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Abstract

J

Stress near a crack tip in plasticity was analyzed

using three different finite element modelings; a constant

strain viscoplastic triangle, an eight-noded elastic-plastic

quadrilateral and a crack tip elastic-plastic singularity

element. The specimen under consideration was a center

cracked plate made from IN-100. The half-crack length was

0.1367 in (3.472 mm). An elastic solution was formulated

and two different loadings to generate plasticity were con-

sidered. Fine mesh and coarse mesh solutions for the higher

order elements were generated and compared. Comparisons

were made based on an equal number of degrees of freedom in

two specific regions referred to as the near field and the

far field regions.

It was determined that the elements whose elastic

solutions conformed best to linear elastic fracture mechan-

ics predictions were the constant strain triangle and the

eight-noded quadrilateral in a fine mesh. The crack tip

element did not perform as well as was expected. For the

plastic analysis, the constant strain triangle exhibited

the largest plastic region and gave the most accurate

stress profiles. The eight-noded isoparametric element

came within fifteen percent of the stress levels generated

from the constant strain triangle. The stress singularity

that is characteristic of the crack tip element forced thac

element to behave unnaturally stiff in plasticity.

xi



Because it is not as stiff as either the crack tip ele-

ment or the eight-noded element, the constant strain triangle

offered the most accurate solutions. The CST solution

required the least amount of computational resources.

Though the isoparametric element mesh was easier to formu-

late and gave fairly accurate answers elastically and plas-

tically, it was determined that the constant strain triangle

in a fine mesh offered the best solution to elastic-plastic

finite element problems for the center cracked plate.

xii



I. Introduction

The United States Air Force has a vital interest in

the effects of cracks on airframe components. Prior to

1969, the Air Force determined the "safe life" of an air-

craft by first assuming a defect-free structure. Mean

life fatigue analysis was then used in which the projected

lifetime of the aircraft was divided by a safety factor.

The "safe life" approach had several disadvantages.

The manufacturing process invariably results in cracking,

thus invalidating the hypotheses of a defect-free struc-

ture. Ordinary wear, maintenance, and battle damage also

create discontinuities in the structure. The service

failures of the F-Ill and C-5A emphasized the poor corre-

lation between the safe life model and actual aircraft

durability. A new method of estimating aircraft life was

needed.

Structural engineers have turned to Linear Elastic

Fracture Mechanics (LEFM) to determine the stresses caused

by cracks in a structure. LEFM has worked well; unfortu-

nately, it too has its limitations. LEFM assumes that a

material will behave with perfect elasticity until it

reaches its failure load. As a consequence, brittle fail-

ure will result. Real materials exhibit plasticity after

the elastic yield load has been reached. Higher loads

result in more plasticity and greater deviations from LEFM

predictions.

1



Plasticity occurs around the tip of a crack on a

material under loading due to unusually high stress concen-

tration near the crack. Plastic behavior is nonlinear, and

this results in irrecoverable strains in the material.

Plastic behavior greatly alters the material proper-

ties in the region near the crack tip. In order to accu-

rately determine the survivability and durability of cracked

material under loading, elastic-plastic or elastic-visco-

plastic fracture mechanics must be utilized.

The primary method for numerically analyzing stress in

the vicinity of a crack is the "Finite Element Method". To

accomplish this, programs have been written incorporating

various finite elements and the laws of plastic flow. The

major purpose of this thesis is to determine which of the

three different finite element models considered is the

most accurate and easiest to use.

The study of crack growth is also essential in the

accurate prediction of the structural lifetime of many air-

crafts. Linear elastic fracture mechanics does not accu-

rately predict crack growth and, therefore, a plastic

analysis must be performed. The study of plastic crack

growth is beyond the scope of this thesis. However, the

information gained from this finite element modeling of

plasticity study will be useful in future analyses of

crack growth.

2
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II. Objective

Plasticity may be studied in several ways. A material

may deform plastically by the singular or combined effects

of load, time or temperature. A specimen could be elastic-

perfectly plastic, where the stress level is the same for a

given plastic strain (see Fig. 1), or it could exhibit

strain hardening, where stress will increase with strain

(see Fig. 2). The model to be selected will depend upon

the desired complexity of the analysis.

Stress analysis in a cracked plate is accomplished

today by the use of finite element computer programs.

Since there are many finite element programs available for

elastic-plastic stress evaluation, it would seem to be an

easy matter to select a program, punch up data cards, and

perform the analysis. However, not all finite element

programs or finite element modelings are alike. The

structural engineer must determine how accurate his model

and program are. He also must minimize the consumption of

resources in analysis and this includes computer processor

time, memory usage, and his own time in setting up the

problem. The engineer is easily bewildered by the pro-

liferation of programs and models. As previously stated,

the primary purpose of this thesis is to determine which

one of the available finite element formulations best

describes a typical cracked plate problem, in terms of

accurate results, least amount of computer time, and ease

of use.

3
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To accomplish this, three different t .?es of elements

were considered; a constant strain triangle (CST), an

eight-noded rectangular element, and a crack tip singular-

ity element. Two different programs were applied to the

problem; the VISCO program written by Captain Terry Hinne-

richs, USAF, and a program written by Jalese Ahmad and

V. Papaspyropoulus of Battelle Corporation, Columbus, Ohio,

which shall be referred to as JALESE. JALESE utilizes the

8-noded and crack elements and VISCO incorporations the

constant strain triangle (CST).

The material under consideration was IN-100 at 1350'F

(731.20 C). The specimen to be modeled measured 1 inch

(0.0254 m) in height, 1.4 in. (0.0356 m) in width, and

0.3 in. (0.00762 m) in thickness (see Fig. 3). Young's

modulus for IN-100 was taken to be 26.3x103 ksi (181.2x103

MPa), Poisson's ratio was assumed to be 0.3, and the yield

stress was 130.0 ksi (895.9 MPa). Because the specimen

and loading were symmetric, only the top quarter of the

geometry was analyzed. Appropriate boundary conditions

were applied to insure symmetry.

The ratio of the material thickness, t, to the width

of the specimen, 2b, was 0.21. This indicated that the

material was relatively thin as compared to its width.

Therefore, a plane stress solution was used.

To guarantee the applicability of the results, the

.,umber of degrees of freedom in the crack tip region and

the mesh as a whole was kept within a few percent. For

6
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comparison purposes, a coarse mesh for the 8-noded and crack

element in which the number of degrees of freedom in the

crack tip region was halved was also run. Convergence of

the coarse mesh solution to the fine mesh solution was also

investigated.

An elastic analysis was first performed on the speci-

men, using the different finite element models. A stress

intensity factor was obtained and comparisons were made

between the finite element modelings and results from lin-

ear elastic fracture mechanics. Plastic runs were then

accomplished, using two different loadings. Regions of

plasticity and stress profiles were used for comparison.

Criteria for program efficiency were central processor

time, core memory usage, and various subjective factors,

such as ease of use.

8



III. Theoretical Formulation

Theory of Plasticity

The generalized relationship between the elastic

stress tensor and the elastic strain tensor may be written

as:

a = E (i
mn mnpr pr

where om is the elastic stress tensor, e is the elastic

mnp r

isotropic material, that is a material whose elastic prop-

erties are completely independent of the orientation of

the axes, such as IN-100, the 81 components of E reducemnpr

down to only two independent constants. Those constants

are E, Young's modulus, taken to be 26.3x103 ksi (181.2x103

MPa) and v, Poisson's ratio, which was taken to be 0.3.

In compact tensor form, the equation for strain versus

stress for an isotropic material can be written as (Ref 3):

mn E (i+v) - \ma] (2)

where 6 is kronecker's delta.
mn

One would believe that the above elastic equation

could be used for any level of stress. Unfortunately, this

is not true. At a certain value of stress, called the

"yield stress", the material behavior deviates from elastic

behavior. The material then begins to exhibit plasticity.

For IN-100, yielding will occur at 130.0 ksi (895.9 MPa).

9



For a uniaxial test, the material will yield when the

applied load equals the yield stress, and the specimen will

behave according to its uniaxial stress-strain curve. The

uniaxial stress-strain curve for IN-100 is shown in Fig. 4.

However, for multiaxial stress situations, such as the

cracked plate problem, it is necessary to determine the

combination of stresses that will cause yielding. The

yield criterion indicates when plasticity has begun (Ref 9).

One of the most widely used yield criterion is the one

postulated by von Mises (Ref 9). This criterion states

that yield in tension is caused by maximum distortion

energy. The distortion energy is given by:

1Ud - 2G 2

where Ud equals distortion energy, G equals the shear modu-

lus, and J2 is the second invariant of the deviatoric

stress (Ref 11), defined as

2 iS '' (4)2 2 13 i

where S.. are the components of the deviatoric stress13

tensor.

This criterion can also be viewed as stating that

yielding will occur when J2 reaches a critical value, which

is the yield stress. For IN-100, the yield stress in com-

pression equals the yield stress in tension. This is a

characteristic of isotropic materials. Therefore, the

von Mises criterion can be used in either situation.

10
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The von Mises yield criterion can be stated as follows:

F{a [(uax +u +a z )2F~j =[(x yz

2 2 2 1 O~+y~+zx]/2
+ 3 (1xy +Ty+ ) - ( +0 0 +G 0 (5)

xy yz zX Xyy z X

where u° is the uniaxial yield stress, then yielding will

occur when F(o) _ 0. The formulation of the von Mises yield

criterion is presented in Mendelson (Ref 9).

For isotropic strain hardening, the yield stress is a

function of effective plastic strain and may be expressed

as a segmental linear function of eP:
e

- +HE (6)

where a° is the uniaxial yield stress of the material, which

is the stress necessary to produce yielding, cp is the effec-e

tive plastic strain, co, and H' is the slope of the uniaxial

stress-strain curve. The effective plastic stress is

defined incrementally by dc p (see Eq. 10).

If one has exceeded the uniaxial yield stress of a

material, the total strain, cmn , can be expressed as the

sum of its plastic and elastic parts.

E VE + EP (7)mn mn mn

where E equals the elastic strain tensor and cP is them mn

plastic strain tensor. A plastic flow theory which is con-

sistent with the von Mises criterion is that the ratio of

the increment of plastic strain to deviatoric strain

remains constant, or

12
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d.
- d (8)S.•
1]

It can be shown (Ref 3) that

3 p

dA 2 (9)°ij

where dsp is the incremental effective plastic strain,

defined as

dFp = pd.jdij (10)

Therefore, one can write:

2 1e

where ae , called the effective stress, is expressed as:

= (12)°e

Eq. 11 is called the Prandtl-Reuss equation for plas-

tic flow. For isotropic strain hardening, the Prandtl-

Reuss equation becomes:

3 doe

d1j - 3 e (13)
e

where H' is the slope of the uniaxial stress-strain curve.

This equation allows one to solve for the differential

change in plastic stress using known quantities. However,

since dEP. cannot usually be calculated explicitly, an
13

iterative solution technique must be used.

13



Elastic-Plastic Solution Technique

There are two methods available for solving elastic-

plastic problems incrementally using a finite element com-

puter program. The first, called the tangent modulus

method, requires a stiffness matrix, [K], be constantly

updated to account for the effects of plasticity. Since

recalculating K requires much computer time, a second

method for computing the plastic strain is desired (Ref 13).

The second method of calculating plastic strains is

to divide the total force vector into a plastic load vector

and an elastic load vector. This technique, called the

residual force method, avoids repeated modifications of

the stiffness matrix. The residual force method was used

in effect for both the VISCO and JALESE programs.

When using the residual force approach, the basic

equation of equilibrium for the finite element method can

be expressed as

{F} - [K){U} (14)

where (F} is the generalized force vector, [K] is the stiff-

ness matrix, and {U} is the generalized displacement vector

and is broken up as follows:

[Ke {p}i + {Q} i (15)

where Ke is the elastic stiffness matrix, P is the applied

load vector, and Q is the effective plastic load vector

for the elements in plasticity.

14



An incremental solution process, denoted by the i super-

scripts, is used and there are two possible incremental

procedures. Both methods apply an incremental load and

calculate the associated values of stress and strain. The

initial stress method approaches equilibrium by iterating

the initial stress increments. The initial strain method

approaches compatibility by iterating the initial strain

increments. The JALESE program uses the initial stress

method to compute the elastic and plastic strains. The

VISCO program uses a time dependent form of the initial

strain technique and is described in Ref 7. Therefore,

the initial stress method will now be examined in detail

(Ref 15).

The initial stress method for the solution of elas-

tic-plastic problems is accomplished by first applying the

total load vector and examining for plasticity by the yield

criterion. If no yielding has occurred, one has a perfectly

elastic problem. If plasticity is indeed present, then one

solves for the elastic and plastic strains by first solving

a purely elastic problem for the total applied load, dP.
i

In this first step, dE is determined by the elastic solu-

tion. Note that the superscript i denotes the current

increment and i-1 denotes the preceding increment. The

subscript I denotes the current iteration and I-1 denotes

the preceding iteration.

The corresponding elastic stress, dOE is calculated

from de. Then, an initial stress, do is calculated, where

15



do = doE - do (16)

This initial stress is the stress required to maintain

compatibility with the uniaxial stress-strain curve. The

resulting "balancing" force from the initial stress is

calculated by:

dQ = fATdood(vol) (17)

dQ is added to the applied load, dP, and the iterative

process starts over. A stable solution that satisfies com-

patibility and equilibrium is reached when the change in

dQ i = 0

Figure 5 shows the steps in the initial stress algo-

rithm. Note that D EP is the strain to stress matrix for

elastic-plastic solutions. A diagram for a uniaxial initial

stress solution is shown in Fig. 6.

Viscoplastic Material Models

Another phenomenon associated with problems in plas-

ticity is creep. Creep includes all time-dependent effects

and results in creep strains, which are developed at a

finite rate. Time-independent permanent plastic strains

are lumped together into the generalized term "plasticity".

The combination of time-dependent and time-independent

effects into a unified plastic flow law is called "visco-

plasticity" (Ref 14).

In deriving the flow law for viscoplasticity, one must

first decompose the total strain rate into its elastic and

plastic strain rate components.

16



For each load increment dP in the plastic range:

1. dU I = K-l(dP + dQ_)I.-
2. dEI = B dU

3. doE I = Dd I

4. a' -I- + daEI

5. d a, EP=_ld D

6. dc d c - d cI

7.- -l - I

F- = Et-1 + dc

8. dQ = T dI d(vol)

Process is terminated when dQ I = dQI 1

Figure 5. Steps in the Initial Stress Method (Ref 7)

17
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i = i +  E j (18)

where c.. is the total strain rate, Eij is the elastic

strain rate and eP. is the plastic strain rate. The elas-

tic strain rate versus stress rate equation is obtained

from the time derivative of Hooke's law of elasticity. The

plastic strain rate tensor is related to stress rate by the

time derivative form of the Prandtl-Reuss equation (Ref 14):

(19)

where S.. are the components of the deviatoric stress
iJ

tensor. Once again, incompressibility and isotropy have

been assumed.

It is not entirely correct to treat separately the

plastic strain due to creep and the plastic strain caused

instantaneously by loading. However, the superposition of

Malvern's overstress law with Norton's law for secondary

creep has been proposed as a unified viscoplastic flow law

(Ref 14) into a finite element program referred to as

VISCO (Ref 7).

Creep may be described as time-dependent deformation

occurring under a constant strain (Ref 13). The consti-

tutive law for creep is in the form of a strain rate. The

creep law used in the VISCO program is Norton's law and

may be expressed as (Ref 14):

dJ creep B 2S..P .ceep -- yc(ae) 20
E.]creep dt c e 2 ae
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where P .creep is the creep strain rate, EPcreep is the
1'

creep strain, yc is the creep coefficient, and B is the

creep exponent. y c and B are constants determined from

uniaxial creep test results.

The Malvern overstress equation relates the instantan-

eous plastic strain rate tensor to stress, and may be

written as follows:

Fe 13 (21)= yIp -(1

13 Y (c 2) e

where y is a iluidity constant, ae is the effective stress,

and F(cp) is the strain hardening yield stress which hase

been defined in Eq. 6. Of course, this equation is only

valid if yield has been exceeded, that is, if the effective

stress is greater than the strain hardening yield stress.

If yield has not been exceeded, then £ij equals zero.

The Malvern model can be adapted for time-independent

elastic-plastic solutions. When this is done, yp may take

on any non-zero positive value. The elastic-plastic solu-

tion is the steady state value of the stresses, strains and

displacements after the total load has been applied. There-

fore, if one multiplies both sides of Eq. 21 by dt, the
3 Sj

resulting expression acting as the coefficient of 3 -y--,
e

reduces to the coefficient for time-independent plasticity

(Eq. 13).

VISCO utilizes an Euler linear extrapolation scheme to

integrate the viscoplastic strain rate expressions. The equa-

tions for the Euler extrapolation may be written as follows:
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0 i f a < CY(C )3if a i- >(- -- Pi-lf)e e
{ iP ii-i i e~-

{Sii_1  if o e i- > a(c )i-i

{dsPJ}-  = { J-3"}dT

a (Ep)i + H' (P) 1 (24)

ee e

The superscript i refers to the time step and the sub-

script i refers to specific components of stress or strain

(Ref 7).

Viscoplastic Solution Procedure

There are two generalized techniques available for

solving the viscoplasticity problem. These are the same

two procedures that were used to solve the time-independent

analysis. In the first method, the tangential stiffness

matrix must be constantly updated. It has previously been

stated that this method is inappropriate for use in a

finite element computer program. The second solution pro-

cedure uses a constant elastic stiffness matrix to iter-

atively correct the "residual forces" obtained from the

difference of elastic and plastic stresses calculated. In

21
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the elastic-plastic analysis, load was incremented directly

to satisfy the yield condition and the plastic flow law was

used. In the elastic-viscoplastic solution technique, time

is incremented directly and load, stress, and strain are

incremented indirectly. Zienkiewicz and Cormeau present

the viscoplastic solution procedure, and it may be summa-

rized as follows:

First, the time increment, dt , is added to the pre-

ceding time t to obtain the current total time, t

Then, the increments of the plastic strain tensor are com-

puted by the equation:

{dEj} {P. }dt (25)
iJ iJ

where is computed from the Malvern equation (Eq. 21).

The plastic strain is totaled by

p~~~ i pi-1 +  d 1~
{{ej} + {dc (26)

The plastic strain rate, FP. had been previously calculated
1

by the Malvern flow law.

The plastic load vector, {Q} i-l is computed by

{Q} = [B][D]{EP d(vol) (27)

Vol

where the B matrix and D matrix are described in Appendix A.

Next, the current external load vector is calculated

by:

{P} .i ati + {p}i-i (28)

where P is the force rate vector (a known quantity).
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The nodal displacements, {U} are determined from:

{U} = [K]- ({P}i + {Q} ) (29)

where K is the elastic stiffness matrix.

The current total strain {cij} is evaluated from the

strain-displacement equation,

{Eij} = [B]{U} i  (30)

The current stress, {a}, can now be calculated from

{aij} i = [D ({i} i - {p}i) (31)

The VISCO program incorporates a variable time step

procedure to minimize computer central processor unit time

usage. This time step change is more fully explained in

later paragraphs. It is at this point in the program that

the time step size is checked in terms of prescribed stress

and strain change tolerances per time step. If these tol-

erances are not exceeded, the time step size may be

increased for the next time step or left the same; if the

tolerances are exceeded, the time step size is reduced and

the iterative process is repeated in an effort to satisfy

the stress and strain change tolerances. If the tolerances

have been satisfied, the iterative process is repeated

until the desired simulation time has been reached.

The computer algorithm built into VISCO for estimating

the time step is based around the parameters P and P

(Ref 7), which are defined as follows:
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oi _ i-I

p e e (32)Po i-i (2

e tol

where ato I is the stress tolerance, and

(dE:p) iP e (33)

6total Etol

where c tol is the strain tolerance, and

16242 + 1 2

£total x y 2¥yxy (34)

The superscript i refers to the time step. The parameters

P and P £ are calculated for every element. One method that

Hinnerichs suggested for changing the time step is:

dt i = dt i-1/P (35)

where P is set equal to the largest value of P or P .

Another method that was suggested for altering the

time step that avoids repetitive recalculations uses the

following equations:

dt i = 0.8 dti/P if P > 1

dt i = dti-1  if 0.8 5 P < 1
i-I (36)

dt = 1.25 dt if 0.65 _S P < 0.8

dti = 1.5 dt i-  if P < 0.65

Eq. 36 reduces the time step more than Eq. 35 if P is

greater than 1. If P is less than 1, Eq. 36 reduces the

time step slower than Eq. 35. Hinnerichs employed Eq. 36

into the final form of VISCO.
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Fracture Mechanics

Linear Elastic Fracture Mechanics (LEFM). Linear elas-

tic fracture mechanics relates the stress field and dis-

placements near a crack tip to the stress applied to the

structure for various crack geometries. Elastic analysis

is used. The term used to describe the elastic stress and

deformation fields near a crack tip is the stress intensity

factor, K. There are actually three different types of K,

corresponding to the three modes of crack displacement;

they are the opening mode, sliding mode, and tearing mode

(Ref 10).

A mode I (opening) crack occurs when the stress is

applied along the y-axis and the crack lies along the x-

axis. The center cracked plate under consideration exhibits

mode I behavior. The stress intensity factor, Ki, is given

by:

na 1/2
KI = v'T/a(sec 1-) (37)

where 2a is the crack length and 2b is the plate width.

Eq. 37 is valid for 0.3<a/b<0.7. Otherwise,

K a vrf-a( - t an 1/2 (38)

Note that for the case of a = 0.1367 in. and b =

0.500 in., Eq. 37 is used. The stresses near the crack tip,

0x' ay and Txy , are given in terms of Ki, a, radial distance

r from the crack tip, and angular measure 0 from the crack

tip by (Ref 13):
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K1  0 30
a - COS [1 - sin sin (39)

x /25r

KI 0 0 30
- COS 1[i + sin 2 sinT

Y /2 r

KI e e 30

TxY sin -f cos - sin -

Note that for each of the values of stress, ax, a y, and

Txy, there exists a 1 singularity near the crack tip. This

means that the stresses approach infinity as one gets closer

and closer to the crack tip.

The Crack Tip Element. The crack tip element accu-
1

rately models the singularity that results from linear

elastic fracture mechanics. This element is formed by

degenerating the eight-noded quadrilateral into a six-noded

triangle with the midside nodes for the sides nearest the

crack tip located at the quarter-chord point near the crack

tip. Barsoum (Ref 2) and Henshell and Shaw (Ref 6) both
1

describe the mechanism by which the --- singularity is

formed from the eight-noded quadrilateral.

Consider the quadrilateral in Fig. 7. Notice that the

midside nodes nearest the crack tip have been placed at the

1
chord point. The side 1-4 is now collapsed and the loca-

tion of midside node 7 is adjusted such that it is at the

1
chord position. The resulting six-noded triangle is

shown in Fig. 8. In this case, the singularity is investi-

gated along the x-axis, n=O.
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Figure 7.General 8-Noded Quadrilateral with
Midside Nodes Moved to !-Chord

-3

Figure 8. General Crack Tip Element

27



The equation used to determine x is given by:

8
x E N( i )x i (40)

i=l 1

N. denotes the shape function for the eight-noded1

quadrilateral which is given in Eq. A-29. By using the

values of x for each node, the equation for x as a function

of . for n=O becomes:

1 1 21

+ ]F(1+C9)1 + (l_-2)-_- (41)

or,

9i
x= (2 + 2 + l)-- (42)

Therefore,

= -1 + 2 14 (43)

Differentiating Eq. 42 results in

ax _ (i+0 (44)

where the value of in terms of x given by Eq. 43 has been
ax

substituted. Notice that equals zero at the crack tip

(x=0). Now (45
= _ _( ~l(~)(45)

where

detJ - 2(x,y) (46)

a ( ,n)
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Therefore, Eq. 44 makes the Jacobian singular at x=O,

=-l. Considering only the displacements at nodes 1 and 6,

the displacement u along the line 1-6 is given by:

1 1 2u ( 2-1)u I + (l+ 2)u 6  (47)

The strain in the x direction then becomes:

9x 1x 9 9Cau 1 + 1 u' + ( - + 2)u6

(48)

Therefore, a 1 strain singularity along the line 1-2

has been created by the use of the crack-tip singularity
1

element. Since stress is proportional to strain, a 1

/T
stress singularity also has been created. Since the

Jacobian always goes to zero at the crack tip, one can

choose any value of theta and there will be a - singular-

ity for stress and strain along that r.

If the crack tip is surrounded by singularity elements

(see Fig. 9), then one can choose any value of theta and

have a 1 singularity for stress. Therefore, surrounding

the crack tip with singularity elements effectively simu-

lates the singularity from the theory of linear elastic
fm

fracture mechanics.

Plasticity within the Singularity Elements. Any finite

element will depict plastic action when the effective stress

within the element has reached the yield stress. When this

occurs, the stresses and strains within the element can be

determined only through the iterative plastic analysis

described previously. Linear elastic fracture mechanics

29
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"\Crack Tip

Figure 9.Crack Tip Surrounded with Crack

Tip Elements
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can no longer be used to determine the stres..-- nr the

crack tip. In other words, the total stress will not

increase as a function of 1 as one approaches the crack

tip. Eventually, the effective stress for the elements

near the crack tip will reach the maximum value that is

permitted for the material under plasticity, which for

IN-100 is taken as 164.0 ksi (1130.1 MPa)..

The crack tip singularity element performs irregularly

in the crack tip region when the yield stress is reached due

to the fact that the element is being forced to obey the
11 singularity rule even when it no longer applies. There-

fore, spurious values of the stresses and strains for the

crack tip element in plasticity should be seen in the finite

element computer analysis.
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IV. Results and Discussion

Time Independence vs. Time Dependence

The JALESE finite element program performs a time-

independent, elastic-plastic analysis and uses the Prandtl-

Reuss equations to determine plastic strain. The VISCO

finite element program, on the other hand, performs a time-

dependent, elastic-viscoplastic analysis and uses a time-

dependent equation to determine plastic strain such as the

Malvern flow law and Norton's law for creep. When solving

plasticity problems using JALESE, one first had to input a

small elastic load and the program then multiplied the load

until one element became plastic. Then it was necessary to

input small increments of load in order to arrive at a

plastic solution. When using the VISCO program, one had

to input the total desired load and a rate at which the

load was to be applied. The program used a time-stepping

procedure to increment the load and compute the plastic

strain (see the section on Viscoplastic Solution Procedure

in the Theoretical Formulation).

The time-dependent solution procedure used in VISCO

was adapted for time-independent problems by first setting

the creep coefficient equal to zero (Ref 8). Next, y was
p

assigned a non-zero positive value which produced a steady

state solution. Finally, the load was applied quickly;

therefore, a high force rate, such as 20% of the load per

second, was used.
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Mesh Arrangement

The first objective of the present research was to

verify that the VISCO and JALESE programs were working.

This was accomplished by testing a uniaxial specimen using

a minimum number of elements. If the resulting plot of

stress versus strain matched the uniaxial curve, the pro-

gram was determined to be verified. For the constant

strain triangle in the VISCO progiam, only two elements

were used (see Fig. 10). The JALESE program was tested

with two three-noded triangles and one eight-noded quadri-

lateral (see Fig. 11). The triangle available in the

JALESE program is not a constant strain triangle but a

four-noded quadrilateral condensed down to a triangle.

It uses the shape functions and Gaussian integration

schemes that a quadrilateral uses and not the simple func-

tions and integration that the CST of the VISCO program

uses.

For each of the test cases, the effective stress was

plotted against the effective strain. The results were

found to correspond very closely to the uniaxial stress-

strain curve for IN-100. Since this satisfied the verifi-

cation criterion, the programs were held to be in working

condition.

The next task that had to be accomplished before the

comparison tests could be run was to devise a suitable

finite element mesh. For the constant strain triangle, the

mesh that was used was identical to the one presented by

Hinnerichs (Ref 7). This mesh will be discussed in later
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Figure 10. Two Triangular Elements Uniaxial

Verification Mesh
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Figure 11. One Eight-Noded Element Uniaxial
Verification Mesh
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paragraphs. For the 8-noded and crack tip elements, it was

necessary to slowly develop a finite element mesh by first

devising a very coarse mesh using only 95 nodes, 170 degrees

of freedom and 26 elements for the crack tip element (see

Fig. 12), and 107 nodes, 192 degrees of freedom and 28 ele-

ments for the 8-noded element (see Fig. 13). The elastic

stress intensity factor for each of these cases was deter-

mined, and the results were compared to the stress intensity

factor for the constant strain triangle, fine mesh given in

Hinnerichs as shown subsequently (Ref 7). The results were

also compared with the theoretical stress intensity factor

obtained from linear elastic fracture mechanics.

Once it had been verified that the very coarse mesh pat-

terns were giving fairly accurate linear elastic answers, it

then became necessary to devise the refined mesh patterns for

the crack tip element mesh and the 8-noded element mesh. Bar-

soum (Ref 2) states that a mesh pattern that propagates radially

from the crack tip works the best for elastic analysis because

a radial pattern allows one to easily change element size.

Such a radial pattern was used in the fine meshes. The same

mesh pattern was used for elastic and plastic analysis since

the mesh could not be altered in the middle of the program

run. The mesh patterns are illustrated in Figs. 14-16. The

crack tip region (r < 0.005) meshes are shown in Figs. 17-19.

Since the results of the eight-noded and crack tip ele-

ment runs were to be compared with results from the constant

strain triangle, it was necessary to keep the number

36
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Figure 12. Crack Tip Element Test Mesh
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Figure 13. Eight-Noded Element Test Mesh
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Figure 14. Crack Tip Element Fine Mesh
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Figure 15. 8-Noded Element Fine Mesh
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Crack Tip

Figure 17. Crack Tip Region - Crack Element,

Fine Mesh

Crack Tip

Figure 18. Crack Tip Region - 8-Noded Element

Fine Mesh
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of degrees of freedom in the various regions the same. By

doing this, one is able to compare each type of element to

their primary characteristics. The number of degrees of

freedom is the important parameter because the number of

displacement equations to be solved equals the number of

degrees of freedom. Equal degrees of freedom in given

regions isolates the effect of element types as discussed

subsequently. Therefore, for comparable results, it is

important that the number of degrees of freedom in each

test case be kept the same.

Table I shows the number of degrees of freedom in

each region. Notice that overall, the crack tip element

mesh had 60 elements, 205 nodes and 382 degrees of freedom,

the eight-noded element mesh had 58 elements, 207 nodes,

and 382 degrees of freedom, and the constant strain tri-

angle mesh had 355 elements, 211 nodes, and 378 degrees of

freedom. The crack tip element mesh and the eight-noded

element mesh had exactly the same number of degrees of

freedom and the constant strain triangle mesh had only 1%

fewer degrees of freedom.

The two most important regions for which the number of

degrees of freedom must be under close scrutiny are the far

field region,'for this is where the stresses are applied,

and the crack tip region, since this is where the most

important stress analysis will occur. In the crack tip

region, the crack tip element mesh and the eight-noded

element mesh had exactly the same number of degrees of
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TABLE I

Regions and Degrees of Freedom, Fine Meshes

no. of d.o.f. (approx.)
region r/a (approx.)

see sketch below crack el. 8-noded CST

crack tip (CT) 0.05 153 153 151

near field (NF) 0.05<r/a<0.5 113 113 125

mid field (MF) 0.5<r/a<l.0 57 57 37

transition field 1.0-<r/a 2.0 8 8 12
(TF)

far field (FF) 2.0 r/a<4.0 53 53 59

Totals

fine mesh type no. of no. of no. of

elements nodes d.o.f.

crack tip element 60 205 382

8-noded element 58 207 382

CST 355 211 378

FF

*TF

MF

' NF

dT4 45



freedom, and the constant strain triangle mesh had only 4%

more degrees of freedom. In the far field region, the crack

tip element mesh and the eight-noded element mesh had the

same number of degrees of freedom, and the constant strain

triangle mesh had only 10% more degrees of freedom. Large

differences occur in the intermediate regions. This is

unavoidable. The reductions in element size for the eight-

noded and crack tip element meshes occurred differently

than for the constant strain triangle mesh.

After the tests with the fine meshes were completed, a

coarse mesh in which the number of degrees of freedom in

the crack tip region was halved was tried for the crack tip

element and the eight-noded element meshes. The crack tip

region arrangement for the coarse meshes are shown in Fig.

20 and 21. The coarse meshes were used to validate the

convergence of fine mesh solutions.

Elastic Analysis-Stress Intensity Factor

The stress intensity factor describes the magnitude of

the elastic stress field in the crack tip region (Ref 10).

KI was defined in Eq. 37. The relation between KI and

stress for any r or angle 8 is given in Eq. 39.

Chan (Ref 4) gives a nondimensionalized form of the

elastic stress intensity factor. This may be written as:

KIKI =(49)

For the center-cracked plate with a=0.1367 in. and
b=0.5 in., K is equal to 1.86.
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Crack Tip

Figure 20. Crack Tip Region - Crack Element,
Coarse Mesh

//

Crack I Tip

Figure 21. Crack Tip Region - 8-Noded Element,

Coarse Mesh
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Numerical Evaluation of KI . K was calculated numer-
V I

ically from the elastic finite element solutions. A radial

line was drawn from the crack tip at a small angle, which

was taken to be 7.50. In order to determine Ki, an elastic

analysis was first performed with the finite element prob-

lem. Values of a were taken at several stations of r iny

the crack tip region. For each value of qy, K was deter-
SI

mined by the following equation, which is a form of Eq. 39:

a 0 3e -1
KI = ay 2 7r [cos (1 + sin I sin (50)

The value of KI obtained was nondimensionalized by

dividing it by a, (the applied stress). The resulting

nondimensionalized stress intensity factor, KI , was then

plotted against its value of r/a. This was done for all of

the points in the crack tip region. The resulting curve of

K vs. r/a was extrapolated to the K axis (r/a=0). This
I I

was the elastic value of the nondimensionalized stress

intensity factor for the problem.

The graphs of nondimensionalized stress intensity fac-

tor versus r/a are presented in Fig. 22 and Fig. 23. Table

II presents the extrapolated value of the nondimensionalized

stress intensity factor for each mesh.

From Table II, it is shown that the constant strain

triangle and the eight-noded fine mesh both generate the

same value of KI that was calculated using linear elastic

fracture mechanics. The eight-noded element in a fine mesh

and the constant strain triangle in a fine mesh, therefore,
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Figure 22. Elastic Analysis (K i), Coarse Meshes
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Figure 23. Elastic Analysis (KI), Fine Meshes
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TABLE II

Elastic Analysis, Values of K for Fine and Coarse Meshes

type of element and mesh KI

crack tip element - coarse 2.34

8-noded element - coarse 1.95

crack tip element - fine 1.95

8-noded element - fine 1.86

CST - fine 1.86

5
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were the best elements for solving the elastic problem. It

is noted from Fig. 22 and Fig. 23 that the crack tip ele-

ment does effectively simulate the singularity, KI

becomes very large near the crack tip. However, the

extrapolated values of KI for this element were not as

close to the KI values for the constant strain triangle and

the eight-noded element. The crack tip singularity element

did not perform as well elastically as Barsoum predicted

(Ref 2). This was true both for the fine and coarse

meshes.

There was a 20% difference between the values of KI

for the crack element fine mesh and the crack element

coarse mesh. The KI values for the eight-noded fine and

coarse meshes also differed by 20%. Therefore, the coarse

mesh elastic solutions converged to the fine mesh elastic

solutions.

Plastic Analysis

Two different values of loading were used for the

plastic analysis; 10.896 Klb (48.465 kN) and 16.060 Klb

(71.435 kN). The applied stresses therefore were 36.320 ksi

(250.29 MPa) and 53.533 ksi (368.91 MPa). These loadings

corresponded to values of K of 25.0 ksi/TH (27.4 MPa/m) and

36.8 ksi/ih (40.41 MPa/-m). As stated in Appendix B, the

loadings had to be applied as equivalent nodal forces.

This procedure is outlined in Appendix B.

The comparison criteria for the plastic analysis were

plastic regions, profiles of ae vs. r/a for several angles,
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Figure 24. Stress Profiles, e~= 75'0
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Figure 25. Stress Profiles, ( 7.50,
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Figure 26. Stress Profiles, 9~450,
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Figure 34. Plastic Region, Crack Element,
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Figure 35. Plastic Region, Crack Element,
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Figure 36. Plastic Region, 8-Noded Element,
Fine Mesh, P = 10.896 klb

900

0.20

0.10

1800 __° 
00

0.20 0.10 0.00 0.10 0.2n'  (r/a)

Figure 37. Plastic Region, 8-Nodp .emt- G,
Fine Mesh, P = 16.060 klo

64

-' .. . . •.... . 7-- __ , --- . . . . - ,- __ .- ,-. I ' -7........... T - ' . . L J U'.
T

..



900

F0.20

180001 00

0.20 0.10 0.00 0.10 0.20 (r/a)

Figure 38. Plastic Region, CST,
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Figure 39. Plastic Region, CST,
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and effective stress profiles. An element was determined

to have gone plastic if its effective stresses had exceeded

the yield stress. This is simply a restatement of the von

Mises yield criterion.

The stress profiles shown as ae vs. r/a at various

angles 8 are shown in Fig. 24 through Fig. 33. The plastic

regions are shown in Fig. 34 through Fig. 39.

The diagrams of the plastic region show that the con-

stant strain triangle mesh had the largest region of plas-

ticity at both load levels. The plastic regions for the

other elements covered roughly the same areas. It is not

surprising that the CST mesh would show the greatest amount

of plasticity; the constant strain triangle is more flexible

than either the crack-tip singularity element or the eight-

noded quadrilateral.

The stress profiles show that the crack-tip singular-

ity element generated extraordinarily high stresses at the

crack tip. Figure 40 and Fig. 41 show the curves of x-

displacement vs. distance from the crack tip for each type

of element at the two different loadings. The slope of

these curves near the crack tip was determined, and this

value was divided by the crack length to obtain y/3x,

which is c or the strain in the x-direction. The results

were compiled in Table III. It is notel that the crack-tip

singularity element exhibited strains that were an order of

magnitude greater than either the eight-noded quadrilateral

or the constant-strain triangle. Since the singularity
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TABLE III

Strains Near the Crack Tip, 0=00, Fine Meshes

load (kib) fine mesh type E x near crack tip

10.896 crack tip element 40.0xl10 3

10.896 8-noded element 9.52xlO03

10.896 CST 3. 55x10-3

16.060 crack tip element 60.92xl10 3

16.060 8-noded element 7.75x10-3

16.060 CST 3. 98x10-3
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that is characteristic of the crack tip element creates high

levels of stress near the crack tip, and since stress is
1

related to strain, the - singularity forces the crack tip

element to behave with unnatural stiffness in the plastic

regime.

It also should be noted that the eight-noded element

produced strains that were about three times greater than

the strains in the CST near the crack tip. This is due to

the fact that higher order elements are naturally stiffer

than the constant strain triangle.

The stress profiles show that though the eight-noded

element produced stresses that were higher than the con-

stant strain triangle, it was not as far off as was the

crack tip element. The eight-noded element gave stresses

that were within 15% of the stress values of the CST,

except in the elements nearest the crack tip. This further

demonstrates that the eight-noded element was stiffer than

the constant strain triangle, but it was not as stiff as

the singularity element.

Each of the finite element modelings accurately dis-

played the stresses near the stress-free boundary at e=1801.

At 0=157.50 (Fig. 32 and Fig. 33), very high stresses were

shown in the element nearest the crack tip. The stresses

rapidly dropped off away from the crack tip. In the region

of 0.1 r/a < 0.6, the eight-noded element meshes showed

markedly higher stresses than the CST or crack element

meshes. This occurred because there were two elements near
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the crack tip for the crack element mesh and several ele-

ments near the crack tip for the CST mesh, while there was

only one element near the crack tip for the eight-noded

mesh. Therefore, it was easier for the CST and crack ele-

ment meshes to adjust to the stress-free boundary than the

eight-noded element rresh.

Figure 42 and Fig. 43 show the convergence of the

coarse meshes to the fine meshes. For r/a > 0.70, the

coarse mesh and the fine mesh for both types of elements

each gave identical results. However, for r/a < 0.7, the

coarse meshes gave stresses that ranged from three to seven

percent higher than the fine meshes.

The diagrams of the plastic region show that the con-

stant strain triangle produced the largest area of plastic-

ity. Since the number of degrees of freedom in each mesh

was kept the same and the number of degrees of freedom in

the crack tip region was kept the same, the larger region

of plasticity in the constant strain triangle mesh was

caused by the fact that the constant strain triangle was not

as stiff as eithpr the eight-no.led element or the crack tip

element, and not because one mesh was inherently more

restrained than another. Because of its close agreement

elastically with linear elastic fracture mechanics and

because of its lower stiffness, the constant strain tri-

angle is preferred over the eight-noded element and the

crack tip element for modeling elastic-plastic problems.
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The higher-order elements do have some advantages, how-

ever. Since a mesh involving the higher-order elements has

fewer elements than the constant strain triangle mesh, it

requires less work on the part of the user to input the mesh

for the higher-order elements. The eight-noded rectangular

program also requires that only corner nodes be inputed while

the constant strain program requires that the user supply the

coordinates of all of the nodes. Since less cards are punched

for the higher-order element mesh than for the constant strain

triangle mesh, there is less chance of error; and since there

are fewer cards for the isoparametric elements, it is easier

to check the mesh. Overall, one would produce results more

quickly by using higher-order elements than by using the con-

stant strain triangle in terms of elapsed time from the

start to the finish of the problem. However, it appears the

elastic-plastic resulting stresses will be more realistic if

one uses the constant strain triangular element rather than

the eight-noded element or crack-tip singularity element.

Computational Comparisons

The last comparison to be made involves the difference

in computer resources required between the two programs. A

test case was set up. A uniaxial specimen was divided

into two triangular elements acting under a uniaxial load

of 134.0 ksi (923.4 MPa). The JALESE and VISCO programs

were then used for comparison. Triangular elements were

chosen because both programs incorporated triangular ele-

ments. However, the triangular elements used in the JALESE
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program were not constant strain triangles but degenerated

four-noded rectangles. Once again, the creep coefficient

was set equal to zero and the load was applied very quickly.

The results are shown in Table IV.

The JALESE program used 30% more central processor

time than the VISCO program in the test cases. This

occurred because the JALESE program utilizes Gaussian quad-

rature to perform the integration necessary to obtain the

stiffness matrix while the VISCO program, which incorporates

a constant strain triangle, can evaluate the integrals

exactly since only constants are integrated. The JALESE

program also required 32300 (octal) more core memory to

load than the VISCO program. This is because the VISCO

program stores the K matrix in a more efficient manner.

The greater usage of core memory and central processor time

slowed down the turnaround time of JALESE as compared to

VISCO. It also makes the JALESE runs more expensive than

the VISCO runs.

If the default value of stress and strain tolerance

(0.001) was used with the crack tip element, fine mesh, in

the JALESE program, the iterative initial stress solution

for the plastic strains would not converge. The stress

tolerance had to be increased to 0.005 in order to obtain

a solution. Since the program only printed out four sig-

nificant figures for the stress and strain solution, this

change of the tolerance did not make a significant differ-

ence.
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TABLE IV

Computational Resource Usage Comparisons,
Two Triangular Elements, Uniaxial Test,

JALESE and VISCO

Program Name CM required CP usage 10 time Cost
(octal words) (seconds) (seconds) (dollars)

JALESE 205100 5.560 25.424 1.04

VISCO 152600 4.273 25.678 0.94
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It also should be noted that though it was easier to

input data into the JALESE program, it was harder to obtain

the desired levels of stress using JALESE over VISCO.

JALESE required that the user supply incremental units of

loading after plasticity has been achieved. When using

VISCO, the total desired load was inputed in one data card.

VISCO used time increments to increment the load.
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V. Conclusions

It appears that for at least the center cracked plate,

the best element to use for elastic-plastic analysis was

the constant strain triangle. Elastically, the constant

strain triangle gave results that agreed exactly with lin-

ear elastic fracture mechanics. The eight-noded quadri-

lateral also performed well elastically; its results also

agreed with linear elastic fracture mechanics predictions.

The crack tip singularity element, however, did not give

accurate elastic results despite its unique ability to sim-

ulate the singularity that occurs in the crack tip region.

Plastically, the constant strain triangle performed

much better than either the eight-noded quadrilateral or

the crack tip singularity element. The constant strain

triangle, in a mesh with the same number of degrees of

freedom as the other elements, exhibited larger plastic

regions and more realistic stresses near the crack tip.

This was verified by Hinnerichs by comparisons made with

experimental measurements (Ref 7). The eight-noded quadri-

lateral gave erroneously high stresses near the crack tip

because of its inherent stiffness. The crack-tip singu-

larity element gave even higher stresses because of its

imposed singularity. This singularity made the crack tip

elements unnaturally stiff. They did not model plasticity

very well.

Though the eight-noded quadrilateral element and the

crack-tip singularity element meshes were easier, to input
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and check than the constant strain triangle element mesh,

it was easier to obtain the desired stress level using the

triangle because the program that was used for the triangu-

lar element incremented with time viscoplastically and not

with user-supplied load increments. The VISCO program that

incorporated the constant strain triangle viscoplastically

required less core memory space and less computer process

or time than the JALESE program that contained the higher-

order element approach.

The constant strain triangle also modeled the stress-

free region better than either the eight-noded element or

the crack tip element. The constant strain triangle with

its great flexibility material-wise provided a very accu-

rate model of the elastic and plastic strains near the

crack tip.

One recommendation for future work is that a time

dependency be incorporated into the JALESE program and that

the comparisons be made viscoplastically. Creep should be

studied in addition to the instantaneous plastic strains.

A constant strain triangle should also be incorporated into

the JALESE program so that the comparisons could all be

made with one computer program. Another suggested future

project is that crack growth comparisons should be made.

In summary, the eight-noded and crack-tip singularity

elements presented in JALESE perform well elastically, with

the crack element being slightly less accurate. The plas-

tic results of the crack element and the eight-noded
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element are disappointing. The constant strain triangle,

with its great simplicity for understanding, provides

extremely accurate answers in the elastic and plastic

regimes. Though some extra work is required to set up the

mesh, it is well worth it in order to obtain comparable

accuracy with faster computer turnaround time.
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Appendix A: The Finite Element Method

Introduction

The basic philosophy of the finite element is that an

approximate solution for a problem too complex to be solved

exactly can be found by dividing the field of interest into

a number of discrete regions and, by the use of simple

functions, solve for the desired quantities in each region

(Ref 13). For continuous structures, this involves divid-

ing the system into a finite number of elements which are

interconnected at a discrete number of nodal points

their boundaries. Displacement functions are chosen which

satisfy the elemental boundary conditions and continuous

forces or stresses are modeled as concentrated forces at

the nodes. By using the equations of structural analysis,

the forces, strains, stresses, and nodal displacements for

each element are calculated. The global solution is found

by appropriately combining the elemental solutions.

Constant Strain Triangle

One element that is used in structural analysis is

the three-noded triangle, which is also called the constant

strain triangle. A typical triangular element along with

its nodal displacements is shown in Fig. A-1. The nodes

are numbered counterclockwise as i, j, and k.

The displacements within the element are uniquely

determined from the six values of nodal displacement. For

83



y, v V

:3 u
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the constant strain triangle, the function which does this

is linear (Ref 5) and is given by:

U = + a2x + a3y
(A-i)

v = c t + ea x +  a6v

The constants are easily computed and are given by

aI  a i  a 3  a k  .

and

4 ai  a ak vi
C5 1= bj bk  vj (A-3)

e6 L cj Uk  vk

where A represents the area of the triangle. The coeffi-

cients ai bi and ci and the area 2A are given in terms of

the nodal coordinates xi and yi by

ai  x jyk - xkYj 1 xi  Yi

b yj - Yk 2L = 1 xj yj (A-4)

c X k - x 1 Xk Yk

aj, bi, c. and ak' bk , ck are obtained by a cyclic -'_rmu-

cation of the indices in Eq. A-4. One finally obtains:

1
u = 2,[(ai+bix+ciY)U i + (a.+bjx+cjy)uj + (ak+bkX+CkY)Uk ]

v = 1 [(ai+bix+ciy)v ' + (a.+bx+cjy)v + (ak+bkX+CkY)V

(A-5)
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Eq. A-5 may be written in standard form as:

a(u = Nae [INi,IN.IN ae (A-6)

a represents a listing of the nodal displacements for ae

particular element and the shape functions, Ni , Nj, and Nk,

are given by

(a. + b x + c.y)

N. = 2A (A-7)

etc.

The strain at any point within the element may be

defined in terms of the nodal displacements derivatives by:

au
ax

= ( ) =(- (A-8)

(Yx) (u + u

Writing Eq. A-8 in terms of the nodal displacements

and coordinates and taking the appropriate derivatives

results in:

e= B ae (A-9)

where u is the generalized nodal displacement vector writ--

ten as

T T
a = (u v. u. v Uk v ) (A-10)
e 1 1 j i k k
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and

Fb 0 bj 0 bk 0

B 0 c. 0 c (A-Il)

ci  -b. cj b. ck bk

Elastic Analysis

For linear elastic, isotropic materials, the relation-

ship between the stresses, a, strains, e, initial stresses,

ao0,and initial strains, E o, is given by (Ref 13)

C = Oy = D - o ] + a (A-12)
_y -0

(Gxy)

where D is the elasticity matrix containing the appropriate

material properties. For plane stress D is given by:

D - 2 V 1 l] (A-13)

For plane strain, D is given by

D = E(l-V) 1 0 (A-14)
- (1+vY (1-2v) 1-v

0 0 1-2v)

0 2(i-v)j

Note that for plane stress, C = o = a = 0, while

for plane strain, c zz = zx = = 0 and

Cx= (x + ay) (A-15)
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As stated previously, before any finite element analy-

sis can be performed, the applied loads, which include the

applied stresses and any body forces, must be modeled as

equivalent nodal forces. For the applied stresses,

S .- (A-16)

xy)

and body forces,

b bx(A- 1")

the equivalent nodal forces,

= ( (A-18)

where

e= (A-19)

with components U. and V. corresponding to the directions1 1

of u and v displacements, are given by:

q f BT a d(vol) - f T b d(vol) (A-20)

v v

The generalized equation for the elastic response of

the structure is derived from the principle of virtual work

(Ref 13) and can be written as:



K U = P + Q (A-21)

K is called the elastic stiffness matrix, U is the general-

ized displacement vector, P represents the externally applied

load vector, and Q is the force vector caused by initial
stresses and initial strains. Q is used both for time-inde-

pendent and time-dependent problems.

The stiffness matrix can be represented as:

K= B D B d(vol) (A-22)
Vv

The global stiffness matrix is obtained by evaluating

the stiffness matrix for each element and summing over the

whole structure. The equivalent nodal forces due to the

initial stresses are given by

QO° = a T go d(vol) (A-23)

The equivalent nodal forces due to the initial strains

may be expressed as:

Qo= JBT D E d(vol) (A-24)

Note that the equivalent nodal forces due to the

applied stresses, which is the first integral in Eq. A-20,

can be written as:

Q_ = K ae (A-25)

Once the nodal displacements have been evaluated, the

stresses at any point of the element can be found by com-

bining Eqs. A-9 and A-12 to obtain:
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o=D B a e - D Eo - ao (A-26)

where ae is the nodal displacement vector. The stress

recovery matrix is defined as:

Se = D B (A-27)

Biguadratic Quadrilateral

It has been shown that for a three-noded triangle, a

linear interpolation function for the displacements is

chosen. Since the strains are a function of the first

derivative of the displacements, the strains are constant

throughout the triangle. This is wh. the three-noded ele-

ment is called a constant strain triangle. The approxima-

tion of constant strain in an element is valid if and only

if the element is relatively small. For larger elements,

a higher-order interpolation function must be selected.

Consider the distorted eight-noded element shown in

Fig. A-2. While the constant strain triangle had nodes

only at the vertices, this element has one node in the

middle of each side. The interpolation function chosen to

model the element displacements is second order, and this

allows the element to have curved sides. The same interpo-

lation function that models the displacements is also

chosen to model the shape of the element. Elements for

which this is done belong to the family of isoparametric

elements (Ref 5). The interpolation function may also be

referred to as a shape function.
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Figure A-2. Distorted Isoparametric Element
in x-y Space

91



To thoroughly describe an isoparametric, a nonortho-

gonal local coordinate system is drawn. This has been done

to the element in Fig. A-2. The element drawn in the local
system is shown in Fig. A-3.

For the equation:

u = N ae (A-28)

the shape functions N. may be given as (Ref 12)

N. = (+ i l+nni)(Ci+nn-) i = 1,2,3,4

S (1 -C 2 (+n i  i = 5,7 (A-29)

1 -I2 (i+E i) i = 6,0

where (i,r) represent the coordinates of node i in the

local system.

The shape of the element, expressed as the coordinate

points (x,y), may be written in terms of the shape func-

tions and the coordinates of the nodes as:

x2

(rl[N 0 N 2  0 N 3  0 N 4  01 Y -0
= . N1  0 N2  0 N3  0 N4 x A-30)

X 4

The displacements within the element, u and v, may be

written in terms of the nodal displacements as:
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Figure A-3. 8-Noded Isoparametric Element
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"U 1

v0 N 0 N 0 N 0 2
u)= 1 2 3 4 v2 (A-31)

L0  N1  0 N2  0 N3  0 N4J u 3

v!
u 4

In shortened notation, Eqs. A-30 and A-31 may be

written as:

(X = (: (A- 32)

and

0 = Xi

V)= [ I ( ') (A-33)

The strain-displacement relation can be expressed as

E 1 0 0 0 ,
=,y where u,x

= 0 - 0 0 D e
x y , y e c

(A-34)

The derivatives with respect to x and y must be con-

verted into derivatives with respect to and . This is

done through the use of the Jacobian.
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Recall that the Jacobian is defined as (Ref 12):

= X, y, (A-35)

where x,, x,, etc.

The determinant of the Jacobian IJI, is then given by:

= , C y, - x,n y, (A-36)

x, r) y ,

The inverse of the Jacobian, J*, can be expressed as:

j, 1* 1

L=21 121 - 4 ] (A-37)[ J J * ji l -X j

By the chain rule,

( ))= j( :x) (A-38)),, x, Y'n )y --- )y

where the empty parentheses denote a vacant operator.

Therefore,

J* (A-39)

By the use of Eq. A-39, Eq. A-34 can be written as:
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Jl J* 0 0 U,
r11 12

Ii I* J* 0 0 U
E_ = 0 0 01 21 22 0) (A-40)

S0 0 J J

0 0 Jl* J* V'
0 0 21 22, I

Differentiating Eq. A-33 and applying it to Eq. A-40

results in:

Nr 0

11 12E_ 0 0 J*l J* -- -i (A-41)
J*l J*2 Jl J 0 ,E vui)

0 N,)

Differentiating Eq. A-32 and applying the results to

Eq. A-37 gives for the inverse of the Jacobian:

[-#i (A-42)

IJI L- x i  N, CXi

Since c = B a the matrix is the product of the first two
e

matrices in Eq. A-41. Using Eq. A-42 gives:

0N 0

1 -N, x N, 0
I - N, & i  N,

L -N,'TIxi N,'Ex--i N,'nYi -Yi] _ Lo N, ni

(A-43)
Matrix multiplication results in
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B =0 -N, x N, +N, ,xiN,

N, N, +N,.xiN, n  N, )YiN, -N, ZiN,
(A-44)

By vector multiplication identity,

= T NT (A-45)

Therefore,

TTN, TyiN, = y NT, N, (A-46)

Defining the vector Q as:

T T

Q N N,E - N, N, (A-47)

(note that Q t=-Q, that is, Q is antisymmetric)

Therefore,

T

y. Q = N, YiN, - N, YiN, (A-48)
Ti r i Ti

The B matrix may now be expressed as:FT 1

B 0 -x T Q (A-49)B I T T

L-Xi Q Yi Q9-

The determinant of J may be rewritten as:

T T T Tx,y,n - x,,y,, = xTN, N,n yi - x.Nn N, y i

(A-50)
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Using Q, Eq. A-50 can be taken to be:

I- (A-51)

Let

T
KX -zi Q

(A-52)T
= -xT Q

Therefore, [: 0j
B = Xl (A-53)

L Xy X X

where

IjI = Y i (A-54)

The stiffness matrix K can be determined to be

K= tJ BT D B dxdy (A-55)

where t is the thickness of the element, assumed to be a

constant. By the use of the transformation rule,

dxdy jJjd~dn (A-56)

the stiffness matrix can be expressed as:

1 1

K t f BT D B IJjd~dn (A-57)
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Let

rD D DI1
11 12 131

D = 12 D 22 D23J (A-58)

L D13 D 23 D33J

Then the quantity BTDB can be written as:

T T T' T
DllXxXX+D33 XyXy D12XXy +D13Xx x

+D(xT +XT T+D T

T 1 13 x y+yx) +D2 3Xy 3 3XYXx

BT  DDD XB (A- 5
DI2XyXx 2 x22+D13 XxXx y T

TT TLD23XYXy+D3 3X x y  + 2 3 (yx+ x y J

It is the quantity B TDB that must be integrated in

order to evaluate the stiffness matrix, K. While BTDB for

the three-noded triangle contains only constant terms,

making the integration for K trivial, BTDB for the eight-

noded quadrilateral is composed of variables in C and n.

The integration for K is no longer a simple matter and a

numerical integration scheme must be used. The method of

integration most widely used is Gaussian quadrature.

The Gaussian quadrature integration rule in one dimen-

sion (Ref 13) states that the integral:
1

I = f f( )dE (A-60)

can be evaluated by:
1

fl n
f(C)dC = Z Hif(Ci) (A-61)

-l i=l
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H. denotes an appropriate "weight" for each value of
1

evaluated. The location of the sampling points, i' is

chosen such that the error associated with the numerical

integration is minimized. The order of the error is 2n,

where n is the number of integration stations chosen (order

of the integration).

In two dimensions, the Gaussian quadrature integration

rule becomes (Ref 13):

n n
If( ,q)ddq = H Z (A-62)

.111 i=l j=l 1 J J

Thus, if

= BT D B IJJ (A-63)

then

n n
K = t f( ,q)d~dq = t E Z H. H f(,i)

fl 1.1111 1i=l j=l 1 j J1

(A-64)

The locations of and r are chosen symmetrical to the axes

system.

The order of integration needed to accurately deter-

mine K is determined by analyzing the order of detJ (Ref 5).

For a plane quadratic element of constant thickness detJ

contains 3 and n3 terms. Therefore, only a 2nd order

(2 x 2) Gauss rule, where the error is on the order of 2n,

or 4, is all that is required. However, when one uses low
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order integration rules, zero energy deformation modes may

develop (Ref 5). Consider an eight-noded rectangle using

a second order (2 x 2) Gauss rule. Let the element be

represented in -n space and let the nodal degrees of free-

dom be assigned the values:

-u1 =u 3 =u 5 =-u 7 =v 1 = v 3 = -v = -v7

1-v= -u7 = v6 = u8 - 2  (A-65)

u2 =v 4 =u 6 =v 8 =0

(See Fig. A-4 for a representation of the element and the

displacements.)

At the Gauss points, =n=±0.5774, all of the strains are

zero. Since the Gauss points represent the element when its

stiffness matrix is formed, the element offers no resistance

at all to this particular deformation mode. This implies

that the resulting stiffness matrix will be singular. If a

zero-energy mode appears, it is usually superimposed on the

deformation modes formed from actual nodal displacements.

This particular zero-energy mode is not compatible

with the same mode in an adjacent element. The global

assembly, therefore, will not have this zero-energy mode

and the global stiffness matrix will not be singular.

However, zero-energy modes that are compatible may be

formed (Ref 5). These are detected by computing the eigen-

values of the global stiffness matrix. For a structure

free of rigid body motion, there will be as many zero-energy
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Figure A-4. Zero Energy Mode for
an 8-Noded Isoparametric
Element
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modes as there are zero eigenvalues in the global stiffness

matrix.

By selecting a third-order Gaussian quadrature, one

avoids all of the zero-energy modes by eliminating the

extraneous strains. The JALESE program makes use of a

third-order Gaussian quadrature in performing the integra-

tion necessary to evaluate K. Figure A-5 shows the eight-

noded element in C-n space with its Gaussian integration

stations. Table A-I, which is Table 8.1 from Ref 13, shows

the location of the Gaussian integration stations and their

associated weight functions for each order, n.

103



5?

0f

L1

(-1,1) ____-___ (1,1)

1I ' 4

5

II II II

Figure A-5. Gaussian Integration Stations
of an 8-Noded Isoparametric

Element inf-. Space (n=3),
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f(x) Jx = Jftf(aj),

±a H
n= 1

0 2000 000)00(XX 00000

=2

0'57735 02691 89620 1 00000 00000 000

n 3
077459 6692 41483 0.55555 55555 55556
0-00000 W0W 00W 9,.0 ,888 88S 8 88889

n-
4

086113 63115 94053 0-3478 5 48451 37454
0-33998 10435 84856 0 65214 51548 62546

n 5
000617 98459 386A 0"23692 68850 56189
053846 93101 05683 0.47862 86704 99366
000000 00000 00000 0-568S8 88888 88889

a = 6

093246 95142 03152 0-17132 44923 79170
0-66120 93864 66265 0.36)076 15730 48139
023861 91800 83197 0.4791 39345 72691

n=7
094910 79123 42759 0-12948 49661 68870
0.1153 11855 99394 0.27970 53944 89277
0.405 4 51513 77397 03s! 83 00505 05119
000000 00000 00000 0.41795 91836 73469

n 8
0-96028 98564 97536 0-10122 85362 90376
0-796A6 64774 (3627 0"22228 10344 53374
0"52553 2.199 16329 0'31370 66458 77887
0-18S43 46424 95650 0-36268 37833 78362

n 9
(-96816 02395 07626 008127 43883 61574
0-83603 11073 26636 0"18064 81606 94857
0o1337 14327 00590 0"26061 06964 02935
0"32425 34234 03809 031234 70770 40003
0-0000000000 00( 033023 93550 01260

n = I0
0-97390 65285 17!72 0.06667 13443 0,688
0-86506 33666 88935 0-14945 13491 505S1
0.67940 95682 99024 0-21908 63625 159,2
0,43339 53941 29247 026926 67193 0996
0.14887 43389 81631 0.29552 42247 14753

Table A-I. Weight Coefficients and Abscissae
for Gaussian Quadrature (Ref 13)
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Appendix B: Calculation of Equivalent Nodal Forces

The expression for the calculation of the equivalent

nodal forces due to applied loading and body forces is:

q e B j B ad(vol) - fNT bd(vol) (B-1)

where q e denotes the equivalent nodal force vector, B is

the matrix that relates strain to nodal displacements, N is

the interpolation function vector, b is the nodal force

vector, and a are the externally applied stresses.

Gravity and centrifugal "force" are two types of body

forces. There are no body forces for the problem in this

work. (Gravitational effects are neglected.) For an ele-

ment at the boundary subject to a distributed loading q,

virtual work considerations result in the equivalent nodal

forces, Feq to be expressed as:

feq q-T d 
(B-2)

where ds represents the incremental path length.

For the constant strain triangle, the calculation of

the equivalent nodal forces becomes straightforward. Only

the integration of constants is necessary, and, for a con-

stant distributed load of magnitude q, the equivalent nodal

forces become:

F eq = q k (B-3)
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where k is the length of surface that the load covers.

This calculation is performed for each element and the

loads at the nodes are summed. Figure B-1 illustrates an

example of the calculation of the equivalent nodal force

for a constant strain triangle.

For an eight-noded quadrilateral, integration must be

performed to obtain the equivalent nodal forces. Consider

the eight-noded quadrilateral boundary element under a

constant distributed load, q, given in Fig. B-2.

The interpolation function, Ni, for the eight-noded

quadrilateral is given by:

N. 1 1+ (l+-in) ( i+ ni-l) i = 1,2,3,41 1 1

N. = 2 (I+i ) i = 5,7 (B-4)
_ 1 212Ni

N. 1 (i+ci) (l-n 2 i = 6,8

At node point 3, (l) = (i,i) and

N3  = (+(l+n) (+-i) (B-5)

Along the upper surface, n=l. Therefore,

N = 1( 2 (B-6)
3

At node point 4, ( ,n) = (-1,1) and

=1

N4 = (i- ) (i+n) (-Er+-l) (B-7)

Along the upper surface, q=l. Therefore,

1 2_

N 12 (B-8)
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q1 1 + q1 2  q 2

q11  22

Figure B-i. Example of the Calculation of
Ecuivilent Nodal Forces
For the CST
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At node point 7, ( ,n) = (0,1). Along the upper sur-

face, n=l. Therefore,

N 1 2
N7 = -(1-F ) (l+n)

(B-9)
2= (1- 2

Now

Feq = q NT ds k fl q NT ds (B-10)

where k = length of element. Substitution results in:

F3eq 1 1( 2

7eq _ 11 2 (-l

Integration gives:

F 
3eq

(F 4 q ) (B-12)

F7eq 4

Therefore, the equivalent nodal force is four times

greater at the midside node than at the corner nodes.

As in the case for the constant strain triangle, the

equivalent nodal forces are calculated for each element and

the forces at the nodes are summed. An example of the cal-

culation of equivalent nodal forces is shown in Fig. B-3.
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F 2  F3 F 4

F F4 5

.L F 11 2 212 2 F5

F[

F 1 -/6 * (q1 1 )

F 2 =4/6 * (qJ I1 )

F 3 =1/6 * (ql 1 + ql 2 )

F 4  4/6 * (q12)

F5  1 1/6 * (ql2 )

Figure B-3. Example of the Calculation of Equivilent
Nodal Forces for the 8-Noded
Isoparametric Element
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Appendix C: Users Guide for JALESE

The JALESE program is an elastic-plastic finite ele-

ment code for plane stress or plane strain problems. Usage

of the code is very straightforward. The data cards are

punched up according to the users guide by Ahmad and

Papaspyropoulos (Ref 1). There are some fine points to be

noted, however, in the loading and execution of the prob-

lems.

Minimum usage of core memory space is of prime impor-

tance in achieving fast turnaround. In JALESE, the largest

block of common memory is used by the stiffness matrix.

The stiffness matrix array is called SK in JALESE and is

stored in the block named NEW2. SK is a two by two array

and is sized by SK (2*no. of nodes, 1 + semi-bandwidth)

(half-bandwidth). Therefore, it is important that the

user size the SK array for his particular problem.

To minimize the size of the stiffness array, it is

important to keep the bandwidth small. This is accomp-

lished by numbering the nodes appropriately. For a rec-

tangular array, the best node numbering scheme is horizon-

tal (left to right). If a radial "cobweb" array is used,

it is best to number the nodes along the concentric curves.

If a saw-tooth pattern is desired, extreme care must be

used in formulating the mesh in order to avoid a large

semi-bandwidth.

It has not been found worthwhile to attempt further

reductions in core memory usage by reducing the size of

112



the blocks that contain the element connectivity, nodal

location, uniaxial stress-strain curve definition points,

etc. Much work is required to insure that the common

blocks remain the same length from subroutine to subrou-

tine. Eighty percent of the memory is used to store the

stiffness matrix. This is where one should direct one's

efforts to reduce core memory requirements..

Besides minimizing the size of the stiffness array,

an efficient numbering scheme for the nodes that reduces

the semi-bandwidth will also minimize computer processing

time. The JALESE program uses Gaussian elimination to

solve for the nodal displacements. If the semi-bandwidth

is reaThced, the computer will have fewer equations to

solve.

It has been determined that the core memory (number of

octal words) required to load the JALESE program in its

published form is 270000. This is far too large to load

on the CYBER 74 (CSB); however, it will load on the CYBER

175 (CSA). Unfortunately, the job will not be run until

the evening shift and if the system is overloaded (which

it usually is), the job will not be run until the weekend

shift. In the current work, the JALESE program was modi-

fied by cutting down the size of the SK array and the pro-

gram was loaded with a core memory size of 205100.

It was also determined that 200 seconds of central

processor time and 75 seconds of input-output time had to

be specified on the job control card. The exact amount of
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processor and input-output time actually used can be deter-

mined by examining the dayfile at the end of the print-out.

One could, therefore, reduce the time specifications for

repeat runs and cut down turnaround time. It is advisable,

however, to overspecify by 25%; if the computer is over-

loaded and the job is in the queues for a long time, more

execucion and 10 time will be used.

If a particular problem has more than sixty elements,

the stress and strain tolerances must be increased from the

default value of 0.001. If the crack-tip singularity ele-

ments are used, one must alter the tolerance if more than

fifty elements are used. If this is not done, the initial

stress or strain solution technique will not converge to a

solution. However, since the program only prints out four

significant figures, changing the tolerance does not

greatly alter the results.

The JALESE program as it is currently published does

not have a plotting routine. The work with VISCO, which

does have a plotting routine, showed that a plot of the

mesh was very useful in debugging the input data. There-

fore, a plotting subroutine was written for use with a

modified JALESE program. This subroutine is listed in

Fig. C-I. To use this subroutine, it is necessary to add

a line of code that reads the variables SCAL and NSUP.

This subroutine is compatible with the CALCOMP 565 plotter.

It can be easily modified for use with the CALCOMP 1036 or

CALCOMP 1038 plotters.
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Figure C-1. Plotting Subroutine for the

JALESE Program
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As an example, the following data cards for the two

element uniaxial test case using IN-100 are shown. The

user is urged to examine the user's guide (Ref 1).

Card 1: FORMAT 914, F20.10

NPRTY=1
NELEM=2
NPOIN=4
NBOUN=2
NCONC=2
NCPOIN=4
NQPTS=0
JPATHS=0
IREST=0
GTOL=0.001

Card 1' (used when plotting subroutine has been added to

prograr)

FREE FORMAT

SCAL=II. (Scaling Factor for CALCOMP Plotter)
NSUP=l (0 suppresses printout of element numbers)

Card 2: FORMAT 3F20.5, 14

E=26300.0
P=0.3
YST=130.0
NSSPT=4

Card 3: FORMAT 4F20.5

SRS (i) =130.0
SRN (1) =0. 00494
SRS (2)=152.0
SRN (2) =0. 00716

Card 4: FORMAT 4F20.5

SRS(3)=164.0
SRN(3)=0.01494
SRS(4)=164.0
SRN(4)=1.00000

Card 5: FORMAT 314

NF=1
NB(1)=l
NB(2)=1
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Card 6: FORMAT 314

NF=2
NB (1) =1
NB (2) =0

Card 7: FORMAT 14, 2F20.5

NF=3
U (1) =0.150
U (2)=0. 0

Card 8: FORMAT 14, 2F20.5

NF= 4
U (1) =0.150
U (2)=0.0

Cards 9,10,11,12: FORMAT 14, 2F10.5

1=1
X(1)=0.0
Y (1) =0.0

I=2
X(2)=0.0
Y(2)=1.0

I=3
X(3)=1. 0
Y(3)=0.0

I=4
X(4)=1.0
Y(4)=1.0

Cards 13,14: FORMAT 914, F10.5

NOD (1,1) =1
NOD (1,2) =3
NOD (1, 3) =4
NOD (1, 4) =4
NOD (1,5) =0
NOD(1,6)-0
NOD (1, 7) =0
NOD (1, 8) =0
NEP1l
THICK0. 3
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NOD (2,1) =1
NOD (2, 2) =4
NOD (2,3) =4
NOD (2,4) =2
NOD (2,5) =0
NOD (2,6) =0
NOD (2,7) =0
NOD (2, 8) =0
NEP=I
THICK=0. 3

Card 15: FORMAT 14, 2F20.10

N=3
FX=0.600
FY=0.0000

Card 16: FORMAT 14, 2F10.10

N=4
FX=0.600
FY=0.000

Cards 15 and 16 are repeated until the desired loading

has been achieved. The data cards are terminated with a

blank card.

To run the program, the following job control cards

were used. Note that the version of the program used was

called JALESELONGEST. The cards to activate the CALCOMP

plotter calls are also shown. For more information on the

CALCOMP plotter see the CALCOMP Plotter User's Guide.

HDG,CM207000,T200,I0100. M790098,GANS,55533
ATTACH,A,JALESELONGEST.
ATTACH,CCPLOT,CCPLOT56X,ID=LIBRARY,SN=ASD.
LIBRARY,CCPLOT.
FTN,I=A,B=DOG.
MAP,PART.
DOG,PL=I0000.
7/8/9
Data Cards
7/8/9
6/7/8/9
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