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Abstract

Creep crack growth in IN-100 was studied using a

hybrid experimental-numerical procedure (HEN). This proce-

dure couples displacement data generated during creep crack

growth tests to a finite element model of the test specimen.

A standard compact tension specimen geometry was used in

all cases.

The computer program used herein is a two-dimensional

plane stress/plane strain code that uses constant strain

triangular elements and has the ability to release fixed

nodes to simulate crack growth. This procedure is facili-

tated by using a Gauss-Seidel iterative solution technique

that allows appropriate terms in the stiffness matrix to be

changed between timesteps to accommodate changing boundary

conditions due to crack growth. A variable timestep algor-

ithin maximizes the timestep size during the analysis while

maintaining good accuracy.

Constitutive equations proposed by Bodner and Partom

were used to account for the nonlinear, viscoplastic material

behavior exhibited by IN-100 at high temperatures. These

equations were integrated through time by a linear Euler

extrapolation technique.

Crack growth estimates generated with the HEN proce-

dure were within 20 percent of the actual crack growth in

ix



the test specimens after times ranging from 5-14 hours.

Additionally, a critical stress and an accumulated stress

history criterion for crack growth were both found to show

promise. Both of these criteria merit further investigation.
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THE VISCOPLASTIC CRACK GROWTH BEHAVIOR OF

A COMPACT TENSION SPECIMEN USING THE

BODNER-PARTOM FLOW LAW

I. Introduction

Background

With the introduction of the gas turbine engine,

requirements developed for materials that could successfully

operate in critically stressed parts such as turbine disks

at a very high temperature. In this hostile environment,

the phenomenon of creep (time dependent accumulation of

plastic strain under constant stress) becomes important.

Accumulation of creep strains can cause parts to deform be-

yond design limits. Also, undetected creep crack growth

could result in rupture of a disk. To further complicate

matters, changes in throttle settings during flight along

with engine starts and shutdowns at the beginning and end of

each mission induce cyclic stresses that bring the fatigue

process into play. However, most mission profiles include

long dwell times at constant engine speed, such as during

high altitudecruise. During such periods the failure pro-

cess is dominated by creep. Therefore, a separate investi-

gation of creep crack growth is warranted and would contribute

to a better understanding of the combined failure process.

Generally, creep deformation and rupture are initiated

!1



at the grain boundaries and proceed by sliding and separa-

tion. Thus, creep rupture failures are intercrystalline in

contrast, for example, to the transcrystalline failure sur-

faces exhibited by room temperature fatigue failures.

Although creep is a plastic flow phenomenon, the intercrys-

talline failure path gives a rupture surface that has the

appearance of brittle fracture. Creep rupture typically

occurs without necking and without warning. Current state

of the art knowledge does not permit a reliable prediction

of creep rupture properties on a theoretical basis. Further,

there seems to be little or no correlation between the creep

properties of a metal and its room temperature mechanical

properties (1).

Since failure of a turbine disk could result in the

loss of a multi-million dollar aircraft and its crew, current

Air Force policy is to remove all disks in a given population

from service at the time where 1 in 1000 could be expected to

have initiated a short (0.03 in) fatigue crack (2). From a

safety standpoint, this policy works well. However, by

definition 99.9 percent of the retired disks still have use-

ful life remaining at the time they are removed from service.

As shown in Fig. I-1, over 80 percent of the disks have at

least ten lifetimes remaining and over 50 percent have at

least 25 lifetimes remaining.

If we could accurately predict the remaining life of

a turbine disk that contained a subcritical flaw, many parts

that are currently retired could be kept in service. Parts

2
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Fig. I-1. The Majority of Disks Have
Useful Life After Retirement (2)

would be inspected at intervals determined by the ability to

detect flaws of some given size and a fracture mechanics

calculation of the remaining life with a crack just small

enough to have been missed during inspection. This procedure

would be repeated until the disk failed to meet the require-

ments for a return to service, at which time it would be

retired. The Air Force calls such a program retirement for

cause and is currently studying its feasibility for use in

the F-100 engine program. If we assume a 15-year engine

lifetime, a retirement for cause program could result in

engine life cycle cost savings of about $249 million (2).

3



Approach

This thesis concentrates on creep crack growth in

IN-100, an advanced, nickel based superalloy that is used as

a turbine disk material in the F-100 engine. Experimental

creep crack tests were conducted at a fixed temperature of

1350 F (732 C). The tests were modeled using the finite

element method and a sophisticated, nonlinear, time dependent

set of constitutive equations called the Bodner-Partom visco-

plastic flow law (3; 4; 5; 6). This flow law was integrated

through time using a linear Euler extrapolation technique (7)

and incorporated into the finite element model by the resi-

dual force .nethod (8). The computer program used was an

in-house code named VISCO that was developed by Hinnerichs

(9). VISCO uses constant strain triangular elements and has

the ability to release fixed nodes to simulate crack growth.

This procedure is facilitated by using a Gauss-Seidel itera-

tive solution technque (10; 11; 12) that avoids costly

matrix factorization and allows appropriate terms in the

stiffness matrix to be changed between timesteps to accommo-

date changing boundary conditions due to crack growth.

Additionally, a variable timestep algorithm is used to allow

the timestep to increase or decrease as a function of the

rate of change in stress and strain. This allows us to model

creep crack growth by providing the ability to transition

from very small timesteps during load application or node

releases to very large timesteps during pure creep.

The primary goal of this study was to determine if

4



experimentally measured, far field displacements could be

used to predict creep crack growth in the test specimens. A

secondary goal was to examine other parameters such as the

stress, strain and stress intensity factor at the crack tip

as criteria for crack growth. Hopefully, such analysis will

contribute to the understanding of creep crack growth and

help make a retirement for cause program for jet engine

turbine disks possible.

5



II. Theory

This section contains a brief review of the theory

of plasticity, definitions of important terms, and an intro-

duction to the material model used in conducting this study.

Plasticity

Plasticity can be defined as permanent deformation

of a material by the application of stiesses which are

greater than those necessary to cause yielding (13). If

yielding has not occurred, we can use simple linear elastic

constitutive equations such as Hooke's law to perform any

required analysis. However, once yielding occurs, we must

use a set of plastic constitutive equations. Generally,

such equations are nonlinear and much more complicated than

those used in elasticity.

Given the above definition of plasticity, a logical

question to ask would be--How do we determine when yielding

occurs? If we are interested in a case of simple tension,

the yield stress is easily determined from a uniaxial ten-

sion test where we measure a specimen's elongation under a

constantly increasing load. The ratio of the load on the

specimen to the original cross sectional area is defined as

the nominal stress and the ratio of the change in length to

the original length is defined as the conventional or

engineering strain. These quantities are expressed in

6



equation form as follows:

stress: a = P/A0  (I-l)

strain: e 1i0 (II-2)
10

where P is the applied load, A 0 is the original area, 1 is

the current length, and 10 is the original length.

Alternatively, stress may be defined as the ratio of

load to the instantaneous cross sectional area, and strain

may be defined as the ratio of the change in length to the

instantaneous length. Since the length of the specimen is

constantly changing, it is necessary to express this type of

strain by considering only an infinitesimal amount of deforma-

tion where we can consider the length to be constant (14).

Thus, the infinitesimal strain is expressed as

dET dl (11-3)

and our stress is expressed as

a P/A (11-4)

These are called the true stress and time strain. To find

the expression for a finite amount of true strain, we simply

integrate between the original length and the current length

such that

1 dl 1T= T l 0 = in1- (II-5)

Due to the nature of this expression, true strain is often

7



called logarithmic strain.

The relationship between true strain and conventional

strain is

ET In(l + s) (11-6)

True strain and conventional strain are essentially equal

when the strains are small, but they diverge as the strains

increase.

Henceforth, the terms stress and strain will be under-

stood to mean nominal stress and conventional strain. True

stress and true strain will be labeled as such.

The Flow Curve. If we make a plot of stress versus

strain for a uniaxial tension test, a curve similar to that

.shown in Fig. II-1 will result for most, but not all materials.

The slope of the linear portion of this curve is called the

modulus of elasticity, E. In this region, stresses and

strains are related by Hooke's law:

E = o/E (11-7)

The theory of plasticity deals with the behavior of materials

in the region beyond which Hooke's law is no longer valid (15).

Point A, where the curve deviates from linearity is

called the proportional limit, while the maximum stress that

the material can withstand without experiencing any plastic

deformation is called the elastic limit. The elastic limit

is not easy to determine, so we usually specify the limit of

elastic behavior as some small amount of permanent deformation,

8
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generally a strain of 0.2 percent (15). The stress that will

produce this amount of permanent deformation is called the

yield stress and is labeled B in Fig. 11-l.

Whenever the elastic limit is exceeded, plastic defor-

mation takes place and the strain begins to increase at a

greater rate. However, increased deformation must be accom-

panied by an increase in load because plastic flow increases

the yield stress of most metals. This effect is called

strain hardening, and continues until reaching point C. The

stress at this point is called the ultimate tensile strength.

Beyond this the area of a ductile specimen decreases rapidly

until fracture occurs.

If we stress the metal to some point D and then unload

9C



it, the strain will decrease from 1 to E 2  The difference

C1-E2 is called the elastic strain. However, E2 is not all

permanent plastic strain. Depending on the material and

the temperature, a small additional amount of strain may

disappear with time. This is called anelastic behavior. In

most cases, the effects of anelastic behavior are small and

it is usually ignored in mathematical theories of plasticity

(15).

Bauschinger Effect. If, instead of conducting a

tensile test, we run a compression test and then plot a curve

of stress versus strain, the result may be quite different

from that shown in Fig. 11-1. However, if we plot true

stress versus true strain for both tests, the two curves will

.be nearly identical (16). For one thing, the yield stress

in tension and compression will be about the same. Note that

this similarity only holds for specimens that have not been

previously deformed. For example, if we first deform a

specimen in tension and then run a compression test on the

same specimen, the yield point in compression will be con-

siderably less than that in the tensile test. This pheno-

menon is called the Bauschinger effect and is present when-

ever there is a reversal of a stress field. This effect can

become very important in cyclic loading problems. Unfortun-

ately, it is usually ignored because it complicates the

problem (16).

The von Mises Yield Criterion. For multiaxial stress

states the onset of plasticity is not as easily defined as

10



in the uniaxial case. There may be many combinations of

stresses that result in plastic deformation. Therefore, we

must develop some other yield criterion to replace the uni-

axial yield stress in this case.

Many criteria have been proposed, but we will focus

on the one proposed by von Mises. The reader interested in

a more thorough discussion can find information in

Mendelson's text (16) or in numerous other books on plasti-

city.

The von Mises yield criterion is also called the

distortion energy theory. This theory states that yielding

begins when the distortion energy equals the distortion

energy that exists when yielding occurs in uniaxial tension.

If we let J2 be the second invariant of the devia-

toric stress tensor, and G be the shear modulus, the distor-

tion energy, Ud, is defined as

Ud = GJ2 (11-8)

In terms of the principal stresses,

2 a2) 2 + (a- ) 2 + (2- ) (11-9)

2 6 1 2 2 3o-i ( 3-l 1

At the yield point in uniaxial tension Eq (11-9) reduces to

1 2 (11-10)
2 3 0

where a0 is the uniaxiai yield stress. Thus, yielding occurs

when
1 2 21  2
1[(0l -2) 2 + (02-'3) + (o3 -ol) ]= 0 (II-Ii)
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In other words, the von Mises criterion will predict yield-

ing when J2 reaches the value of J2 at yield in a uniaxial

tension test.

An important point to remember here is that the

deviatoric stress tensor does not contain hydrostatic

stresses. Therefore, the von Mises yield criterion does

not predict yielding for states of pure hydrostatic stress,

no matter how large the stresses may be. This is in agree-

ment with experimental results obtained by Bridgman (17; 18),

who showed that hydrostatic pressure has negligible effect

on yield stress until extremely high pressures are reached.

This fact allows us to consider only the deviatoric compon-

ents of the stress tensor during plastic flow. An effect

related to this is that plastic deformation does not appre-

ciably change either volume or density in metals, so most

metals can be considered incompressible in the plastic

range (16).

Prandtl-Reuss Equations. Now that we have a cri-

terion that tells us when plastic flow begins, we need a

set of equations to express the relationship between stress

and strain in the plastic region. In classical plasticity,

this requirement is satisfied by the Prandtl-Reuss equations

which, in incremental form, are:

d P = dAS. (11-12)
12
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P

where C are the components of the plastic strain tensor,

S.. are the components of the deviatoric stress tensor, and

X is a positive scalar. The instantaneous value of X is left

to the inventiveness of the user of these equations (8).

Given an expression for dX, we can find the plastic

strain corresponding to the stress state at any particular

instant. One way to express it is (16):

S3 dc p (11-13)
e

where

2 = V (1I-14)

dcp= v dy (II-15)
p 0

and yP is the octahedral shear strain. We call ae the effec-
0e

tive stress and c the effective plastic strain.

Using this form for dX, the Prandtl-Reuss equations

are

d 2 p S.. (11-16)

A comparison of the effective stress, Eq. (11-14),

with the von Mises yield criterion, Eq. (II-10), shows that

when yielding begins ae = a0 ' In other words, the effective

stress takes on the same form as the von Mises yield criter-

ion. Since Eq. (11-16) makes use of the effective stress,

this form of the Prandtl-Reuss equations implies the von

Mises yield criterion (16). However, the form of dX depends

on the plastic flow law that is chosen by the user, so there

13



may be occasions when something other than the von MIises

yield criterion is used. We will look at another way to

express dX later.

Offset Plastic Strain. As previously mentioned, it

is customary to define plastic strain as the permanent strain

left in a specimen after the load is removed. However, this

definition is cumbersome for experimental work where the

specimen cannot be unloaded every time we want to know what

the plastic strain is. Therefore, in all of the results

presented in this thesis, the plastic strain will be defined

as the difference between the total strain and the elastic

strain:

EP = F - a/E (11-17)

Plastic strain defined in this way is called offset plastic

strain (14) since it is the offset distance from the linear

elastic line.

Effects of Rate, Time, and Temperature. The dis-

cussion of plastic behavior presented so far has been quite

idealized. Actually, there are certain deviations from this

behavior due to the effects of such things as rate of load

application, temperature, and time.

In most metals, high rates of load application re-

sult in less plastic flow than low load rates. This is

called rate sensitivity. The magnitude of this effect is

relatively minor at room temperature, but it increases

rapidly as temperature increases (19).

14



Besides influencing rate sensitivity, temperature

affects many other properties of a given material. Usually.

the ultimate tensile strength, proportional limit, and

modulus of elasticity decrease as temperature increases.

Time rates of change of deformation and stress also become

more important at higher temperatures. This suggests the

idea of plasticity as a matter of viscous flow in a fluid

(20; 21), which is the viewpoint adopted in this thesis.

Three important, time dependent processes are re-

covery, relaxation, and creep. Recovery is defined as the

restoration of the physical properties of a cold worked metal

without any observable change in the microstructure (15).

This effect results in a reduction in strain hardening over

time in materials that have been plastically deformed at

high temperatures.

If a specimen is deformed and then held in a fixed

position, the stresses within the specimen will gradually

diminish (19). This is called relaxation. On the other

hand, if we apply a constant load to a specimen, deformation

continues to increase with time. This increase in strain in

the course of time under constant stress is called creep.

Creep and recovery are complementary processes and are most

pronounced athigh temperatures. However, their effects

never completely disappear, even at very low temperatures

(14).

Creep. Since a creeping metal is the focus of this

thesis, the phenomena merits a closer look.

15
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Fig. 11-2. Idealized Curve Showing
the Three Stages of Creep

A creep test may be conducted by applying a constant

load to a specimen held at a constant temperature and then

measuring the strain as a function of time. The elapsed

time of such tests may exceed several months, while some

tests have been run for more than ten years (15).

An idealized creep curve generally looks like the

one shown in Fig. 11-2. As shown, these curves are commonly

divided into three regions called primary, secondary and

tertiary creep, or stage I, stage II and stage III creep.

The slope of the curve is referred to as the creep rate.

After an initial rapid elongation, s, we begin the primary

stage of creep. During primary creep, the creep rate de-

creases until it reaches a minimum rate that is maintained

16



for the duration of secondary creep. Finally, in the ter-

tiary stage, the creep rate begins to increase rapidly and,

eventually, failure occurs.

Research in the phenomenon of creep was pioneered

by Andrade (21; 22). He considered the first two stages of

the constant stress creep curve to be a superposition of the

three phenomena illustrated in Fig. 11-3. After a sudden

strain due to load application, a transient component that

decreases with time is combined with a viscous component

that progresses aZ a constant rate. Since the primary stage

of creep represents a region of decreasing creep rate, it is

dominated by transient creep. During this stage, the creep

resistance of the material increases by virtue of its own

strain hardening (15).

Secondary creep represents a balance between strain

hardening and recovery (19), such that the creep rate is

essentially constant.

The reasons for the rapid acceleration of the creep

rate during tertiary creep are not well understood. It is

unlikely that tertiary creep is due solely to necking of

the specimen, since many materials fail in creep of strains

which are too small to produce necking.. Tertiary creep is

more probably'the result of structural changes occurring in

the metal. Evidence has been found for void formation and

extensive crack formation during this stage (15). Due to

the complexity of tertiary creep and the fact that primary

and secondary creep often cover most of a specimen's useful

17
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Fig. 11-3. Andrade's Analysis of the Competing
Processes Which Determine the Creep.Curve (15)

life, most analytical models do not include tertiary creep.

Viscoplasticity. It is common practice to separate

creep and plasticity into separate categories. Creep in-

cludes all time effects and results in strains being developed

at a finite rate. Plasticity develops plastic strains

instantaneously, and time does not enter directly into con-

sideration. Physically, creep and plasticity cannot be

treated separately since only the combined effect is

measurable. Also, the concept of instantaneous development

of permanent strain is at variance with experiment and plas-

ticity is, at best, only a convenient mathematical fiction

(7). The combination of these two phenomena into a unified

model is called viscoplasticity (7; 23).

A model that includes purely elastic as well as

viscoplastic behavior is called elasto-viscoplastic. In

such a model, only the elastic strains are allowci to accum-

mulate instantaneously. The rate of the time dependent

strains depends on how much the applied stress exceeds the

yield stress. Three uniaxial viscoplastic rheological
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Rheological Model (7)

models in series are shown in Fig. 11-4. In instantaneous

load application, only elastic straining of the spring

takes place. The excess a - a0 is taken by the dashpots,

which results in a time variable strain. By placing more

than one viscoplastic model in series, as is shown in Fig.

11-4, a very general uniaxial behavior can be introduced

(7).

Bodner's Viscoplastic
Flow Law

A theory that accounts for viscoplastic behavior as

well as rate sensitivity and strain hardening effects is

the Bodner-Partom viscoplastic flow law (3; 4; 5; 6). An
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essential feature of this formulation (henceforth referred

to as the Bodner model) is that the total deformation rate

is assumed to be separable into elastic and inelastic com-

ponents:

6 .. = 6 . + .-13 ij ij
"E

where the elastic strain rate, *E is related to the stress

rate through the time derivative of Hooke's law. A yield

criterion is not required since both strain rate components

are considered non-zero for all non-zero stresses.

By assuming incompressibility and isotropy, the

plastic strain rate can be expressed in the form of the

Prandtl-Reuss equations of classical plasticity. Written in

terms of the strain rate, these become:

• p = Sij (11-19)ij 3

where e. is the deviatoric plastic strain rate tensor and
ij

the other quantities remain as previously defined. As noted

earlier, the form of X depends on the flow law selected.

Bodner expressed X as a function of J2 by squaring Eq (11-19)

to get

X D2 (11-20)

P I'P'P
where D = 1j, j is the second invariant of the plastic

strain rate tensor and J2 1 is the second invariant

of the deviatoric stress tensor.

A principle feature of Bodner's theory is the
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consideration that D2 is a function of J This hypothesis

is partially motivated by the extensive work in the field

of dislocation dynamics, which has shown that the disloca-

tion velocity and, therefore, the uniaxial plastic strain

rate is a function of the stress .3). The exact form of

this relationship is expressed as

2 2 nnl( 2
D2 DO exp [---) a_ (1-21)

The constant D0 is the limiting value of the plastic

strain rate in shear. This value can be arbitrarily chosen

and is usually taken to be the same large number for all

materials. Except for very high rates of straining, a

value of D0 = 104sec is generally adequate.

The exponent n is a rate sensitivity parameter

and influences the overall level of the stress-strain curves.

Decreasing n results in increased rate sensitivity and a

lowering of the stress-strain curves. It is a fundamental

material constant and is not dependent on the loading his-

tory. Bodner introduced the factor (n+l)/n at an early

stage in the development of his equations for numerical pur-

poses (4). It is not basically necessary, and dropping it

would only result in a change in some of the material con-

stants, not a change in the model's behavior.

Physically, Z can be interpreted as a macroscopic

hardening parameter that controls the resistance to inelastic

flow. In order to model strain hardening, Z must be made
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dependent on the deformation history of the material. Thus,

it is assumed to be a function of the plastic work, Wp, such

that

Z = Z(Wp) = 4- (Z0 -Zl)exp(-mWp/Z0 ) (11-22)

The function Z = Z(W ) is a basic material property which

directly influences the plastic stress-strain relations.

In Eq (11-22), Z1 is the maximum expected value of

Z, Z0 is the initial value of Z corresponding to the refer-

ence point from which we measure plastic work, and m is a

material constant that controls the rate of work hardening.

The parameter Z1 is necessary to set an upper bound on Z,
1

because without it D would approach zero for large values

of plastic work. This would correspond to a reversion to

completely elastic behavior and an unrealistic upward turn

in the stress-strain curve (3). Although Z1 is taken to be

a constant in this exercise, cyclic loading cases can be

handled by making Z1 dependent on loading history (14).

Generally, the plastic work is defined as

W = f S. .:jdt (11-23)
p ij ij

However, at high temperatures it is generally necessary to

consider the thermal recovery of hardening generated by

plastic deformation. This is done by redefining the plastic

work as follows (9).

-P rec

= f SC.dt + r dt (11-24)
p ij ij m(Zl1-Z)
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where
Z-Z 2

rec = -A( ')rZ (11-25)

Z2 is the value of Z for the completely non-work

hardened state and, therefore, represents the minimum hard-

ness we would expect to see in a particular material at a

given temperature. A and r are material constants chosen to

make the model's behavior match creep test data. It should

be noted that the inclusion of this recovery term is neces-

sary if we wish the model to represent secondary creep.

The constants in the Bodner model are temperature

dependent, but this can be effectively supressed by evaluat-

ing the constants at the specific temperature of interest.

In this case, Stouffer (6) determined that the following

values of the constants best fit the behavior of IN-100 at

1350 F.

D = 10 4 sec -  (assumed)

n = 0.7

Z0 = 915.0 KSI (6304 MPa)

Z1 = 1015.0 KSI (6993 MPa)

Z2 = 600 KSI (4134 MPa)

m = 2.57 KSI -I  (.37273 MPa
- )

A = 1.9 x i03 sec -1.

r = 2.66

(1 Kbar = 100 MPa = 14.504 KSI)
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III. The Computer Program

The computer program used in this exercise was an

in-house code named VISCO (9). It is a two-dimensional,

plane stress/plane strain finite element program that uses

constant strain triangular elements. In addition to the

Bodner-Partom viscoplastic flow law, VISCO incorporates

the Malvern (overstress) flow law and Norton's law for

secondary creep. The user has the option of selecting any

of these three models individually or using a combination

of the Malvern and Norton models. We will be concerned

only with the Bodner model. The user interested in a dis-

cussion of the other models should consult reference 9.

The Gauss-Seidel Iterative

Solution Technique

In finite element analysis, the equilibrium equa-

tions are expressed in matrix form as

[K]{U} = {P} (III-1)

where [K] is a symmetric, positive definite, nxn stiffness

matrix, {U} are the nodal displacements, and {P} the applied

loads. Most large-scale computer programs use some form of

Gaussian elimination to solve Eq (111-1) (10). Such methods

are called direct techniques, whereas iterative processes

are called indirect techniques. Direct solutions usually

involve costly matrix factorizations. However, once the
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factorization is complete, solution of the equations is

relatively cheap. Also, the factorization does not have to

be repeated if we wish to change the right-hand side of

Eq (Ill-1). Thus, several different load cases can be

handled quickly and efficiently. For this reason, direct

techniques are currently favored over indirect techniques.

Iteration does have some advantages however. In

general, an iterative solution technique requires less cen-

tral memory storage and eliminates matrix factorization,

which is the most costly part of a direct solution. The

disadvantages are: the lack of knowledge on how many itera-

tions are required to achieve an acceptable solution (often

hundreds or thousands of iterations are required); the method

fails in indefinite or unsymmetric problems; if the right-

hanJ side is changed, no advantage can be taken of a previous

solution as the whole iteration process must be repeated.

The disadvantages usually far outweigh the advantages of

iterative techniques (11). However, in a program like VISCO

where we want to simulate crack growth, the stiffness matrix

must be changed every time a node is released. Use of a

direct technique would require us to repeat costly matrix

factorizations to accommodate the changing boundary condi-

tions due to Crack growth. With an iterative technique,

applicable terms in the stiffness matrix are easily changed

between timesteps and factorization is avoided. Therefore,

VISCO uses thc Gauss-Sidel iterative technique with over-

relaxation.
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This technique is implemented in the following man-

ner (9). Consider Eq (Il1-1), rewritten as

[K]{U} = [-- -x (111-2)
ISYX SYY IU IPy

where U and U are the displacements in the x and y direc-x y

tions, and P and P are the applied loads in the x and yx y

directions. If the matrix [K] has cimensi6ns nxn, the sub-

matrices SXX, SXY, SYX and SYY will have dimensions n/2 x n/2.

However, by storing only the non-zero terms, we can con-

siderably reduce storage requirements. In VISCO we assume

that the displacements at any one node can be determined by

considering only the nodes that are directly connected to it.

Further, in the Gauss-Seidel technique, the displacement vec-

tor may be found by considering only one node at a time.

If we specify that a maximum of eight nodes may be connected

to any given node, we will never need to know more than nine

terms at once. Thus, the four submatrices can be compacted

to a matrix which is n/2 x 9. Since triangular elements

tend to develop undesirable aspect ratios if more than eight

nodes are connected to any one node (9), our eight-node

(limit is not very restrictive.

In order to help retrieve the proper terms from the

compacted submatrices, VISCO uses a matrix NP and a vector

NAP. The dimension of NAP is n/2 and the dimensions of NP

are n/2 x 9. The number of nodes connected to node I is

stored in NAP(1) while NP(I,J) stores the location in the
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submatrices of the terms associated with the jth node point

connected to node I. Note that for node I, J may go from 1

to NAP(I).

Using the above notation, the equilibrium equations

for the I th node point are written as:

SXX(I'l) SXY( 11)] UXI

t.SYX(1,l) SYY(1,l)1 I=M (111-3)

Py(I) J = 2 1SYX(I,J) SYY(IJ)1 U MI

I y

For the sake of brevity, let the right-hand sic_. of Eq (111-3)

FRX Solving for the displacements at nodebe defined as {FRY S

I gives:

II) SXX(I,1) SXY(Il)] FRXI 4
=U(~ (III-4)

Uy(1) =SYX(Il) SYY(Il) FRY

Note that solving Eq (111-3) only requires the inversion of

a 2x2 matrix. Since these terms in the submatrices are not

used for anything else, we can do all our inversions in ad-

vance and store the results in the original submatrix loca-

tions.

As a starting point in the iterations, we use an

initial estimate for the displacements which, for lack of a

better value, may be a null vector. After the displacements

at a node are calculated from Eq (111-4), these values are

substituted for the previous estimate and the displacements
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of the next node are calculated. An iteration is complete

when we have calculated the displacements of each node

point. Next, we calculate the change in displacements from

the previous iteration and use these to compute a tolerance

limit that is, in turn, used to test for convergence. In

VISCO the tolerance limit is called SUM and is defined as:

n/2
SUM = E [IAU(xI)*Sxx(Ix()+IAU (I)*SYY(i;1)I1 (111-5)i=1'y

where AUx and AU are the change in displacements between

iterations m and m+l. If SUM becomes less than a specified

value, 0, we assume we have converged to the correct solu-

tion and iterations are stopped. The value of e must be

determined by considering the desired accuracy and the num-

ber of iterations required for convergence. Smaller values

of e produce more accurate solutions, but require more

computer time to solve for a given problem than larger values

of e.
An iterative solution for the displacements is ob-

tained after each timestep, but convergence is usually much

faster than for the first set of iterations because we can

use the displacements from the previous timestep as our

initial estimate. Often, the convergence process can be

further speeded up by employing an overrelaxation factor.

In this case, the new displacements for iteration m would be:

= + XFAC x (111-6)
U U (I)] AUy(T)
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where the superscripts refer to the iteration number and

XFAC is the overrelaxation factor. The optimum value of

XFAC generally lies between 1.3 and 1.9 (10). Table III-1

illustrates the effect of the overrelaxation factor on con-

vergence in solving for the initial displacements in a

600-degree of freedom finite element problem. This problem

became numerically unstable when a trial case was run with

XFAC = 2.0.

TABLE III-1

Effect of Overrelaxation Factor
on Convergence

XFAC 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Number ofiteron 4360 3740 3000 2340 1740 1160 580iterations

Note that, while in this case the convergence rate improves

each time the overrelaxation factor is increased (except

when we tried XFAC=2.0), this does not always happen. One

problem with the Gauss-Seidel technique is that there is no

way to determine the optimum value of the overrelaxation

factor in advance. It must be done by trial and error.

Euler Extrapolation Scheme

VISCO employs an Euler extrapolation scheme (7) for

the time integration of the equations for all three visco-

plastic material models. During each timestep, the equations

for the Bodner model are integrated as follows for each

element (9):
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Z - (Z 1 -Z 0 )exp[-mW i (111-7)

P i 2

(D2) P = exp[-( D)o n+l (111-8)
2 0 3 J1l1 nl

PP P i i-1 1/2 i-1i }= [(D 2) /g 2 is } (III-9)

{dc j}= { }ij}Zdt (III-10)

;ii
• - - r (III-11r

rec A

i-1 i-+ i-i Pp= p-+{sij} {dtj} + Zrec dti/[m(Zl-Zi)] (111-12)

where the superscript i refers to the timestep. The accuracy

of this time stepping algorithm is strongly influenced by the

approximate integratiois in Eqs (III-10) and (111-12) (7).

Solution Procedure

Unlike a linear elastic analysis where the coeffi-

cieits of the stiffness matrix remain constant, the coeffi-

cients for a plasticity problem vary as a function of the

load. Thus, elastic-plastic displacements are usually found

by applying the load in small increments and correcting for

changes in material properties after each increment. Small

displacement plasticity problems are generally solved by

one of two techniques (8). In the first, called the tangent

modulus procedure, the effects of plasticity are accounted

for directly in the stiffness matrix. The second technique,
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i71

called the residual force method, uses the elastic stiff-

ness matrix during the entire analysis and treats plasti-

city as an applied load that is used in conjunction with

the applied mechanical and thermal loads for general

equilibrium. This is the technique employed in the VISCO

finite element program.

The residual force method uses the following matrix

relation:

[K]{U1i = {p}i + {Qi (111-13)

where [K] is the plastic stiffness matrix, {U} i are the

nodal displacements for the i th timestep, {pIi is the applied

load vector during the ith timestep, and {QJi- is the effec-

tive plastic load vector computed from plastic strains

accumulated prior to the i th timestep. The algorithm for a

typical timestep employing the residual force method pro-

ceeds as follows (9):

1. compute the current time

t = dt i + ti -l

2. compute the plastic strain rate
"P P i 1 i /2{S i -

ij= [(D2) /J2i ]l {S i

(this applies to the Bodner model only)

3. compute the approximate increment in plastic

strain {de .}i  = {Lij }dt i

4. compute the effective plastic load vector

{Q}I = f [B][D]{E.} dVOL
VOL i d
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(see the Appendix for a description of the B

and D matrices)

5. if the external loads are changing, compute the

current external load vector

{P11 = {P}i dt + {pi

6. compute the nodal displacements for Eq (111-13)

using the Gauss-Seidel iteratiye technique

7. compute the total strain for the strain dis-

placement relationships (Appendix)

{cij J = [B]{U}i

8. compute the current stress as follows:

{ai}i = [D][{ I} i {JP}i ]

Since we are using the offset plastic strain dis-

cussed in section II, the stress depends only on

the elastic strains.

9. check the timestep size by comparing the percent

change in effective stress and effective strain

during the current timestep to preselected stress

and strain tolerances. If these tolerances are

exceeded, the timestep size is reduced as dis-

cussed in the following section, and steps 1-9

are repeated for the same timestep. Otherwise,

the program will either increase the timestep or

leave it the same. A full discussion of the

stress and strain tolerances may be found in

reference (9).
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10. Repeat the above process until reaching the

desired simulation time.

Timestep Variation

VISCO is able to efficiently handle large changes

in strain rates by varying the rate of which we step through

time. Timesteps can vary from small fractions of a second

for rapidly changing conditions, such as 16ad application,

to minutes or hours during steady state creep. After every

iteration, the timestep size is updated so that we always

use the largest timestep that the stress and strain toler-

ances hill allow. This capability results in more efficient

use of computer time than if the timestep sizes were fixed.

The amount of change in the timestep after any

iteration is controlled by the parameters P and P . These

parameters, which are a function of effective stress, effec-

tive strain, and the stress and strain tolerances, are de-

fined as follows (9):
i i-I

= e e (111-14)
a i-i a

e TOL

(deP)i

CTOTAL £TOL

where the superscript i refers to the timestep and TOTAL

is the magnitude of a vector whose components are x y and

O.5(xy. Thus,

STOAL- 2 +2 +Oy
2

x + + 0.Y xy
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P and P are evaluated for each element and a third para-

meter, P, is set equal to the largest one. The timestep

size is then determined from the following equations:

dti = 0.8dti/P if P > 1

dt i = dt i-I if 0.8 < P < 1

dti = 1.25dti -l if 0.65 < P < 0.8

dti = 1.5dt i -l if P < 0.65 .

Finally, whenever a node is released to simulate crack

growth, the timestep size, dt, is automatically set equal

to the initial timestep size specified by the user.

The Yield Criterion

VTISCO uses the von Mises yield criterion discussed

in section II to determine when plastic flow begins. We

obtain a linear elastic solution for all stresses, strains,

and displacements until the first element yields or the

total load is applied, whichever comes first. At this time,

the viscoplastic material models are activated. Thus, even

though the Bodner model is independent of a yield criterion,

its implementation in VISCO makes it dependent on the von

Mises yield criterion until after the first element yields

or load application is complete. Thiswas done so that the

Malvern and Norton flow laws could be more easily incorpor-

ated in the program along with the Bodner model. It also

results in a small savings in computer time.
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IV. Experimental Procedure

The experimental data group used in this thesis was

a subset of a larger group of data collected by Donath (24)

for use in another project. Parts of his work specifically

applicable to the specimens considered herpin are summarized

for reference.

Test Specimens

All test specimens were standard compact tension spe-

cimens such as that shown in Fig. IV-I. They will be referred

to as specimen 7-1, 7-2, 7-3, and 7-4. The first number

indicates the nominal thickness in 32nds of an inch, and the

second distinguishes one specimen from another. Due to

machining tolerances, the actual specimen thicknesses were

slightly different from the nominal thicknesses shown above.

Nominal stress intensity factors of 30, 35, 40 and 45 ksi-in1 /2

(33.0, 38.5, 44.0, and 49.5 MPa-m1 / 2 ) .re considered.

The material used was IN-100, an advanced, nickel

based superalloy used as a turbine disk material in the

F-100 engine. At 1350 F (732 C), the modulus of elasticity

of this material is 26,030,000 psi, and the initial yield

stress is 130,000 psi.

The IN-100 was supplied in pancake form (Fig. IV-2)

by its manufacturer, Pratt and Whitney Aircraft Group, United

Technologies Corporation. The pancake was 1.5 inches (38mm)

thick and 16 inches (405mm) in diameter. Specimens were
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cut with their crack surfaces perpendicular to the flat sur-

face of the pancake with some cracks pointing in the radial

and some in the circumferential direction of the pancake.

Donath determined that the crack plane orientation with

respect to the pancake had no observable effect on crack

growth for these specimens.

Specimens were cyclically loaded at room temperature

in an MTS hydraulic servo-controlled testing machine for

pre-cracking to a target total crack length of 0.65 inches

(16.51mm) (24). After test termination, each specimen was

pulled apart and the actual length of the fatigue induced

starter crack was measured using the ASTM 3-point averaging

method illustrated in Fig. IV-3.

co
a)Ca

+,tI+

0Ci

H 0

CO20
.H (

p 2.5"

Fig IV-I. Standard Compact Tension Specimen
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aa thickness

Fig IV-3. ASTM 3-Point Averaging
Method for Crack Lengths

The loads used to produce the desired nominal stress

intensity factors, K, were calculated using the initial sur-

face crack lengths. However, surface crack lengths are not

a good indication of the true crack length because of the

characteristic thumbnail shape of most cracks. The crack

front in the interior has often advanced quite a bit further

than the surface crack measurements indicate. This effect

is called tunneling. For later comparison with finite ele-

ment models, the K values were recomputed using the actual

initial crack lengths, "a". These values, along with other

pertinent data for each specimen, are listed in Table TV-I.

The equation used to calculate the K values in Table IV-l

was:
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TABLE IV-l

Nominal Versus Actual K Values for
Compact Tension Specimens

Specimen Load Thickness Initial Nominal K Actual K
No. lb in "a" in ksif¢h ksi /I-n

7-1 1762 .2134 .6617 35 36.4

7-2 1524 .2154 .6642 30 31.2

7-3 2034 .2154 .6637 40' 41.7

7-4 2280 .2154 .6634 45 46.7

K __E_ fCa) (IV-l)

where K I is the mode I stress intensity factor, P is the

applied load, B is the specimen thickness, and a is the

initial crack length. The f(a) term is a geometry correction

factor for the compact tension specimen and is given as (25):

a a a2 a3) [29.60() 185.5( ) + 6S5.7

4 a 5
- 1017(R) + 638.9(-) (IV-2)

ww

where w is the horizontal distance from the centerline of

the loading pin holes to the far end of the specimen (see

Fig. IV-l).

Apparatus and'Instrumentation

Constant load was applied in a 10,000 lb (44.48 kN)

capacity creep test frame having a 20 to 1 loading ratio (24).

Specimens were surrounded by an oven with viewing ports on

both sides and inside dimensions of 7x7x4 in (178x178x102 mm).
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This oven maintained the temperature at 1350 F (732 C) for

the duration of each test.

Displacements in the plane of load applications were

measured across the ends of the specimen at a point directly

above the loading pins (Fig. IV-I). Measurements were taken

using a pair of linear variable transducers (LVPT) mounted

below the oven and connected to the specimen through two

E-shaped plates of IN-718 that were rigidly attached to the

top and bottom of the specimen. This technique was first

demonstrated by Mills, et al. (26). The LVDT's were bench

calibrated and linear over a midrange of 0.150 inches

(4mm) .

I
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V. Finite Element Models

Mesh Layout

Four different finite element meshes were used to

test sensitivity of the models to changes in element size

in the vicinity of the crack tip and in the area directly

above the loading pin holes. These meshes (Figs. V-1 to

V-4) will be referred to as mesh 1, 2, 3, and 4. Due to

symmetry, only one half of the specimen geometry was modeled.

The element size reduction scheme and an expanded

view of the element layout around the crack tip are shown

in Fig. V-5. This region of uniform elements ahead of the

initial crack tip avoids unrealistic changes in compliance,

as the crack grows through the model, that can develop when

non-uniform element sizes are used (9). The number of uni-

form elements near the crack tip and the degree of refine-

ment represented a tradeoff between the anticipated amount

of crack growth and the computer time required to carry out

the simulation. Meshes 1 and 3 had 32 uniform elements with

a height and base of 0.025 in (0.065cm), while meshes 2 and

4 had 24 uniform elements with a height and base of

-3-3
3.125xi0 3 in (7.9375x10 cm).

This general pattern of elements was used by Ohtani

and Nakamura (27) for a center cracked plate. It permits an

unlimited number of size reductions while also insuring that
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no two neighboring elements differ in size by more than a

factor of 2. Fitting the elements around the loading pin

holes required a change in element layout from that used in

the rest of the specimen, but the maximum size differences

between neighboring elements remains close to a factor of 2.

Aspect ratios varied from 1.0 to 0.5 for the elements in

the body of the specimen, while some elements around the

loading pin holes had aspect ratios as high as 3.

Mesh 1 contains 381 elements and 234 nodes. The

area of the largest elements is 0.02in 2 (0.129cm2 ), while

the elements in the vicinity of the crack tip have been re-

fined to an area of 3.125x10-4in 2 (2.016x10 -3cm2).

Since high stress gradients exist in the area of the

specimen directly above the load, a refinement of the mesh

in this region was tested to see what effect it had on the

stress transmitted to the crack tip. This refinement was

incorporated in mesh 2, which contained 445 elements and

267 nodes.

Mesh 3, which contained 543 elements and 327 nodes,

was the same as mesh 1, except that the elements in the

immediate vicinity of the crack tip were refined to an area

of 4.8848x10 -6 in 2 (3.1494xlO-5 cm2).

Mesh 4, with 607 elements and 360 nodes, incorpor-

ates both the refinement above the load added in mesh 2 and

the crack tip refinement added in mesh 3.
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Comparison of Meshes

To test mesh accuracy, displacements generated by

elastic VISCO runs with each of the four meshes subjected to

an applied load of 2280 pounds were compared to displacements

calculated using equations given in reference (28). For

plane stress conditions, these equations are:

P a
1 EVl(F) (V-l)

62 P V(a (V-2)

where 61, 62, a and b are defined in Fig. V-6 and values of

V1 and V2 are obtained from Fig. V-7. Accuracies are ex-

pected to be 2 percent for V1 and 1 percent for V2 for

0.3 < a/b < 0.7 (28). Results are given in Table V-1.

TABLE V-1

Comparison of Calculated and Finite
Element Model Displacements

ICalculated Mesh 1 Mesh 2 Mesh 3 Mesh 4

61 (in) 2.471 2.202 2.158 2.225 2.245

xl0 x10- xl0 xl0 x10

62 (in) 1.471 1.348 1.308 1.366 1.366
10-3 10-3 1- 3 1- 3 1- 3xl0 xl0 3  xlO xlO x103

The assumption that plane stress conditions prevail

at the crack tip in these specimens is justified by research

conducted by Atluri and Nakagaki (29). They showed that

plane stress conditions best characterized the behavior of
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compact tension specimens one inch thick, much thicker than

those used here.

Note that while the refinement above the loading pin

incorporated in mesh 2 results in about 2 percent less dis-

placement for 6 and 62 than for mesh 1, this decrease is not

consistent throughout the model. The displacements directly

above the loading pin were about 4 percent greater for mesh

2 than for mesh 1.

As another check on the meshes, the stress intensity

factors at the crack tip were estimated from the elastic

VISCO runs by using a technique suggested in reference (30).

If we consider the y component of stress, the stress inten-

sity factor for a given element is calculated as follows (25):

K I = - ay (2rr)1/2 (V-3)
cos[ + sin-sin]-

where r and e are cylindrical coordinates that locate the

centroid of the element relative to the crack tip.

The finite element procedure is inaccurate near the

crack tip due to the inability of the elements to represent

the stress singularity. Therefore, the stress intensity

factor calculated with Eq (V-3) will not be accurate. how-

ever, a reliable estimate of the stress intensity factor at

the crack tip can be obtained if we plot the calculated

stress intensity factor, K, for several elements in the

vicinity of the crack tip versus distance, r. If the exact

stresses were used, the exact value of K would be at the
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intercept of this curve with the axis at r = 0 (30). We can

estimate K with the stresses from our finite element analysis

by plotting calculated K values for increasing values of r

until the resulting curve reaches a constant slope. The K

value for the finite element mesh is obtained by extrapolating

this slope back to r = 0. Results from elastic VISCO runs

for each mesh using the applied load corresponding to speci-

men 7-4 are shown in Figs. V-8 to V-11 and in Table V-2.

TABLE V-2

Comparison of Actual and Finite Element
Mesh Stress Intensity Factors

Actual Finite Element

Mesh K (ksi in1 / 2) K (ksi in1 / 2) % Error

1 46.7 43.9 6.4

2 46.7 43.9 6.4

3 46.7 45.9 1.6

4 46.7 45.9 1.6

As a final comparison between meshes, computer runs

were made to estimate the amount of crack growth in 40

minutes for specimen 7-4. The resulting estimates along with

the computer time required for each run on the CDC 6600 com-

puter are shown in Table V-3.

A review of the data presented in Tables V-1, V-2

and V-3 shows that the refinement above the loading pin hole

incorporated in meshes 2 and 4 made almost no difference in

the stress intensity factor at the crack tip. However, the
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TABLI V-3

Estimated Crack Growth After 40 Minutes
for Specimen 7-4

Central Processor Time Estimated Crack
Mesh (sec) Growth (in)

1 344 .0529

2 599 .0577

3 2360 .0492

4 3217 .0501

refinement of the crack tip elements in meshes 3 and 4 im-

proved the stress intensity factor estimates by about 5

percent. Additionally, while the displacement and crack

growth estimates for meshes 1, 3 and 4 all tended to cluster

about the same value, the results from mesh 2 deviated

slightly from the rest of the group. It should also be noted

that meshes 3 and 4 produced nearly identical results, but

that mesh 3 required considerably less computer time to run

than did mesh 4. After considering all of the preceding

mesh comparisons, it was decided that the refinement above

the load incorporated in meshes 2 and 4 was ineffective and

that all further computer runs would be made using meshes 1

and 3.

As shown in Table V-3, the crack growth estimate

from mesh 1 differed only 7 percent from that given by mesh 3,

while mesh 3 used almost 700 percent more computer time.

However, mesh 3 did a much better job in displaying the stress
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and strain fields near the crack tip because the larger ele-

ments used in mesh 1 tended to smear out the rapid changes

occurring in this area. For these reasons, mesh 1 was used

to test the feasibility of using far-field displacement

measuremients to predict crack growth over periods of several

hours where the computer time required to run mesh 3 would

have been prohibitive. Mesh 3 was used for short runs (40

minutes) and for studying the behavior near the crack tip.

Based on good agreement between actual and finite

element mesh K values as well as between model displacements

and those calculated using Eq (V-l) and (V-2), it was assumed

that meshes 1 and 3 adequately modeled the test specimens.

Effective Crack Lengths

As previously mentioned, surface crack lengths are

not a good indication of actual crack length. In addition,

accurate measurement of surface crack lengths is difficult in

the high temperature environment studied here because oxida-

tion on the surface of the specimen tends to mask the crack.

Even with accurate surface crack measurements, there is no

way to determine how long the crack actually is at any speci-

fic time during the test because we do not know how much

tunneling is taking place. For this reason, the concept of

an effective crack length determined from specimen compliance

measurements is introduced as a measure of crack length for

severely tunneled crack front geometries. Donath showed

that the effective crack length, aeff, can be determined from
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the following equation:

n

E * B-C 1+ ma (V-4)

where a = aeff/w (see Fig. IV-l), E is an effective modulus

of elasticity determined from compliance measurements at the

start of the test (24), and C is the compliance (slope of a

load versus displacement curve). The coefficients in Eq

(V-4) are given by Donath as:

1 = 11.51

m = 248.8 0.25 < a < 0.5

n = 3.167 (V-5)

I = 22.468

m = 632.7 a > 0.5

n = 5.240

As the crack grows through the specimen, the newly

exposed surfaces will become heat tinted. Thus, if a speci-

men is not taken all the way to failure, the final crack

length can be determined by breaking it open and measuring

the tinted crack front. These final crack lengths agreed

very well with the final effective crack lengths lending con-

fidence to the effective crack length as a valid measure of

crack growth (24).

The Hybrid Experimental-Numerical

Technique

A hybrid experimental-numerical technique (HEN) was

used with the finite element method to model crack growth in
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the test specimens. As shown in Figs. V-12 through V-15,

experimental displacement versus time plots for each speci-

men were approximated by linear fits to the data points.

The equations of these lines were read into the computer pro-

gram and used as crack growth criteria in the finite element

models for simulation times of 40 minutes or less. For

longer runs, smoothed displacement versus time plots given

in reference (24) were used as the crack growth criteria.

To provide a common starting point, both model and experimen-

tal displacements were set equal to zero after load applica-

tion was complete. (Note that displacements given in Figs.

V-12 through V-15 do not include load application displace-

ments.) Thereafter, any increase in experimental displace-

ments over the model displacements was attributed to crack

growth in the test specimens. At this time, fixed nodes in

the model were released to simulate crack growth and bring

the displacements back into line. This procedure was re-

peated each time the model displacements became less than

the experimental displacements until the desired simulation

time was reached.

Crack Tip Node Release Method

The first step in releasing a crack tip node is to

calculate the total force on that node. This force is cal-

culated from the stresses in the adjacent element as follows:

Zf f [B]faij }vo (V6
adjacent VOL ij vol (-6)
elements
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The node restraining force is set equal to the component of

f perpendicular to the crack line, fy. Next, we convert the

boundary condition on the node from zero y displacement to

an applied force, fy. This force is then removed over a

set period of time based on the maximum anticipated crack

growth rate and the size of the elements the crack is grow-

ing through (i.e., maximum crack growth rate equals element

size divided by release time). Since Hinnerichs (9) showed

that the node release time had little effect on results, the

same release time was used for all four specimens and only

variations due to mesh changes were considered. Nodes in

mesh 1 were released in 100 seconds, while those in mesh 3

were released in 40 seconds.

The change from a displacement to a force boundary

condition at the crack tip node being released is easily

handled by the Gauss-Seidel iterative solution technique dis-

cussed in section III. During iterations, the equilibrium

equations for fixed nodes are skipped. After a node is re-

leased, its equilibrium equations are included in all subse-

quent iterative solutions. No costly changes are required.
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VI. Results and Discussion

The simultaneous-use of experimental data from crack

growth tests and a theoretical model of the cracked specimen

was termed the Hybrid Experimental-Numerical Technique (HEN)

by Kobayashi (31). Use of the HEN technique to predict

crack growth in IN-100 was previously investigated by

Hinnerichs (9). He showed that it could provide accurate

estimates for small increments of creep crack growth in

center cracked plates over short time periods (15 to 60

minutes). By using extremely accurate, near field (close to

the crack) displacement measurements and a finite element

mesh with crack tip elements that were roughly equal to the

grain size of IN-100, he was able to predict creep crack

growth to within 10 percent of post test measurements.

Displacement readings were taken with a laser interfero-

meter able to resolve movements as small as 0.004 mils

(0.1 microns). This accuracy was considered essential since

total crack growth in his tests was only about 4 mils (100

microns), making changes in displacements behind the crack

quite small.

In contra'st, the LVDT's used to measure displacements

in this effort are accurate to about ±0.5 mils. However, the

compact tension specimens used here were subjected to higher

stress intensity factors over longer experimental test
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times than Hinnerichs' center cracked plates. Displacement

changes of more than 20 mils were recorded in each test.

Since the laser interferometer loses much of its sensitivity

when displacements become much greater than 0.04 mils (1

micron), the accuracy lost by using LVDT's is not as great

as it may seem at first glance. LVDT's have the advantage

of being simple to use and much less expensive than a laser

interferometer.

Another contrast between this effort and that of

Hinnerichs is that, due to the combination of higher stresses

and longer test times, the total crack growth herein was much

larger. If crack tip elements as small as Hinnerichs' had

been used, it would have been necessary to pop hundreds of

nodes to model the total crack growth in these tests. As a

compromise, two different meshes were incorporated--a fairly

fine mesh for short runs and a coarser mesh for long runs.

Since the bulk of the computer time required to run

the VISCO program is used by the node popping routine,

elements were sized so that the amount of crack growth ex-

pected in any one run would not require more than 20 nodes

to be released. This figure was chosen based on previous

experience with the program that indicated that popping 20

nodes would take about 4000 seconds of central ;cessor

time on the CDC 6600 computer. It was fel" .nLat ,ns longer

than this would not be an efficient use of computer time

unless they were the only way to obtain accurate results. As

it turned out, this method for sizing elements worked well
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and use of finer meshes was not necessary.

As discussed in section V, the meshes used to carry

out the analysis in this effort will be referred to as mesh

1 and mesh 3. The crack tip elements in mesh 1 were 32 times

larger than Hinnerichs', while those in mesh 3 were 4 times

larger. The coarseness of mesh 1 allowed the simulation of

tests as long as 14 hours for the lower load cases, while

remaining below the 4000 second limit we set for computer runs.

It was not believed that the coarse mesh would provide any-

thing better than gross estimates of creep crack growth, but

the results turned out to be much better than expected.

Crack Growth Estimates

Table VI-l shows the results of VISCO runs with

meshes 1 and 3 after 40 minutes of simulated crack growth.

Plots of crack growth versus time for the runs with mesh 3

are given in Figs. VI-I through VI-4. Results from mesh 1

were not plotted because only two or three nodes were re-

leased during these runs. The average difference between

the crack growth estimates from mesh 1 and mesh 3 was only

12 percent. Considering the fact that the crack tip elements

in mesh 1 were 8 times larger than in mesh 3, the result was

a surprise. However, even though mesh 1 is very coarse when

compared to the mesh used by Hinnerichs, the area of the

crack tip elements is still only 3.125x10- 4in 2 . Evidently,

further refinement of the mesh from that used in mesh 1 re-

sults in very slow convergence as far as crack growth estimates
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are concerned.

Notice that, after 40 minutes, both the VISCO results

and the effective crack growth estimates calculated by Donath

(24) are greater for specimen 7-3 than for specimen 7-4,

which had a higher load. However, as shown in Table VI-l,

the average crack growth rate for specimen 7-4 was greater

than for specimen 7-3, so the crack growth for specimen 7-4

would have exceeded that in specimen 7-3 in a few more

minutes. The difference in crack growth estimates was pri-

marily caused by delays in the time between load application

and popping of the first node to start cr-ack growth. This

time delay is taken to be the incubation period for each

crack. In three out of the four cases shown in Table VI-l,

an increase in load caused a corresponding increase in the

crack incubation period. It is difficult to say whether this

phenomenon is due to actual crack retardation or experimental

scatter in the displacement data. However, temporary crack

growth retardation due to the application of occasional ten-

sile overload cycles is a well-recognized phenomenon in

cyclic loading cases, and it is likely that a similar pheno-

menon exists for creep crack growth also.

Another thing that should be noted in Table VI-l is

that mesh 1 consistently estimated more crack growth than

mesh 3. This is because finite element meshes tend to get

stiffer as the size of the elements increases. Since mesh 1

is stiffer than mesh 3, it showed less displacement due to

the applied load than did mesh 3. Using the HEN technique,
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7
a stiffer mesh will show more crack growth than a fine mesh

if both are forced to follow the same displacement data.

Next, compare the effective crack growth calculated

by Donath with the crack, growth generated by the VISCO runs.

In all cases, the effective crack growth is less than that

given by the VISCO runs. However, Donath showed that the

effective crack length consistently underestimates the actual

crack length in these tests. There is no way to tell which

estimate is closer to the actual crack length. However, the

amount of crack growth here was fairly small and the magni-

tude of the differences in crack growth estimates is, at

worst, .02 in between mesh 3 and the effective crack length.

Considering that the displacement measurements used to con-

trol crack growth in the models were not extremely accurate,

this degree of resolution is pretty good.

Another point to consider is that, for longer runs,

the difference between the effective crack length and the

VISCO estimated crack length stabilized at a fairly constant

value. If the two sets of crack lengths are plotted versus

time, the lines run nearly parallel for the duration of the

test. Thus, the crack growth rates given by the two tech-

niques were nearly identical. This trend is illustrated in

Figs. VI-5 through VI-8, where crack growth estimates gener-

ated by mesh 1 are compared to the effective crack length

over the duration of each of the four tests considered. The

effective crack length is not plotted on Fig. VI-6 because

of inconsistencies in the published data. Note the excellent
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agreement between the VISCO results and the effective crack

lengths in each case shown.

Displacement data for specimens 7-2, 3, and 4 ran

out about 20 minutes before each test was actually terminated.

In order to estimate what the HEN-VISCO combination would

have given for a final crack length, the average crack growth

rate during the last half hour of each VISCO run was used to

extrapolate the estimated crack length out to test termina-

tion. Specimen 7-1 was not considered because it failed

during the experimental test. Comparison of the final effec-

tive crack lengths given by Donath, the final surface crack

lengths, and the final crack lengths generated by the VISCO

runs are shown in Table VI-2.

TABLE VI-2

Final Crack Lengths in Test Specimens

Test VISCO Final a Final a Final a
Specimen Time Simulation Surface Effective VISCO

(min) Time (min) (in) (in) (in)

7-1* -- 392 ......

7-2 860 832 1.234 1.281 1.344

7-3 280 257 1.104 1.218 1.246

7-4 220 202 0.920 1.075 1.092

*failed during test

The agreement here is excellent with the VISCO runs showing

5-10 percent more crack growth than the effective crack cal-

culations.

Figures VI-9 through VI-11 show what the actual
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fracture surface looked like when the specimens were broken

open after test completion. Arrows in these figures indi-

cate the final surface crack measurements on each side of

the specimen, unlabeled lines represent the final effective

crack length, and lines labeled with a "V" indicate the

position of the final VISCO crack length. These figures

graphically illustrate the severe tunneling that character-

izes creep crack growth and the inadequacy of surface crack

measurements in estimating actual crack length. Note that

both the VISCO results and the effective crack lengths

slightly underestimated the actual crack length, but were

much more accurate than the surface crack measurements.

Crack growth estimates from the VISCO runs were within 15-

20 percent of the actual crack growth in every case. This

amount of error is well within the limits of experimental

scatter in creep crack growth tests.

Crack Growth Criteria

Based on the good correlation between predicted and

actual crack growth, results from the VISCO runs were exa-

mined to see if any crack growth criteria could be formed.

Parameters considered were stress, strain, effective stress

and effective strain at nodes about to be released as well

as the accumulated stress and strain history at each node

when it was released.

Since the large stress and strain gradients near

the crack tip were not displayed as well by mesh 1 as by
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Fig. VI-9. Fracture Surface -Specimen 7-2
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Fig. VI-IO. Fracture Surface - Specimen 7-3
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Fig. VI-11. Fracture Surface Specimen 7-4
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mesh 3, the data generated by mesh 3 were used for this

phase of the investigation.

Critical Strain Criterion. Since a critical strain

criterion has shown promise in previous work (32), the crack

tip strains were considered first. The component of plastic

strain perpendicular to the crack plane (y component) and

the effective plastic strain values were each averaged for

the three elements surrounding the crack tip whenever a node

was about to be released. The objective was to see if some

constant (critical) value of strain existed as the crack

grew through each node. The calculated strain values are

shown in Table VI-3. Effective strains followed the same

general pattern and will not be shown. Note that in every

case the strains start out high and then decrease to a steady

state value as the crack grows through the specimen.

Hinnerichs noted the same trend, but found that nearly all

of his specimens reached a steady state value close to .03.

The strains in specimens 7-3 and 7-4 both stabilized at

values close to .03 but, since the element size used here

was four times larger than Hinnerichs' elements, this was

felt to be mostly coIncidence. In any case, the strain

values for specimens 7-1 and 7-2 stabilized at values much

lower than .03. It appears that, with the compact tension

specimens used herein, no single value of strain can be

considered to control crack growth.

Critical Stress Criterion. Using the same procedure

as for the strains, the average values of stress perpendictil3i
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TABLE VI-3

Average Plastic Strain at the Crack Tip
as a Function of Crack Growth

# of Nodes E

Released 7-1 7-2 Y 7-3 7-4

1 .0275 .0201 .0396 .0528

2 .0274 .0174 .0363 .0462

3 .0243 .0175 .0320 .0393

4 .0231 .0169 .0260 .0318

5 .0226 .0182 .0285 .0336

6 .0215 .0205 .0269 .0311

7 .0220 --- .0273 .031

8 .0212 --- .0268 .0310

9 .0218 --- .0266 .0310

10 .0220 --- .0263 .0312

11 .0212 --- .0271 .0311

12 .0219 --- .0255 .0312

13 .0208 --- .0265 .0302

14 --- --- .0273 .0314

15 ...--- .0262 .0311

16 --- --- .0269 .0319

17 ...... .0261 ---
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to the crack plane (y component) and effective stress were

calculated for nodes ab6ut to be released in each specimen.

These results are shown in Tables VI-4 and VI-5. Both the

effective stress and the. y component of stress were nearly

constant in each specimen as the crack progressed through

the mesh. In addition, very little variation was noted

between specimens. Note that while the load increased by

50 percent from specimen 7-2 to 7-4, both the y component of

stress and the effective stress increased by less than 5 per-

cent at nodes being released. It would seem that, at least

for the specimens considered here, crack growth could be

controlled by releasing nodes when the average stress at the

crack tip reached a value of about 133 ksi, which is roughly

equal to the yield stress. This value of stress is only

about 2 percent different than the average values of either

the y component of stress or the effective stress at nodes

being released in each of the four specimens considered here.

It should be noted, however, that the behavior patterns of

the y component of stress and the effective stress are quite

different.

In the case of the y component, the average stress

in the three elements surrounding a node initially increases

to a value well above 133 ksi as the crack approaches the

node. However, when the crack actually reaches the node,

the average stress will have begun to decrease due to the

unloading of the previous node. It appears that the node

pops when the stress relaxes to approximately 133 ksi, and
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-TABLE VI-4

Average Stress Perpendicular to the Crack Tip
as a Function of Crack Growth

# of Nodes a (ksi)
Released 7-1 7-2 Y 7-3 7-4

1 134 129 133 131

2 132 141 136 141

3 132 131 133 135

4 131 133 144 136

5 130 127 133 135

6 133 118 136 138

7 130 --- 134 135

8 132 --- 134 136

9 131 --- 135 136

10 130 --- 135 135

11 132 --- 133 136

12 130 --- 136 135

13 133 --- 134 137

14 --- --- 133 135

15 ...... 135 136

16 ..--- 133 134

17 --- --- 136 ---

Average 131 130 135 136
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'TABLE VI-5

Effective Stress as a Function of Crack Growth

# of Nodes (ksi)
Released 7-1 7-2 eff 3 7-4

1 128 123 127 126

2 131 145 138 145

3 131 131 133 135

4 131 133 149 137

5 130 126 132 135

6 133 117 137 135

7 130 --- 134 137

8 133 --- 135 136

9 130 --- 135 136

10 131 --- 136 136

11 132 --- 133 136

12 129 --- 138 138

13 133 --- 134 136

14 --- --- 134 136

15 ---. 136 135

16 ... .134 -- -

17 .--.- 136 ---

Average 131 129 135 136
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the process then repeats itself for the next node.

In the case of the effective stress, the stress

followed a monotonically increasing pattern and the nodes

popped when the average value first reached 133 ksi or some-

thing close to this. The less complicated behavior of the

effective stress would make a criterion based on it slightly

easier to incorporate in a computer program than one based

on the y component of stress.

Accumulated Stress/Strain History. Since it is prob-

able that crack growth is caused not just by the level of

stress or strain in a body, but by an interaction of these

states and the length of time they exist at the crack tip,

it was thought that equations of the following form might

provide a usable crack growth criterion.

,ondt = C1  (VI-l)

iEndt = C2 (VI-2)

where C and C are constant values that, when reached, indi-
1 1 2

cate that crack growth should proceed. Eq (VI-I) is similar

to the life fraction rule discussed by Goodall and Chubb (33).

Only effective stress and effective strain were

investigated for use with Eqs (VI-I) and (IV-2). Also,

since it seemed logical that crack growth would be dominated

by the near-field stresses and strains, only the area close

to the crack tip was considered. The diameter of the plastic

zone surrounding the crack tip in the specimen with the

highest load was chosen as the distance for which the stress

and strain histories would be tracked for all specimens.
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For example, the plastic zone in specimen 7-4 extended

approximately 4 nodes ifi front of the crack tip. Thus, when

the crack reached the 4th node in front of any given node,

the stress or strain history was considered to start. Eq

(VI-l) or (VI-2) was used to compute the area under the

stress or strain versus elapsed time curve until the crack

reached the node of interest. At this point, the process

was stopped and the final result noted. Values of the expo-

nent n of 1, 2 and 3 were considered.

It was found that values given by Eq (VI-I) were

nearly constant for each specimen except for 7-2, but they

varied widely from specimen to specimen. For the case n = 1,

the average values given by Eq (VI-l) are shown in Table VI-6.

Results for n = 2 and n = 3 followed similar patterns with

the percent difference between specimens remaining nearly

constant. Values for the accumulated strain history given

by Eq (VI-2) varied even more widely than the stress history

results shown in Table VI-6.

TABLE VI-6

Average Accumulated Stress History at Node
Release for a Fixed Distance in Front of

the Crack Tip

Specimen faeffdt x 10 psi-sec

7-1 9.23

7-2 13.86

7-3 6.35

7-4 6.00
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The strain history seemed to offer little hope of

providing a usable crack growth criteria, but the stress

history exhibited an interesting pattern. Since the values

given by Eq (VI-l) increased as the load on the specimen

decreased, it seemed to indicate that too much distance in

front of the crack tip was being considered for the lower

load cases. Thus, instead of tracking the stress history

for a fixed distance in front of the crack tip, the distance

considered for each specimen was varied so that it coincided

with the diameter of the plastic zone in that specimen. For

specimens 7-3 and 7-4, this distance spanned approximately

4 nodes in front of the crack tip, while for specimens 7-1

and 7-2, it spanned 3 and 2 nodes respectively.

When the strain histories were recalculated using

this technique, Eq (VI-l) gave the values shown in Table VI-7.

TABLE VI-7

Average Accumulated Stress History at Node
Release for Plastic Zone in Each Specimen

Specimen fOeffdt x l05 psi-sec

7-1 6.72

7-2 6.08

7-3 6.35

7-4 6.00

It appears that we are approaching a constant value

that could be used as a crack growth criterion. Note that,

while only the average values of the accumulated stress

91

77J



history are shown in Table VI-7, the individual nodal values

in three out of the foui test specimens showed only minor

deviations from the average. However, values for specimen

7-2 ranged from 2.43x105 to 16.7x10 5 psi-sec. Insufficient

data exists to make a definite conclusion about the accuracy

of this technique, but it looks promising and merits further

investigation.
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VII. Summary and Conclusions

A two-dimensional plane stress/plane strain finite

element program called VISCO was used to model creep crack

growth in IN-100 at 1350 F. The constitutive equations em-

ployed in VISCO were in the form of a sophisticated, non-

linear, time dependent material model developed by Bodner

and Partom. This model accurately predicts material behavior

during both primary and secondary creep.

The hybrid experimental numerical procedure was used

to predict creep crack growth in four different compact

tension specimens under loads that produced stress intensity

factors ranging from 30 to 45 ksi in1 /2 .

Several crack growth criteria were investigated in

an effort to determine the parameters that control creep

crack growth.

The following statements and conclusions are based

on the analysis presented in this paper.

1. The HEN procedure, when coupled with the VISCO computer

program, provides good estimates of creep crack growth in

compact tension specimens when easily measured, far field

displacements are used as the experimental input. Results

compared favorably to those obtained by Hinnerichs using

near field displacements in center cracked plates. It appears

that, unless the user wishes to resolve very small increments
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of crack growth, extremely accurate displacement measurements

are not required. The degree of accuracy provided by measure-

ments taken with LVDT's was sufficient for the analysis con-

ducted herein.

2. Constant strain triangular elements work well for resolv-

ing both small and large increments of creep crack growth.

In addition, extremely fine meshes are not required to obtain

good estimates of crack growth over the range of behavior

considered in this study. A mesh with crack tip elements

roughly 32 times the size of IN-100 grains was able to pre-

dict crack growth to within 15-20 percent of actual growth

over periods ranging from 5 to 14 hours.

3. Both crack length estimates from the VISCO computer pro-

gram and effective crack lengths calculated from compliance

measurements give much more accurate indications of true

crack length than do surface crack measurements.

4. The stress transmitted to the crack tip in a finite

element model of a compact tension specimen is not highly

dependent on the mesh refinement in the.area above the load

application point. Refinement of the mesh in the area

around the crack tip does effect results, but convergence

is very slow once the elements reach approximately .025

inches in size.

5. No single value of strain for a critical strain crack

growth criterion was found to match the conditions in all

of the specimens considered herein. An accumulated strain

history parameter also proved ineffective. However, the
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stress level of nodes being released was nearly constant in

every specimen which indicated that a critical stress cri-

terion holds promise as a crack growth parameter. Encourag-

ing results were also obtained with an accumulated stress

history criterion where the area under the stress versus

elapsed time curves was tracked for each node in the plastic

zone surrounding the crack tip as the crack grew through the

specimen. Use of this criterion merits further investigation

to see if it can be applied to different specimen geometries

and to wide ranges of load levels.

It is believed that the crack growth estimates and

criteria presented herein will add to the body of knowledge

concerning high temperature crack propagation and provide

progress towards life prediction of actual turbine disks.
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I.

APPENDIX

Finite Element Formulation

y
A ~v k

ukVk

k 
Uk

u. V

0.x

Fig. A-1. Constant Strain Triangular Element

As illustrated in Fig. A-1, the behavior of a con-

stant strain triangular element is described by six degrees

of freedom.

{U) = [u. v. u. v, uk VkT (A-1(U = [u 1v J J

where the u and v parameters represent displacements in the

x and y directions of each individual node. These displace-

ment parameters can be expressed in the form of a linear

polynomial such that
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U = a1 + a2x + a3y

(A-2)V = a 4 + as5X + a 6y

where the a. are constants determined from the nodal dis-1

placements and nodal coordinates as

a1 b . -_I i

a 2 2A [ai a a luil (A-3)

a 3  -Ci  cji ck ' u k

and

aI 1 b. b bk ukj (A-4)

a 6 -i cj c k  u k

where is the area of the element. The coefficients ai,

bi, and ci are given by

a x iYk - xkYj

b- = - Yk (A-5)

c. = xk - x.

with the other coefficients determined by cyclic permutation

of the subscripts i, j, and k.

The strains at any point within an element can be

defined in terms of the derivatives of the displacements as

axI
{F} = = av (A-6)

1YYxy 2 -
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If we substitute Eqs (A-2) to (A-S) into Eq (A-6), the strains

can be written in terms of the nodal displacements and nodal

coordinates as

{:} - [B]{U} (A-7)

where {U} is defined in Eq (A-l) and

b. b o bk  o

[B] 1. 0 c. 0 ck (A-8)7B] 0 o 1  k

b. c. b. ck bk
L1 1 k Ji

The matrix [B] is called the strain-displacement matrix.

Once the strains are known, we can calculate the

stresses as follows:

{c} = [D]{c} (A-9)

where [D] is called the elastic material property matrix.

For the case of plane stress, this matrix becomes

F1  V 0
[D] = 1_v2 L 1 0;V (A-10)

Finally, the elastic response of the element can be given by

[K]U {P} (A-11)

where [K] is the elastic stiffness matrix, {U} is the dis-

placement vector, and {P} represents the applied loads. The

exact form of [K] is

M T
[K] = E f[B] [D] [B] d vol (A-12)

m=l

101

i "%



where the summation is carried out over all the elements

in the structure and the integration takes place over the

area of each individual element.

If the stresses are known, the nodal forces can be

calculated from the relation

M
{f} = f f[B ]To} d vol (A-13)

m=l

Nodal forces due to known strain states are given by

M T
{f} = f f[B] [D1IE} d vol (A-14)

m=l
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