s not
gol
ince
nsonic
s 3
al-

able

to show convergence properties for freestream mach numbers

well into the transonic range. Chan and Brashcars (Re

used the least squares method of weighted residuals to obtain

£ 5)

solutions for steady and unsteady transonic {low. More

recently, Marsh (Ref 6) used a relaxation technique applied

to the 1terative non-linear term to get converged solutions.

Objective

In this study, the small-disturbance potential equation

will be solved using two finite element techniques to

see

i{ converged solutions can be obtained in trausonic flow

over a thin airf{oil. The two techniques to be investigated
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are an upwind method used by Christice (Ref 7) and Heinrich
(Ref 8), and an alternative integration method suggested by

J. Marsh. Neither of these methods have been tried in con-

e,

junction with transonic potential flow,

The upwind method involves developing upwind functions
that when added to the weight functions give the upstrean
nodes in the supersonic region more influence than the down-
stream nodes. This is done to account f{or the fact that in
the supersonic region, solutions at the downstream nodes of

an element cannot influence solutions at the upstream nodes.

In other words, the upwind function should negate the in-
fluence of the downstrcam nodes of an element in the super-
sonic region.

The alternative integration method involves more of a
physically intuitive approach to account for the area that
influences the solution at a node in the supersonic part of
the flow. Knowing that only the¢ area inside a forward mach
cone can influence the nodal parametcr, the finite element
equations were integrated only over that cone, and not over
the entire element as done conventionally in the finite

element method.




IT. Problem Description

In this study, transonic flow around a thin symmetric
non-lifting airfoil will be determined, using petential-{low
theory. Solving the steady form of the non-linear small-
disturbance potential equation using {inite clement methods
creates a few problems. First, the infinite flow ficld must
be reduced to a finite onc so it can be discretized into
elements. Second, the governing equation changes character
from elliptic to hyperbolic as the flow changes from sub-

sonic to supersonic, and third, the equation is non-linear.

Flow Field

Consider a thin airfoil in an infinite domain Q with
coordinates (xX,y) sct up so that the origin is at the mid-
chord (Fig 1). The freestream is steady uniform flow in
the x-direction. The domain § extends from the airfoil
boundary 3Q_ to infinity as shown in Figure 1.

In order to simplify the problem, a few assumptions
are made. The infinite domain will be replaced by a finite
one with the boundary 3G _ + 3Q_ + BQIXIZC/Z' The airfoil
is chosen to be thin, symmetric, parabolic and non-lifting.
Thin, so only small perturbation velocities are present.
Non-lifting, so that circulation and the Kutta condition do
not enter the problem, and symmetric, so that the problem
can be formulated in the half space. The new finite domain

! 1s shown in Figure 2, and the airfoil planform is given by
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Figure 1, Thin Airfoil in Infinite Stecady Freestream
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where T is the thickness ratio t/c shown 1is Figurc 2,

Governing Differential Equation

Assuming steady, irrotational, inviscid, isentropic
flow of a perfect gas permits the use of potential theory
to describe the velocity changes in the freestrcam. The
presence of a thin airfoil permits the use of small-distur-
bance theory. The non~dimensional small-disturbance poten-
tial equation (Ref 9) in terms of the non-dimensional velocity

potential is

l—MS"“MS’(H'E)Cb»x d))xx+ chSS:O (2)

where M_ is the freestream mach number and y is the ratio
of specific heats (y=1.4 for air). Equation 2 is valid for
all points (x,y) in Q.

Equation 2 is used for the case of transonic flow where
the non-linear term ¢,x ¢,xx becomes significant and is re-
quired to describe the flow phenomena that occurs. For low
mach numbers (i.e. M_<0.5) this term is small compared to
the others and is often neglected. For the incompressible
case (M_=0.0) equation 2 reduces to the Laplace equétion.
In this study, the form of equation 2 will be used for all
mach numbers from zero to just less than one.

From partial differential equation theory (Ref 10),

eq 2 is referred to as a second-order, non-lincar partial

T Nt v A Al S




differential equation of mixed character. The equation is
second-order, because its highest derivative 1is a sccond
derivative. Non-linear, because of the ¢,x ¢,xx term, and
mixed, because the cquation changes character from elliptic
to hyperbolic as the local velccity goes {rowm subsonic to
supersonic, respectively. It is this change, that constitutes
the name transonic. This change happens at some critical
value of freestream mach number Moy when the {low at a point
near the center of the airfoil becomes sonic. As M s
increased further, a region of supersonic flow forms over the
airfoil and 1s called a supersonic bubble, When this region
gets big enough, a weak compression shock forms in the down-
stream part of the bubble to allow the flow Lo return to
subsonic speed. Along the upstream boundary of the super-
sonic bubble the local mach number is equal to Ane and the
coefficient of the ¢,xx term in eq 2 is zero; therefore, the
equation is parabolic. The development for transonic flow

over an airfoil is shown in Figure 3.

Boundary Conditions

The boundary conditions for the flow field come from the
fact that the perturbation velocities (u,v) must go to zero
at infinity, and there cannot be any flow through the boundary
of the airfoil 3Q_. In equation form, the boundary conditions

are

1) Vb —-0 AS IN— o
(3)

2) v&-A=0 FOR (X0 IN N«
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where r is any distance from the origin, ¢ is the full
potential and N is a unit vector normal to the surface of
the airfoil. Further development of these boundary condi-
tions is given in Section III, Along the far field boundary

an asymptotic solution developed by Klunker (Ref 11) will

be imposed.

11
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II1. Analysis

In Section 1l, the governing equation, the boundary
conditions and the difficulties associated with transonic
flow calculations were discussed., This chapter describes
the formulation techniques necessary Lo solve the problem
numerically using the finite element mecthod. The reader is

urged to refer to the appendices for additional information,

Flow Field Discretization

The infinite domain @ discussed in Scction II must be
replaced by a finite flow field so that it can be discretizced
into a finite number of elements. This can be done two ways,.
First, the far field boundary ¢ could be taken to be very
large, and the actual boundary condition, given by eq 3, be
imposed. This choice may not be a good one, because a large
flow field requires a greater number of elements, which mcans
higher computational costs. Also, because the boundary con-
ditions are of the Neumann type, the solution can only be
determined to within an arbitrary constant unless a specific
value of ¢ is given for some arbitrary point (Ref 6).

An alternative technique, used in this study, is to use
the far field sclution developed by Klunker (Ref 10). For
this technique, ¢ = ¢pp is specified along the far field
boundary. Klunker's solution satisfies the actual boundary
condition (eq 3) and is valid only at points in the far
field of Q. This approach has been successfully used by

researchers using either finite difference or finite element

12
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(Refs 2,5,6) methods. Klunker's method allows the usce of a
much smaller domain, as compared to the first method dis-
cusscd., This small domain means fewer degrees-of~frecdom
and lower computer costs. Klunker's equation for the far
ficld potential ¢, for a non-lifting airfoil, ignoring

higher order terms 1is

| X
D e d 4
#rr TIB  X*+(8Y)° J)cm t ()
c

where

B:/I—Mé

and {(x) 1s given by eq 1. Evaluating the integral gives

=2 XT 1
b == . (5)
FF 3 TIR X2 4 Y3(I-MS)

which is a function of the location of the far field points.
Working with a symmetric airfoil at zero angle of attack
allows the problem to be set up in the half space. The flow
field can be designated by two parameters, Xmax and Ymax, as
shown in Figure 4. In order to find optimum values for Xmax
and Ymax, results of tests done by Marsh (Ref 6) will be
used. Marsh, solving this same problem by a different tech-
nique, varied the number of elements in the mesh keeping the
element size the same. He found that the pressure distribu-
tion converged to the assumed solution, for mach numbers from
0.0 to 0.8, when the value for Xmax and Ymax were 1.5 chord
lengths or greater. In this study, the minimum dimension

(1.5¢) will be used for both Xmax and Ymax.

13
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Working in the half space, the domuin of the problem

can be broken down into three regicns as shown In Figure 4,
Regions 1 and LII arc upwind and downwind ol the airfoil
respectively and can be discretized intoe fairly large cle-
ments. Region 11, over the airfoil will be discretized
finer, because it is here that perturbation velocitics change
the most. Over the airfoil is also where the pressure dis-
tribution is required, so morec nodes are necded to accurately
depict the pressure distribution. Using a thin airfoil, the
boundary terms of the finite element cquations (given later
in this section) are evaluated along the chord (y=0) of the
airfoil. Therefore, the clements in Region Il extend down
to the x-axis and do not tcrminate at the airfoil contour.
The mesh shown in Figure 5 1is representative of the
meshes used in this study. Variations include changing
the number of eclements over the airfoil, and in Regions 1

and IIIL,

Finite Elcment Solution

When solving partial differential equations using
finite clement methods, it is common practice to transform

the governing equation into the form of the matrix equation

[K]{qs}:{F} ' (6)

where [K] is the stiffness matrix, {¢} is the solution vector
and {F} is the forcing term. The method of weighted residuals

will be used to accomplish this,

15
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The steady [orm of the non-dimensional smull=distrubance
potential cquation (Ref 9) for transonic flow, ziven by c¢q 2,

in two dimensions 1s

'”M‘E"Mi“'*-v)q'}x(#))xx.*'q))w:o (2)

for all points (x,y) in the domain ©. Reclationships betwern
the non-dimcnsional parameters (p,%x,y) and the physical onces
(5,;,;) are: x = x/¢, y = y/c, and & = a/umc, where u is

the freestrcam velocity and ¢ is the chord length., If eq 2

is formulated by finite element methods, a set of second-

order, non-linear algebraic equations will result. This can
be simplified two ways, one using an 1lterative scheme to
linearize the non-linear term; and two, integrating by parts
to lower the nuaber of continuous derivatives reenired in the
assumed solution so lincar elements can be used. Both of
these simplifications will be employed in this study, and arc
elaborated on in the next few paragraphs. ;

Rewriting eq 2 as f

[(-M2) &, ~Ma(1+3)/2 &5 ]+ &,,= 0 )

e memy

leaves ¢ x2 as the non-linear term. Using the iterative
’

approximation (Ref 6)

o——

=P B ®)

where supcrscript n denotes the iteration, allows the poten-

tial ¢ to be replaced by a scquence of potentials {¢O,¢l,...,

l‘n

.n+l .
L }, which converge when

17
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where €° is some small error chosen as the convergence re-

quirement. In this study, €% is chosen to be five hundredths
of a percent (Ref 6). Now, eq 7 in iterative form becomes
VIR P 2 {I+¥) gn ¢n+\ n+el
[(I M“)cbm Meo 2 (l))x 33 ])x+ (!)333 =0 (10)

where n+l denotes the variable ¢ to be solved for, and n
denotes the variable ¢ calculated from the previous iteration.
The method of weighted residuals 1s a technique used
to generate finite element equations when variational func-
tions are not available. This method assumes an approximate

solution of the form

by = = 3 NG ol (11)

=)
where the Ni's are functions that satisfy boundary conditions
and the ¢.'s are the solutions at global node points 1.
Substituting this approximate solution into eq 10 results
in the equation not being equal to zero, but now being
equal to some error €. As the error approaches zero, the
approximate solution approaches the exact one. Therefore,
the object is to get this error as small as possible. This

is done in a weighted average scnse by substituting € into
Jﬁwidﬂ—‘—‘o (12)
n

18
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where W. is a weight or test function. Substituting for ¢

in eq 12 yields

A 7N

J{[(l-—Mﬁ~Mil%§"<h:)%:ﬂ]m+43:;;‘ }wido =0 (13)

Q

which is still sccond-order and requires N; to be continuous
through its first derivative (Cl). Integrating eq 13 by
parts ecliminates the cl continuity by shifting a derivative
from & to wi and thus requires Ni(x,y) and wi(x,y) to only
be continucus functions (CO). The resulting equation after
integration by parts is

—J{ [1-ME-MS %2—5- 35: ] %:“wi,x + %ﬂw-\,y} dQ

(9

(14)
e 2@"0 %ml ‘ $n+l } c -
+ {[l ME-ME D 1 W + gy NyW, JdS=0
Q >
where 3Q denotes the boundary and n = (nx,ny) is the unit

normal vector to the boundary surface,.
When evaluating the boundary term of eq 14, the integral

must be broken down into a series of integrals over each of

the six boundaries shown in Figure 6. Before evaluating
these integrals, the boundary conditions, given by eq 3, for F

the governing differential equation must be put into a work-

able form. Recalling, the boundary conditions
3 ) .
: Vq)—-—y 0O as P— o (15) i
|
and ]
x \7{) *Ne= 0 along airfoil (16) ;

19
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Figure 6. Flow Field Boundary Breakdown
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where the full potential ¢ is delined as

b =Ua(x + ) (17)

> . . . . .
and n_ 1s the unit normal vector on the airfoil given by

“TvEl T divE)
where
F=f(X)=-Y=0
is the equation of the airfoil given by eq 1. Substituting

eqs 17 and 18 into eq 16 resultc in the boundary condition

By=(1+ 4,5, 9

along the airfoil. From symmetry and steady flow in the

x-direction another boundary condition

%=o (20)

exists for y=0 where |[x| > 1/2.

In evaluating the boundary term of eq 14 for far field
boundaries 1, 2, and 3, in Figure 6, the infinity boundary
condition, given by eq 15, should be used. Since Klunker's

boundary condition ¢ = dpg given by eq 5 is used instead,

- then W, will be taken to be zero there. The boundary terms

due to secgments 4 and 6, in Figure 6, are also zero when
evaluated using n, = 0 and eq 20. The only term that does
not go to zero in the boundary term is for segment 5, Sub-

stituting eqs 18 and 19 into the boundary term of eq 14




results in

dX (21)

Since § and W. will be continuous functions along intcr-
element boundaries, 1t is possible to integrate eq 14 piecc-
wise over the domain, Within cach element, eq 11 for a four-

noded rectangle, becomes

AN 4 .t
¢ (XY= NN
J=\

or (22)

~n

c#(x,Y)::%NK(xv)ﬁ

where the Nj's and Nk's are now elemental shape functions.
The shape function for a four-noded rectangular element 1is
given in Appendix A, Substituting eqs 22 and 21 into eq lé&4,

produce the finite element equations in elemental form. The

equations, in the form described by eq 6, are

[(1-M2)A+ By -M3 5 06" +MED;,

(23)

z]-&-25’ 4))] |n+1_‘

where

Ay wahx N, dXdY
B-.j-:-” Wi, N;, , dXdY
n o
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C\J({n* b U ,,xw‘ L dXdY

DLJ:S IRy (24)
an‘ 5=°
Ey(d) = 4>j NexN; « Wi §,, | dX
PYo 910

=-fw;§‘,‘|dx

>3 Y=0

where 30, denotes thaﬁ these terms apply only to elements on
the boundary of the airfoil. These matrices arc evaluated
for the four-noded rectangular element in Appendices A, B,
and C.

All of the parameters in eq 23 are specified except
the weight function W;. The reason for this, is that the
weight function in this study, will change depending on
the method used and whether an element 1s contained within
the supersonic region. For all the upwind method elements
in the subsonic region (elliptical), and for all the elements
in the alternative integration method, Galerkin's method will
be used. This means that for those cases, the weiéht function
W, will be the same as the shape function N.. In the upwind
method, the weighl function for supersounic (hyperbolic)

elements wil! be

23

YN WA < 2




W, = N +0CU, (25)

where U is an upwind function and o is a test cocfficient,
Both the upwind function method and the alternative intepra-

tion method will be discussed 1n detail later in this section.

Transcenic Problems

Chapter Il explainced what happens in the flow es tran-
sonic specds are rcached. This scction explains how the
phenomena will affect the finite clement solutiorns.

Researchers studying the finite clewment (Refs 12, 13)
and finite difference methods for transonic flow have re-
ported convergence difficulties. Some belicved the proeblem
was 1n the small-disturbance potential cquation (Ret 6), but
Akay (Ref 12) reported convergence difficultics for the totul
potential equation. Others belicved the problem was in the
Galerkin formulation, because it does not account for the arcea
of influence of supersonic nodes (Ref 5).

In the supersonic region, the governing equation 1is
hyperbolic. From the aerodynamics of supersonic flow, a
point in the flow cannot propagate waves forward; it can
only be influenced by points that lie in a region inside
the mach cone propagating forward, and can only influence
points that are contained in the downstream cone. The
mach cone is defined by the characteristic curves of the
hypertolic equation. It is believed that neglecting these

phenomena leads to convergence difficulties using Galerkin's

24




method. For Galerkin's method, the nodes of an c¢lement are
weighted the same when the upstrcam nodes should have more
influence in supersonic elcments.

In order to account for the hyperbolic behavior, re-
searchers have tried various methods. In finite difference
methods, special difference operators (backward differences)
have been developed to insure convergence of the solution,
In finite elements, there has not been a special formulation
developed. Chan (Ref 13) changed the stiffness matrix for
supersonic elements during the assembly process by zeroing
out the rows in the stiffiness matrix corresponding to nodes
giving downwind influence. Chan's method gave converged

results, but only for the least squares formulation. Marsh

‘e . + .
(Ref 5) modified the non-linear term ¢ xn¢ xn 1 by putting
H H
. . . +
in a relexation term. His new term replaced ¢ Xn¢ xn 1 by
b )

R& n¢ n+l + (l-R)¢’xn¢

x « "y, where R was the relaxation
3 3

s X
coefficient which ranged from 0 to 1, and U was an upwinding
factor which also ranged from 0 to 1. The second term was
then added to the forcing vector in the elemental equations.
Marsh got converged solutions for mach numbers deep in the
transonic range. His method worked quite well, the only
difficulty encountered was selecting the values of R and U
for any given freestream mach number. In this study, two

new methods will be tried. One used by Christie (Ref 7), an

upwind method, and the other suggested by Marsh, an alterna-

tive integration method.

re

e e e

|
b
|




Upwind Function Method

The purpose of the upwind function u; 1s to weight the
upstream nodes of supersonic elements more than the down-
stream nodes. The reason for this was explained previously
in this section. The upwind function idea was taken from
papers by Christie (Ref 7) and Heinrich (Ref 8). Christie
applied upwind functions in second-order cquations with
significant first derivative terms, and Heinrich used it
for the convective transport equation. Necither one of these
parallels the transonic potential flow problem in this study,
but the method seemed worthwhile to investigate.

Using Galerkin's method, the weight functions W, are
assumed to cqual the shape functions Ni' Convergence
problems arise when transonic flow is prescnt, because the
shape functions weight each node in an element the same.

For elliptic elements (subsonic) Galerkin's methos (W;=N;)
is used, but for hyperbolic and transition eclements (super-—

sonic) an upwind function is added to give

Wi =N; + XU, (hyperbolic)
(25)

Wi=N + B U, (transition)

where U, is the upwind function and o is a test coefficient.
Transition elements are ones that contain both elliptic and

hyperbolic nodes.

Shape Functions. Elemental shape functions N, (Ref 1),

must be equal to one at node 1 and zero at the other three
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nodes. The shape functions for the bilinecar rectangle used

in this study are

Na';zlf("f?i?)(""’?x'?) (26)

where (£,n) are the variables in local coordinates, and
(§;,n;) are the local coordinates of node i, i = 1,2,3,4.
Figure 7 shows the reclationship ol shape functions within
the element. By superposition, the nodal shape functions,
eq 26, are added together to give the curve of the elemental
shape function in Figure 8. XNotice that the curve is con-
stant over the element boundary. This shows that all the

nodes are weighted the same.

Upwind Function. The purpose of the upwind function is

to weight the upstream part of an element in the supersonic
region more than the downstream part. This will be done by
making U, a piecewise parabolic function of the form (sce

Fig 9)

oy

: [(T"'Hc)a""K.](l'i'QiQ) ~1<$< 0

3l
e

Ui= (27)

[t

[(f-HP+ K]+ o<t<i

D
U

where (H,K) are the coordinates of the vertex of the parabola
and P is half of the latus rectum (twice the distdnce from
the vertex to the focus). Figure 10 shows a plot of W, =

N, + ol («=1) so the elfect of the upwind function can be
seen. Notice, now the upstrecam part of the clcment is

27
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weighted more than the downstream part.,

Elcmental Upwind Equations. Substituting W, = N, + aU;

into the cleaental cquation, given by eq 23, yields a new

set of equations to be used for hyperbolic elements:

[(1=M&)(Ay+XAU,;) + By + &BU; ~ MELSE(Cy + L CU;) ‘

(28)
# M3 (DyrecDU) + MZFHEG+ R EU) (b T = = (5 + aFuy)

whore Al B.., C.., D.. Eij’ and fi were defined by egs 24

3 Tigr iy iy
and

AUy, = _”-N':,xu't,x dxdy
O

BUG= [ 1N Ut dxdy
Q

n
CUxi(‘?"): CbK J[NK,“N.;.X Ui« dxdy

o
DU= [N;J, Ui §,, | dx
O\ yzo
n
EU§)= &, J N Ns o Ui 64| dx
30« oo
FU-\=)'U-L (| dx
AN o, 420
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where 99, again means this integral is only applied for
elements on the airfoil. Appendix B evaluates ecqs 29 in
matrix form for a bilinecar rectangular element.

For the upwind method, «=0 will be used for elliptic
elements, and « greater than zero for hypcrbolic elements.,
The elements that have some nodes elliptic and some hyper=—
bolic (transition elements) will use a value of B greater
than or cqual to zero, Note that o = 8 = 0 reverts the
elemental upwind equations (eq 28) to the clemental equations

given by eq 23.

Alternative Integration Method

This method is based upon physical intuition and uscs
Galerkin's method for all elements. A modification is made
for hyperbolic elements; the integrals (eq 24) are integrated
only over the element area contained inside the forward mach
cone (i.e. not over the entire element as done in Appendix A).

To find the form of the elemental stiffness matrix,
the equations of the mach lines must be found. The mach
lines are given by the characteristic lines of the governing

differential equation given by eq 2 as

By * 'é'a%,‘—‘ 0 (30)

2 - 1 —M2 - M2(1 + Y)d B Since u = ¢ can be
oo o ’X ,x

where 1/c
calculated frem the previous iteration and the element is
small compared to the flow field, l/c2 will be assumed

constant. When the o ey Lerw 1s negative, eq 30 becomes
y X
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I —
4),\5\;-634).)0(— O (31)

which 1is hyperbolic. With l/c2 constant, the characteristic

lines (Ref 10) are defined as

Y=CX+d : Y=-CX+d (32)

which must now be transformed to local coordinates by the

transformation ecquations

Y-Y.

- X~Xe -
Y T — and r? - ™

]

where XKoo Y a, and b are shown in Figure 7. The charac-

C,
teristic (mach) lines now take the form

Q =M$+B ; Q=-MY+B (33)

where

= g8

i

Xe o d N
Co*% :

B Y

RPN bl vt 5P+ o 4

Now that the equations for the mach cone are known for any
point in the supersonic region, the influence on the stiff-

ness matrix {K} can be determined, Kij is defined (Ref 1)

as the force at node i duec to the unit potential at node j. i
Therefore, only terms in which node 1 fallsinto the mach

cone at point j have influence in the solution.
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When an element aspect ratio b/a 1s greater than or
equal to the slope ¢ of the mach lines, the elements take

the form shown in Figure lla and its stifiness matrix takes

the form
[, 1
hll 0 0 0
Koy 0 0 Ky,
Kzp 0 0 Ky
.0 0 0 K44d

Similarly, when b/a is less than ¢, see Figure 1lb, the

stiffness matrix is

hKll 0 0 0 ]
K21 0 0 0
0 0 0 K34
0 0 0 K444

where Kij in both cases is calculated for a bilinear rec-
tangular element in Appendix C.

Transition elements posec more of a problem, because a
linear interpolation scheme must be imposed to find the
value of n* where the element changes from hyperbolic to
elliptic. If the slope of the characteristic curve passcs
through £ = -1 below n*, that interccept must be used as the
limit of integration in the n-direction, otherwise, n¥* will
be used. In either case the element shown in Figure llc

has a stiffness matrix of the form

34 ‘
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PK11 Ky, 0 0 ]
Kap Kyp 00
0 0 0 Ky,
0 0 0 Kyl

Again, Appendix C calculates the values for Kij'
Summarizing the alternative integration method, the
elliptic eclements use Galerkin's method integrated over the
entire element. The hyperbolic 2nd transition clements are
integrated over the area inside the forward mach cone. For

example, for b/a<c, the limits of integraticn for Koyo for

the area shown in Figure 12, are

P
-1 M3+B

«n'gukgmaj
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v Results

;-

Transonic flow over a six percent thick airfoil was

solved for using the two upwind techniques described in
Chapter III. For each technique, different paramcters

were varied in order to study the convergence behavior

of the solution. Before the transonic cases werc tried,
the incompressible (M_=0) case and subsonic cases were
tried to see if the finite element equations defined in
Appendix A accurately modeled the flow.

For incompressible flow, the solution shown in Figure

13 was found by directly solving the finite element equa-

tion. This solution 1s compared with the exact solution
(Fig 13) for two discretizations, Grid A was the same as

shown in Figure 5 and Grid B was similar, except it had

ten divisions over the airfoil instead of eight. Taking
the value of the cocfficient of pressure in an element to

be at the mid point between nodes, Figure 14 shows that

the finite element solution . “sely approximates the exact
solution,

Subsonic cases were tried for freestream mach numbers

between 0.2 and 0.8. All these cases were below the criti-

R eyl

cal mach number M

or» and converged within four iterations.

They also agree with lincar theory until M_ got fear 0.8, ;

when the non-linear term started to show its effect. Figure !

15 shows the pressure distribution for M_=0.2, 0.4, 0.6, 0.8,

and Figure 16 shuws the differcnce between the linear (Ref 6)

|
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and finite element solutions for M _=0.8. Noticc that the

difference between solutions is slight, even at M _=0.8.

Using Galerkin's method, without upwind techniques,
mach numbers above 0.8 were run to find the critical value
of M_,. Figure 17 shows the pressurc distributions found
for the mach numbers that converged. The critical free-
stream mach number was found to be between Meo=0.83 and 0.84
for a six percent thick parabolic airfoil. Notice that the
solution does converge for M _=0.84 and 0.85. This is be-
cause the supersonic region is small., Figure 18a,b shows
the transition and hyperbolic clement in the flow field
for M_=0.84 and 0.85.

In Figures 19 and 20, convergence behavior is shown
using Galerkin's method for M =0.85 and M_=0.86. At M_=0.85
the solution converged after scven iterations, and at
M_=0.86, the solution diverged becausc of the presence of
two hyperbolic and four transition elements. As the frec-
stream mach number Lucreased from zero to 0.85, the number
of iterations required to get a converged solution increcased,
and above M_=0.85, the iterative scheme diverged. This be-
havior is graphed in Figure 21 for convergence criteria in
the sense of eq 9.

These calculations proved that the finite element method
as formulated worked until transonic {low developed. The
techniques discussed in Chapter ILI were then tried to see

[+ 8]

if convergent solutions occur for Mo, < M, < 1.0 which is 1in

the transonic region. The rest of this section discusses the
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results obtained for the upwind and alternative integration

methods.

‘Upwind Method

The upwind function method discussed in Chapter III was
tried for several variations of the test coefficients a and
B, the area under the upwind function curve, the freestrcam

mach number M_, and the y-direction upwind influence (BUij)'

Y-Direction Influence. The upwind functions given by

eq 27, are only functions of x, and do not affect the y-
direction. The reason for this, is that the f{reestream flow
is parallel to the x—axis. Because of this, the y-direction
contribution to the elemental upwind equations can be neglec-
ted. The only tcerm in the elemental upwind equations, given
by eqs 28 and 29, that 1is related to the y-direction is the
BUij term. Whenever this term was included in the elemental
stiffness matrix, the solution diverged, or at best oscillated

about some solution.

Test Coefficient Influence. The test coefficients a,

B appear in eq 25 as
W, = Ny + XU, for hyperbolic elements
and

W, = N +BUy for transition elements

Their purposc was to vary the strength of the upwind function

in order to achieve convergence. The full influence of «
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and B cannot be expressed without considering the upwind

T B
TRRr
A

function itself, but some generalizations can be made. First,
1t was found that whenever either of th:se values was greater
than one or less than zero, the solutions for any upwind
function diverged rapidly. Also, whenever the value of 2

for transition elements was greater than « for hyperbolic

elements, the solution again diverged rapidly. The solutions

that used a value of 8, one half the value of o seemcd to have

better solutions, but this depended on the mach number and the
upwind function used. These effects will be incorporated in

the subsection on different upwind functions.

Mach Number Effects. The value of the freestream mach

number M_ had a large effect on the convergence of the solu-
tion. When M_>0.87 , convergence never occurred for all

upwind functions and test coefficients tried. For M_<0.87,

convergent solutions were obtained, but depended on the
upwind function parameters and test coefficients. The de-

tails are presented in the next subsection.

Upwind Function Influence. The equations for the up-

wind function, given by eq 27, are

fire 2 - -
Z-F;.(s H) + K =0 I<§<o0

($—H) + K, =0 o<i<l

T
4R,

s

The vertex of the piecewise parabolas (H,K) can vary.
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Examples of different upwind function paramecters are shown in
Figure 22. VFor explanation purposes, the arca above the §£-
axis will be called the positive area, and the arca under the
g-axis will be referred to as the negative area.

In all three cascs of Figure 22, upwinding is present,
whether it be more influence from the upstream part of an
element, or less influence from the downstream part. It
was found, that whenever the amcunt of positive area was
greater than the amount of negative area, Figure 22a, a
divergent solution occurred. This happened no matter what
value of a and B were used. Pressure plots of divergent
solutions are not very informative except to see where the
divergence took place; so they will not be shown. In most
cases, divergence occurred only where hyperbolic clements
were present,

When the positive and negative areas werc equal, Figure
22b, the solution was found to be oscillatory for certain
values of a and B, For o less than one, all solutions di-
verged no matter what value of 8 was used, When a was equal
to one, and 0.1 < B < 0.9, oscillatory solutions for 0.25 <
K, £ 0.5 and divergent solutions for other Ky values where
found. The oscillatory solution in Figure 23 is representa-
tive of what happened for equal area upwind functions with
a=l, 0.1 < B < 0.9 and 0.25 < K, £ 0.5. .

When the negative area was greater than the positive area,
Figure 22¢, convergent solutions occurred for certain values

of HI,HZ,KI,KZ,Q,B and M_. Varying Hl,Hz,Kl,Kz resulted in
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one combination that converged, and is shown in Figure 22c.
Using this combination converged solutions occurred at M_=
0.86, «=1.0, 8=0.5 and M_=0.86, 2=0.5, B8=0.5. All other com-
binations diverged or oscillated. These two converged solu-

tions are shown in Figures 24 and 25.

Alternative Integration Method

The alternative integration method discussed in Chapter
III was tried for a couple of cases. These included varying
the mach number and the y-direction influence. The y~direc-
tion influence was varied by multiplying the BUij term of
eq 29 by a coefficient ranging from zero to one. The mach

number was ranged from 0.84 to 0.95.

In all cases, extremely divergent solutions resulted.
The supersonic region expanded to the far field or physically
unrealistic flow developed (i.e. supersonic flow developed
upstream of the airfoil). Even when more elements were
added to the grid over the airfoil, divergent solutions
resulted. Figures 26 and 27 are representative of the

effects of the grid size on the solution. Similar solutions

resulted when the mach number and y-influence were varied.
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V. Conclusions and Recommendations

The upwind and alternative integration methods used in
this study did not produce acceptable solutions to the
small-disturbance potential equation for transonic flow.

When the supersonic region covered more than two elements,

the solution diverged, except for the cases of upwind

parameters (H,K) shown in Figures 24 and 25.

Upwind Function

The upwind method, described in Chapter III, is not
recommended for future use, because there are too many
variables that must be optimized to get converged solutions.

The solution depends on the freestream mach number M_,

the upwind parameters (Hl,Kl), (Hz’Kz)’ and the test

coefficients a and B. All of these must be incorporated

in the finite element assembly process. It might be pos-
sible to use different upwind functicns, such as piecewise
linear or trigonometric functions instead of piecewise

parabolic, and further study is warranted in this area. i

Alternative Integration Method

This method gave divergent results for all cases, and
as 1t stands, 1is not recommended for further study. Other

approaches might be taken, for example, assembling the

global stiffness matrix an equation at a time instead of an
element at a time, the effect of nodes that have no in- I

fluence on the solution could be zeroed out. Another ;
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approach, could be to assume that the border between the

super and subsonic regions be considered a boundary. Then
solve the elliptical part, and using the solution on the
border, apply it as a boundary condition when solving the
hyperbolic part. This process would have to be done itera-
tively until the solution agreed on the btoundary between

the regions.

60




- 10.

11.

Bibliography

Zienkiewicz, 0.C. The Finite Element Method. London:
McGraw-Hill, 1977.

Shen, S.F. and Habashi, W.G. "Local Linearization of
the Finite Element Method and its Application to Com-
pressible Flows," International Journal for Numerical
Methods in Engineering, 10: 565-577 (1975).

Wellford, L.C. and Hafez, M.M. "Implicit Velocity For-
mulation for the Calculation of Transonic Flow by the
Finite Element Method," Proceedings of the Symposium
on Applications of Computer Methods In Engineering.
Kugust 1977. -

Hafez, M.M. et al. Finite Elements and Finite Dif-
ferences for Transonic Flow Calculations. Kent, WA:
Flow Research Co. May

Chan, S.K. and Brashears, M.R. Finite Element Analysis
of Transonic Flow. AFFDL-TR-74-11. Wright-Patterson
Air Force Base, OH: March 1974.

Marsh, J.E. Prediction of Aerodynamic Forces on a
Circular Cylinder and a Thin Airfoll in a lransonlc
Airstream by the Finite Element sMethod. Wright-
Patterson Air rorce Base, OH: Air Force Institute
of Technology, 1979.

Christie, I. '"Finite Element Methods for Second
Order Differential Equations with Significant First
Derivatives,'" International Journal for Numerical
Methods in Engineering, 10: 1389-1396, 1976.

Heinrich, J.C. et al. "An Upwind Finite Element
Scheme for Two-Dimensional Convective Transport
Equation,”" International Journal for Numerical

Methods in Engineering, I1: 131-143, 1977.

Landahl, M.T. Unsteady Transonic Flow. Long Island
City, NY: Pergamon Press, 1961l. :

Zachmanoglou, E.C. Introduction to Partial Differential
Equations with Applications. Baltimore, MD: Williams
and Wilkins, 1976.

Klunker, E.B. Contributions to Methods for Calculating
the Flow About Thin Lilting Wings at lransonlc Speeds

——Analvtical Fxpressions for the Farfield. WNASA 1D-D-
6530: n~ovember 1971.

61




12,

13.

Akay, H.U. et al. "Finite Element Analysis of Com-
pressible FTow," Proceedings of the Symposium on

Applications of Computer Methods in Engineering.
ugust .

Chan, S.K. et al. Finite Element Analysis of
Transonic Flows Over Thin Airfoils - Volume I,
Final Report. AFFDL-TR-/6-49. Wright-Patterson
Alr Force Base, OH: May 1976.




AEBendix A

Finite Element Equations for a

Bilinear Rectangular Element

Elemental Equations

The finite element equation for the governing differen~-

tial equation in elemental form as derived in Chapter III

is
1.1
[(1-M2) A5+ By~ M2 Gy(d™ + MED;;
2 |‘,U " N+l - . (A"’l)
+M¢°—-2—' E'{,(+ )] (bJ = F‘
where Aij’ Bij’ Cij’ Dij’ Eij and F; are defined by eqs 24.

Shape Functions

The shape functions (Ref 1) for the bilinear rectangular

element shown in Figure 7 are given by

N&= 7‘;.’(1'\'?1?)(1-1-'11‘7) L=1234 (A-2)

where (Si,ni) are the coordinates of the corner nodes in a
local coordinate system (f£,n). Since the elemental equations
are expressed in global coordinates, they must be transformed

to local coordinates by the transformation equations

? = -Z(Sa—& and ) = I—';ch— (A-3)




Substitﬁting eqs A-3 into the elemental equations given by

eq2 24 result in

- (A-4)

\
D= f NieNi £,
-l Q-1

|}
J yn )
Egd= 34, f.Nu,,N;,, N £, () ] ds
-1

Nzl
\

r=a[Ng,0]e1

A L]

where D. Eij’ and fi apply only to elements on the airfoil.

j:
In eqs A-4, the Aij’ Bij and Cij terms depend only on

the shape of the elements and not on their position. They
can be integrated and evaluated for i = 1,2,3,4 and j = 1,2

3,4 to produce the following symmetric matrices:

(1 -1 -y 3]

_ b 1 5 —%
M= 33 1 -1
1
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- -
1 % -% -1
B. = & b
U T 3b 1 %
b
€11 %1 C1 Cyy
o 11 €4 Cy4
Cy($1= N
33 33
c
33
X )

where

© ez g[-E+ L8]
Cu=ain [§-E+8-8 ]
o= 2 [ (-8 + - &]

where the ¢in's are the solutions at node i from the previous
iteration,

The remaining equations in A-4 are dependent on the
position of the element. The quantities D. i3 Eij and f,
exist only for elements that border the airfoil. These

quantities are evaluated at n = -1, because a thin airfoil

is being used. The equation of the airfoil 1is

Y=f=TU-03) IXl&g




N

where 1t i1s half thickness ratio,

and fi are evaluated to be

.

Dq=8’t'

.= 87T

o © O o

where—

0
0
0
0

o O O o

o O O o

For this airfoil, E..,
1] 1]

D..




Aggendix B

Upwind Functions and Elemental Eqﬁations

~

In the upwind function method described in the text,

the weight function is replaced by

in elemental equation 23, forming eq 28. The terms in

the elemental upwind stiffness matrix and force vector

(eq 29) with the limits of integration are !

'
AUy = S‘f N} «Yi,, dxdy

-t =t

-BU[]=ﬂ’ Nj»‘i Ui,g dxdtj

-\~

-CUy CHE ff Cb: N.‘,,‘Nj,,\Ui,* d"d‘i

-\ =t -
2 ‘ (B-2)
DU = f Nj . Uifie| dx
-\ =0
} n
EU;j(¥)= H{ Ny« Ni Ui ﬁ,‘\ dx 1‘
-l “¥z0 |

‘FUi= I UV, f,,,‘ dx

-y} =0




Transforming eqs B-2 to local coordinates and substituting

%[(T—H')"'Kl](""rng) -\<7<0

C
P
f

i,;;[(?-Hz)wz](H Y O0<f<lI

and

Ne= S +ED(1+90)

results in




[Duy)

b- 4
22

EULj =

o O A N

FUi =16 ‘ta{

where

Nijew
Ze
>
%

i
<

3w >«

xjo x|
" 3!
< <

ujed

3l
2|
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>
N|s

>l
n
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where




S N
R R
ve B HE
. R A
S=K2—K\
- T= Ky + Ky
-1 _H
="% 1
] Ha
R= — — =
2B, PR

which are all functions of the vertex (Hi’Ki) and the latus

rectum 8P, of the parabolas.
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Appendix C

Elemental Equations for the Alternative

1 ; Integration Method

The elemental stiffness matrix using the alternative
integration method is evaluated for hyperbolic and trans-
ition elements by integrating eqs 24 over the area that

influences each node., This area is the area inside the

forward mach cone at position j. For example, look at the

elemental stiffness matrix terms

K11 Ko %3 Ky
| K. - K1 Koo K3 Ky,
- K31 K32 K33 Ky
| | Ka1 Raz Ra3 o Kug ]

for the bilinear rectangular element. Kij is the force at

i due to a unit potential at j. From this statement, the

- influence of each term in Kij can be evaluated. For the

e e

element in Figure C-1, with mach cones shown, Figures C-2

Tl

and C-3 show which Kij terms are influenced by the mach
cones. Figure C-2 is for hyperbolic elements and Figure

C~-3 is for transition elements.

' Hyperbolic Element Stiffness Matrix

The form of the stiffness matrix changes depending on

whether the slope of the mach cone lines include one or two




(-1,1) (1,1)

(1)

Figure C-1. Mach Cones in Hyperbolic Rectangular
Element
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1Ty

Method on the Elemental Stiffness Matrix

D

c>a/b c<a/b
yd

K11:K215Kgg K11:K93

K4170.0 Kyq=K, 0.0
RousKsyoKyy K34:Ky4

K,,=0.0 K, ,7K,,=0.0
K12=Ki3:0.0 Ki2=Ki3=0.0

Loare =2 Influence of Alternative Integrétion

Hyp-rboelic Elements

76




NN\

3 4

K11:K12:K915K

K317K,17K397K,»=0.0

R348
K, 4=K,,=0.0

Ki3=0'0

3 Figure C-3. Influence of Alternative Integrétion
Method on the Elemental Stiffness Matrix
for Transition Elements

enoanntlh ‘,_ e




nodes (see Figure C-2). For the case where the slope ¢ of

the characteristic line is less than the aspect ratio a/b
of the element, the terms of eq 23 when integrated over the

area of corresponding mach cones result in

[ A, 0 0 o0 |
A _ b "A" O O O
Bd 9 0 0 A,
i | |
; I-B~M, 0 O o |
| i B
o3 -8 o0 o 0
-
7 6b o o o0 ++%&
0 0 0 -%¥ap,+
L J
s I
[($-h)(crc)r(d-dc-c)] o
|
A = b -Cu 0 |
=5 !
Y~ 64d 0 o |
' |
o] 0 :




where

| o 0
Lo 0
|I' 0 —Caq
0 (G000 + (4-4)(c,-c0)] |

\ |
Ay= % -B -B3- B} - MF - 3B M?

W~

A= T +BYBIr 3B - M+ 3B M;

G= %"280—28?—%8?* %an' %B\M\z

Gy= F - M- gMP B2 - 38} - 5B - £M2B,-MiB}

- 14 R 24420 24,2
~Cs-' '3 +282—282+'§'M2+ 3 MZBZ

7 t 4 I ,4 2 1
Cy=— g+ MBI~ TMiB,~ 5 B} + oM, +B3M; + 5B

B,,B;M, M. FROM EQS 33




EE‘ When ¢ is greater than or equal to a/b the resulting stiff-

ness matrix terms of eq 23 take the form

[ 20-%8) 0 © 0
N Ay 0 0 -%Mm(+8,)
Y~ lea _%M‘((_BI) 0O O -Ase
0 0 0 (%8, |
6 o o o0 |
_ a_ H 0] o) -J
R |y o o
0o 0 0 K
I )
(
M- RIF 4B G-9)E- 48] 0 |
o= <2 °" o
e Sl e-B)3 - ey by 28)) o |
| 0 ° |
| )
‘ 0
l} > - 3[4 B) (2 + $8)0- ) - $8,)
: Y ~Caa
O 098 + 4B (G H)(E +48,)] ]




where

G=_g_s,+g_§?_28? 2 _2B. _2
M, MZ 3M} 3ME T 3M 3

__2B, _ 2B, , 2B 2

A VA TVE TV

y= 2B2_2Bp 2B} 2
M, 3M> 3M2 3

ke2B: _ 2 _2B;_ 2B, 2B} 2
Me 3M, M2 3M, 3MI 3

In both of the above cases, Dij

same as derived in Appendix A with Eqq

and Eii from eq 23 are the

= E =D =D

33 = 0-

43 43

Transition Element Stiffness Matrix

In the transition element, the coefficient l/c2 of eq 30
changes from negative to positive, A linear interpolation

schame must be employed in order to find the point n¥* where

the coefficient is zero. Using
grei- 28
Ci—C,

to find this position, where Cy
the coefficient of =2q 31 at the
respectively. For terms of the

with the mach cone from node 4,

intercept at n=~1 be less than n¥,

and C, specify the value of
top and bottom of the element
stiffness matrix that deal

it i1s possible that the

For this case, a new

0




e ———— e — — -

value of intercept must be used in the limits of integration.
This new term n(-1) is calculated from the characteristic
equations for n=-1. Therefore, for stiffnéss matrix terms
that deal with the mach cone at node 4 will have an upper

limit of integration given by
¥ =MIN(R™,nen)

Now, integrating eqs 23 over the corresponding areas in

Figure C-3 results in

Ay ~Ay 0 0
AJ:ﬂll =Ay Au 0 Y
U~ 8a 0 0 0 ~Aas
o] 0] 0 Aag
L J
1 1 8 4 7
3 3 0 0
4 S
B.= a 3 3 0 0
R o o0 B
34
0 0 0] B}MJ




where

[ b
Cuw Ca O O
b -Cn Cp O O
Cii= g
i 0 0 O -Caq
[' O O 0 Cu

B p33 } »4
+(+ B - g

B34= (Bz 2 *2

28, + (8,40 - (8, + 3) *°

GRS ( v )G 1)

M2 M,
B 3 *
-S40 ) ¢ Fy (305
B =(§z+§§_+5§ v D) (M) - mlL
9T VM, WM? 3w 3) K 3M5(4 ‘4)
3
__(Mz_’?.:\: Bz | ,,. 2) (M S\})(%QH‘*’ %_)

N 2(4)\" d)?.) 1 + a(cbq— 4’3) J

\ Cpn= ""2(4’. —q)z) T-2 (4’4' ‘b;)\-




The Dij and Eij

Coe® 2P -PI K + 2(da-$)L

Canm (- )8, )R+ 1) - (2485 ™ §)
- ey P e D) - (7))
« (b ) [ (B (0™ +) — (438,03 0"~ 3)

P31 - (8T RY) + 37 )

as shown in Appendix B with Dyq = E33 = D43 = E43 = Q.
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