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Abstract

A stable Luenberger Observer was developed to reconstruct the

error states in modal coordinates for a satellite in a periodic

,rhit about the Earth-Moon Lagrangian point, L3. Observer pole

placement for the third root was found to be linear with applied

gain. Convergence of the observer estimate to the true state

vector was rapid in all cases, but depended upon the initial con-

ditions considered. The addition of the observer did not impede

the long-term behavior of the controller in stabilizing the orbit.

i
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CLOSED-LOOP CONTROL OF A SATELLITE

IN AN

UNSTABLE PERIODIC ORBIT

ABOUT L3

I. Introduction

Background

The n-body problem came into existence when celestial mechanicians

began studying the solar system with an eve toward evaluating the

equations of motion of the various gravitationally-attracted bodies

found therein. The motion of two bodies in a circular orbit about

each other and affecting each other onlv through their mutual forces

of gravitation is now readilv understood, and when a third hodv,

infinitesimal and massless in comparison to the others is added to

the system, the restricted three-body problem is established. The

discovery of the Trojan group of satellites in the Sun-Jupiter system

(1906) confirmed Comte Joseph Louis Lagrange's 1772 mathematical

depiction of such a configuration. His work developed the existence

of equilibrium solutions to the equations of motion where the sravi-

tational forces on the infinitesimal third body as exerted by the

other two would exactly balance, thereby rendering it motionless

with respect to a rotating coordinate reference frame. These five

equilibrium positions, LI through L5, called alternately Lagranglan

or libration points, also exist for the Earth-Moon system and are

shown in Figure 1. For a rotating coordinate frame of reference
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centered at the Earth-Moon center of mass, the Lagrangian points

are five fixed points at which a third mass would be stationary if

placed with zero velocity relative to the frame. Through infinites-

imal analysis (Ref 17:427) it can be shown that motion in the

neighborhood of the collinear points (Ll, L2, and L3) is inherently

unstable since a positive real eigenvalue exists in each case.

Similar evaluation yields motion in the vicinity of L4 and L5 to

be infinitesimally stable. In 1907, Charlier (Ref 22) analyzed two

classes of periodic orbits around these triangular points, long and

short, depending on the period or mass ratio of the two large masses.

The desirability of placing satellites at any or all of these

Lagrangian points coupled with the related instabilities has justi-

fied the vast amount of research which has surfaced in the past two

decades dealing with the orbital control of this system.

The major asset attained by satellites placed at the Lagrangian

points is that they remain in a motionless configuration with respect

to the Earth and the Moon at all times. Many uses for which such

positioning would be ideal have been proposed. One is in the develop-

ment of a communications link between the Earth and semipermanent

bases on the far side of the Moon. Relay satellites placed at Ll and

L2 could provide uninterrupted communications to the Earth as well

as to far-reaching lunar exploration vehicles. Communication with

interplanetary probes would be similarly facilitated since the Earth

as a noise source could thus be virtually eliminated. Instead of

a lunar parking orbit, a station at L2 would provide an infinite

launch window for lunar activities since it is stationary with respect

to the surface. Telescopes of all types would be free from the

3



restricting layers of the Earth's atmosphere, or, depending on

position, be entirely blocked from Earth interference by the Moon.

Situated outside of the magnetosphere, satellites to study solar

plasma, cosmic rays, and other cosmic phenomena would find ideal

settings, similar to the ISEE-3 research satellite already in use.

L4 or L5 satellites could provide long-term solar flare observations,

early warning programs, and secure the previously unaccomplished task

of performing simultaneous measurements at different locations

within cislunar space, thus separating temporal from spatial varia-

tions for the first time (Refs 5, 6, 8). Militarily, a defense

satellite network placed in orbit around L3, L4, and L5 would pro-

vide continual global coverage, especially vital in today's potentially

explosive environment. Synchronous satellites are not totally efficient

in such instances since they exist in equatorial orbits, leaving the

polar regions essentially hidden. For the Lagrangian system, thi'4

restriction does not apply, since these points lie in the Earth-Mo'n

plane rather than equatorial (Ref 26). Also, they are distant enough

that the lead time for any interceptor is sufficient for adequate

evasive maneuvers to be implemented. Prior work by Captain Tilton

(Ref 23) established the existence of appropriate stable orbits about

L4 and L5 in which reconnaissance satellites could be placed with

relatively little cost and remain for up to fifty years. Only the

lack of a similarly stable orbit about L3 prevents the completion of

the triad for total coverage and is the subject of this and other

research endeavors.

4
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Svstem

The restricted four-body problem is a more realistic extension

of the three-body problem for evaluation since the large perturbative

effects of the Sun are no longer neglected. However, in this case,

the Hamiltonian becomes an explicit function of time and there is no

longer a constant of the motion. It has been shown, however, that

families of periodic orbits still exist about the five Lagrangian

points.

The modelling assumptions used in previous research were maintained

here. The Earth is taken to be moving in a circular orbit about the

Sun with a period of 365.256365 days. The Moon's motion is approximated

as a periodic orbit about the Earth as developed by Professor Wiesel

in his work (Ref 25), which is more realistic than a circular one.

All bodies are considered to lie in a plane, so that perturbations due

to inclination and eccentricity effects have been neglected. The

importance of these are described in Reference 4. In later cases,

where greater stability characteristics were sought for the nonplanar

(z) mode, inclination and eccentricity had to be included. Effects

due to the presence of other solar system bodies and the Sun's radia-

tive pressure may be considered negligible and have been disregarded.

Coordinate Frame

Even though there is no longer a constant of the motion, which

instigated the use of a rotating reference frame with respect to the

restricted three-body problem, that configuration is maintained here.

The rectangular reference frame, depicted in Figure 2, has its origin

at the Earth-Moon center of mass and one axis coinciding with the line

5;
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Figure 2. Geometry of the Four-Body Problem (Ref 20:11)



connecting the Earth and the Moon. This system rotates at the average

angular velocity of the Moon about the Earth, with the Lagrangian

points maintaining their relative positions within the framL at all

times.

Periodic Orbit

With the satellite assumed massless for the sake of calculation

and the attracting bodies having their respective masses, the Hamil-

tonian for the system was derived by Captain Shelton to be

H = (P 2 + p 2+ p 2) + (P R - P R )x y z xy yx

+ T3 (r -o )P + (r + 1P )P
M 0 x y y x

_Gq _ GImI Gjm 2

lml+m 2 m ml+m2 m

where M =ml+M2 +m3 is the sum of the masses of the Earth, Moon, and

Sun respectively, the scale factor locates the inertial point of
M
0the system, &3 is the angular velocity of the rotating frame,

R, p, and r are the position vectors from the origin to the satellite,m

Sun, and Moon respectively, with subscripts x, y, and z denoting the

components in those directions, the superscript r represents differen-

tiation in the rotat.in: frame, G is the gravitational constant, and

Px' Pyl and Pz denote the momenta of the Hamiltonian (Ref 20:14).

Using the equations of motion as derived from the Hamiltonian

and the theory described in Chapter II of Captain Shelton's work, he

was able to construct a viable periodic orbit about L3. This orbit is

shown in Figure 3 and the initial conditions incorporated in its

implementation are given in Table I. Since such an orbit was previously

7
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shown to be inherently unstable, some form of control law is necessarv

if a satellite is to remain in the vicinity of L3 for any considerable

length of time.

State variable feedback control designs rely on the availabilitv of

the system's state vector through direct measurement or derivation

from the output. In this case, where only two of the six state vector

elements are accessible through range and range-rate measurements, a

Luenberger Observer is introduced to reconstruct the missing states.

This approximate state vector can then be substituted into the control

law. Rapid convergence to the true states is assured by placing the

observer poles to the left of those of the system. Conceivably,

approximately instantaneous convergence could be attained if the poles

were specified at negative infinity, but this tends to make the observer

behave like a differentiator, (Ref 15), greatly influenced by noise,

an undesirable characteristic. These two constraints limit effective

observer pole placement.

Table I. L3 Orbit Initial Conditions (Ref 20:20)

x position (kin) -383,537.27

y position (km) 0.0
z position (kin) 0.0
x momentum (km/sec) 0.0
y momentum (km/sec) -30.825537
z momentum (km/sec) 0.0

8!
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II. Floquet Theory

The equations of motion for the restricted four-body problem as

derived from the Hamiltonian (l) are time-varying and exhibit some

periodic solutions. This means that the motion repeats itself pre-

dictably so that only one orbital period need be examined to determine

characteristic behavior. In general form the equations of motion may

be written:

where x(t) is the state vector composed of the coordinates and momenta

of the system. Allowing tS(t) to be a small displacement from the pre-

viously determined periodic orbit taken as a reference,

6x(t) = x(t) - x (t) (3)
P

the state vector considered throughout this study actually becomes

(t) =[Px(t) 6x P(t) 6y(t) 6P (t) 6z(t) 6Pz(t) (4)

Substituting (3) into (2), expanding in a Taylor series about the

reference, and then linearizing (Ref 20:15-17) results in the equations

of motion written as:

6x(t) = A(t)6x(t) (5)

where A(t) 3L is termed the system plant matrix. The
3x(t) x (t)P

elements of A(t), A ij(t), are continuous periodic functions of time

with period T = 29.530589 days, so that

A(t + T) = A(t) (6)

defines the periodicity. The n linearly independent solutions to

(5), 6Ri(t) (i = 1,2 ,...n), may be collected to form an n x n matrix,

(D(t) =  (t) 6 2(t) ' . . 6 (t (7)

called a fundamental matrix.

II
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A specialized case of this fundamental matrix, satisfying

6x(t) = D(t,to0)M X(t )( )

where

(t,t) =
o X(to) x (t)

is necessary to solve a Floquet problem in general. D(tt ) is called
0

the state transition matrix, is evaluated along a known reference

solution, in this case the periodic orbit, and is a function of only

the initial and final times under consideration. In addition, it has

the following properties:

(D(t, t o0)  = (P(t't1)'(t1 t 0 (9)

D(to,t) = I

where I is the standard n x n identity matrix.

With 4(t) defined as in (7), (8) becomes

tp(t) = 'o(t t ) 't0 (10)

Over one period (10) yields

O(T) = ((,O)(D(O) (11)

A general fundamental matrix satisfies

D(t) = A(t)D(t) (12)

from (5) and at the end of one period this equation becomes

((t + T) = A(t + T)(t + -) (13)

Inserting (6) into (13) results in

P(t + T) = A(t)4'(t + T) (14)

from which it is seen that 0(t + T) is also a fundamental matrix. These

two solutions, (P(t) and ?(t + T), may be correlated through the existence

of a constant matrix M, called the monodromy matrix of the fundamental

matrix $(t), such that

11
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((t + T) = MD(t) (15)

From this equation at t=O and recalling (11), it is seen that the

monodromy matrix is actually equivalent to the state transition matrix

from t-0 to t=T.

The eigenvalues of M (or (r,O)), cti (i=1,2,...n), are termed

the characteristic multipliers of A(t). There also exists a set of

(i=l,2, ...n), related to the characteristic multipliers by
1

T ln(ct.)Ii 1 n( i

These are called Poincar4 exponents and may have real or complex

values. Since previous work established a multiplicity of I for the

Xi. they may be arranged in the following Jordan canonical form

(Ref 17:267):

A1  0

00

N2

J=

For complex conjugate values, this format becomes unwieldy since

imaginary vectors would then be involved in computations. To avoid this

inconvenience, the form shown in (16) may be used instead. Here, each

complex conjugate pair forms an off-diagonal 2 x 2 submatrix within the

basically diagonal structure.

071 WI

C2 -W2

J2 2 (16)

0 -w
n n

n n

where Ji (i l,2,...,n) are the real components and -. are the imaginary

components of the N C
12
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For purposes of stability, all Poincar6 exponents must lie on

the negative real axis of the s-plane, or, if complex, have a negative

real part. The imaginary component yields oscillation in that particular

related state.

The Poincard exponents for the uncontrolled periodic orbit about

L3 are listed in Table II. These determine three modes of oscillation,

two planar and one nonplanar, of which one is real and the other two

consist of complex conjugate pairs. As can be seen, the third value

has a positive real part, thus rendering the entire system unstable.

This, then, is the element which must be controlled in order to make

this a useful and predictable system.

To determine the actual solution to (12), the fundamental matrix

may be expressed as

D(t) = 0(t)eJt (17)

where Q(t) is a periodic matrix satisfying

Q(t + T) = 0(t)

and J is the Jordan canonical form associated with A(t) as defined

above. Substituting (17) into (12),

d [O(t)eJt] = A(t) Q(t)eJtdtl

differentiating,

it Jt i
Q(t)e + 0(t)Je = A(t) 0(t)e't

and cancelling the ei t terms since they can never be zero, Droduces

Table IT. Polncar6 Exponents for the Uncontrolled System

Planar Mode (x) 0.0 - 1.0392i

0.0 + 1.0392i

Planar Mode (W) 2.3921 + O.01
-2.3921 + 0.01

Nonplanar Mode (z) 0.0 - 1.1247i

0.0 + 1.1247i

13



Q(t) + 0(t)J = A(t)0(t)

Defining A(t) as the O(t) matrix partitioned into columns

A ( t ) = 1 5 1 ( t ) :: 2 ( t ; ... ( 1-;! 5 n)

results in a simple, analytical equation for J:

J = A-l(t)[A(t)A(t) - A(t)] (19)

Now, substituting D(t,to) into (12) gives the result

0(t,to 0 A(t)?(t,to)

This may be integrated numerically with the initial conditions

described by (9) to yield information regarding a particular solution's

local variation with initial conditions.

Picking 6xi (t) as an arbitrary solution to (5) and extracting

this from (17) results in

6xi(t) = Oi(t)e Nit (20)

From (8) at t = 0, it is seen that
0

6xi(t) = ((t,0)5 .(0) (21)

Equating (20) and (21),

8X.(t) = -i(t)e it = 4(t,O) x.()

and substituting (0) for 6x.(0) from (20) evaluated at t=O

gives

6x (t) Qi(t)e i t = D(t,0)5(O) (22)
i 1 1

Because O(t) is periodic, 5i(r) = Ci(0),
1

6x.(-) = - N Tr - ix(T) (r)i = (O)e i T = P(r,O)0.(0) (23)
(T i eO~ (0

when (20) and (22) are equated at the end of one period.

Incorporating M = (r,0) in the latter part of (23) and simpli-

fying yields the eigenvalue/eigenvector problem,

[M - eXiTIo (0) = 0 (24)

14
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where e iT are the eigenvalues and the Oi(0) the respective eien-

vectors of the monodromy matrix.

For the complete solution, the 0.(t) must be computed over an
1

entire period. Equation (19) is essentially an ordinary differential

equation for A(t), the partitioned O(t) matrix, having as initial

conditions the eigenvectors of M.

15



III. Modal Control

Due to the system's unstable characteristics, some form of control

is necessary. Rate and position feedback laws were unsuccessful since

all modes, the stable as well as the unstable, were excited (Ref 21)

with appreciable control costs. In order to avoid this, Captain Shelton

implemented a modal controller which resulted in moving only the third

root, leaving the other modes and the conjugate root of the unstable

mode unchanged. Although this method is not the only alternative

available, it is commensurate with present knowledge in the control of

periodic systems.

So that a controller may be added to the system, the state equations,

(5), must be augmented with a control term

B(t)u(t) (25)

where u(t) is the control vector and B(t) is the distribution matrix

which determines to which states control is applied.

Sx(t) = A(t)6x(t) + B(t)u(t) (26)

For Captain Shelton's work B(t) was taken as [0 1 0 10 0]T

signifying changes in momenta in the x and y directions due to thrust

application.

So that only the desired mode is affected by the controller, the

system must be converted to a set of diagonal equations. Implementing

the transformation,

6x(t) = A(t)n(t) (27)

where n(t) is the modal vector and A(t) is as defined in (18), and

its derivative,

&x(t) = A(t)n(t) + A(t)n(t) (28)

the modal state equations become

A(t)n(t) + A(t)n(t) = A(t)A(t)n(t) + B(t)u(t) (20)

16



Rearranging (29) produces

-1t = - ((t ) t),'(t - (t) "(t) + '- (t)B(t) ( ) ( n

Recalling (19)

J = A-1(t)[X(t)A(t) - .(t)] (l )

where J is the diagonal matrix of Poincar exponents defined pre-

viously, the differential equations of motion in modal variables are:

n(t) = Jn(t) + .A- (t)B(t)(t) (31)

which can be expanded into the six equations representing the modal

system.

Previous work maintained a scalar control law for simplicitv. So

that the only unstable component of the modal vector (n3) would be

influenced, the control law was defined as

u = Gn 3(t) (32)

where G is the constant gain term. Transforming this back to physical

variables through the inverse of (27) gives

u = GA3
- 1 (t)6x(t) (33)

where A3 -1(t) is defined as the third row of the -l(t) matrix.

Expanding (31) fully and substituting for u(t) results in a linear,

first-order, time-varying differential equation for n3(t):
n3(t) = 3 + ( 3 2 (t) + A3 4(t)) In(t) (34)

where the subscripts refer to the rows and columns respectively of

-1
A (t). Solving this equation with an integrating factor and separatine

-I -1
A32 (t) and A34 (t) into their respective Fourier series for analysis

resulted in constant and periodic components of each term. This gave

rise to a linear relationship between the actual and desired pole

locations,

17
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3 = X3 + Gy0 (35)

where )3 is the present third Poincar6 exponent, \j is its desired

position, and y is the constant component yielded by the Fourier

analysis (See Ref 20: 31-33, for detailed derivation). Thus,

this procedure reduces to a pole placement technique.

By varying the gain, Captain Shelton was able to determine that

a value of G= .259 was just adequate to bring the third Poincare

exponent into the left-half plane, therbv resulting in a controlled

stable system. Other gains simply vary its position linearly in

accordance with the above law.



IV. Observer Theory

The observability of a state vector is fundamental to state

estimation since if a particular state is unobservable, its value

cannot be derived from the output. Alternatively, a combination of

states may be observable, thus rendering the individual states indis-

tinguishable from each other. Therefore, for many feedback control

systems it is assumed that the entire state vector is available through

measurements. Often, however, one or more of the states cannot be

observed directly with only the measured data, and an approximate state

vector must be substituted, with control applied to the estimate instead.

In 1963, David G. Luenberger derived a dynamic device which would

generate estimates of the inaccessible plant states of a deterministic

linear system from exact measurements of the output (Ref 14, 15).

A control law can then be implemented utilizing the resulting full state

vector. Again, this may be looked upon as a pole placement technique,

and as long as the noise component is tiny the only restriction on the

arbitrarily-placed observer poles is that they have faster response

characteristics than those of the plant matrix, e.g., further to the

left in the s-plane, for rapid convergence to the true state.

For the system under consideration, it is extremely difficult to

determine a satellite's position in the orbit through conventional

triangularization. Only line-of-sight data for range and range-rate

can be determined to any great degree of accuracy due to the alignment of

the Earth, Moon, and L3 point and the size of the orbit (see Figure 4).

However, from transponder and Doppler shift data, accuracies for these

radial measurements are quite impressive, on the order of three meters

for range when averaging the round trip time of radio signals or down
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to a few centimeters for laser pulses (Ref 18). The standard deviation

for range-rate is .02 meters per second (Ref 5:66). This defines the

noise in range and range-rate measurements to be on the order of 10- 9 ,

so that double precision arithmetic would be necessary to accurately

simulate the effects. Truncation errors due to computerized numerical

integration are large enough to completely obliterate any noise from

the observations themselves. Therefore, this may be considered a

strictly deterministic system.

With the distances involved, range measurements vary little with

nonradial displacements. For example, if the satellite is at its

maximum y position, there is a mere .7% variation in the range. This

renders the plant states for the y and z directions essentially

unobservable and estimates must be constructed using a Luenberger

Observer.

Repeating the state equations and presenting the output equations

for the first time results in the complete system to be considered:

x(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) (36)

The output or measurement vector, 7(t), is shown in component

variational form in (37). The general range and range-rate equations

are:

Range: r(t) = Ix(t)2 + y(t) 2 + z(t) 2

- - (t)
Range Rate: r(t) = v(t) *1(t)l

~~(t) = [ ~x(t) + 6y(t)2 + 6z(t)~ ttj/rt

1 r(t)J I lx(t)Sx(t) + 6v(t)Sy(t) + SZ(t)A(t)] /r(

(37)
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This generates an output matrix, C(t), of the following form:

36r(t) 36r(t) 36r(t) Har(t) ;6r(t) H~r(t)

IOx(t) 36P (t) 36y(t) HP v(t) ;6z(t) HP x(t)x y

C(t) - (38)

a3r(t) Hr(t) a5(t) 3r(t) 36r(t) 3sr(t)

36x(t) a6P (t)a6y(t) 36P (t)36z(t) 36p (t)xy z

The individual C(t) matrix elements were verified using the

definition of the derivative. For example,

= 5 =[6 -(6x = 2.001) - 5r(6x = 2)]11l =B--x = .001

The ranges and range-rates were examined for the entire orbit and were

consistent with the respective data.

Since the C(t) matrix is a 2 x 6 matrix rather than a full 6 x 6

matrix, a reduced order observer will need to be considered. The

observer state and output equations are

x(t) "A(t)x(t) + B(t)u(t) + K(t)y(t) - v(t)]

y(t) = C(t) (t) (39)

where the caret represents the estimate of the respective vectors.

Allowing the observer reconstruction error to be defined as

e (t) = x(t) - c(t) (40)0

gives

e (t) = A(t)x(t) + B(t)u(t) - A(t)x(t) - B(t)u(t)0

- K(t)-(t) -(t)] (41)

when (36) and (39) are substituted into (40).
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Simplifying,

e (t) = [(t)- K(t)C(t)] e(t) (42)

K(t) is termed the observer gain matrix, the dimensions of which must

be 6 x 2. Elements of this matrix can be chosen so that the eigen-

values of

[A(t) - K(t)C(t)

will all lie in the left-half plane, thus allowing the steady state

value of e(t) for any initial conditions to approach zero as t

approaches infinity.

Since only one of the three system modes is unstable, modal

control theory may be used to move the one positive pole into the

other plane, following the same derivational steps as for the controller.

Through the modal transformation (27) and its time derivative

(28) the system equations (36) become

n(t) = A'I(t)[A(t)A(t)-A(t)] n(t) + A 1I(t)B(t)U_(t)

y(t) = C(t)A(t)n(t) (43)

These reduce to

ri(t) -- J (t) + - (t)B (t)u(t)

7(t) = C(t)A(t)n(t) (44)

when (19) is used.

Substituting the equivalent transformation into the observer

(39) results in

+ K(t)C(t)A(t)[n(t) - n(t)] (45)

which, when multiplied by A-1 (t), becomes
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r)(t) Jfi(t) + A-1(t)B(t)u(t)

+ A-1(t)K(t)C(t)A(t)[(t) - fi(t)] (46)

Defining the modal reconstruction error as

m(t) r (t) - (t) (47)m

gives

e (t) -- (t) - (t) (48)
/ m

Substituting (43), (45), and (47) into (48) results in an equation

for the error.

e~~ _ (t t -I(t)B(t)u(t) - J (t) -A-l(t)B(t)u-t

m

- A-I(t)K(t)C(t)A(t)[P(t) - (t
era(t) = - A-(t)K(t)C(t)A( e (t) (49)

When the elements of the observer gain matrix are chosen so

that

J - A-I(t)K(t)C(t)A(t)j

has Poincar exponents with only negative real parts, the observer

is stable. This will give identical Poincar exponents when trans-

formed back to the physical system.

In order to choose the elements of the gain matrix easily, the

following transformations are made:

K(t) = A-(t)K(t)

C'(t) = C(t)A(t) (50)

This is justified since the observer introduces an additional set of

time periodic coefficients and Floquet Theory may be used for its

analysis. Now (49) becomes

-m(t) =[ - K(t)C(t] er(t) (51)

2L.



If K°(t) is defined as

0 L 0 0 (52)

where 0 and B are arbitrary constants, then only one row is added to

J. Thus, by appropriate choices of 0 and B the third root can be

relocated in the left-half plane as desired. Since there is no

analytical method to conveniently choose gains corresponding to desired

pole placement, various values, both constant and time-varying, were

implemented and the resulting Poincar& exponents examined. After the

appropriate gain has been determined, the K(t) matrix necessary to

stabilize the system in the physical variables can thus be easily

derived from K'(t) using the definition.

Expanding (51) for the full six-dimensional error vector shows

the addition of only one row to influence J.

e (t) 0 W1 0 0 0 0 e (t)• i m l

e (t) W 0 0 0 0 0 e (t)
m2  2

e (t) N N N N N N e t)
m3  1 2 3 4 5 6 m3

e (t) 0 0 0 0 0 e t) (53)
in4 (t)4M

e (t) 0 0 0 0 0 j e (t)
m5 ()5 ms

e (t) 0 0 0 0 W 0 e (t)
Lm6 J _6 _M JeJ

where

NI = -COC1 1(t + S~jjt

N2 = -[C2(t) + SC 2 (t]

N3 = X3 - [Cj3(t) + BC 3 (t)]

N= -[OC14(t) + XC.4(t]

N5 = -[OC'j(t) + <561t

N6 = OC' 6 (t) + BC%(t]
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Now an explicit equation for e m3(t) may be formulated.

e -l (t) Ollt) + BC i(t] e(t) - [ '''t + SC2(1 m2 (t)

+ f - [OC(t) + K 3(t)]3e +t - 0c4t 4 t(t e(t) (54)

-[OCilt) + SC-;(t] em(t) - EOCIt) + BC ,(t]e M6(t)

Even though (54) involves the entire error vector, this may be simpli-

fied to

em3 (t) = 13- [0C1 3(t) + <C 3(t ]}e 3(t)

since the remaining terms exhibit known time periodic behavior from

(53) and so may be combined as a time-varying particular solution.

Substituting EI(t) for Ci3(t) and 2(t) for G 3(t) renders the

differential equation to be solved as

e m3 (t) - [A3 - [OEI(t) + 6 2(t~3 em3 Ct) = 0 (55)

Multiplying both sides by the integrating factor

e-f IA3[O&(t) + 3E2 (t)]4dt

gives

e ftX3iI0EI(t) + E2(t)]}dt e M3(t)=

I3- [0&1 (t) + 2 (t ]3 e _' IX -[0C1(t + 6 2(t)]3dt e m3 (t)

The solution to this exact differential equation is

IXf3 -[Al(t) + E()
e (t) e -" C (56)
m3

where c. is the constant of integration.
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Fourier analysis of the C(t) matrix reveals that each element

is made up of a constant and periodic terms. This allows 1(t) and

,2(t) to be expanded into

I(t) 1,13 + "Ip(t)

g,2( t ) = Z2 +  2P(t)

where the o signifies constant and the p periodic terms.

Solving for e (t) and substituting for rl(t) and 2(t) givesmB

1 3 - OC0 - AIp(t) - a420 - 3B2p(t)] dt
e (t) = cem 3  - - a2 0] d t - +

-- ce e

= ce e

The periodic terms oscillate so that the stability characteristics

are dominated by the

e

term. Therefore, the Poincar exponent is placed by

X, = X3 - - R32 0  (58)

a linear form. Here X3 is the present position and )' is the desired

position of the Poincari exponent.
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V. Controller/Observer Implementation

The purpose of designing a Luenberger Observer is to be able

to feed the resulting state estimate into the controller which would

then act to stabilize the system. If the observer poles are to the

left of those of the system, keeping in mind the noise component re-

strictions metioned earlier, convergence to the actual state vector

is rapid and the controller is furnished with excellent state values.

It should not, however, deteriorate the performance of the controller.

It can be shown that observer and controller eigenvalues can be

assigned independently, thereby creating a composite and vet uncoupled

set. The former control law, (33), modified to utilize the state

estimate, i(t), becomes
-I

u(t) = - F(t)k(t) if F(t) - GA3 (t)

Inserting this into (36) results in

x(t) = A(t)x(t) - B(t)F(t)x(t) (59)

y(t) = C(t)x(t)

Recalling the reconstruction error in physical variables,

e (t) = t) - (t) (40)

and substituting into (59) above yields

x(t) = [A(t) - B(t)F(t])x(t) + B(t)F(t)e (t) (60)

This can be presented in partitioned form in conjunction with the

observer reconstruction error equation (42) as

xt) (t) -B(t)F(t) B(tlF(t) x (t)

[- -- -
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Now defining a system state transition matrix as

t1(t) t(t) 0

)-------------
t 21t ,DS2 2 (t)0 e (t)

(61) becomes s : 
1

[--* -j t)(t) (62)

where T = A(t) - B(t)F(t)

= B(t)F(t)

v = A(t) - K(t)C(t)

Expanding the partitioned ecuations yields

is1 1 (t 1  ' i2 1 (t) + 0 82 2(t) (63a)

.S12() = (,s 2(t) + s2 2 (t) (63b)

D 2 1 (t) = ?' 21 (t) (61c)

S22(t) = (,s,22,(t) 
(63d)

As in any state transition matrix, the initial conditions are

Ts (0) = I

This sets the initial conditions for the submatrices defined by

the partitions as well:

.Sll(0) = I 
(64a)

.s12(0) o] 
(64b)

s21 () o] 
(640o

s 22(0) - I 
(64d)

(63c) implies that (s2= 0 for all time, so (61a) and (63d) becoe

D S l ( t ) = D 5 1  ( t ) a n d ' 2 ( t ) = s ,( t )
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After one period has elapsed

D S((T) Sl2(

(Ps( ) = --------- (65)
0 'D 22 (T)

Forming the characteristic equation of this time-varving composite

system gives

I lnt t- ss (t
[pant ( tII ] [ observer, -l 2 1(t

where X plant are the n eigenvalues of the system and

those for the Luenberger Observer. This separation denor. , -7

placing an observer in a feedback system does not affect 't

values. The two sets merely produce a composite formation.
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VI. Results, Conclusions, and Recommendations

Results. Since all of the system's states cannot be measured

directly, a suitable approximation, which could be substituted into

the control law developed by Captain Shelton, was sought. Therefore,

a logical extension to his work was the implementation of a Luenberger

Observer which would reconstruct the entire state vector. As developed

in Chapter IV, the observer moves the unstable component linearly

with gain, similar to the case of the controller. Appropriate elements

of the modified observer gain matrix were found using a systematic

search technique and are depicted in Figure 5. For example, a value

of @ = 2000.0 and 3 = 0.0 in (58), moves the root from 2.392121 to

-14.92828, obviously far enough into the left half-plane to render the

system stable. The slope was calculated as -0.00866.

When other elements of the modified observer gain matrix were

filled in order to try to bring the oscillating components into

negative real configuration, the linear correlation is destroved.

All the states except the fourth couple and it becomes virtuallv

impossible to predict the effect of various K'(t) values. Some

examples of exponent-gain correlation are presented in Table ITI.

It was eventually possible to bring the oscillating planar mode into

negative real form through appropriate application of gains, but to

date, the same has not been accomplished for the nonplanar mode.

The best has been to move the real part slightly farther into the

left-half plane, e.g. -0.045 ± 1.232i.

With no nonplinar motion considered, a gain matrix producing a

set of Poincarg exponents which fulfills the stabilization criteria
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without experiencing adverse noise effects is

0 0 1500.0 0 0 0 T

.0 0 0 0 0 0

The corresponding Poincar6 exponents are -2.214, -6.047, -11.47,

-2.39, 0.0 ± 1.1251, with -2.214 dominating the system's behavior

since the rest are further in the left-half plane.

Examining this observer's performance by evaluating the data

retention time reveals that this system is being implemented correctly.

The fastest root, -11.47, exhibits a time constant of approximately

.1719 periods or 5.07 days, which is quite sufficient since an update

is taken every few seconds. The model under consideration is strictly

deterministic with observational inaccuracies inconsequential when

compared to those imposed by numerical integration. It is even difficult

to distinguish noise in the double precision mode. Therefore, this

observer is not in any danger of approaching the undesirable behavior

characteristics of a differentiator, and is the basic one used in

various test cases.

When the controller and observer were implemented in conjunction,

the estimates of the states converged rapidly to the true ones.

Three basic cases were chosen to demonstrate the widest range of

performance characteristics. The first (Case A) is a very accurate

observer, assuming a 14.9 m accuracy for the line-of-sight direction and

a 14.9 km accuracy in the y, with orbit initial conditions beyond the

range of the controller's ability to achieve convergence. The second

(Case B) was chosen as very close to the periodic orbit so that controller

behavior could be checked and incorporated an observer having realistic
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properties, e.g., extremely accurate data in the line-of-sight direction

and almost no knowledge of cross track capability. The third case

(Case C) is the former with the out-of-plane mode included for comparison.

To note the behavior of the observer alone, the case of no control

on orbit initial conditions (implying exact positioning on the periodic

orbit) was run (Figure 6). This showed the observer converging fairly

rapidly, matching the true states exactly by at least the end of the

fifth orbit.

The next series of figures (7-9) depict the characteristic time

evaluation of the modal states. With the extremely accurate observer,

convergence to the true state is so rapid that the difference between

the two is not discernible even though this case is unstable. The other

two cases depict almost total convergence by the end of the third orbit.

In addition, appropriate long-term controller behavior is demonstrated

for nl and q3 in that these elements of the modal state vector approach

zero with time. To check this behavior for the other two elements would

only necessitate a longer time interval, but similar tendencies appear

to be present. The z mode, when affected (See Figure 9), depicts the

expected oscillatory behavior,

Figures 10, 11, and 12 are the errors between the modal and true

states with time. These show convergence to zero, but may be somewhat

misleading due to the scale. Approximate exponential envelopes may be

constructed to define the convergence rate more closely (Table TV).

These reveal that the errors are dominated by the largest negative

real Poincarg exponent of the observer.
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Figure 6a. Uncontrolled System with Observer

Controller gain 0.0 Observer Initial conditlons
Orbit Initial conditions eml = 14.96 m

x _- 0.0 km era2 = 14.96 ny/sec
ix = 0.0 km/sec era3 = 14959.97 km
y = 0.0 km ema4 = 11959.97 kin/see

Py = 0.0 k0.sec ea5 = 0.0 km

z = 0.0 km em6 = 0.0 km/sec
Pz = 0.0 km/sec

Observer galn elements
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0j = 1590.7
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Examining the phase portraits for tne individual modes in

each test case (Figures 13, 14, and 15) reveals tnat once again

the accurate observer of Case A has already caused the estimate

to match the true state vector identically even though the system

is inherently unstable. From the figures it is somewhat difficult

to determine the point of convergence for the other two cases, but

the listing of the data reveals convergence to the sixth decimal

by the third orbit in Case B (nonplanar mode unchanged) and simi-

larly for Case C.

Figure 14b. is especially interesting since it demonstrates

the suppression of an unrealistically large initial transient.

The observer and controller have widely disparate starting positions

and for the first four points (approximately one-half orbit) the

controller actually diverges from the state estimate. Later, the

trend returns to convergence and joint motion toward zero.

Figure 16 depicts a large orbit initial condition and almost

unrealistic lack of knowledge in the y-direction observer states.

This example was chosen to demonstrate the system's behavior as the

Table IV. Exponential Envelopes for irrors

Case A: upper envelope = 1.835 x 10-7 e-2 2 14t

lower envelope = -1.183 x 10
-7 e- 2 2 1t

Case B: upper envelope = 1.845 x 10-4 e
- 2.2 14t

lower envelope = -1.179 x 10
-4 e- 2.2 14 t

Case C: upper envelope = 1.728 x 10-4 e
- 2 .214t

lower envelope = -1.185 x iG
-4 e-2.2 14t
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observer converges. Even with such a massive uncertainty, the ob-

server behaves well. Figure 17 was included to exhibit the observer's

characteristic of converging faster with increased negative posi-

tioning of the Poincar5 exponent. However, the data reveals that

the convergence is actually slower in this case. This occurs

because with the gain combinations utilized, the dominant negative

root now becomes -1.01.

Figures 18-21 describe other interesting cases, comparing

effects of variations in observer and orbit initial conditions.

Even with generally large initial conditions, trends toward state

convergence are evident after only one orbit (Figure 19) and more so

with an order of magnitude difference in the third and fourth obser-

ver error states (Figure 20). However, in this instance, as with an

order of magnitude improvement in its initial conditions (Figure 21),

the controller no longer appears effective unless numerous orbits

are necessary for convergence to occur.

Conclusions

These various cases exhibit all the points this study was meant

to investigate: the existence of a stable Luenberger Observer for

the restricted four-body problem in question, the observer pole-

placement behavior, which proved to be linear as in the case of

Captain Shelton's controller, the rapidity of convergence to the

true states, and the long-term observer and controller behavior

which does not impede controller performance.
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Recommendations

The number of cases which could be tested for system behavior

evaluation is practically unlimited, and almost all would be

valuable if resources and time would allow. One should be able

to determine a combination of gains which result in a totally

negative real system, including the nonplanar mode, which would

then be evaluated for comparative performance. Hopefully, the long-

term oscillatory behavior could then be reduced or eliminated.

One should also seek analytical alternatives to arbitrary pole

placement. It has been suggested that an examination of Butterworth

patterns (Ref 12) would be a possible route.

An extensive evaluation of noise effects on observer and

observer/controller behavior is appropriate as well. Even though,

operationally, this is a deterministic system almost impervious to

noise, it is essential to establish the left-half plane boundary

for the positioning of the observer poles in order to avoid unde-

sirable differentiator properties.

Another interesting characteristic which may reveal some

useful system properties is the presence of the large frequency

component, 6.18, evident in numerous trial and error gain calculations.

These may occur with either positive or negative real parts of dis-

similar values and the same imaginary part, instead of the expected

complex conjugate pairs. Perhaps they indicate the maximum extent

of a stable observer performance region, a boundary to be avoided,

or perhaps the damping characteristics of such a root would render

such a situation favorable.
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Controller gain 0-5 Observer initial conaitions

Orbit Initial conditions eml = 14.96 m

x = 4488 km ea2 = 14.96 misec
Px = 4488 km/sec e.3 = 14.96 km

y = 4488 km e.4 = 14.96 kla/sec
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z = 0.0 km ea6 =  0.0 kirV'ec
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iObserver initial gain
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Figure 8a. Modal Vector vs. Time: Case B

Controller gain 0.5 Observer initial conditions

Orbit initial conditions emi = 14.96 m
x = 14.96 km em2 = 14.96 m/sec

Px = 14.96 km/sec em3 = 14959.97 km

y = 14.96 km em4 = 14959.9? km/sec

Py = 14.96 km/sec em5 = 0.0 km

z = 0.0 km ea6 = 0.0 km/sec

Pz = 0.0 km/sec

Observer gain elements

Five orbits K'1 2 = 3.0
K'3 1 = 1500.0
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z=14.96 km

Pz = 14.96 km/sec em6 =14959.9? km/sec

Observer gain elements

Five orbits K'12 = 3.0

K'3 1 = 1500.0
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Controller gain 0.5 Observer initial conditions

Orbit Initial conditions eml :14.96 m

x = 4488 km era2 = 14.96 m/sec
Px = 4488 km/sec em3 

= 14.96 km

y = 4488 km era4 =14.96 km/sec
P= 4488 km/sec era5 =0.0 km
P= 0.0 km e.6 = 0.0 km/sec

Pz = 0.0 km/sec

Observer gain elements
Two orbits K'12o .

K'31 = 1500.0
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Figure 11. Error vs. Time: Case B

Controller gain 0.5 Observer initial conditions
Orbit initial conditions eml = 14.96 m

x = 14.96 km era2 = 14.96 m/sec
Px = 14.96 km/sec era3 = 14949.97 km
y = 14.96 km em4 = 14959.97 km/sec

p y = 14.96 km/sec ea5 = 0.0 km
z = 0.0 km ea6 = 0.0 km/sec

Pz = 0.0 km/sec

Observer gain elements
Two orbits K'12 = 3.0

K'31 = 1500.0
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Controller gain 0.5 Observer initial conditions
Orbit initial conditions em, = 14.96 m

x = 14.96 km em2 = 14.96 m/sec

P× = 14.96 km/sec em3 = 14959-97 km

y = 14.96 km er4 = 14959.97 km/sec

Py = 14.96 km/sec em5 = 0.0 km

z = 0.0 km em6 = 0.0 km/sec

Pz = 0.0 km/sec

Observer gain elements

Five orbits K'1 2 = 3.0

K'31 = 1500.0
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Controller gain 0.5 Observer initial conditions
Crbit initial conditions eml = 14.96 m

x = 14.96 km em2 = 14.96 m/sec
Px = 14.96 km/sec em3 = 14959.97 km
y = 14.96 km em4 = 14959.97 km/sec

Py = 14.96 km/sec em5 = 14959.97 km
z = 14.96 km em6 = 14959.97 km/sec

Pz = 14.96 km/sec

Observer gain elements
K'1 2 = 3.0

Five orbits, = 1500.0
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Figure 16a. Effect of Large Observer Initial Conditions

Controller gain 0.5 Observer initial conaitions
Orbit initial conditions eml = 14.96 m

x = 4488 km em2 = 14.96 m/seg

Px = 4488 km/sec em3 1.496 x 103 km

y = 4488 km e. 1.496 x 10 km/sec

py = 4488 km/sec erm5 = 0.0 km
z = 0.0 km

= 0.0 km/sec e6 0.0 km/sec

Observer gain elements
,rctz K'12 = 3.0

K'jj = 1500.0
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Controller gain 0.5 Observer initial conditions
Orbit initial conditions e 14.96 m

x = 4488 km em2 = 14.96 m/seg
PX = 4488 km/sec em3 1.496 x 10 km
y = 4488 km e.4= 1.496 x I0 km/sec
Py = 4488 km/sec em5 = 0.0 km
z = 0.0 km er6 = 0.0 km/sec

?z = 0.0 km/sec

Observer gain elements
Five orbits K'12 = 3.0
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Figure 18a. Additional Example of
a Faster Observer

Controller gain 0.5 Observer initial conditions
Orbit initial conditions eml = 14.96 m

x =-50.42 km ea2 = 14.96 m/sec
Px =-50.42 km/sec em3 = 1496.0 km
y =-50.42 km em4 = 1496.0 km/sec
Py =-50.42 km/sec em5 = 0.0 km
z = 0.0 km e.6 = 0.0 km/sec

Pz = 0.0 km/sec

Observer gain elements
One orbit K'12 = 3.0

K'3 1 = 2500.0
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Controller gain 0.5 Observer initial conditions
Orbit Initial conditions eml = 1 .5 km,

x = 4488 km era2 = 1.5 kr.Vse
Px = 4488 kin/zee era3 =7.48 x IGS km
y = 4488 km era4 =7.48 x 105 kmn/sec

Py = 448 kin/see em5 
= 0.0 km

z = 0.0 km ea6 =  0.0 k n/se e

z =co ms Observer gain elements

One orbit K12 = 30
K'-.) = 1500.0
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Observer initial conditions
eml = 1.5 km

em2 = 1.5 km /se

em3 7.48 x O k
em4 7.48 x 106 km/sec
em5 = 0.0 km
em6 = 0.0 km/sec
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Orbit initial conditions
x = 448.8 km

Px =448.8 km/sec
y = 448.8 km
Py = 448.8 km/sec
z = 0.0 km
P= 0.0 km/sec
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