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1. Introduction

It is known (e.g. see Brillinger (1974)) that certain

suitably defined estimates of the spectral density matrix

of the Gaussian, stationary multivariate time series are

approximately distributed as complex Wishart matrices. So,

the problems of inference on the covariance matrices of the

complex multivariate normal distributions are closely re-

lated to the problems of inference on the spectral density

matrices. For a review of the literature on complex multi-

variate distributions and their applications in time sEries,

the reader is referred to Krishnaiah (1976).

Motivated by the applications in the area of inference

on multiple time series, we investigate asymptotic expressions

in the null and nonnull cases for the distribution of certain

power of the likelihood ratio statistic for testing the

hypothesis that the variables are independent and have a com-

mon variance. These expressions are in terms of beta series.

In the case of null distribution, it is found that the ac-

curacy of the approximation by taking the first term alone

in the asymptotic series is sufficient for practical purposes.

Here, we note that Krishnaiah, Lee and Chang (1976) approxi-

mated the null distribution of certain power of the likeli-

* ihood ratio test statistic for sphericity with Pearson's Type

I distribution. But this approximation is based upon empirical

study. In the analogous real case, Khatri and Srivastava (1974)

derived the nonnull asymptotic distribution in terms of chi-

square series. In the final section of this paper, we discuss
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the applications of our results to the area of inference on

multiple time series.
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2. Preliminaries

In this section, we define some notation and give kome

lemmas which are needed in the sequel.

The Mellin's integral transform of a function f(x) of

real variable x defined for x > 0 is

M{ f(. t} f x 1  f (x)dx (2 .

where t is a ceLnplex variate (Titchmarch (1937)).

Lemma 1. Let y C1f(y) be a measurable function in (0,a-)

and

yC1f(y) dy <

Also let f(y) be of bounded variation in the neighborhood

of the point y = x. Then

ifi
{f(x+0) + f(x-O)} j - M{ f(.)tl x- dt

C-i-

where M{f(.)It} for t = c + iv exists.

In the sequel, we shall assume that f(x) is absolutely

continuous in the interval (0,1), Hence f(x) is of bounded

variation in the neighborhood of x of interest. Furthermore,

c+iw

*f(x) = ~~~J M{f(.)Itl x-t dt. (2.2)

-i
*Note that when f(x) =(1-x) b-, 0 < x < 1. Then

f I' - b-1 ____

M~()t}=(l-x) dx I - (b), (2.3)

o r-- -- - - - ~ -b )* *
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for Real(t) > 0, and Real(b) > 0. Hence

c+i- r(t) - dt -( -x) b - 1

21- f (t+b) x dt = T(b) (2.4)

c-i-

for c > 0.

Lemma 2. Let (t) f x p(x)dx be the moment function of

a random variable x with density p(x). If

€(t) = O(t - V)

with Real(t) tending to -, then 0(t) can be expanded

as a factorial series of the form

R(t) = i R r(t+a)/r(t+a+v+i) (2.5)
i=0

where a is any constant (Nair (1940)).

Lemma 3. Let the series C a xi converge to the function
i=l

g(x) in the neighborhood of x = 0 (or be its asymptotic

expansion when x = 0). Then

eg(x) = I + 8ix1  (2.6)
i =l

sj
• .where the coefficients Bsatisfy the recurrence relation

j a k k 90 = 1. (2.7)
k=l

We use the following notations as defined in James

(1964). The complex multivariate gamma function rp (a) is

given by
~ p

r (a) p(p-l)/2 (a-i+l).
P 

i-I
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The complex multivariate hypergeometric coefficient is

given by

p
[a] K R (a-i+l) k

K =

where

(a) k= a(a+1)... .(a+k-l)

K =(k 1 .. k p) is a partition of the integer k such that

k l>...> k p> 0 and k = k 1+. .. + k . The transpose and

conjugate of a complex matrix B are denoted by B' andB

respectively. Also, let C K(A) denote the zonal polynomial

of a Hermitian matrix A, (i.e., A = . In addition,

F~c (a ,[., b 
I, E 

A)(1K [ ~ K A )
r Fq 1a'.' r' 1'".' q [) I.[b .[b Ik!

k-OK l K q K

rF q(a ,...,a rb '.,b q A,B)

0 ______[a ___(_a] C (A) C (B)

k 0 K b1 K. . .. q 'K ) ( k!

where 1'...* r', b '. ,b qare re;il or complex constants.

-~ Throughout this paper, etr B denotes the exponential of the

trace of B.

Lemma 4. Let E: pxp be a Hermitian matrix.

Then

F(-E -1 L) - -trL/ q F (LM,L) (2.8)

where M = I - qE , L: pxp is a positive definite

Hermitian matrix, q is a constant and

-BD) O C K(B) C C D)
0F0(BD = K K (2.9)

k=0 K C (I )k!
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Proof: By using the splitting formula (James (1964)), we

know that

0F 0(-E -1L) f (Z-1U='Id (2.10)

U(p)

where

F -1 UL'I tr Z-1 ULU',

dU is the invariant Haar measure on the unitary group U(p)

normalized to make the total measure unity. Since

tr E- ULU' = I tr L - tr(- MULU') , (2.11)
q q

where M = I - q- 1. We prove the result by using Eq. (2.11)

in Eq. (2.10).

Lemma 5. Let V be a pxp positive definite Hermitian matrix,

and T: pxp be an arbitrary complex symmetric matrix. Then

f exp(-trV/q)IV~b-p (tr V) m C K(Vd

, V>0

=r (b,K) r(bp+k+m) C (T) q bp+k+m/r (bp+k) (2.12)

pK

where

P (b,K) = 7T~pl T r(b-isl+k i) K =(k 1 ...,9k )

i-l

Proof. We know (see Khatri (1966)) that

Jexp(-tr V)IVIb- C (VT)dV r (b,Ke) C ()

=V>0
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Substituting Z z for V in the above equation with Jacobian

IZIk (Khatri (1965)) where Z is a Hermitian positive

definite matrix, we have

fexp (-tr ZV)lIV Ib-P C K(VT)dV = r p (bK) C (TZ- 1)lZI-b

VI=V>o

Now take Z = -- X)
q

exp(-tr(-L -))Vl C (VT)dV =r (b,K) C (T)(-1 - x)-(pk
qK p K q

VI =v>o

Equating the coefficient of x m/m! for both sides of the above

equation we obtain (2.12).

Lemma 6. For any integer r, variate x and Hermitian positive

definite V, we have

K M r Vr

______=x (tr V) etr (xV) (2.13)
kr K (k-r)!

CO xkailK)CKv M
1 1 K - (X2 try V2x tr V) etr(xV) (2.14)

k=OK k

00 xklK)C KvM r+2 2 r- r+1 Vr+1
-{x tr V (tr V) -x (t: V

k=r K (k-r)!

+ 2r x rltr V 2(tr V)rl rx r(tr V)r

+ r(r-1)x rtr V 2(tr V)r letr(xV)

(2.15)

CO Xa1 KCK(V) 4 2 2 3 3 32
__________. (x (tr V )+4x tr V -2x tr V tr V2

k=Q K k
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+3x 2(tr V) 2_4x 2tr V 2+ x tr VI etr(xV) (2.16)

k i 2 (KC(V) 3 3 2 2 2 2
( f2x tr V +3x (tr V) _-3x tr V

k=O K k

+ 2x tr V) etr(xV-) (2.17)

where
p

a(K) I k k(k -2j)
j=1

(2 .18)

a 2K)=2 k (-j k +3j 2

2j=1

and K was defined earlier.

The above lemma was proved by Hayakawa (1972).
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3. Asymptotic Null Distribution of the
Likelihood Ratio Test Statistic for

Sphericity

In this section, we derive an asymptotic expression

for the null distribution of the likelihood ratio statistic

for testing the hypothesis of sphericity for complex

multivariate normal distribution. The expression obtained

is in the form of a beta series.

Let Z: pxl be distributed as a complex multivariate

normal with mean vector ii and covariance matrix 1. The

density of Z in this case is known (see Wooding (1956))

to be

f(Z) = etr[-z -1~-)(Z-v) ]. (3.1)

Next, let Zl ... ,z N be N independent observations on Z

and let

N
A = Z (Z -Z.)(Z -Z.) = (A.) (3.2)

t=l t ~ t " ij

where Z denotes the conjugate of Z, and

N
NZ. Z

~ t
t=l

We are interested in testing the hypothesis H where

H: Z = U2 I and a is unknown. The hypothesis H can be

decomposed as H = H 1l H 2 where H is the hypothesis that Z

is diagonal matrix and H 2 is the hypothesis that the diagonal

elements of Z are equal given H is true. The likeli-

hood ratio test statistic for testing H and H 2 are known to

be 1 and X 2 respectively where

~'----
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pi n (3 .3)
A

i=l

p
nT Atii~

X I= l (3.4)

2 (trA/p)pn

where n = N-i. The likelihood ratio test for H is

X A 1 X2 (3.5)

Now, let w - A/n Then

P

i~l
w = (3.6)

Uli / P~

where Zl >. .> Zp are the eigenvalues of A. The moments

of w under the hypothesis H are known to be

E(wh) -- [ph/ p(n)]r(np)F p(n+h)/F(np+ph) (37)

1/s
Next, let u = w where w is given by Eq. (3.6) and s is a

constant to be chosen to govern the rate of convergence for the

resultant series. The null h t h moment of u is obtained by

replacing h with h/s in Eq. (3.7).By using the Mellin's in-

version transform (see Eq. (2.2)), the density of u becomes

P h
c+iw n r(n +-- i + 1)

f(u) K(p,n) u h-l ph/s i=l dh
2 ti r(np + p h )

(3.8)

Elk I .. . . *~.



p
and K(pn) = r(np)/ [ n r(n - i + 1)]. Set m - n - 6,

i-l

d = c + ms and m + -= , where 6 is also a converging
s s

factor to be chosen for the resultant series. Then, we have

d+i-

f(u) = K(p,n) p -pmu u (t)dt (3.9)
27ti d-im

and

p
fl r(s + -i + 1)

pt/s i =l + . (3.10)

P+ p)

By the use of the formula for the asymptotic expansion of

gamma function

log r(x + b) =log - 2 + (x + b - -1) log x - x

B (b)

(_l)r r+l r (3.11)
r=l r(r + 1) x

for b bounded and B (b) is the Bernoulli polynomial of degree
r

4r. So, we have

p-i A

log 0(t)= log(21T) s p + log V+ - (3.12)£ r
r=l t

where

V= (p2-1)/2 (3.13)

(_,)r r B P(p) P
A [r(r+) r Br+l(6-i+l)] (3.14)

rp i=l

Hence p-I

) (27) 2 s V p

.
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x t [i + -- ].I
r=1 t (3.15)

The coefficient Q can be obtained by the recursive equation

Eq. (2.7),

1 £

Since (t) = 0(t-)), we can write 0(t) as follows by applying

Lemma 2:
-v~ ~ r t+a)

t {I+ !r} - [R (3 .17)
r=l t i=O r(t+a+v+i)

and a is a constant to be chosen to govern the rate of con-

vergence for the resultant series. Using Eq. (3.11) to expand

the gamma function on the right hand side of Eq. (3.17), we

obtain

log =-(V+i) log t + 1(3.18)
(t+a+v+i) J=l tj "

where

A (B (v+a+i) - B (a)]. (3.19)
ij J(j+l) j+l J+l

, Thus

r (t+a) =t - ( v + i ) [I + [ tj (3.20)

r (t+a+v+i) j=i

and C i can be recursively computed by Eq. (2.7) as

C 1 ZA 9; CC0 = 1 . (3.21)

Substituting Eq. (3.20) in Eq. (3.17) and equating the co-

efficient of same powers of t, Ri is determined explicitly as
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i

R r (3.22)j=0 ' = 0

Now using Eq. (3.17), (3.15) in Eq. (3.9) and noting that

the term by term integration is valid since a factorial

series is uniformly convergent in a half-plane (Doetsch (1971)),

we have

d+i-

f(u) =-K(pn) K u si-i I R 1t r (t+a)1 J=O j 2d J U r(t+a+v+j) t (3.23)
d-iP

p-I

2 V -p(m+6)+
where K 1 (2T) s p . Now using Eq. (2.4) in the

above integral, we have
sj m+a -1 +-

f(u) = K(p,n) K1 . u l-u)V+1 /r(v+j), 0 < u < 1.

j=0
(3.24)

Thus the c.d.f of u in terms of incomplete beta functions

x( •, -) is

Cr (sm+a)
Prob (u < x) = K(p,n) K1l R. I (sm+av+j) (3.25)

J=0 *rX (sin+a+v+j)

where r(c+8)

1(cS) = r(a) r(a) u (l-u) du (3.26)

r (mp+6p)

Further expansion of K(p,n) = and
p
n r(m+6-i+l)
i=

r(sm+a)
gives us that

r (sm+a+v+j)

0- A
log K(p,n) = log [(27) 2 pp(m+6)- m V + --I

r=l m

where

A All
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A*=(1 B (6-i+1) -r1 'A (3.27)
r (r+1) i=l r s

and

K(p,n) =(2ir) 2 p (m+6)- v [l+ I!-,

r=1 m

where

rQ 2. k A r-Z Q0 =1 (3.28)

r(smia) = log (mAirV(3.2A.log r(sm+a+v+73) log (ms)(3.29)
r=1 m

rA

A.j [B r(a+v+j) - B rl(a)] = -S-r (3.30)

and

rma) =(ms)-(V+J) [1 + J- (3.31)

r(sm-Ia+v+j) r=1 m

Cr r X ~ A~ C. Cr, C 0  1. (3.32)

Hence, Eq. (3.25) is of the form

CO Q * CO
Prob (u < x) = (1 + r - R. I x(sm+a,v+j)(ms)

r1l m J=0

+r1l (sin) r

x (sm+a,v) + G G1 (3.33)x i~lM

*Wil
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where

Gi Q! J C
G= j R I (sm+av+i-j) z i-jj (334)
i j=o i- Z=o iz

The exact c.d.f. can be calculated using Eq. (3.33). When

n is small, a suitable choice of 6 will make m large in order

to expedite the convergence of the series in Eq. (3.33).

We will now examine the first few terms of Eq. (3.33)

when n is large. We know that

Co1  ,

G = I (sm+a,v) ( -- + Ol) + R I (sm+a,v+l)/s (3.35)
x S 1 1 x

= l C * ~C 1 1  QG 2 = i (sm+a,v)(-- + Q C2 ) + R1 I (sm+a,v+l)(-- + -
s s

+ R2 1x(sm+a,v+2)/s
2  (3.36)

G I (sm+av)(Co3  QC 0 2  Q2 C0 1
3 xm3 2 3s s s

C 1 2  Q1 C1 1  Q
R  1x (sm+av+l)(--- + -2 +

s s s

C21 Q* 3

" R 2 1x (Sm+a,v+2)(- + 2) + R 3 Ix(sm+a,v+3)/s . (3.37)
s s

From Eqs. (3.27) and (3.28), we obtain

* * i - B2 (3P) (.8

Qi = A1 I - B2 (6-i+l) (3.38)

Using Eqs. (3.14) and (3.16), we obtain

* *QIfi A1 = -SAl ff - sQ1 (3.39)
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Also, from Eq. (3.22), we have

R + Col Q 1 (3.40)

Eqs. (3.19) and (3.21) give

1
Col = A 0 1 = --I [B 2 (v+a) - B 2 (a)]. (3.41)

2 2 x ) 2 21 + I i
Using the Bernoulli polynomial B2(x) = 6- + 1 in

Eqs. (3.38) and (3.41) and set

0 . (2P 2+ l)/6p (3.42)

a = (1-v)/2 - (3-p 2)/4 (3.43)
0

We obtain
A1  Q1  = 0 1  

=  0

(3.44)

A1 = QI = R1 
= 0.

Using Eqs. (3.14), (3.16), (3.19), (3.21), (3.22)

and (3.44) we obtain

R2 + C02 = Q2 (3.45)

C0 2 = A0 2 = - [B 3 (v+ao) - B3 (ao) ]  (3.46)

2 B( 3p)

p s B 3 (60 -i+l)]. (3.47)SQ2 =  2 = 6 [ 2 "~ 3

By equating Eq. (3.46) and Eq. (3.47) and using B3 (x)

3 32 1=x x + 1 x, we obtain,

2 =3p2 (p6-3p -p 2+3) (3.48)
= 4 6 4 2 (.84 (2p 66p +3p +1)

2With the above choice of s , R 2 = 0.
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Now

C0 2  Q2  A2  * *
2 2 -2 2 - (3.49)

so so so

where s o is the positive root of (3.48). Hence

00 2  ,

+ Q= 0. (3.50)
so

Now in Eq. (3.22), we have

R3 = Q3 - C0 3 " (3.51)

From Eqs. (3.14) and (3.16), we have

3 * 3 *
Q= A3  -o A S o Q (3.52)

and hence
SR - 3  * C03"

CR = 3Q3 + -- (3.53)
so

Using the identities given above, it is seen that

G =G 0 (3.54)
1 2

R3
G - (I (s m +a ,v+3) - I (s m +a ,v)) (3.55)3 3 x 0 0 0 x 0 0 0

s
o

where

m= n- (3.56)0 0

Thus by so choosing 6 , a and s , we have the c.d.f. of
* 0 0 0

u in asymptotic form as

Prob (u < x) = I (s m +a ,v)-- X 0 0 0

1 R3+ -- - [I (s m +a ,v+3)3 3 X 0 0 0• m 0 s o

-4
- I (s m +a ,v)] + 0(m ) (3.57)

X 0 0 0 0
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Note that when p 2, then s 1, a = -1/4, 6 = 3/4,
0 0 0

v= 3/2. So, Eq. (3.10) becomes

2 2t r(t+6 ) r(t+s -1)o(t 2 (3.58)

r(2(t+6 ))
0

Using the duplicating formula that

r(2z) - 2 2z-1 r(z+ ) (3.59)

we have

1-26 (t-(l/4))
) 2 0 r (3.60)

r(t+(5/4))

But, using Eqs. (3.15) and (3.17), we have

(t) = 21 260 (r(t-(/4) R (t-(l!4)) ). (3.61)

r(t+(5/4)) i=l r(t+(5/4)+i)

Hence

R r(t-(l/4))
2R i  = 0.

i=1 r(t+(5/4)+i)

For p 2, Eq. (3.57) becomes

Prob (u < x) I x(n-1,3/2) (3.62)

xI

which is the exact distribution of w (see Nagarsenker and

Das (1975)).

Krishnaiah, Lee and Chang (1976) approximated the

distributions of certain powers of the likelihood ratio stat-

istics for testing several hypotheses in multivariate anlaysis

with Pearson's type I distribution. The accuracy of this

approximation was found to be quite good. In the sequel,

we will refer to the above approximation as KLC approximation.

Ll
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Tables 1 gives a comparison of the accuracy of the approxi-

mations by taking the first term and the first two terms

respectively in (3.57).

In the table, the constant w is defined by

c = exp(-w/2) where P[w<c] = a

and the values of w are taken from the tables of Krishnaiah,

Lee and Chang (1976). When the first term in the expansion

(3.57) is used, the value of P(w<c) is denoted by a1

whereas the corresponding value obtained by using the first

two terms is denoted by a2.

TABLE 1

Significance Level Associated with the Asymptotic

Expression for the Likelihood Ratio Test for Sphericity

n p=3, a=0.05 p=6, a=0.05

w 1 2 w 1 a2

10 1.745 .0499 .0500 6.512 .0476 .0486

15 1.115 .0500 .0500 3.895 .0495 .0498

20 .820 .0499 .0499 2.791 .0499 .0500

28 .576 .0500 .0500 1.924 .0499 .0500
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TABLE 1 (Continued)

n p= 3 , a=0.01 p=6, a=0.01

w a a2  w a a2

10 2.263 .0100 .0100 7.531 .0092 .0095

15 1.445 .0100 .0100 4.491 .0098 .0099

20 1.062 .0100 .0100 3.216 .0099 .0100

28 .746 .0100 .0100 2.216 .0100 .0100

The above table indicates that the first term in the

asymptotic expression alone gives a good approximation.

KLC approximation is based upon approximating certain power

of w with Pearson's Type I distribution by using empirical

merrods whereas the approximation given in this paper is

analytic in nature.
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4. Asymptotic Nonnull Distribution of the

Likelihood Ratio Test Statistic For Sphericity

In this section, we derive the asymptotic distribution

of the likelihood ratio test statistic for sphericity of

the complex multivariate normal distribution under the

following sequences of local alternative hypotheses:

-1 -I

(i) (I-qZ - ) = V/m, (ii) (I-q 1) = W/m

where V and W are fixed matrices as m-- and O<q<-. The expressions

obtained are in terms of beta series. In the analogous

real cases, Khatri and Srivastava (1974) obtained asymptotic

expressions in terms of chi-square series. To derive the

asymptotic distribution in the complex case, we need the

following lemma in the sequel.

Lemma 7. Let A: pxp be distributed as a complex Wishart

CW (A;n,E). Then the non-null h th moment of w defined in

Eq. (3.6) is

W C (M)
h h lin K r(np+k) r

E(wh) = q-l k! r(np+k+ph) (h
r (n) k=O K
p

(4.1)r-l
where M = I-qE

Proof: The distribution of the eigenvalues i2,...,

of A is (James (1964))

1 - n-p 2 p
K(pnZ)0 F0 (- L)ILI IT (zi - ) iz l di. (4.2)

i<j j i-l

where

~K(p,n,Z) = __!- p - l

r (n)r (p)

A ,
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an d L - d iag ( 1i, 2  .. . )P

Using Lemma 4, Eq. (4.2) can be written as

-tr L/q - In-p , ( Z
K(p,nE) e 0 F 0 i- ) T dZi (4.3)

i<j i=l
-l

where M = I-q 1.

hMultiply Eq. (4.3) by w , also expand 0 F0 (M/q,L) as in Eq.

(2.9) and perform the transformation L = UVU' where U is

unitary and V is Hermitian positive definite matrix. The

Jacobian of the transformation is

J(V;L,U) = I (Zi-z) h2(U)

i<j(U

and the integration on U is

) h 2 (U)dU = p r p(p)

U(p)

(see Khatri (1965)).

We have

h) p ph Iz- 1n - C (M) IV/ ,+h-p V)ph
E(w = q k- exp(-tr V/q) (tr

r (n) K qkc (1)k:
p K V=7>0

x C (V)dV

Applying Lemma 5 to the integral, we obtain Eq. (4.1). Note

that for q = 1, we get the expression as in Pillai and

Nagasenker (1971).

We will first derive the asymptotic distribution of

w when (l-qZ 1 V/m. Let u = wlsOhere sO is the posi-

tive square root of the right side of (3.48) and w was defined

by (3.6) From the non-null ht h moment of w given in Eq. (4.1),
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we use the inverse Mellin transform on E(u h ) = E(w h/S0),

to get the density of u as

C (M)

f(u) - K*(p,n,2) r K P(np+k) . (u) (4.4)
k=O K k

where

c+i- p
u Ih-i ph/s TI F(n+(h/s )+ki-i+l)

= u p o i=l dh (4.5)

c-i F(np+k+ -(ph/s ))
0

and

P
K*(p,n,E) = q Z-ln/ TI r(n-i+l),

i=l

M = I-q Z-  V/m . (4.6)0

Following the same argument as in Section 3 we obtain

Prob (u < x) = q Z- lin K C ) k i + Qi
-- k0 K k i~lm

00

x R O (k) Ix (sm 0 +a 0,v+a)(m 0 s0 )- [1 + 1 -4-1 1 (4.7)
c=O j=l m,

where we obtain the following expressions analogous to

(3.22), (3.16), (3.14), (3.28) and (3.27):

i

j1 Rij(k) C i-j j Qi(k) ; R 0 (k) = 1 (4.8)

Qr(k) r A (k)Q (k); Q0 (k) 1 i (4.9)

r r A( -0
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and

A (k) 0 (1 rS r+i l 0 ~) j B (6 +k~+ (4.10)r r(r+1) p ~

Qr (k) 2 Z Z AXjk) Q (k), Q (k) = 1 (4.11)

A*()- (-l)r B -i~) (6jp+k)
Ar ( r+1) BL 'r+l ( 0 " l r (.2

The asymptotic expansion of Iq E-li gives

Kq E- lIn1 = IIV/m 0 (m 0+6 0

= exp[-(m +6)( I trr
S r=l rmr

0

= exp (-trV)[l 1 (6 tr V + -tr V2)m 0 2
0

2 0tr V 
2 + 1trV3

m 2
0

1 (6 r V +~ -Lt 2 2
2 02 t

+ 0(m-3) (4 .13)
0

and

C (M) m k C (V/rn )m k= C (V (4.14)
K 0 K 0 0 K

since the zonal polynomial C (M) is homogeneous of degree k.
K

Furthermore the use of formula for the Bernoulli polynomial

B n(x+b) = n n- (X)br (4.15)
rio

- . - 7 -
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gives (-l)s B 2 (6oP-fk) 2

A1 (k) = 2 [ _ B2 (6 +k i-i+l) ]
2 p2

S - s - (1 + 1 )k - al(K)] (4.16)

2 B3 (6 p+k)

A2 (k) - 6 [ 2 B 3 (6o+ki-i+l)

p =

2 k 3B(6p)k2  3B 2 (6 p) 2

- A2 + - I- + 2 2 36 k
6 p p p

a 1 (36 + ) a(K)] (4.17)

From eqs. (4.11) and (4.12)

Ql(k) Al(k) = A* + 1 (2 BI(6 p)k+k 2 ) (4.18)

Q2 (k) = [Al(k) " + 2 A2 (k)]

Q + - (2 BI(6 p)k + k2 ) 2 (4.19)
1 2

- 2 (3 B2 (6 p)k + 3 B1 (6 p)k
2 + k )

6p

where A1, A2, AI, Q 2 are as in Eq. (3.14), (3.27), (3.28),

a1(K ) and a 2( (K) are defined in Eq. (2.18). Note that in

Eq. (3.44), (3.49)

, * ,* * C.
A = 0, Q + C + 0 (4.20)

1 Q2  0~2 Q2 2s
0

WO i_
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Also from Eqs. (4.8), (4.9)

Ql(k) aI(k)

1
Q2 (k) = - (A (k)Ql(k) + 2A2 (k))

Rl(k) f Ql(k) - C0 1  (4.21)

R2(k) = Q2(k) - C0 2 - (Ql(k) - C0 1 ) Cll.

Substitute these identities in Eq. (4.7) and then use

Eqs. (2.13) - (2.17) for the summation over k. By neglecting

the higher order terms of m , we obtain an asymptotic ex-
0

pression of Prob (u < x) as

Prob (u < x)

- (s m +a ,v) + 1- dl[I (s m +a ,v)-i (s m +a ,'+1)3
X 0 00 0 m 1 X 0 0 X 00 0

0

+ 3 i Ix(s m +a ,j+i-1) + 0(m - 3) (4.22)
m ifl X 00 0 0

b 0

1where d (tr V)2 _ I tr V2
2p

2
S1 3 1 V3
a 0d + + d2 ;d 2  2 (tr V) 3 tr

a .)2+6 1 2 tr V d 2a2  2s- 281

0 p

d1 l + 1+ d
p 0 2s 1 2 3

0

2 t . i 3  Ir V2

d 3  2 ( 3 + J tr - 1 tr V tr
3p 3 p

- .. t



27

We now discuss the asymptotic distribution of w when

- 1 E = W/m 0 ' In this case, we have

q (I - W/m 1 - I + - (I --m m
0 0

-M I q-_ W (I W )-l (4 .23)
m m

0 0

We now substitute Eq. (4.23) in Eq. (4.4) and expand. it

may be noted that when compared with Eq. (4.6), - W(I-W/m )l

plays the same role as V in those equations and hence the

non-null asymptotic expression for the present case can be

obtained by treating - W(I-W/m 0)_ as V in Eq. (4.22).

Further expanding - W(I-W/m ) and neglecting the higher

order terms of m gives
0

Prob (u < x)

- (s m+a ,xi) + -d 1 [I (s m+a ,v) -I(s m+a ,v+l)]

3 3)+ L C I (s m +a ,v+i-1) + Q(m )
m i1 ~ X 0000(4.24)
0

whr 1d - (tr W/ _ 1~ tr W2
2p2

a, = s d + - .i- d ;d) - tr W tr W2 1 -(tr W) 3 2 t r !. 3

0 1 2 2 2 p 3p 2 3

a (.--26 -d -d2+d ;d - -(tr W)3 2-trW tr W2 +t rW3
2 2 0 p 11 3' 3 p2

2
3 1 1±)
a (+ 6 1

p 0 2 s 1 2 4

1 2 1 3 2 3
d 4 - tr W tr W -. tr W 3-5 (tr W)
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5. Applications in Inference on Multiple
Time Series

In this section, we discuss the applications of the

results of Sections 3 and 4 in drawing inference on the

spectral density matrix of the multiple time series.

Let X (t) = (X1 (t),...,X (t)) (t = 1.2,...,T) be

a real stationary Gaussian multivariate time series with mean

vector 0 and covariance matrix R(T) = E{X(t) X (t+t)}.

The spectral density matrix F(w) at the frequency w is

given by

01
F(w) 2 exp(-iTW)R(t) (5.1)

A well known estimate (e.q. see Wahba (1971)) of F(w) is

F(w) = C. Cu)) wherei

f 1 i (5.2)

fI (W) z (nW) (W)n

zC2r(T))t=l X (t)exp(-itw).

where Z denotes the conjugate of Z. Then, it is known (see

Goodman (1963) and Wahba (1968)) that (2nl+l)F(w) is dis-

tributed approximately as central complex Wishart matrix

with (2n1 +l) degrees of freedom and wltb E(F(w)) = F(u).

So,we can test the hypothesis H: F(u) - A(u) I In a

similar fashion as in the case of the test for sphericity

of complex multivariate normal distribution. So, analogous
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to the likelihood ratio test for sphericity, we propose

the following procedure for testing H. We accept or

reject H according as

T < cI  (5.3)

where

P[T>c1 IH] = (I-a) (5.4)

and

T F(w)[ (5.5)
(tr F(w)/p)p

1/s 0

So, the approximate asymptotic distribution of T in

the null case is obtained from (3.57) by replacing n with

(2n1+l) and s is the square root of the right side of

(3.48). Now, consider the alternative hypothesis A1 and

A2 where A1 : (I-q(F(w)) - ) = V(w)/m and A2 : (I-q- F(w))

= W(M)/m where m = 2n + 1 - 5, 6 is a constant, and
1

V(M) and W(w) are fixed matrices as m - o.

In the above cases, approximate asymptotic expressions

for the distribution functions of T I / s  can be obtained by

replacing n with (2n1+l) on the~right sides of (4.22) and

(4.24) respectively.

Next consider k frequencies wI,... ,k where w - 2Jz/T

and J. = (-l)(2n 1+l) + (n1 +l). Then, it is known (e.g., see

Wahba (1971)) that F(w1 ),... ,F(
k wk) are distributed independently

and approximately as central complex Wishart matrices with

(2n1+1) degrees of freedom and E(F()) F() We now

discuss procedures for testing HI,...,Hk and H0 simultaneously
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against A I .... 9Ak and A0 where

k
Hi : F(wi) X(i)Ip 0 = l H

k
Ai: F( X (W )I ,A 0 = U Ai

i=l

We accept or reject Hi according as
i i

i< ci

where

P[Ti >ci; i=l,2,...,klH0

k
~TI P[Ti ciiHi ] = (1-a). (5.6)

i=l

TF(w i)l (5.7)(tr F(w i)/Pp

The total hypothesis H0 is accepted if and only if all

the individual hypotheses Hi are accepted. We can compute

approximate values of a for given values of ci using the

results of Section 3. The power functions of the above

test under certain local alternatives can be computed using

the results of Section 4. We can also test the hypothesis

H0 by using TO 
= T1-.Tk as test statistic. Approximate null

distribution of this statistic can be obtained by following

the same lines as in Section 3.

4f

-
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