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Preface

This thesis is an investigation in a discipline
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professionally. Control systems advancements are bene-
ficial in many areas of aeronautical, electrical, and
mechanical engineering.

I would like to give special thanks to Dr. Robert
Calico, Jr. and Nr. James Silverthorn for their constant
support, motivation, and guidance on this project. I

would also like to thank my typist, Gloria Miller, for

her patience and professionalism.
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Abstract

A simple lightly damped second-order system is
aucmented with an optimal controller using linear guadra-
tic regulator theory. However, instead of using con-
ventional optimal control design methods, the controller
is designed with freguency weighted cost functionals.
This report investigates the effect of freguency shaping
on the frequency and time response characteristics of
the closed-locp system.

The effects of frequency shaping on the state and
control penalty matrices are analyzed separately. Each
test case yields improved damping ratios compared with
the baseline open-lcop system. Each system, including
the baseline model, has a high frequency asymptote slope
of -40 dB/decade. There is very little difference in the
high-fregquency response characteristics of the freguency
shaped augmented systems and the open-loop system.

The most important result is that the low freguency
magnitude response can be reduced by using freguency

shapings. This is particularly useful in attenuating

low frequency system modes as well as low frequency noise.




OPTIMAL CONTROL USING
FREQUENCY WEIGHTED COST FUNCTIONALS

I Introduction

Control system design has typically involved either
frequency domain compensation or state space time domain
technigques. Using frequency domain analysis technigues,
control systems designers have developed an understanding
and an intuition for what type of fregquency response
characteristics a system should have. The design tech-
nique is then to add compensation in such a manner so as

to obtain this desired freguency response.

An advantage of frequency domain analysis is that
there exists a great body of knowledge concerning this
method. For example, the use of washout circuits in
aircraft yaw dampers is very common, very effective, and
done purely in the frequency domain.

A significant disadvantage to frequency domain
analysis, which is discussed in Ch. 2, is that it is dif-
ficult to apply the method to multiple-input-multiple-
output (MIMO) systems.

State space techniques differ in that they deal
directly with the time domain characteristics of the
system. A common state space technique is the use of
linear quadratic optimal control. The designer defines
a quadratic cost functional and then by minimizing the

' cost functional determines the optimal control. One main




»

advantage to the state space method, discussed in Ch. 2,
is the ease at which it can be applied to MIMO systems
through the use of vector and matrix representations.
Optimal control design generally requires choosing con-
stant weighting matrices for the cost functional.

There has been much research on determining the
control of a system using both the freguency domain and
time domain systems. However, it is not clear what
advantages might be gained by using some combination

of the two methods.

Background
Recent work by N. K. Gupta (Refs 6,7) has shown

that optimal control theory can also be applied to cost

functionals involving frequency dependent weighting

matrices. Gupta suggests that this method is very helpful

in controlling spillover, reducing high frequency response,

and improving disturbance rejection (Ref 6). It is cur-

rently known how to formulate this problem, but Gupta

has not shown or suggested any relationship between the i
cost functionals and the frequency response of the closed- 5

loop syste.n.

Problem
The problem is to investigate the relationship
between these frequency weighted cost functionals and the

conventional freguency response analysis techniques.




Specifically, frequency response characteristics such as
magnitude overshoot, high frequency asymptote slope, bhreak
frequency, and damping are examined. Additionally, time

response characteristics of the systems are examined.

Assumptions

It is assumed that all system models are linear

deterministic, that is, that the systems are noise-free.

General Approach

Using a simple plant, several frequency shaped cost
functionals proposed by Gupta are analyzed.

The closed~loop response of a second order baseline
system with no controller is analyzed. Then the baseline
system is augmented with a baseline controller. Subseguent
cases examine the closed-loop response of the baseline
system augmented with Gupta's suggested frequency weighted
controllers. The frequency weighted controllers are com-
pared with the baseline controllers in terms of freguency
and time response. The effect of freguency shapings on
both the state and the control penalty matrices is

examined.
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II Theoretical Development

Many feedback control systems can be designed using

the linear time invariant system model

k(t) = Ax(t) + Bu(t) x(o) = x_ (oztity) (2-1)
y(t) = Cx(t) + Du(t) (2-2)

where x 1s an n-dimensional state vector, u is an m-
dimensional control vector, y is a p-dimensional output
vector, A is an n x n plant matrix, B is an n x m con-
trol matrix, ¢ is a p x n output matrix, and D is a
p x m feeu-forward matrix.

The control, u, can be defined to be the product of
a constant feedback matrix, K, and the state vector, x(t),

in the following manner:
u(t) = -Kx(t) {2=-3)

There are various methods of determining the feedback gain
matrix, K. Pole placement technigues, entire eigen-
structure assignment, steady state solution of appropriate
Riccati equations via linear guadratic methodology, and
even arbitrary selection are some of these methods. The
value of K is manipulated until the desired closed-lcop
system dynamics are achieved. Fig. 2~1 shows a block
diagram of the closed-loop system where r is an arbitra:y
input. It r is assumed to be a constant value other than
zero and the feedback u(t) = -K  x(t) + r(t) is used,

the state equation for the closed-loop system becomes




%(t) = Ax(t) + Bu(t) = (A - BK)x(t) + Br(t) (2-4)

where u(t) = r(t) - Kx(t). The poles of the system trans-
fer function between x(t) and u(t) are the eigenvalues of

(2 - B K.

Optimal Control Methods

Using linear optimal theory, the control u(t) is
chosen so that it minimizes the quadratic performance

index

t
3= L5 ixTe) ox(v) +uT(0) Rult)lae + xT(e)S x(t,) (2-5)

where Q is a time invariant positive semidefinite state
penalty matrix, R is a time invariant positive definite
control penalty matrix, and §f = §(tf). This process

yields a time invariant feedback gain matrix, K.

The optimal control, u*(t), is defined as
u*(t) = -K x(t) (2-6)

The feedback control gain matrix K is determined by the

solution to the Riccati eguation:

1%

g

K
N
Fig. 2-1. Closed-Loop System
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=5 (2-7)
K=R"B" S (2-8)

Therefore, the optimal control law is a function of the
matrices A and B defined in the linear system model, and
of the matrices Q, R, and S, defined in the quadratic
performance index. If the system is both detectable and
stabilizable, then as the system reaches steady state (i.e.,
as t » @) the solution to the Riccati Eg (2-7) converges

to a constant, steady state value regardless of §f. This
solution is determined by setting § = 0. Thus, from

Eq (2-8) it is clear that the Riccati feedback gain matrix,
K, also becomes a constant and the optimal control law,

Eq (2-6), becomes time invariant in steady state (Ref 5:
574-5). Therefore, the last term of the guadratic per-
formance index, Eq (2-5), becomes negligible at large
enough values of time, t. The t2rm is assumed to be zero,

yielding the steady state quadratic performance index
(t) Q x(t) + u(t) TR u(t)} dt (2-9)

There is no clearly defined method for choosing the
penalty matrices Q and R. Typically, Q and R are
initially chosen to be diagonal matrices with each
diagonal element equal to the reciprocal of the maximum
allowable excursion squared. Then Q and R must be tuned
to achieve the desired response. The tuning procedure

is fairly arbitrary and usually done by engineering
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intuition. In general, the process is an iterative one
with the following steps:
1. Choose values for Q and R
2. Determine the Riccati feedback gain matrix, K
3. Determine the closed-loop state matrix, (A-BK)
4. Determine the frequency response and/or time

response characteristics of the system

e s gy

5. Repeat steps 1 through 4 until the system has
the desired response characteristics
The larger the value of a particular term in the Q matrix,

the more that particular state value will be penalized for

deviation from some desired nominal trajectory. Similarly,
the larger the value of the R matrix, the larger the

penalty for using excessive control.

JUT—

Classical Control Methods

Classical control methods typically use frequency
domain models and analysis techniques in the design and
compensation of control systems. These methods use the
transfer function between the input, u, and the output,

y, that is:

e A — s,

Gi{s) = y(s)/u(s) (2-10)

where G(s) is the transfer function matrix and

Gij(s) = yi(s)/uj(s). uk(s) = 0,k#] (2-11)

Classical techniques typically include the root-locus

method, Bode-plot representations, Nyquist diagrams, and




Nichols charts to assist the designer in giving a system

the specified response characteristics. Unfortunately,
these methods are mostly limited to single-input-single-
output (SISO) systems, and cannot easily be used for
multiple~input-multiple-output (MIMO) systems. In the
MIMO system case, as one transfer function is compensated,
it affects others and designing a control system using
classical methods becomes increasingly more difficult,
especially for coupled off-diagonal terms. Optimal control
design methods, using vector mathematics, are much more
suited to the MIMO systems. Linear quadratic regulators
have an advantage that the controller is guaranteed to be
stable with 60° phase margin and 50% to infinite gain
margin. A disadvantage of classical methods is that the
designer must be careful to insure that the system is

stable.

Frequency Shaping of Cost Functionals

Gupta (6:5) has suggested that optimal control
theory can also be applied to cost functionals involving
frequency dependent state and control penalty matrices,

Q and R, respectively.

Gupta states that some o0f these controllers behave
like lag compensators, and that they reduce the high fre-
quency response of the system. However, the fregquency
dependent penalty matrices cannot be mixed outright with
the time dependent state and control variables in the per-

formance index (Eg 2-9). Therefore the steady state

y




guadratic performance index is written initially in the

frequency domain in the following manner:

0

J = 1 _{x*(Julw)x(jw) + u*(jw)R(w)u(jw) rduw (2~12)

-0

where the asterisk, *, means complex conjugate transpose,
and the Q(«) and R(u) state and control penalty matrices,
respectively, are specified to be Hermitian positive semi-
definite and Hermitian positive definite, respectively.
Once the frequency domain performance index is defined,

it is transformed to the more readily usable time domain
performance index using Parseval's Theorem. That is, the
performance index is evaluated by using the time domain
performance index transformed from the specified frequency
domain performance index. The Riccati matrix feedback
gain is calculated, which, in turn, gives the optimal con-
trol, u*, for the closed loop system. The closed-loop
plant matrix, A = (A - B K), is used to analyze the

—CL

closed-loop performance of the system.

Control Law Design

Having defined the frequency domain performance
index (Eg 2~12), the next step is to factor the terms

x*(30)Q(w)x(jw) and u*(jw) R(w)u(jw) into the terms x° (j.)

1,. 1* . 1. .
%7(j«) and u” (Jw)u (j.) respectively where

x? (3u) (2-13)

I
[
.-_J
e
£
1%
O
£

c

O
.
0
)

(3e)u(3w) (2-14)




P,*(Jw) Py (Jw) = Q(3w) (2-15)

P,*(Jw) Py (5w) R(jw) (2-16)

The pair of matrices P.*(juw) and gl(jw) and the pair

1

P,*(jw) and P,(juw) are complex conjugate transpose

matrices. The following relationship exists between X(jw)

and il(jw):

x(30) ———tm B (G) e x" (50)

That is, we get xl(jw) by putting x(jw) through a linear
system, gx(jm), whose frequency response is described by

the transfer function matrix P, (juw), i.e.,

G, (3u) = B) (Fu) (2-17)

This spectral factorization of Q(w) and R(w) 1is
necessary to facilitate the Fourier transformation of
the frequency domain performance index into the time

domain. That is,

e}
&
i

= By *(3u) By (3w (2-18)

]
—
t
)
i

Py*(Jw) By (Jw) (2-19)

and

I = S %% (32) BiY(5w) By (5w x(Fu)

+ u*(Jw) 22*(jw) gz(jw) u(jw) b d. {2-20)

10
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Therefore the performance index becomes

0 *
3= &G0 1t Ge ot 6w 1 et e e 2-21)

o el ke

*
where 51 ' 51, and the first I are n x n matrices and

*
ul ' El, and the second I are m x m matrices. Using the !

Gy

inverse Fourier transformation, Eg (2~21) can be written

equivalently in the time domain as the following:

©. 1T T
3= JEM ke et e 1 eloiat (2-22)

Using the relation of Eg (2-13), an equivalent model of

the system can be described by the following differential

equations with output El, state z

2y and input Xx.

2, (t) = A;z,(t) + B x(t) (2-23)

it

(9]
N
o

+ D

El(t) D,

x(t) (2-24)

The feed-forward matrix, 21' is zero 1if gl(jm) is proper,
that is, if the degree of the Bl(jw) numerator is of
smaller order than the gl(jw) denominator. Egs (2-23) and
(2-24) model the augmented system which includes the ori-
ginal states and the frequency weightings of the con-

troller. Appendix D illustrates the use of the D, matrix.

1

A similar relation exists for the control relation des-

cribed in Eq (2-14) with output 31, state z and input u:

2!

2,(t) = A,z,(t) + Byu(t) (2-25)
ul(t) = ¢z, (6) + Dyu(e) (2-26)
11




Fig. 2-2 shows a block diagram of the generalized con-
troller (Ref 5:531). Therefore the entire system dynamics

can be described by the following:

x(t) A 0 0 x(t) B
aqf LR I =SS 2z (8)) + |0 ju(t) (2-27)
E~2(t) 0 90 ‘5‘_2 Ez(t) g?

Eg (2-27) can be defined in terms of the following new

variables and matrices:

£ x(6) = [Alx(t) + [Blu(t) (2-28)

The new steady state performance index becomes:

I = T (0)Gx(e) + uT(t)Ru(t) 2ae (2-29)

o~ -~
where Q and R are the state and control penalty matrices,
respectively, formed from the augmented system defined in
Egs (2-23) through (2-26). Eq (2-29) can be written in

matrix notation to be the following:

20
s0 ~T T
J = Jo [xT(t) u (t)] N
s 0 o R
Oor egquivalently:
[T T
ng.D_l _D_lg_l
Py T
“CIiD., CIC
P I T T =1=-1 =121
JSS— JO [i (t) Iz_l(t)lzz(t)lu (t)] —————
0 0
0o 0

12
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Fig. 2-2. Block Diacram of Generalized Controller
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Solving Egs (2-27) and (2-31) in the steady state Riccati

Equation yelds S which defines the Riccati feedback gain

matrix K for the augmented system. The optimal control

for the augmented system is defined to be:

u*(t) =

I>=
(=

(t) = K _x + 521 z; + K,z (2-32)

The scope of this report is limited to the analysis of the
time response and Bode frequency response characteristics

of the closed-loop system.

[~ "




III Computer Programs and Methods

Once the theory of 1incorporating freguency welghted
cost functionals is established, it 1s necessary to imple-
ment the closed-loop augmented system in some readily
usable manner. The synthesis of the new system is done
with the use of digital computer programs. The use of

these programs is described in this section.

Use of OPTCON Program

Having defined the augmented system matrices A, B,

é, and é the first step in analyzing the augmented system
is to calculate the Riccati matrix feedback gain, g =

[K ]. There are currently several programs

1

K, , K
21 22
which solve the steady state Riccati equation. The pro-

X

gram MRIC by Kleinman (Ref 9) can be used with other sub-
routines to multiply, add, invert, and transpose matrices
to solve the Riccati equation. The program OPTCON (Ref 14)
is an interactive program for optimal ccontrol analysis
that 1ncorporates MRIC and these other matrix operator
subroutines to solve the Riccati equation. The new

system matrices A and B and the penalty matrices é and E
are entered into OPTCON. OPTCON will output the Riccati
solution, Riccati feedback gain matrix, g, and the closed-

loop eigenvalues.

Use of TOTAL Program

Once the Riccati feedback gain matrix, K, is deter-

mined, the new closed-loop system plant matrix, éCL’ is




(=X

- BK). Now the Bode frequency response

formed as éCL = |

and time response of the closed-loop system is aralyzed

using the interactive program TOTAL (Ref 9). The éCL' é,
é, and é matrices are input and the closed-loop transfer

function of the new system is calculated. Then the Bode
frequency response characteristics and the time response
characteristics of each system can be analyzed. This
process 1s repeated for each of the various cases to
determine any advantages of one controller over the

others.

16




IV Investigation of Freguency
Weighted Cost Functionals

A simple open-loop unaugmented baseline system is
analyzed. It 1s then augmented with a baseline controller
whose penalty matrices are identity matrices. The per-
formance and characteristics of the closed-loop baseline
system with the baseline controller is compared to several
of the frequency weighted controllers proposed by Gupta.
The two types of controllers that are examined use fre-
guency dependent state penalty matrices and frequency
dependent control penalty matrices. The two controllers
are examined independently to isolate the effect of the
state or control penalty matrix on the performance index.
The Bode frequency response and time response characteris-
tics of each closed-loop system is analyzed and compared

with the baseline controller closed-loop system.

Baseline System

The baseline model is a second order linear system
with an open-loop natural frequency of Wy T 1.0 and damp-
ing of 7 = 0.2. This simple lightly damped system is
easy to analyze in terms of natural frequency and changes
in damping. The corresponding characteristic equation

for this system 1is the following:
2
s” + 0.45 + 1.0 = @ (4-1)

The state equations for this system, expressed in phase

variable control canonical form, are the following:

17




= + u(t) (4-2)

y(t) = [1 0] x(t) (4-3)

The transfer function between the state x and the control
u is calculated. Fig. 4-1 shows the Bode plot for the
baseline system. The open-loop system has a high fre-
quency slope of -40 dB/decade. The baseline system time
response is shown in Fig. 4-2. The system has a peak

time of tp = 3,2 sec, peak overshoot of 53%, settling time

ts = 19.6 sec and final value of 1.00.

Baseline System with Baseline Controller

The baseline controller uses state and control

penalty matrices that are identity matrices. That is:

1 0
Q = R = [1] (4~-4)
0 1
and
J = {X*(jw){i ) x(jw) + wu(jw)[llu(ju)ide (4-5)
ss —o fZ 0 1;= Wi

While this simple ~ase with identity Q and R matrices is
not necessarily the best conventional contrecller, it
serves as a good model to be compared with the controllers
that use frequency weighted cost functionals. Table 4-1
shows the frequency response characteristics for the

baseline controller.

18
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Table 4-1. Characteristics of Baseline Controller

'Closed-Loop Transfer | Natural ! .
Damping

DC Gain . Function Freqg, w_ . :
Gain | Poles ' A RiFlO
!
0.708 1.00 | -0.705:0.9583 1.19 0.593

This baseline controller system increased the damp-
ing to 7 = 0.593, and had a natural frequency of wn T 1.189.
The Bode plot for this system is shown in Fig. 4-3. The
dc gain is 0.708 and the high frequency rolloff slope is
-40 dB/decade. Fig. 4-4 shows the time response of the
baseline controller system. Using this system, the time
response performance of the system was improved to the

values shown in Table 4-2.

Table 4-2. Baseline Controller Time Response Characteris-

tics
| Rise Time . Peak Time Settling Time  Peak } Final !
i (sec) (sec) (sec) Value { vValue
1.54 3.28 j 4.99 0.777 0.707

Now the use of freqguency weighted cost functionals is

examined.

Case A
The first frequency weighted cost functicnal models
a state penalty matrix that affects only the X1 state,

that is:

21
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0
2 2
Q) = |» T @ (4-6)
L 0 1
and
1 ]
Lo, 220
I o= (x*(3u) |«P+a x(32) + ul3o) [1] u(3w)ide (4-7)
0 l_j

Because this frequency weighting function has a numerator

of smaller degree than the denominator, it is easy to form
the realization for this system and implement the controller.
Also, this Q matrix only affects the x, state and will be
compared later to the effect of frequency weighting on

both states. The Q matrix must be decomposed into the
product gl*(jw) gl(jw) as described by Egq (2-15). This

is done by the technique of spectral factorization (Ref 3:
507-8). The complex conjugate matrix factors of Q are

the following:

1 0 1
P, (Ju) = [Iv78 P PX(ju) = |TIWTE (4-8)
0 1 0 1
Therefore, the new variable §l(jm) has been defined as
follows:
1
xl(ju) = [Io*e x (32 (4-9)
Q 1
Recalling the augmented system equations
gl(t) = élgl(t) + Byx(t) {4~10)

24




1

x7(t) = Cyz,(t) + Dyx(t) (4-11)
and if x'(s) = H(s)x(s) according to Eqs (4-10) and (4-11)
then:
- - -1 -
H(s) = C,(sI - &,) B, + D; (4-12)

However, instead of knowing the system matrices A,, B,, C,,

and D, and then solving for the transfer function matrix,

1
H(s), the reverse is true. That is, the transfer function
matrix between 51(5) and x(s) has been defined by Eq (4-9)
and the system matrices must be solved for. A realization

(Ref 5:441~4) for this transfer function must be deter-

mined. Appendix B describes how to create a realization

for a system. The following describes this particular

realization:
1
o 0
p,(s) = (578 (4-13)
0 1
1
xq (t) 1 X1
*2
gl(t) = [~a] gl(t) + [1 0] x(t) {(4-15)
1 ! 0 0
X" (t) = [0]_2_1(t) + [0 l]l(_(t) (4-16)
- (= - - T _ o0
where A, = [-a], B; (L 0], ¢, = (1 0]", and D, = & 1]

are the matrices described in the new system model,

Egqs (4-10) and (4-11). Then we get the following:

25




H(s) = C; (sl - A;)7 " B, + D, (4-17)
_f 1] 0 o] _
H(s) = [o 5| (1 o] *[o ) (4-18)
L
H(s) = |57 (4-19)
0 1
Eq (4-19) checks with Egq (4-9) to show that
xl(s)
xt(s) = | s*3 (4-20)
xz(s)

This new system model can be expressed in terms of both
the original and new systems by putting the model in the

form of Eq (2-27). Define the augmented state vector

x(t) = [x(t) z,(60)]".
R(t) = A x(t) + B u(t) (4-21)
2 a 0. B
x(t) = B, A x(t) + j4f ult) (4-22)
el _.l =
y(t) = [C; 0] x(t) (4-23)
Therefore, the new system model is the following:
) 0 1 10 0
x(t) = [=l_ -0.4 7 O x(t) + |1]| u(t) (4-24)
1 0 !-= 0
y(t) = [1 0 0] x(t) (4~25)
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The state penalty matrix, @, i1s determined from the steady

state performance Eq (2-31!). Since only the staie (and
not the contrcl) 1s being frequency shaped in this case,
only the upper left quarter of the penalty matrix in Eg

(2-31) is needed. Thus the penalty matrices are the

following:
T T
I S e 0 0 o0
Q = o T = (6 1 0 {4-26)
€8 &% 0 0 1
R = [R] = [1] (4-27)
The controllability matrix, Mc’ for this realization is
the following:
. < as oo 0 1 -0.4
MC = [B, AB, A"B] = (1 -0.4 -0.84 (4-28)
0 0 1

Since &c is of full rank, the augmented system is completely
controllable.

Eq (4-24) represents the minimal realization of the
system. Fortmann and Hitz describe a method to form the
realization for a given transfer function (Ref 5:441-446).
Their method is relatively easy, but it generally does not
yield the minimal realization for a system. However, by
knowing the non-minimal realization, it is easy to find
the minimal realization. The non-minimal matrices are par-
titioned to rank &c which yields the minimal realization.

The non-minimal realization of the system is the following:

27




A ——————— .,

0 1 Yo o 0

s - - | N

x(e) = |7 0% - Dz ¢ |5 wi (4-29)
0 1 + 0 =3 0
y(t) = [1 0 0 0] x(t) (4-30)

The difference between the above realization and the minimal
realization is that the Riccati feedback gain matrix, g,
is not of full rank and the system is controllable but
not completely observable.

The value of "a" ranged from 0.1 to 10.0 or 1/10 to
10 times the natural frequency of the open-loop baseline
system. Table 4-3 shows the Riccati feedback gain, closed-

loop transfer function between the state x, and input u,

natural frequency, “n damping, :, and dc gain for the

various values of "a
Bode plots for Case A are shown in Fig. 4-3. Each
of the Case A augmented systems has an increased damping
ratio. Compared with the baseline controller system, which
has a damping ratio of 7 = 0.593, the augmented systems with
frequency shapings have dampings that range from 0.539 to
0.589. Like the baseline system, each of the augmented
systems has a high frequency asymptote of -40 dB/decade.
However, with a frequency weighting value, "a", at a larger
value than the natural frequency, the magnitude response
percent-~overshoot, in the time domain, to a step input is
much less. For a = 10 the frequency response is nearly

flat until the break frequency where it drops off sharply

at -40 dB/decade.
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Fig. 4-6 shows the time responses for Case A. The

time response for each of the augmented systems, with a
unit step input, 1s much better than the original system.
The systems with tne larger values of "a" have increased
damping over those with smaller values of "a" as shown in
Table 4-4. The dc gains for the different cases vary
greatly and result in the large difference in time response

final values.

Table 4-4. Time Response Characteristics for System A

t R :
! Rise ; Peak | Settling . Peak | Final
"a" ; Time | Time Time - Value | value
(sec) | (sec) (sec) f
10 1.71 | 3.72 | 5.79 1.13  0.995
- 1.70 ; 3.70 ! 5.7s 1.11 0.981
. 0.5 0.989 i 2.65 7.25  0.630 0.447
’ 0.1 0.347 | 2.11 10.2 ' 0.442  0.0995 |
Baseline a | o —-———
comeollon 1154 | 3-28 4.99  0.777 0.707 |

Table 4-4 shows that the closed-loop augmented system
zeros are slightly smaller than the poles. In this reagard,
the controller acts like a lead filter, but over a very
small frequency band. Therefore the effect of the zero-
pole relationship is minimized. 1In general, the system
performs best both in terms of frequency and time domain
characteristics with values of "a" that are larger than
the open-loop natural frequency. These results are not

what I expected. For this freguency shaping of l/@2+a2)
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I expected that as w ~ 0 the low frequency weighting on
Xy would approach l/az. Similarly as « =+ = the ,2 term
would be the overwhelming term in the denominator and that
the high fregquency weighting would approach zero and the
closed~loop high frequency response would be similar to the
open-loop high frequency response. As Figs. 4-5 and 4-6

illustrate, all of the closed-loop responses have a larger

damping ratio at all frequencies than the open-loop system.

Case B

The second frequency weighted cost functional models
a penalty function that affects only the Xq state, as before,
but a numerator constant equal to the denominator constant,

"a" is added as described below:

az 0
2,2
Qw) = |¥ 78 (4-31)
0 1

This frequency shaping is identical to case A with the
addition of the a2 term in the numerator. I hoped that
adding the numerator constant would cause the dc gain of
the closed-loop systems to be the same for the different

values of "a". Experience with classical frequency domain
compensation techniques has shown that adding a numerator
constant equal to the denominator constant normalizes the
dc gain as desired. 1In the time domain this has the sig-

nificance of normalizing the final response to a given

input. I hoped that this Q(.) matrix would make it

33




easier to compare the performance of the closed-loop

system with the different values of "a". Decomposing

*
Q(w) into gl(jw) and gl(jw) we get the following:

a a

: - 0
P, (Gw) = |I¥7@ 21 (jw) =|3v78 (4-32)
0 1 0 1
Recalling the augmented system equations:
El(t) = élgl(t) + glg(t) (4-33)
1 - -
X (t) = glgl(t) + ng(t) (4-34)
a realization for the system is defined to be the
following:
zy (¢) = [-al z;(t) + (a 0] x(t) (4-35)
1 1 [O 0
X7 (t) = gl(t) + x(t) (4-36)
0 Lo 1

Checking the transfer function between §l(s) and x(s) des-
cribed by Eg (4-32) we see that this is in fact a realiza-

tion of the system.

(sI - A,) © B, +D (4-37)

<

P, (s)




2 9
,(s) = |°78 (4-40)
0 1
3
Defining the augmented system state variable x = [Xx gl]T
the augmented system equations are the following:
¥(t) = A x(t) + B u(t) (4-41)
: A0 B
x(t) = B. A x{(t) + 0 uf(t) (4-42)
=1 =1 -
. 0 1L ¢ 0 0
x(t) = |=1 _-0.4 ] O|x(t) + |{1| u(t) (4-43)
a 60 -a )

The augmented system penalty matrix, Q is determined again

from the steady state performance Eq (2-3l). Again we

recall the following definition for the augmented state

penalty matrix:

. |ppey opg] oo
Q = = 1010 (4~44)
T T LS 01
1B &1
The control penalty is the following:
R = [R] = [1] (4-45)

This realization is minimal. Table 4-5 describes the fre-
quency response characteristics for Case B. Fig. 4-7 shows
Bode plots for Case B with difference values of "a". The

freguency response characteristics for the different

35
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systems did not differ significantly. The natural fre-
quency ranged from 1.19 to 1.002. 1In general, the damping
ratio increased from : =‘0.537 for a = 0.1 to 7 = 0.591
for a = 10. All of the systems had a very flat freguency
response roll off. The controllers with large values of
%' have the smallest overshoot. The rolloff asymptote has
a slope of -40 dB/decade. All of the systems have the sane
dc gain which is what was desired.

The time response characteristics of Case B, to a
unity step input,are shown in Fig. 4-&. Adding the con-

stant, "a", to the numerator makes all final values equal

to 0.707. Table 4-6 shows that the time response

characteristics are very similar for all values of "a".

Using values of "a" that were less than the open-loop

natural frequency resulted in greater overshoot, while

larger "a" values had minimal overshoot. The fregquency

shapings for Case B performed somewhat similarly to

Table 4-6. Time Response Characteristics for System B

‘ Rise Peak ' Settling Peak Final l
"a Time & Time Time Value value |
(sec) (sec) (sec)
10 1.54 ' 3.27 4.98  0.778  0.707
5 1.53  3.26 4.98 0.779 0.707
1 . 1.42 © 3.17 . 7.00 - 0.824 0.707
0.5 1.33  3.19 ° 7.63 0.885 0.705 !
o 0.1 1.21  3.49 = Large | 1.05 0.707
38
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standard linear quadratic regulator designs. The freguency

shapings with larger values of "a" imposed a greater
penalty on state trajectory deviation than smaller values
of "a". In the neighborhood of the open~loop natural
frequency (e.g., from 0.1 to 10.0 rad/sec) the similarity
is closest. Using conventional linear quadratic methods,

for « = 10 the weighting for a = 10 is

a 100
= = 0.5 (4-46)
m2+a2 100+100
and the weighting for a = 0.1 is
a2 0.01
7,.2 ~ Toovo.or - 0-0001 (4-47)

At w = 0.1 the weighting for a = 10 is

2
a _ 100 ~ _
3 3 - 001100 - 10 (4-48)
w+a
and the weighting for a = 0.1 is
2
a _ 0.01 _ _
> 2 = 5.01+0.01 - 230 (4-49)
w +a

The smaller weightings behave more like the lightly damped
open-loop system and the larger weightings should result
in larger damping ratios. Qualitatively, the systems

using frequency weighted cost functionals behaved similarly

to systems with conventional cost functionals. Using larger




r—

values of the frequency weighting results in larger damp-

ing ratios.

Case C
The third freguency weighted cost functional to be
discussed 1is the same as Case B except that it affects

both states, that is:

2 ]
a 0
u2+a2
Q(w) = 5 (4-50)
0 a
L (,\;2‘*'62

This case analyzes the effect of weighting both the Xy and
x, states instead of only Xq in the previous case. The
resulting change in the frequency and time response from

the previous case is studied. Using spectral factoriza-

tion, Q(w) is decomposed into the following values of

P7(3w) and P, (Jw):

a =

Jw+a 0 -Jjuta 0
P, (jw) ;o PY¥(jw) = (4-51)
=1 =1
0 a 0 a
ju+a ~Jjwuta

The controller system state equations for the realization

of this transfer function are the following:

_l~a 0 a o
Zl(t) = [O _a]gl(t) + [9 a}ﬁ(t) (4-52)
1 1 [o o]
41




The verification that this system is, in fact, a realiza-
tion of the transfer function between §l(5) and x(s) is

shown in Appendix C. The new system can be described by

the following:

o 11 0 o0 0

B - - [ -

o) = [2 -2 - Tro + 3 uce (4-54)
0 a ! 0 -a 0

The new penalty matrices Q and é are defined by Eg (2-31)

to be the following:

DTD, DIC 0000

s T oo of

$ = - R = [R] = [1] (4-55)
To oTe o010 B=IR
S2 S8 oo

This realization is minimal. Table 4-7 shows the frequency
response characteristics for Case C. Values of the value
"a", which are larger than the natural frequency have much
higher damping ratios (7 = 0.591) than the original system.
Unlike the previous cases, however, smaller values of "a"

reduce the system damping ratio to nearly the same value

(1 = 0.210) as the baseline system. This is because Q(.)

approaches zero as "a" approaches zero which results in
the augmented system responding more like the open-locop
system. Fig. 4-9 shows the Bode plots for Case C. The
Bode plots are significantly different because of the dif-
ferences in damping ratios, discussed previously. Using

a value of a = 10 caused the system to have a rflat magni-

tude response with little overshoot. Conversely, the

42
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systems with values of "a" smalle:r than the natural fre-
guency have large magnitude overshoot at the break fre-
quency. Table 4~7 shows that the natural frequencies are
fairly constant for the different values of "a". The
high freguency asymptote for all of the Case C systems

is -4C dB/decade.

These results can be expected. By imposing fre-~
guency shaping on both states, the maximum value that Q(.)
can have is unity, so shapings with large values of "a"
should be similar to the previous case which alsoc has a
maximum weighting approaching unity. However, for small

values of "a as

"
14

a" approaches zero, both state weightings
approach zero. The biggest difference between this case
and the previous case should be, and is, in systems involv-
ing smaller values of "a", which results in smaller damping
ratios.

The time response characteristics for Case C are
shown in Fig. 4-10. Table 4-8 shows that for larger values
of "a"”, the systems have less overshoot with good time-to-
peak-value properties. The time response characteristics
for systems with small values of "a" have smaller damping
ratios and are not much better than the open-loop response.

Frequency weighting on both states has a much more varied

effect on both frequency and time response characteristics

than the previous cases. Changing the values of "a" causes
very different responses, unlike Case B that uses frequency

weighting on only one state.
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Table 4-3. Time Response Characteristics for System C

Rise Peak SettlingA Peak f Final ;
ran Time Time Time value | Value
{sec) (sec) (sec) I
- .
i ! : | }
10 v 1.54 3.27 4.97 0.778 : 0.707
5 S1.51 | 3.23 ' 4.93 0.781 | 0.707
]
0.5 il.lO 2.90 ! 10.2 1.03 0.707
0.1 |0.952| 3.10 | 23.6 1.40 | 0.707
Case D

The fourth frequency weighted cost functional to be
discussed uses both numerator and denominator weighting

values on both state terms, that is:

w+a
= 0
w‘+b2
Qlw) = 2ea2 (4-56)
0 32
+b

Gupta suggests this improper weighting form because
it provides a wide variety of ways to shape the response
of the closed-loop system. Q(w) is factored into the terms

P*(jw) and gl(jw) in the following manner:

1
Juta 4 —Jwta 0
P, (ju) = |JWtb px(§,) = |Jwtb (4-57)
14w = juta| =1'3% 7 0 -jw+a
Je+b TS

The augmented system equations are put into the form of
Egqs (2-23) and (2-24) and the modified system equations

become the following:
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-b 0 10
2,(8) = z () + x(t) (4-58)
0 -b 71
1 a-b 0 10
X" (t) = [ z () + x(t) (4-59)
0 a-b 01

Appendix D illustrates how to form a realization for this
system. The augmented system can be described by the

following state equation:

0 1 10 0 0
i) = [0 200 Dace) + [ uce (4-60)
0 1 + 0 -b 0

The augmented state penalty matrix is defined by the gl and

D, matrices in Eq (4-39) to be the following:
T T
D.D, D:C 1 0 (a-b) 0
N =1-1 =1=1 ‘
0 = _ 0 1 0 , (a-b) (4-61)
= cTo. T (a-b) 0 (a=b) o,
=1=-1 =1-1 0 (a-b) 0 (a-b)

This realization is minimal. Table 4-9 shows the charac-
teris+tics for system D. Using both numerator and denomina-
tor weightings provides a wider variety of ways to shape
the baseline system. Using a parameter value of a = 10,
larger than the open-loop natural frequency, and a value of
b = 0.1, smaller than the natural frequency, the damping
ratio is increased significantly to - = 0.657 and the new

natural frequency increases threefold to 3.19. Using

values of a = 1.0 and b 2.0, the damping ratio is

increased moderately to - = 0.4 and the natural frequency,
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r__-__—_-'—————-—:

wh = 1.032 is almost the same as the baseline system. For
the case of a = 0.1 and b = 2, the least damping, 3 =
0.172 occurs. This damping is significantly less than

H the baseline system.

Intermediate values of "a" and "b" give widely dif-
ferent damping ratios and natural frequencies. Fig. 4-11
shows Bode plots of selected values of "a" and "b". The

system with a = 2, b = 1 shows a nearly flat magnitude

response until the break frequency where the slope drops
off at -40 dB/decade. All of the high frequency asymptotes
drop off at -40 dB/decade. This particular case behaves
similarly to a lead filter in terms of the pole-zero
location in that the closed-loop system zero is less nega-
tive than the dominant pole, and there is a large increase
in wy which reduces the settling time. The cleosed-loop
transfer function has a dc gain which is less than unity.
To normalize each of the Case D systems, so that each
system had the same dc gain, the fregquency weightings
could have been multiplied by a constant equal to b/a.
Therefore, as seen in Fig. 4-11, the low frequency magni-
tude could be increased by multiplying by the additional
gain.

Fig. 4-11 and Table 4-9 show varying degrees of the

lead filter effect for different values of "a" and "b".

However, as "a" 1s held constant and "b" is decreased,
the damping ratio decreases. Fig. 4-12 shows the time

response for selected Case D systems. Table 4-10 shows
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Table 4-10. Time Response Characteristics for System D

r ' Rise | Peak  Settling Peak Final

a= b= { Time . Time Time Value ' Value
| (sec) | (sec)  (sec) | I
10 6.1, 0.107 ' 0.3887, Large 0.065 0.01 !
2 1.0 1.30 2.73 , 4.0l 0.481  0.447
2 0.5 0.775° 2.05 . 4.32 0.327 0.242
2 0.1, 0.248, 1.6l | 8.26 0.232 © 0.05 |
12 1.49 © 3.39 | 8.05 1.07  0.894
0.5 2 1.45 | 3.43 | 8.50 1.23 0.970 !
0.1 10 1.22 | 3.22 17.1 - 1.51 ¢ 1.00 |

0.1 2 1.19 | 3.26 23.4 1.59 | 1.00

the time response characteristics for Case D. The systems

with smaller values of "a" and larger values of "b", (a =
0.1, b = 10), have smaller damping ratios, 7 = 0.212, and
greater values for overshoot and settling time. The system
with a = 2, b = 0.1, on the other hand, has a much smaller
time response.

In general, Case D systems provide much more flex-
ibility in designing system response than the previous
three cases. Wide ranges cof frequency and time response
characteristics can be achieved depending on the choice of

"

"a" and "b". Let us assume that a design objective is to
reject disturbances. The system can be modeled by the

following block diagram:

disturbance input x(t)

Y

+ —mSystem
*
- (t) Controller-‘——]




ettt —

Fig. 4-11 shows Bode plots for the fregquency response
between the state, Xy and commanded control U.- It U is
assumed to be some disturbance instead, then the Bode plots
can be interpreted as the freguency response of the trans-
fer function between Xy and some distrubance. Comparing
the various Bode plots in terms of distrubance rejection,
one characteristic that is desirable is small dc gains.
This indicates that reduced magnitude response occurs at
lower frequencies. If the goal is to reject low frequency

disturbances, then the more negative the low frequency

response magnitude in decibels, the better. From Fig. 4-11,

the system with a = 2, b = 1 is better at rejecting zero-

mean white Gaussian noise. The system with a = 10, b = 0.1
is much better than the baseline controller closed-loop

system at rejecting low frequency noise because the low

frequency penalty on state Xy is much higher. Small "a

values and large "b" values create a lig¢ghtly damped, slower

responding system, while large "a" values and small "b"

values create a highly damped, faster system.

Case E
Unlike the previous cases, this case examines fre-
guency welighting on the control instead of the state.

Jne model proposed by Gupta (Ref 7:5) is the following:

R(jw) = [L;fi:] (4-62)

With the previous state weilghtings it was not possible to

use frequency shapings with a numerator of greater degree
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than the denominator. However, by including the control
in the state vector it is possible to realize the control
welghting given by Eq (4-62). The purpose is to see if
this type of frequency shaping on the control can change
the damping ratio and natural frequency of the closed-loop
system. Recalling Egs (2-2%) and (2-26), the augmented

system can be described by the following:

z,(t) = A,z,(t) + Byu(t) (4-63)
ul(t) = c.z.(t) + D.u(t) (4-64)
= =2=2 =2=

where the new control variable, ul(t), is a linear combina-

tion of the commanded control, u(t), and some fregquency
weighted function of u(t). That is, the new control

variable is defined to be the following:

ut(s) = E%?ﬂ u(s) (4~65)

or equivalently:
aut(t) = a(t) + au(t) (4-66)
a(t) = au(t) - aut(t) (4-67)

This case of frequency weighting is the same as including
control (actuator) dynamics into the state equation. This
system is easily modeled and a realization is easy to find.
The augmented system, with the new control variable ul is

defined by the following state eguation:
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i
—
o I
|t
e

: x(t) 0 1
gzl R+ ] 0] ut(e) (4~68)
= 71 (e +a

or, for this specific case:

(t)
a [

— |%()
dt ‘:u(t)j‘

t

a x(t) 0 1 .0 x(t) 0 1
FE |XB) | = {Z%--TQ:? 1 kX(t)] + |0 u (t) (4-69)
u(t) 0 677 -al lu(e) &
where A, = [-a] and B, = [a]. In order to analyze the

frequency response of this case, the transfer function

between the commanded input u(S) ard the state x!S) must

be determined. This cannot be done outright from Egq (4-69)
1

because of the use of the new c¢control wvariable u~. The

entire system block diagram is shown in Fig. 4-13.

— K,

3

U x (¢) J/ x(0 7

¥ ¥ 1r
+ us) +

loy

>

u(t) ale) 4+

Fig. 4-13. Block Diagram of Case E
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The loop must be closed on u(s) to calculate the transfer
function between the state x(s) and the commanded input
ués). Appendix A shows that the transfer function matrix

is the following:

i (s+a - aK3) i
s[(s+0.4)(s+a-—aK3) —aK2] +(s+a-—aK3-aKl)
H(s) =
-(s+a - aK3)
_[(s+0.4) (s+a-—aK3)-aK2] + (s+a-—aK3-aKll
(4-70)

The identity matrix will be used for the state and control

penalty matrices, that is:

100
= 1010
001

4

129
0

[1] (4-71)

O ¢

Table 4--11 shows the frequency response characteristics for
Case E. Large values of "a" (a = 10) result in larger
values of the damping ratio, 7 = 0.208 for a = 0.1. Bode
plots for this case are shown in Fig. 4-14. Each system
has very similar, flat low frequency response characterisg-
tics. All of the systems have improved magnitgde overshoot
properties compared with the open-loop baseline system.

All Case E systems had larger overshoot than the closed-
loop baseline controller. This is because the baseline
welghtings are unity while the freguency shaped weightings

" "

can only approach unit. 2s "a" gets very large. The

a = 10 system has the lecast osvershoot of all. All Case E
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systems have a high frequency asymptote slope of -40 dB/
decade.

The time responses of Case E systems are shown in
Fig. 4-15. Time response characteristics are shown in
Table 4-12. The system with a = 0.1 has the largest peak
value (1.27) and longest settling time (22.9 sec). The
fastest system with the least overshoot has a parameter
of a = 10 with a settling time of 7.42 sec and a peak value

of 0.684.

Table 4-12. Time Response Characteristics for System E

i ! Rise : Peak Settling Peak Final
Lo "an Time Time ' Time | Value Value
(sec) (sec) : (sec)

10 1.43  3.19 °  7.42 - 0.684 0.577 |
2 1.28 2.97  7.33 0.705  0.577
1 1.12  2.79 9.32 0.772 0.577
0.5 0.978 2.79 12.6 0.921 0.577
0.1 0.843 2.95 22.9 1.27 0.577

This method of frequency shaping can be useful in
including control dynamics in a system. In terms of other
systems, Case E qualitatively responds most like Case C

which had the reciprocal frequency weighting on both states.

Case F

The frequency weighted cost functional for this case
attempts to drive the state penalty weighting to a very

large value at some specified freguency. Gupta suggests
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that this can be done with the following cost functionals

(Ref 7:5):

a4
( 2—a2)2 °
Qw) = ' 24 (4-72)
0 (w2_a2)2

Q(w) is factored into the following values of gf(ju) and

gl(]w)
a2
2 2
T ‘ w -a 5
Py (Jw) = By (Juw) = a (4-73)
0 L2_2

The controller system state equations for a minimal realiza-

tion of the transfer between 51(5) and x(s) are the

following:
o 1] 0o 0
z,(t) = z,(t) + x{(t) (4-74)
=1 a2 o]71 a? o~
L J J
1 h 0 0 d
xT(t) = z;(8) + x(t) (4-75)
0 0 0 0

0 1, 0 0 0

2 -1 -0.4' O 0l ~ 1

x(t) = il x(t) + N u(t) (4-76)
0 a , 0 -a OJ

The augmented system penalty matrices are defined by Eg

(4-43) to be the following:




Table 4-13 shows the characteristics for Case F. All of
the systems are either poorly damped or have very small
natural fregquencies or both. Each system has two oscil-
latory modes except the system with a = 10,

Fig. 4-16 shows the Bode response characteristics of
the system. As with all of the previous cases, the high-
frequency response is the same as the open-loop system. As
with Case D, the most significant result is that this fre-
qguency shaping can be used to reject low frequency dis-
turbances. The frequency shaping only has an effect on
disturbances or modes that are of lower frequency than the
natural frequency of the closed-loop system. This result
is achieved by removing the "a4" constant in the numerator
of the state cost functionals. The Bode plots shown in
Fig. 4-16 describe systems with the constant "a4" present,
but when the constant is removed, the dc gain for the
closed-loop system is very low for small values of "a"

The frequency response does not do anything parti-
cularly out of the ordinary near the natural frequency of
the open-loop system. Gupta's premise that this type of
weighting is good for supressing a disturbance at « = a
is not evident. Rather the controller is good at suppress-

ing disturbances at frequencies less than the natural

frequency.
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Table 4~14 shows the time response characteristics

for Case . The systems with small values of "a" initially
respond in the opposite direction of the final value. The
low damping ratios for the systems are shown. The final
value may be changed from -0.707 to 0.707 by multiplying
the system closed-loop transfer function between x(t) and
u({t) by minus one. The settling times for this case are

much larger than previous cases. Fig. 4-17 shows the

time response for Case F.

Table 4~14. Time Response Characteristics for Case F

} Rise Peak | Settling Peak Final
"a" ] Time Time Time Value Value
j (sec) (sec) (sec) {
! .
10 1.26 3..2 7.30 ; 0.884 -0.707
5 1.25 3.30 7.47 . 0.884 -0.707
1 1.05 4.46 14.4 1.002 =-0.707
6.5 1.02 5.84 18.43 1.097 -0.707
0.1 12.9 32.3 Very lLarge 0.723 =-0.707
66
s,
e .
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s enrtiab .

V Conclusions

Frequency shaping of gquadratic cost functionals gives
the control engineer additional flexibility in designing
control systems, especially in suppressing low frequency

modes and disturbances. Using appropriate values for the

choice of compensator values of "a" and "b", the damping
ratios can be significantly increased over the baseline
open-loop system, thereby decreasing both overshoot and
settling time. The baseline conventional controller has
a larger value for the damping ratio than the frequency
shaped controllers. This is because the latter has
weighting matrix values that only approached the unity
values of the baseline controller. However, the frequency
shaped controllers demonstrate the ability to suppress
rejections and system modes which occur at frequencies
less than the natural frequency of the open-loop systen.
The rise time can also be reduced with the frequency
shaped controllers. High frequency asymptotes had slopes
of -40 db/decade for the baseline system and all of the
controllers.

The controller with both numerator and denominator
frequency weighting (5557555) demonstrated the most
flexibility in achieving a variety of design character-
istics. State penalty frequency weighting can be inter-
preted as proccssing the state through a linear shaping

filter. Control penalty frequency weighting is identical

to incorporating control actuator dynamics into the system.
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VI Recommendations

Optimal control using frequency weighted cost func-
tionals provides the designer with a wide spectrum of
compensation characteristics. This method can improve
the response of many control systems of interest to the
Air Force, particularly in low frequency disturbance sup-
pression. The effect of frequency shaping on the sup-
pression of low frequency disturbances and system modes

should be examined further.
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Appendix A Calculation of Transfer Function Between

§l(s) and gc(s) for Case E

kx(t) = Ax(t) + Bu(t) + Bu_(t)
_ a(s) - 2
| u(s) = K;x(s) + K,u(s)
u(s) = -au(s) + akK,x(s) + 3532(5)
“ (sI-A)x(s) = Bu(s) + Bu_(c)
b (sta ~ aKj)u(s) = ak;x(s)
akK;x(s)

B agli(s)
(sI-A)x(s) = (s7a - aKy) + B u_ (s)
Ba K,
(sI-A) (5%a = aky) x(s) = B u_(s)
Ba 51 -1

x(s) = | (sI-A) - (s7a = aky) B u (s)
‘ _ x(s) Ba k) -1

His) = u_(s) ~ (s1-2) - T35 = aKy) B

0 1 0
here 2 = E_l _0_4], B = [l]’ a =[a]

Ky = [Ky Kyl Ky = Ky

Substituting in the values of the matrices we get the

following:
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(A-9)

(A-10)

(A-11)

(A-12)

(A-13)




s -1 f 0 0 -1
H(s) = - aK aK 0 (a-14)
- 1 2 1
1 sS+0.4
s+a - akK s+a - akK
3 3
B S -1
Bis) = MN(s+a - aKy)  (s+0.4) (s+a ~ aKy)
}s+a - aK3) (sta - aK3)
i 0 0 -1 l
- 0 a-15
ak, aK, [1] (A-15)
5s+a - aK3) (s+a - aK3)
S -1 1
His) = |,_, < [0]
(sta - a 1 aK3) (s+0.4) (s+a - aKj)-akK, 1] (a-16)
(s+a - aK3T (s+a - aK3) J
(s+a - akK.)
H(s) 3 X
s{(s+0.4) (s+a —aK3) -aK2] + (s+a -aK3 -aKl)
[(s+0.4) (s+a - aK.,) - akK 7
3 2 ‘1
s+a - ak
3 0
] e
-(s+a - akK., - akK,) 1
3 1
s+a - ak S
L 3 i
[ (s+a - aK3)
s[(s+0.4)(s+a-—aK3) —aK2] + (s+a -aK3 -aKl) (A-18)
H(s) =

-{s+a - aK3)

[(s+0.4) (s+a - aK -aK2]-+(s+a - aKkK, - akK,)

3) 3 1

e




Appendix B Creating a Realization for a System

Fortman and Hitz discuss the procedure of generating
a realization in detail (Ref 4:441-451). Briefly, the

goal is to find the system equations

X(t) = Ax(t) + Bu(t) (B-1)

y(t) = Cx(t) + Du(t) (B~2)

that realize a system transfer function matrix, H(s)

where

H(s) = C(sI-A) 2 B + D (B-3)

In general, the realization will not be unigque. If the
state, x(s), the control u(s), and the output, y(s) have
dimensions n, m, and p respectively, then H(s) will be

a p x m transfer function matrix. The first step in
creating a realization is to express the transfer function

matrix in a ratio of polynomials in s, that is:

2 n-1
His) = 90++ Qés++ gii ++ — gn—lsi—I Fsn (B4
Po 7 P Ps R S

Note that Eq (B-4) is a proper transfer function. The
degree of the numerator is less than the denominator.
For cases involving improper transfer functions, the
polynomial equation must include a feed forward matrix,

D.
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90 + gl(s) + ... Q

H(s) = (B-5)
p. + pl(s) + ... p

(o]

Appendix D illustrates the use of the feed forward matrix
in improper transfer functions.
The next step is to describe the system in control

canonical form using the P; and 91 values from Eg (B-4)

or (B-5).
rigm Im Om ... Om 7] qy;
Om Om Im ... Om Om
X = . . x+ .| (B~6)
Om Om Oom ... Im Om
-Polm -pyIm -pyIm ... “P,_11iM Im
o - L -
Yy = 09,9 9 --- Q. 11x (B~7)

The submatrices are of dimension m x m, denoted by the m
subscript. While this method will provide a realization,
in general, it will not be the minimal realization. In
forming the plant matrix in Eq (B-6), the designer should
fill in the lower left element first. Then the rest of
the matrix elements should be filled as necessary to
achieve the correct matrix dimension.

The final step is to find the minimal realization.
A minimal system is both completely controllable and
observable. The minimal realization can generally be

found by starting in the upper left corner of the A matrix
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and reducing A to the dimension of the controllability

matrix.
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Appendix C Formation of Realization and

Transfer Function for Case C

a

jw+a 0
gl(ju) = (C-1)
a
ju+a
-1

Q * Q;8 + Q s?

H(s) = 0 1 n—ln-l - (C=2)
Py + pys + P,_1 S + s
ao
0 a
1
_jao -

_Qu - [0 a] po = a (C-4)
xH(t) = ¢z (6) + Dox(t) (c-6)
gl(t) = [*polz) gl(t) + [IZ] x(t) (C~7)
xt(t) = (C-8)

[Qy) 2, (%) :
. _ |-a 0 10 -
z,(v) = [0 _;l_z_l(t) + E) ;’yt) (C-9)
1 _1a o0 00 _
x“(t) = [5 %] z (t) + [; é]g(t) (C-10)

y"L B, D

P,(s) = C (sl - A

a 0lfls+ta 0 |[-1 11 0 00
E)a][o s+a] E’J+E)O (C-12)

1

(Rae]
[u
—
0]
1]
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1 aon s+a O 10
P .(s) = ——x [ ] [ :J[ ] (C-13)
=1 (s+a)2 0 a 0 s+a 0 1
P SR
_{a @ s+a
s+a
5w O
E‘l(s) = 1 (C-15)
0 —
s+a

There are several possible realizations for a system
given some transfer function. The realization described
by Egs (C-9) and (C-10) is not exactly the same as the
realization which is used for Case C. Both realizations

define gl(jwl given by Eq (C-1).
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Appendix D Formation of Realization and

Transfer Function for case D

_1ado -
90‘[0;] Pg =P

z,(t) = [-pyl, ) oz (e) + [1,) x(t)

E 3 x(t)
ﬂx
11—=

xt(t) = 19,1z, (£)

. _ Fb 1

% = Eo -§3+|:o
1l a-b

X 0

(]
[
o
1
[}
[
o
\Y
(IJ_O
=
wl

0 1
a—;]E +[:0
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jw+a
. _ | Jw+b
El(]w) - jw+a
jw+b
n-1
o (o) - Q, * gl(s) t ... Qo
1 Py + Py(s) + ... P sPL oy
s+a
s+a
Bl(s)=b+(l)s [_] s F5b

(D-1)

(D-2)

(D-3)

(D-4)

(D-5)

(D-6)

(D=7)

(D-10)

(D-11)




—é—b 0
s+b 10
El (s) 0 a-b + [0 ]]
L s+b
(a-b s+b
_ | s+ s+b
El(s) - 0 a-b | * 0
L_ s+b
s+b-b+a 0
p.(s) s+b
=1 0 s+b-b+a
s+b
80

(D-12)
0
<+ (D-13)
s+b
0
0 s+a
s+b
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