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Abstract

A simple lightly damped second-order system is

auamented with an optimal controller using linear quadra-

tic regulator theory. However, instead of using con-

ventional optimal control design methods, the controller

is designed with frequency weighted cost functionals.

This report investigates the effect of frequency shaping

on the frequency and time response characteristics of

the closed-loop system.

The effects of frequency shaping on the state and

control penalty matrices are analyzed separately. Each

test case yields improved damping ratios compared with

the baseline open-loop system. Each system, including

the baseline model, has a high frequency asymptote slope

of -40 dB/decade. There is very little difference in the

high-frequency response characteristics of the frequency

shaped augmented systems and the open-loop system.

The most important result is that the low frequency

magnitude response can be reduced by using frequency

shapings. This is particularly useful in attenuating

low frequency system modes as well as low frequency noise.
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OPTIMAL CONTROL USING

FREQUENCY WEIGHTED COST FUNCTIONALS

I Introduction

Control system design has typically involved either

frequency domain compensation or state space time domain

techniques. Using frequency domain analysis techniques,

control systems designers have developed an understanding

and an intuition for what type of frequency response

characteristics a system should have. The design tech-

nique is then to add compensation in such a manner so as

to obtain this desired frequency response.

An advantage of frequency domain analysis is that

there exists a great body of knowledge concerning this

method. For example, the use of washout circuits in

aircraft yaw dampers is very common, very effective, and

done purely in the frequency domain.

A significant disadvantage to frequency domain

analysis, which is discussed in Ch. 2, is that it is dif-

ficult to apply the method to multiple-input-multiple-

output (MIMO) systems.

State space techniques differ in that they deal

directly with the time domain characteristics of the

system. A common state space technique is the use of

linear quadratic optimal control. The designer defines

a quadratic cost functional and then by minimizing the

cost functional determines the optimal control. One main

1 i i l. . . ..



advantage to the state space method, discussed 4.n Ch. 2,

is the ease at which it can be applied to MIMO systems

through the use of vector and matrix representations.

Optimal control design generally requires choosing con-

stant weighting matrices for the cost functional.

There has been much research on determining the

control of a system using both the frequency domain and

time domain systems. However, it is not clear what

advantages might be gained by using some combination

of the two methods.

Background

Recent work by N. K. Gupta (Refs 6,7) has shown

that optimal control theory can also be applied to cost

Ifunctionals involving frequency dependent weighting

matrices. Gupta suggests that this method is very helpful

in controlling spillover, reducing high frequency response,

and improving disturbance rejection (Ref 6). It is cur-

rently known how to formulate this problem, but Gupta

has not shown or suggested any relationship between the

cost functionals and the frequency response of the closed-

loop syste.n.

Problem

The problem is to investigate the relationship

between these frequency weighted cost functionals and the

conventional frequency response analysis techniques.
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Specifically, frequency response characteristics such as

magnitude overshoot, high frequency asymptote slope, break

frequency, and damping are examined. Additionally, time

response characteristics of the systems are examined.

Assumptions

It is assumed that all system models are linear

deterministic, that is, that the systems are noise-free.

General Approach

Using a simple plant, several frequency shaped cost

functionals proposed by Gupta are analyzed.

The closed-loop response of a second order baseline

system with no controller is analyzed. Then the baseline

system is augmented with a baseline controller. Subsequent

cases examine the closed-loop response of the baseline

system augmented with Gupta's suggested frequency weighted

controllers. The frequency weighted controllers are com-

pared with the baseline controllers in terms of frequency

and time response. The effect of frequency shapings on

both the state and the control penalty matrices is

examined.

3



II Theoretical Development

Many feedback control systems can be designed using

the linear time invariant system model

x(t) = Ax(t) + Bu(t) x(o) = x (ottf) (2-1)

y(t) = Cx(t) + Du(t) (2-2)

where x is an n-dimensional state vector, u is an m-

dimensional control vector, y is a p-dimensional output

vector, A is an n x n plant matrix, B is an n x m con-

trol matrix, c is a p x n output matrix, and D is a

p x m feeL-forward matrix.

The control, u, can be defined to be the product of

a constant feedback matrix, K, and the state vector, x(t),

in the following manner:

u(t) = -Kx(t) (2-3)

There are various methods of determining the feedback gain

matrix, K. Pole placement techniques, entire eigen-

structure assignment, steady state solution of appropriate

Riccati equations via linear quadratic methodology, and

even arbitrary selection are some of these methods. The

value of K is manipulated until the desired closed-icop

system dynamics are achieved. Fig. 2-1 shows a block

diagram of the closed-loop system where r is an arbitra'.."

input. It r is assumed to be a constant value other than

zero and the feedback u(t) = -K x(t) + r(t) is used,

the state equation for the closed-loop system becomes

4



k(t) Ax(t) + Bu (t) (A - BK)x(t) + Br(t) (2-4)

where u(t) = r(t) - Kx(t). The poles of the system trans-

fer function between x(t) and u(t) are the eigenvalues of

(A - B K).

Optimal Control Methods

Using linear optimal theory, the control u(t) is

chosen so that it minimizes the quadratic performance

index

tf TTT
J f {x T(t) Qx(t) +u T(t) Ru(t)}dt + x T(tf)Sfx(tf) (2-5)

0 f

where Q is a time invariant positive semidefinite state

penalty matrix, R is a time invariant positive definite

control penalty matrix, and Sf = S(tf). This process

yields a time invariant feedback gain matrix, K.

The optimal control, u*(t), is defined as

u*(t) -K x(t) (2-6)

The feedback control gain matrix K is determined by the

solution to the Riccati equation:

r u x

-x -IF-7 -

Fig. 2-1. Closed-Loop System
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= ATS + SA + Q - SBR-lBTS S(tf) = Sf (2-7)

K =R B S (2-8)

Therefore, the optimal control law is a function of the

matrices A and B defined in the linear system model, and

of the matrices Q, R, and Sf, defined in the quadratic

performance index. If the system is both detectable and

stabilizable, then as the system reaches steady state (i.e.,

as t - c) the solution to the Riccati Eq (2-7) converges

to a constant, steady state value regardless of Sf. This

solution is determined by setting t = 0. Thus, from

Eq (2-8) it is clear that the Riccati feedback gain matrix,

K, also becomes a constant and the optimal control law,

Eq (2-6), becomes time invariant in steady state (Ref 5:

574-5). Therefore, the last term of the quadratic per-

formance index, Eq (2-5), becomes negligible at large

enough values of time, t. The term is assumed to be zero,

yielding the steady state quadratic performance index

= xT~t Q x(t) + _()T_

ss ot) Q + u(t)R u(t)l dt (2-9)

There is no clearly defined method for choosing the

penalty matrices Q and R. Typically, Q and R are

initially chosen to be diagonal matrices with each

diagonal element equal to the reciprocal of the maximum

allowable excursion squared. Then Q and R must be tuned

to achieve the desired response. The tuning procedure

is fairly arbitrary and usually done by engineering

6



intuition. In general, the process is an iterative one

with the following steps:

1. Choose values for Q and R

2. Determine the Riccati feedback gain matrix, K

3. Determine the closed-loop state matrix, (A-BK)

4. Determine the frequency response and/or time

response characteristics of the system

5. Repeat steps 1 through 4 until the system has

the desired response characteristics

The larger the value of a particular term in the Q matrix,

the more that particular state value will be penalized for

deviation from some desired nominal trajectory. Similarly,

the larger the value of the R matrix, the larger the

penalty for using excessive control.

Classical Control Methods

Classical control methods typically use frequency

domain models and analysis techniques in the design and

compensation of control systems. These methods use the

transfer function between the input, u, and the output,

y, that is:

G(s) = y(s)/u(s) (2-10)

where G(s) is the transfer function matrix and

G. (s) = Y.(s)/u (s). uk(s) = 0,k~j (2-11)
13J 1 k

Classical techniques typically include the root-locus

method, Bode-plot representations, Nyquist diagrams, and

7



Nichols charts to assist the designer in giving a system

the specified response characteristics. Unfortunately,

these methods are mostly limited to single-input-single-

output (SISO) systems, and cannot easily be used for

multiple-input-multiple-output (MIMO) systems. In the

MIMO system case, as one transfer function is compensated,

it affects others and designing a control system using

classical methods becomes increasingly more difficult,

especially for coupled off-diagonal terms. Optimal control

design methods, using vector mathematics, are much more

suited to the MIMO systems. Linear quadratic regulators

have an advantage that the controller is guaranteed to be

stable with 600 phase margin and 50% to infinite gain

margin. A disadvantage of classical methods is that the

designer must be careful to insure that the system is

stable.

Frequency Shaping of Cost Functionals

Gupta (6:5) has suggested that optimal control

theory can also be applied to cost functionals involving

frequency dependent state and control penalty matrices,

Q and R, respectively.

Gupta states that some of these controllers behave

like lag compensators, and that they reduce the high fre-

quency response of the system. However, the frequency

dependent penalty matrices cannot be mixed outright with

the time dependent state and control variables in the per-

formance index (Eq 2-9). Therefore the steady state

8



quadratic performance index is written initially in the

frequency domain in the following manner:

J* = _ x (jw)Q(w) x (j ) + * (j,)) R( ) (j,) dw (2-12)

where the asterisk, *, means complex conjugate transpose,

and the Q( ) and R( ) state and control penalty matrices,

respectively, are specified to be Hermitian positive semi-

definite and Hermitian positive definite, respectively.

Once the frequency domain performance index is defined,

it is transformed to the more readily usable time domain

performance index using Parseval's Theorem. That is, the

performance index is evaluated by using the time domain

performance index transformed from the specified frequency

domain performance index. The Riccati matrix feedback

gain is calculated, which, in turn, gives the optimal con-

trol, u*, for the closed loop system. The closed-loop

plant matrix, AL = (A - B K), is used to analyze the

closed-loop performance of the system.

Control Law Design

Having defined the frequency domain performance

index (Eq 2-12), the next step is to factor the terms
1*

x (jw)Q(w)x(j,) and u* (j ) R(-)u(jw) into the terms x (j )

l(j-) and u* (jw)u 1 (j-) respectively where

(j ) = P1 (J j)x(jW) (2-13)

u I(j ) = P2 (j :)Uj.( ) (2-14)

9



and

PI*(jw) PI1(jW) = Q(jw) (2-15)

P2 *(jW) P2 (jw) = R(jw) (2-16)

The pair of matrices P *(jw) and P1 (jw) and the pair

P2* (j) and P2 (jw) are complex conjugate transpose

matrices. The following relationship exists between x(jw)

and xI (jw):

x(jW) K, P (jJ)I  P- x (j L)

That is, we get x (j3w) by putting x(jw ) through a linear

system, G (jw), whose frequency response is described by

the transfer function matrix PI(j), i.e.,

G (jw) = PI(jW) (2-17)

This spectral factorization of Q(w) and R(w) is

necessary to facilitate the Fourier transformation of

the frequency domain performance index into the time

domain. That is,

Q Pl I*(J ) P1 (jw) (2-18)

R(w) = P2 *(jiw) P2 (juL) (2-19)

and

J = f0 {x*(jw) PI*(j ) PI(jW) x(jw)

+ u* (j) P2 (j)) P2 (jc) u(jw) d, (2-20)

10



Therefore the performance index becomes

= .'_ x1* 1
J x (j ) I x (j) + u (jW)  I ul (j,1 )  d,- (2-21)

i* 1where x x , and the first I are n x n matrices and

1* 1
u , u , and the second I are m x m matrices. Using the

inverse Fourier transformation, Eq (2-21) can be written

equivalently in the time domain as the following:

J "O x 1T(t) I_ (t) + ulT(t) I u (t)l}dt (2-22)

Using the relation of Eq (2-13), an equivalent model of

the system can be described by the following differential

1
equations with output x , state zI , and input x.

1(t) = Al l (t) + BlX(t) (2-23)

1 (t) = Clzl(t) + Dlx(t) (2-24)

The feed-forward matrix, DI, is zero if P1 (j,) is proper,

that is, if the degree of the P1 (jw) numerator is of

smaller order than the P1 (jw) denominator. Eqs (2-23) and

(2-24) model the augmented system which includes the ori-

ginal states and the frequency weightings of the con-

troller. Appendix D illustrates the use of the D1 matrix.

A similar relation exists for the control relation des-

1
cribed in Eq (2-14) with output u , state z2, and input u:

i2 (t) = A 2z2 (t) + B2u(t) (2-25)

u1 (t) = C 2z2 (t) + D2u(t) (2-26)

11



Fig. 2-2 shows a block diagram of the generalized con-

troller (Ref 5:531). Therefore the entire system dynamics

can be described by the following:

(t) A 0 0 x(t) B

d (t) = Bt) 0 u(t) (2-27)

S(t)A L(
Eq (2-27) can be defined in terms of the following new

variables and matrices:

d_ (t) = A x(t) + [B)u(t) (2-28)

The new steady state performance index becomes:

is =  x fO T t ) ( t ) + u T(t)Ru(t),'dt (2-29)ss 0 - _

where Q and R are the state and control penalty matrices,

respectively, formed from the augmented system defined in

Eqs (2-23) through (2-26). Eq (2-29) can be written in

matrix notation to be the following:

J ss 0 [xT(t) UT(t) [ j [ )j(2-30)

or equivalently:
T I

D D 1 D C 0 0 x(t)

cTc 0 0 z )T T T 111 -1Jss 0 (t)' zt) z(t) uT(t)] CD _ _ _dt
s T T T
02 -22 S-2 2  z2 (t)

0 0 DTC DTD u(t)
22 22-- --

(2-31)

12
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Solving Eqs (2-27) and (2-31) in the steady state Riccati

Equation yelds S which defines the Riccati feedback gain

matrix K for the augmented system. The optimal control

for the augmented system is defined to be:

u*(t) = K x(t) = Kx + K Z + K £2 (2-32)--- x -- -z -z 2

The scope of this report is limited to the analysis of the

time response and Bode frequency response characteristics

of the closed-loop system.

14
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III Computer Programs and Methods

Once the theory of incorporating frequency weighted

cost functionals is established, it is necessary to imple-

ment the closed-loop augmented system in some readily

usable manner. The synthesis of the new system is done

with the use of digital computer programs. The use of

these programs is described in this section.

Use of OPTCON Program

Having defined the augmented system matrices A, B,

Q, and R the first step in analyzing the augmented system

is to calculate the Riccati matrix feedback gain, K =

[K x KzlI K z] . There are currently several programs

which solve the steady state Riccati equation. The pro-

gram MRIC by Kleinman (Ref 9) can be used with other sub-

routines to multiply, add, invert, and transpose matrices

to solve the Riccati equation. The program OPTCON (Ref 14)

is an interactive program for optimal control analysis

that incorporates MRIC and these other matrix operator

subroutines to solve the Riccati equation. The new

system matrices A and B and the penalty matrices Q and R

are entered into OPTCON. OPTCON will output the Riccati

solution, Riccati feedback gain matrix, K, and the closed-

loop eigenvalues.

Use of TOTAL Program

Once the Riccati feedback gain matrix, K, is deter-

mined, the new closed-loop system plant matrix, AL' is

15



formed as L = (A- BK). Now the Bode frequency response

and time response of the closed-loop system is analyzed

using the interactive program TOTAL (Ref 9). The AL , B

C, and D matrices are input and the closed-loop transfer

function of the new system is calculated. Then the Bode

frequency response characteristics and the time response

characteristics of each system can be analyzed. This

process is repeated for each of the various cases to

determine any advantages of one controller over the

others.

16



IV Investigation of Frequency
Weighted Cost Functionals

A simple open-loop unaugmented baseline system is

analyzed. It is then augmented with a baseline controller

whose penalty matrices are identity matrices. The per-

formance and characteristics of the closed-loop baseline

system with the baseline controller is compared to several

of the frequency weighted controllers proposed by Gupta.

The two types of controllers that are examined use fre-

quency dependent state penalty matrices and frequency

dependent control penalty matrices. The two controllers

are examined independently to isolate the effect of the

state or control penalty matrix on the performance index.

The Bode frequency response and time response characteris-

tics of each closed-loop system is analyzed and compared

vith the baseline controller closed-loop system.

Baseline System

The baseline model is a second order linear system

with an open-loop natural frequency of w n =1.0 and damp-

ing of =0.2. This simple lightly damped system is

easy to analyze in terms of natural frequency and changes

in damping. The corresponding characteristic equation

for this system is the following:

s+ 0.4s 4+ 1.0 0 (4-1)

The state equations for this system, expressed in phase

variable control canonical form, are the following:

17



d-- [ (t] 1 0 .1 uXt (4-2)

Y (t) : [9 0] x(t) (4-3)

The transfer function between the state x and the control

u is calculated. Fig. 4-1 shows the Bode plot for the

baseline system. The open-loop system has a high fre-

quency slope of -40 dB/decade. The baseline system time

response is shown in Fig. 4-2. The system has a peak

time of t = 3.2 sec, peak overshoot of 53%, settling time

ts = 19.6 sec and final value of 1.00.

Baseline System with Baseline Controller

The baseline controller uses state and control

penalty matrices that are identity matrices. That is:

and R [1 (4-4)
and

J* x*(jw) x(jw) + U (ji1j) [u(>) )dw (4-5)Jss L

While this simple e-ase with identity Q and R matrices is

not necessarily the best conventional controller, it

serves as a good model to be compared with the controllers

that use frequency weighted cost functionals. Table 4-1

shows the frequency response characteristics for the

baseline controller.

18
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Table 4-1. Characteristics of Baseline Controller

Closed-Loop Transfer Natural Damping
DC Gain Function Freq, w n Ratio

Gain Poles

0.708 1.00 -0.705±0.958j 1.19 0.593

This baseline controller system increased the damp-

ing to = 0.593, and had a natural frequency of -n = 1.19.

The Bode plot for this system is shown in Fig. 4-3. The

dc gain is 0.708 and the high frequency rolloff slope is

-40 dB/decade. Fig. 4-4 shows the time response of the

baseline controller system. Using this system, the time

response performance of the system was improved to the

values shown in Table 4-2.

Table 4-2. Baseline Controller Time Response Characteris-
tics

I Rise Time Peak Time Settling Time Peak Final
i (sec) (sec) (sec) Value Value

1.54 3.28 4.99 0.777 0.707

Now the use of frequency weighted cost functionals is

examined.

Case A

The first frequency weighted cost functional models

a state penalty matrix that affects only the x1 state,

that is:

21
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2 2 0
+ a (4-6)

0 l

and

ss X i F+a2 x(ji) + u(ji) [i u(jw)'d (4-7)

0 1-

Because this frequency weighting function has a numerator

of smaller degree than the denominator, it is easy to form

the realization for this system and implement the controller.

Also, this Q matrix only affects the x1 state and will be

compared later to the effect of frequency weighting on

both states. The Q matrix must be decomposed into the

product P1 *(jw) P1 (jw) as described by Eq (2-15). This

is done by the technique of spectral factorization (Ref 3:

507-8). The complex conjugate matrix factors of Q are

the following:

Pl(jW) [ i+a0 P*(j) [jw3+a (4-8)

Therefore, the new variable x (jw) has been defined as

follows:

x (jW) = [1 x(j) (4-9)
0 1

Recalling the augmented system equations

( t ) = A1z1 (t) + B1x(t) (4-10)
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11 x 1(t) C C l (t) + DlX(t) (4-11)

and if x (s) H(s)x(s) according to Eqs (4-10) and (4-11)

then:

H(s) = C1 (sI - A-l B1 + D (4-12)

However, instead of knowing the system matrices A1 , B1, C1,

and D and then solving for the transfer function matrix,

H(s), the reverse is true. That is, the transfer function

matrix between x1 (s) and x(s) has been defined by Eq (4-9)

and the system matrices must be solved for. A realization

(Ref 5:441-4) for this transfer function must be deter-

mined. Appendix B describes how to create a realization

for a system. The following describes this particular

realization:

[1 0

sl(S) s+a (4-13)

z1 (t) =[Z(t)] x(t) = 1 (t) (4-14)

(t) = [-a) z1 (t) + [1 0] x(t) (4-15)

x (t) = zl(t) + Lo x(t) (4-16)

where A [-a], B= (1 0], C1  [1 ]T, and D= [0 0

are the matrices described in the new system model,

Eqs (4-10) and (4-11). Then we get the following:
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p

H(s) = C sI - A1) B D1 4-17)

-1 -1 ] (4-18)

H (s) = (4-19)
1

Eq (4-19) checks with Eq (4-9) to show that

( S)1

Lx2 (s)j

This new system model can be expressed in terms of both

the original and new systems by putting the model in the

form of Eq (2-27). Define the augmented state vector

x(t) = tx(t) z1(t)) T

X(t) A x(t) + B u(t) (4-21)

(t) = x(t) + u(t) 4-22)1 +

£(t) = [C 1  0 x(t) (4-23)

Therefore, the new system model is the following:

(t) (t) ut) (4-24)2- t = Q -004 + _ _~

j(t) = [1 0 0] X-(t) (4-25)
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The state penalty matrix, Q, is determined from the steady

state performance Eq (2-31). Since only the staLe (and

not the control) is being frequency shaped in this case,

only the upper left quarter of the penalty matrix in Eq

(2-31) is needed. Thus the penalty matrices are the

following:

Tm T
ID10D D1C I

T 0 10 4-26)- C D I 00 o

R = [R] = [1] (4-27)

The controllability matrix, Mc' for this realization is

the following:

2 -_ 0 4 1 0 . 4 3

M [B, AB, A B] = -0.4 0 84 (4-28)-c 0-

Since M c is of full rank, the augmented system is completely

controllable.

Eq (4-24) represents the minimal realization of the

system. Fortmann and Hitz describe a method to form the

realization for a given transfer function (Ref 5:441-446).

Their method is relatively easy, but it generally does not

yield the minimal realization for a system. However, by

knowing the non-minimal realization, it is easy to find

the minimal realization. The non-minimal matrices are par-

titioned to rank M which yields the minimal realization.

The non-minimal realization of the system is the following:
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[ 0.4 -0 0](t) + u(t) (4-29)

1 0 -0

i(t) = [1 0 0 0] k(t) (4-30)

The difference between thr above realization and the minimal

realization is that the Riccati feedback gain matrix, K,

is not of full rank and the system is controllable but

not completely observable.

The value of "a" ranged from 0.1 to 10.0 or 1/10 to

10 times the natural frequency of the open-loop baseline

system. Table 4-3 shows the Riccati feedback gain, closed-

loop transfer function between the state x, and input u,

natural frequency, wn, damping, -, and dc gain for the

various values of "a".

Bode plots for Case A are shown in Fig. 4-5. Each

of the Case A augmented systems has an increased damping

ratio. Compared with the baseline controller system, which

has a damping ratio of - = 0.593, the augmented systems with

frequency shapings have dampings that range from 0.539 to

0.589. Like the baseline system, each of the augmented

systems has a high frequency asymptote of -40 dB/decade.

However, with a frequency weighting value, "a", at a larger

value than the natural frequency, the magnitude response

percent-overshoot, in the time domain to a step input is

much less. For a = 10 the frequency response is nearly

flat until the break frequency where it drops off sharply

at -40 dB/decade.
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Fig. 4-6 shows the time responses for Case A. The

time response for each of the augmented systems, with a

unit step input, is much better than the original system.

The systems with tne larger values of "a" have increased

damping over those with smaller values of "a" as shown in

Table 4-4. The dc gains for the different cases vary

greatly and result in the large difference in time response

final values.

Table 4-4. Time Response Characteristics for System A

IRise Peak Settling Peak IFinal
'a' Time Time Time Value IValue

(sec) (sec) Csec)

10 1.71 3.72 5.79 1.13 0.995

5 1.70 3.70 5.75 1.11 0.981

0.5 0.989 2.65 7.25 0.630 0.447

0.1 0.347 2.11 10.2 0.442 0.0995

Baseline 1.54 3.28 4.99 0.777 0. 707
~Controlle~l I_____________________

Table 4-4 shows that the closed-loop augmented system

zeros are slightly smaller than the poles. In this reaard,

the controller acts like a lead filter, but over a very

small frequency band. Therefore the effect of the zero-

pole relationship is minimized. In general, the system

performs best both in terms of frequency and time domain

characteristics with values of "a" that are larger than

the open-loop natural frequency. These results are not

what I expected. For this frequency shaping of 1A/(2 +a2
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I expected that as -~0 the low frequency weighting on

2 2
xwould approach 1/a .Similarly as -*~the ,. term

would be the overwhelming term in the denominator and that

the high frequency weighting would approach zero and the

closed-loop high frequency response would be similar to the

open-loop high frequency response. As Figs. 4-5 and 4-6

illustrate, all of the closed-loop responses have a larger

damping ratio at all frequencies than the open-loop system.

Case B

The second frequency weighted cost functional models

a penalty function that affects only the x1state, as before,

but a numerator constant equal to the denominator constant,

ra" is added as described below:

22

0 1

This frequency shaping is identical to case A with the

addition of the a2 term in the numerator. I hoped that

adding the numerator constant would cause the dc gain of

the closed-loop systems to be the same for the different

values of "a". Experience with classical frequency domain

compensation techniques has shown that adding a numerator

constant equal to the denominator constant normalizes the

dc gain as desired. In the time domain this has the sig-

nificance of normalizing the final response to a given

input. I hoped that this Q(A, matrix would make it
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easier to compare the performance of the closed-loop

system with the different values of "a'. Decomposing

Q(u) into Pl(j ) and P1 (jw) we get the following:

a 1 a

Pl(JW) W+ ?(j) = 1 +a (4-32)
0 1 0 1

Recalling the augmented system equatioi-:

-Zl(t) = A l1- l ( t )  + B lXS(t) (4-33)

xl(t) = Cll(t) + DlX(t) (4-34)

a realizatinn for the system is defined to be the

following:

l(t)= (-a] z1 (t) + (a 01 x(t) (4-35)

x (t) = zl(t) + ]x(t) (4-36)-0 o Lo 1 -

Checking the transfer function between x (s) and x(s) des-

cribed by Eq (4-32) we see that this is in fact a realiza-

tion of the system.

Pl(S) = -1 (sI AI )  B1 + D1  (4-37)

= [ [a 01 + 0 0] (4-38)

fr= ] + [0 ] (4-39)
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[a 01
P- (S) = (4-40)

Defining the augmented system state variable k [x zl ]T

the augmented system equations are the following:

(t) = A x(t) + B u(t) (4-41)

X(t) = B A]*(t) + [ u(t) (4-42)

[0 1 01 t 01
(t1(t) + u(t) (4-43)0

The augmented system penalty matrix, Q is determined again

from the steady state performance Eq (2-31). Again we

recall the following definition for the augmented state

penalty matrix:

1- 1 = 1 0 (4-44)LL~ 1~ 0
The control penalty is the following:

R = [R] = [I] (4-45)

This realization is minimal. Table 4-5 describes the fre-

quency response characteristics for Case B. Fig. 4-7 shows

Bode plots for Case B with difference values of "a". The

frequency response characteristics for the different
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systems did not differ significantly. The natural fre-

quency ranged from 1.19 to 1.002. In general, the damping

ratio increased from =0.537 for a = 0.1 to r=0.591

for a = 10. All of the systems had a very flat frequency

response roll off. The controllers with large values of

d of
a have the smallest overshoot. The rolloff asymptote has

a slope of -40 dB/decade. All of the systems have the same

dc gain which is what was desired.

The time response characteristics of Case B, to a

unity step inputare shown in Fig. 4-F. Adding the con-

stant, "a", to the numerator makes all final values equal

to 0.707. Table 4-6 shows that the time response

characteristics are very similar for all values of "a".

Using values of "a" that were less than the open-loop

natural frequency resulted in greater overshoot, while

larger "a" values had minimal overshoot. The frequency

shapings for Case B performed somewhat similarly to

Table 4-6. Time Response Characteristics for System B

Rise Peak Settling Peak Final
"a1  Time Time Time Value value

(sec) (sec) (sec)

*10 1.54 3.27 4.98 0.778 0.707

5 1.53 3.26 4.98 0.779 0.707

1 1.42 3.17 7.00 0.824 0.707

0.5 1.33 3.19 7.63 0.885 0.705

0.1 1.21 3.49 Large 1.05 0.707
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standard linear quadratic regulator designs. The frequency

shapings with larger values of "a" imposed a greater

penalty on state trajectory deviation than smaller values

of "a". In the neighborhood of the open-loop natural

frequency (e.g., from 0.1 to 10.0 rad/sec) the similarity

is closest. Using conventional linear quadratic methods,

for = 0 the weighting for a = 10 is

2a i 002 - -100 0.5 (4-46)
2+a2 100+100

and the weighting for a = 0.1 is

2
a - 0.01 0.0001 (4-47)
2 +a2 100+0.01

At = 0.1 the weighting for a = 10 is

2
a 2i00a 101.0 (4-48)
2+a 2 0.01+100

and the weighting for a = 0.1 is

2
a _ 0.01 _a - - 0.50 (4-49)u2+a2 0.01+0.01

The smaller weightings behave more like the lightly damped

open-loop system and the larger weightings should result

in larger damping ratios. Qualitatively, the systems

using frequency weighted cost functionals behaved similarly

to systems with conventional cost functionals. Using larger
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values of the frequency weighting results in larger damp-

ing ratios.

Case C

The third frequency weighted cost functional to be

discussed is the same as Case B except that it affects

both states, that is:

2
a

Q(u" = 2 (4-50)
a
2 2

W +a

This case analyzes the effect of weighting both the x1 and

x2 states instead of only x1 in the previous case. The

resulting change in the frequency and time response from

the previous case is studied. Using spectral factoriza-

tion, Q(w) is decomposed into the following values of

p[(j ) and PI(j

Sa 0 Iia 0
F+a -j+a

PI(J*) P(J* ) J (4-51)
0 jwa- -j +a [

The controller system state equations for the realization

of this transfer function are the foll,.-wing:

--2i(t) = [-0-a]Zl + [ 0]X (t )  (4-52)

l(t) = zt)t + 0 g xt (4-53)
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The verification that this system is, in fact, a realiza-
1

tion of the transfer function between x (S) and x(s) is

shown in Appendix C. The new system can be described by

the following:

1 + u(t) (4-54)*(t) = a 60 - - - t d ~) (-4

0 a o -a 0

The new penalty matrices Q and R are defined by Eq (2-31)

to be the following:

1T 0 000 0
= 0 0 0 1 [ R] [11 (4-55)

This realization is minimal. Table 4-7 shows the frequency

response characteristics for Case C. Values of the value

"a", which are larger than the natural frequency have much

higher damping ratios (; 0.591) than the original system.

Unlike the previous cases, however, smaller values of "a"

reduce the system damping ratio to nearly the same value

= 0.210) as the baseline system. This is because Q(-)

approaches zero as "a" approaches zero which results in

the augmented system responding more like the open-loop

system. Fig. 4-9 shows the Bode plots for Case C. The

Bode plots are significantly different because of the dif-

ferences in damping ratios, discussed previously. Using

a value of a = 10 caused the system to have a flat magni-

tude response with little overshoot. Conversely, the
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systems with values of "a" smaller, than the natural fre-

quency have large magnitude overshoot at the break fre-

quency. Table 4-7 shows that the natural frequencies are

fairly constant for the different values of "a". The

high frequency asymptote for all of the Case C systems

is -4C dB/decade.

These results can be expected. By imposing fre-

quency shaping on both states, the maximum value that Q(-)

can have is unity, so shapings with large values of "a"

should be similar to the previous case which also has a

maximum weighting approaching unity. However, for small

values of "a", as "a" approaches zero, both state weightings

approach zero. The biggest difference between this case

and the previous case should be, and is, in systems involv-

ing smaller values of "a", which results in smaller damping

ratios.

The time response characteristics for Case C are

shown in Fig. 4-10. Table 4-8 shows that for larger values

of "a", the systems have less overshoot with good time-to-

peak-value properties. The time response characteristics

for systems with small values of "a" have smaller damping

ratios and are not much better than the open-loop response.

Frequency weighting on both states has a much more varied

effect on both frequency and time response characteristics

than the previous cases. Changing the values of "a" causes

very different responses, unlike Case B that uses frequency'

weighting on only one state.
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Table 4-3. Time Response Characteristics for System C

Rise Peak Settling Peak Final
"a" Time Time Time Value Value

(sec) (sec) (sec)

10 1.54 3.27 4.97 0.778 0.707

5 1.51 3.23 4.93 0.781 0.707

0.5 1.10 2.90 10.2 1.03 0.707

0.1 0.952 3.10 23.6 1.40 0.707

Case D

The fourth frequency weighted cost functional to be

discussed uses both numerator and denominator weighting

values on both state terms, that is:

2 0J
Q(W) = W2 +a2 (4-56)

Gupta suggests this improper weighting form because

it provides a wide variety of ways to shape the response

of the closed-loop system. Q(w) is factored into the terms

pE(j)) and Pl(jw) in the following manner:

"" jwa 0 wj+a1-j+b(jw) 3 (4-57)
b +bJ 0

The augmented system equations are put into the form of

Eqs (2-23) and (2-24) and the modified system equations

become the following:

47



_1 (t) = ]Zl(t) + [ ]x(t) (4-58)0 -b 1

(t) = b l ( t) + x (t) (4-59)

Appendix D illustrates how to form a realization for this

system. The augmented system can be described by the

following state equation:

-(t) 0. -b mj (t) + u(t) (4-60)
0 1 0 0 -

The augmented state penalty matrix is defined by the C1 and

D1 matrices in Eq (4-59) to be the following:

T 1 0 (a-b) 0

LC1 J = a-b) 0 (a-b) 2 (4-61)L--D1 2C 0 (a-b) 0 (a-b)

This realization is minimal. Table 4-9 shows the charac-

teristics for system D. Using both numerator and denomina-

tor weightings provides a wider variety of ways to shape

the baseline system. Using a parameter value of a = 10,

larger than the open-loop natural frequency, and a value of

b = 0.1, smaller than the natural frequency, the damping

ratio is increased significantly to - = 0.657 and the new

natural frequency increases threefold to 3.19. Using

values of a = 1.0 and b = 2.0, the damping ratio is

increased moderately to = 0.4 and the natural frequency,
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Wn 1.032 is almost the same as the baseline system. For

the case of a =0.1 and b = 2, the least damping,

0.172 occurs. This damping is significantly less than

the baseline system.

Intermediate values of "a" and "b" give widely dif-

ferent damping ratios and natural frequencies. Fig. 4-11

shows Bode plots of selected values of "a" and "b". The

system with a =2, b = 1 shows a nearly flat magnitude

response until the break frequency where the slope drops

off at -40 dB/decade. All of the high frequency asymptotes

drop off at -40 dB/decade. This particular case behaves

similarly to a lead filter in terms of the pole-zero

location in that the closed-loop system zero is less nega-

tive than the dominant pole, and there is a large increase

in wn which reduces the settling time. The closed-loop

transfer function has a dc gain which is less than unity.

To normalize each of the Case D systems, so that each

system had the same dc gain, the frequency weightings

could have been multiplied by a constant equal to b/a.

Therefore, as seen in Fig. 4-11, the low frequency magni-

tude could be increased by multiplying by the additional

gain.

Fig. 4-11 and Table 4-9 show varying degrees of the

lead filter effect for different values of "a" and "b".

However, as "a" is held constant and "b" is decreased,

the damping ratio decreases. Fig. 4-12 shows the tim~e

response for selected Case D systems. Table 4-10 shows
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Table 4-10. Time Response Characteristics for System D

Rise Peak Settling Peak Final
a= b=  Time Time Time Value Value

(sec) (sec) (sec)

10 0.1 0.107 0.087 Large 0.065 0.01
2 1.0 1.30 2.73 4.01 0.481 0.447
2 0.5 0.775 2.05 4.32 0.327 0.242
2 0.1 0.248 1.61 8.26 0.232 0.05
1 2 1.49 3.39 8.05 1.07 0.894
0.5 2 1.45 3.43 8.50 1.23 0.970
0.1 10 1.22 1 3.22 17.1 1.51 1.00
0.1 2 1.19 3.26 23.4 1.59 1.00

the time response characteristics for Case D. The systems

with smaller values of "a" and larger values of "b", (a =

0.1, b = 10), have smaller damping ratios, , = 0.212, and

greater values for overshoot and settling time. The system

with a = 2, b = 0.1, on the other hand, has a much smaller

time response.

In general, Case D systems provide much more flex-

ibility in designing system response than the previous

three cases. Wide ranges of frequency and time response

characteristics can be achieved depending on the choice of

"a" and "b". Let us assume that a design objective is to

reject disturbances. The system can be modeled by the

following block diagram:

disturbance input .(t)
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Fig. 4-11 shows Bode plots for the frequency response

between the state, xI , and commanded control uc. If uc is

assumed to be some disturbance instead, then the Bode plots

can be interpreted as the frequency response of the trans-

fer function between x1 and some distrubance. Comparing

the various Bode plots in terms of distrubance rejection,

one characteristic that is desirable is small dc gains.

This indicates that reduced magnitude response occurs at

lower frequencies. If the goal is to reject low frequency

disturbances, then the more negative the low frequency

response magnitude in decibels, the better. From Fig. 4-11,

the system with a = 2, b = 1 is better at rejecting zero-

mean white Gaussian noise. The system with a = 10, b = 0.1

is much better than the baseline controller closed-loop

system at rejecting low frequency noise because the low

frequency penalty on state x1 is much higher. Small "a"

values and large "b" values create a lightly damped, slower

responding system, while large "a" values and small "b"

values create a highly damped, faster system.

Case E

Unlike the previous cases, this case examines fre-

quency weighting on the control instead of the state.

One model proposed by Gupta (Ref 7:5) is the following:

R(j,) [LLaa] (4-62)

With the previous state weightings it was not possible to

use frequency shapings with a numerator of greater degree
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than the denominator. However, by including the control

in the state vector it is possible to realize the control

weighting given by Eq (4-62). The purpose is to see if

this type of frequency shaping on the control can change

the damping ratio and natural frequency of the closed-loop

system. Recalling Eqs (2-25) and (2-26), the augmented

system can be described by the following:

z2 (t) = A2 £2 (t) + B 2u(t) (4-63)

1
u (t) = C2z 2 (t) + D2u(t) (4-64)

where the new control variable, u (t), is a linear combina-

tion of the commanded control, u(t), and some frequency

weighted function of u(t). That is, the new control

variable is defined to be the following:

u 1(S) =  (- (4-65)

or equivalently:
1

au (t) (t) + au(t) (4-66)

1

4(t) = au(t) - au (t) (4-67)

This case of frequency weighting is the same as including

control (actuator) dynamics into the state equation. This

system is easily modeled and a realization is easy to find.

The augmented system, with the new control variable uI is

defined by the following state equation:
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S ~ = [(t)[ + u(t) (4-68)
ut t --a-( )

or, for this specific case:

dFx(t)1F']lx~ 
1 Fd (t) = .- -0. 4 i (t) + (t) (4-69)

U (t) - I _ I:- u (t) "-

where A2 = [-a] and B2 = [a]. In order to analyze the

frequency response of this case, the transfer function

between the commanded input u(S) and the state x(S) must

be determined. This cannot be done outright from Eq (4-69)

because of the use of the new control variable u The

entire system block diagram is shown in Fig. 4-13.

U,* (t) XW 11

U u(t) CA (t)

Fig. 4-13. Block Diagram of Case E
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The loop must be closed on u(s) to calculate the transfer

function between the state x(s) and the commanded input

u s). Appendix A shows that the transfer function matrix

is the following:

(s+a - aK 3)

s[(s+0.4)(s+a -aK 3 ) -aK 2 ] + (s+a - aK3 - aK )

H(s)
-(s+a - aK 3)

[(s+0.4) (s+a- aK3) -aK 2] + (s+a- aK3 -aK1

(4-70)

The identity matrix will be used for the state and control

penalty matrices, that is:

_ = 1 0 [1] (4-71)

L0 0 1,

Table 4--11 shows the frequency response characteristics for

Case E. Large values of "a" (a = 10) result in larger

values of the damping ratio, 11 0.208 for a = 0.1. Bode

plots for this case are shown in Fig. 4-14. Each system

has very similar, flat low frequency response characteris-

tics. All of the systems have improved magnitude overshoot

properties compared with the open-loop baseline system.

All Case E systems had larger overshoot than the closed-

loop baseline controller. This is because the baseline

weightings are unity while the frequency shaped weightings

can only approach ;nit" is "a" gets very large. The

a = 10 system has the least Dvershoot of all. All Case E
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systems have a high frequency asymptote slope of -40 dB/

decade.

The time responses of Case E systems are shown in

Fig. 4-15. Time response characteristics are shown in

Table 4-12. The system with a = 0.1 has the largest peak

value (1.27) and longest settling time (22.9 sec). The

fastest system with the least overshoot has a parameter

of a = 10 with a settling time of 7.42 sec and a peak value

of 0.684.

Table 4-12. Time Response Characteristics for System E

Rise Peak Settlingj Peak Final
"a" Time Time Time Value Value

(sec) (sec) (sec)

10 1.43 3.19 7.42 0.684 0.577

2 1.28 2.97 7.33 0.705 0.577

1 1.12 2.79 9.32 0.772 0.577

0.5 0.978 2.79 12.6 0.921 0.577

0.1 0.843 2.95 22.9 1.27 0.577

This method of frequency shaping can be useful in

including control dynamics in a system. In terms of other

systems, Case E qualitatively responds most like Case C

which had the reciprocal frequency weighting on both states.

Case F

The frequency weighted cost functional for this case

attempts to drive the state penalty weighting to a very

large value at some specified frequency. Gupta suggests
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that this can be done with the following cost functionals

(Ref 7:5):

[22) = 2 (~ 22
W )4 (4-72)

2a 2

T

Q( ) is factored into the following values of Pl(3w) and

P1 (jw)

2  a
T a

(jW P(W) a= a 2  (4-73)
0 2 2

L w -aJ

The controller system state equations for a minimal realiza-

tion of the transfer between x (s) and x(s) are the

following:

- ( t ) = 2 ]zl(t) + 2 x(t) (4-74)

xt) = zl(t) + [ X(t) (4-75)

The augmented system equations are the following:

0-1a-0.01X(t) = 0.4'- 0 (t) + u(t) 4-76)x t)= a 0 1-
0  a 0 -a

The augmented system penalty matrices are defined by Eq

(4-43) to be the following:
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- ' 0]' 1 (4-77)

*0 0 0 0

Table 4-13 shows the characteristics for Case F. All of

the systems are either poorly damped or have very small

natural frequencies or both. Each system has two oscil-

latory modes except the system with a = 10.

Fig. 4-16 shows the Bode response characteristics of

the system. As with all of the previous cases, the high-

frequency response is the same as the open-loop system. As

with Case D, the most siqnificant result is that this fre-

quency shaping can be used to reject low frequency dis-

turbances. The frequency shaping only has an effect on

disturbances or modes that are of lower frequency than the

natural frequency of the closed-loop system. This result

4",is achieved by removing the "a constant in the numerator

of the state cost functionals. The Bode plots shown in

Fig. 4-16 describe systems with the constant "a 4tpresent,

but when the constant is removed, the dc gain for the

closed-loop system is very low for small values of "a"

The frequency response does not do anything parti-

cularly out of the ordinary near the natural frequency of

the open-loop system. Gupta's premise that this type of

weighting is good for supressing a disturbance at =a

is not evident. Rather the controller is good at suppress-

ing disturbances at frequencies less than the naturalI
frequency.
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Table 4-14 shows the time response characteristics

for Case F. The systems with small values of "a" initially

respond in the opposite direction of the final value. The

low damping ratios for the systems are shown. The final

value may be changed from -0.707 to 0.707 by multiplying

the system closed-loop transfer function between x(t) and

u~t) by minus one. The settling times for this case are

much larger than previous cases. Fig. 4-17 shows the

time response for Case F.

Table 4-14. Time Response Characteristics for Case F

Rise Peak Settling Peak Final
"a ''Time Time Time Value Value

(sec) (sec) (sec)

10 1.26 3.__2 7.0 0.884 -0.707

5 1.25 3.30 7.47 0.884 -0.707

1 1.05 4.46 14.4 1.002 -0.707

0.5 1.02 5.84 18.43 1.097 -0.707

0.1 12.9 32.3 Very Large 0.723 -0.707
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V Conclusions

Frequency shaping of quadratic cost functionals gives

the control engineer additional flexibility in designing

control systems, especially in suppressing low frequency

modes and disturbances. Using appropriate values for the

choice of compensator values of "a" and "b", the damping

ratios can be significantly increased over the baseline

open-loop system, thereby decreasing both overshoot and

settling time. The baseline conventional controller has

a larger value for the damping ratio than the frequency

shaped controllers. This is because the latter has

weighting matrix values that only approached the unity

values of the baseline controller. However, the frequency

shaped controllers demonstrate the ability to suppress

rejections and system modes which occur at frequencies

less than the natural frequency of the open-loop system.

The rise time can also be reduced with the frequency

shaped controllers. High frequency asymptotes had slopes

of -40 db/decade for the baseline system and all of the

controllers.

The controller with both numerator and denominator

frequency weighting (s'+a/s+b demonstrated the most

flexibility in achieving a variety of design character-

istics. State penalty frequency weighting can be inter-

preted as procc .iig the state through a linear shaping

filter. Control penalty frequency weighting is identical

to incorporating control actuator dynamics into the system.
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VI Recommendations

Optimal control using frequency weighted cost func-

tionals provides the designer with a wide spectrum of

compensation characteristics. This method can improve

the response of many control systems of interest to the

Air Force, particularly in low frequency disturbance sup-

pression. The effect of frequency shaping on the sup-

pression of low frequency disturbances and system modes

should be examined further.
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Appendix A Calculation of Transfer Function Between
Xl(s) and u (s) for Case E

kx(t) = Ax(t) + Bu(t) + Bu (t) (A-i)

u(s) = a- (s) (A-2)
s+a

u(s) = K1 x(s) + K2 u(s) (A-3)

u(s) = -au(s) + aKlX(s) + aK 3u(s) (A-4)

(sI-A) x(s) = Bu(s) + Bu (c) (A-5)

(s+a - aK 3 )u(s) = aKlx(s) (A-6)

aKlX(S)

u(s) -Ki ) (A-7)-- (s+a -aK 3

B aKlX (s)

(sI-A)x(s) = + B u (s) (A-8)(s+a - aK3 ) - --C

SI-) B K x(s) B u (s) (A-9)
-(s+a - K 3) --c

r( Ba K )-l I

x(s) = sI-A) - (s+a K U u (s) (A-10)

x(s) I( Ba K1  -iH-) - - - ] B (A-lI)
u (s) (s+a aK 3---c 3

here A = [7 _04], B 01], a =[a] (A-12)

K1  [KI K 2) K3 =K 3  (A-13)

Substituting in the values of the matrices we get the

following:
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H() = 11 -IsaaK 3  saK 0 (-4

1S+0.4 L~ aK s 2 a

S -1

H(s) = (s+a - aK 3 ) (s 0.4) (s+a -aK 3

(s+a - aK 3 ) (s+a -aK 3)

00 -

[saaK ) aK 2  1101 (A- 15)

H~s) = (s+a- aK 3  ) s+) (s+a - aK 3 - 1 [3- TA6

[is (s+a -K aK (s4sa -aK )-a

(S~~a (saa 3 (saK3)

H(s) (sa-a xs [(s+O. 4) (s+a -a73 -al,2  + (s+a - aK 3 -aX 1)

(s+0.4) (s+a - aK 3  K a 2  +
s+a - aK 3

__________________[~J(A-17)

L s+a - aK 3

(s+a - a 3)

sr (s+0.4) (s+a -a a 3) - a 2] + (s+a - aK 3 - aK 1  (A-18)
H(s)=

-(s+a - a 3)
[(s+0.4) (s+a -aK 3  -aK 2] + (s+a - aK 3 - a 1)

73



Appendix B Creating a Realization for a System

Fortman and Hitz discuss the procedure of generating

a realization in detail (Ref 4:441-451). Briefly, the

goal is to find the system equations

A(t) = Ax(t) + Bu(t) (B-1)

y(t) = Cx(t) + Du(t) (B-2)

that realize a system transfer function matrix, H(s)

where

H(s) = C(sI-A)- B + D (B-3)

In general, the realization will not be unique. If the

state, x(s), the control u(s), and the output, y(s) have

dimensions n, m, and p respectively, then H(s) will be

a p x m transfer function matrix. The first step in

creating a realization is to express the transfer function

matrix in a ratio of polynomials in s, that is:

Q2 n-i
Q + Qis + 02s 2+ Q sn-

H(s) =  + 1+ 2  + " n-l sn-i + sn (B-4)

Note that Eq (B-4) is a proper transfer function. The

degree of the numerator is less than the denominator.

For cases involving improper transfer functions, the

polynomial equation must include a feed forward matrix,

D.
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Q +Q(S)+ Q n-

H(s) O -1 -n-i n (B-5)
PO + Pl(s) + ... pn-l s + s

Appendix D illustrates the use of the feed forward matrix

in improper transfer functions.

The next step is to describe the system in control

canonical form using the pi and Qi values from Eq (B-4)

or (B-5).

Om Im Om ... Om Om

Om Om Im ... Om Om

= x + . u (B-6)

Om Om Om ... Im Om

-Polm -PlIm -P 21m ... n-lj Im

Y = [Qo Qi 92 "'" gn-1i]x (B-7)

The submatrices are of dimension m x m, denoted by the m

subscript. While this method will provide a realization,

in general, it will not be the minimal realization. In

forming the plant matrix in Eq (B-6), the designer should

fill in the lower left element first. Then the rest of

the matrix elements should be filled as necessary to

achieve the correct matrix dimension.

The final step is to find the minimal realization.

A minimal system is both completely controllable and

observable. The minimal realization can generally be

found by starting in the upper left corner of the A matrix
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and reducing A to the dimension of the controllability

matrix.
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Appendix C Formation of Realization and
Transfer Function for Case C

Ha 0
( ) a 

(C-1)

H (s) go + Q1=+Qn n- 1 (C-2)

P0 +  Pl s  +  ... Pn-i s + s

H(s) - (C-3)
a + (1)s

20 = 0 a p 0 = a (C-4)

1 (t) = AlZ1 (t) + Blx(t) (C-5)

x (t) = C lz(t) + Dlx(t) (C-6)

l (t) = [-p 0
1

2] z1 (t) + [12] x(t) (C-7)

x (t) = [QI Z1 (t) (C-8)

(t) = _a _aZl(t) + I ]x(t) (C-9)

x (t) = z I (t) + 1 0x(t) (C-10)

(s) = C1 (sI - A I )  B 1 + D (C-l)

P =(s a ]s)a sO ] + (C-12)

77



2(S) +a (c-13)
(s+a) 2 l 0a O1

() 0 s+a (C-14)

1s 0

(S) Ls+a 1](C-15)

There are several possible realizations for a system

given some transfer function. The realization described

by Eqs (C-9) and (C-10) is not exactly the same as the

realization which is used for Case C. Both realizations

define P (jw), given by Eq (C-1).
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Appendix D Formation of Realization and
Transfer Function for Case D

flw+a 0f
P1 (jw) j ju +b (D-1)0 jw+ _j

(S ) + . Qi sn-i
P(s) = + n-i n + ( (D-2)

P0 + Pl(s) + + n-i + s

s+a --j F&

b+s+b = L (D-3)Pls ) =b + (1)ss+b

~+
gp 0 = b (D-4)

Al(t ) = [-P 0 1 2 ) zl(t) + [12] x(t) (D-5)

x (t) = [Q0 Iz1 (t) + L0 I x(t) (D-6)

b [i1 (D-7)

x = z (D-8)-- a b]z+-- 0 12

Pl(s) = Cl(sI - A1 )-I B1 + D1 (D-9)

- ( s ) = aob a-b[ o ]0 i l + L0 1] (D-1O)

al(S, b a0_ I i0 0] + s 1 (D-11)

9s+b

79



Ps 10 (D-12)

p 1sS) 0 -b 0
ss~b

s-b a 0 s+b CD14

1 () L0 s+b IL s+b J

(S s+b s+b-b+a sb sa(-4
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