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1. Introduction

-

It is known (e.g. see Brillinger (1974)) that certain
suitably defined estimates of the spectral density matrix
of the Gaussian, stationary multivariate time series are
approximately distributed as complex Wishart matrices. So,
the problems of inference on the covariance matrices of the
complex multivariate normal distributions are closely re-
lated to the problems of inference on the spectral density
matrices. For a review of the literature on complex multi-
variatg distributions and their applications in time series,
the reader is referred to Krishmaiah (1976).

Motivated by the applications in the area of inference
on multiple time series, we investigate asymptotic expressions
in the null and nonnull cases for the distribution of certain
power of the likelihood ratio statistic for testing the
hypothesis that the variables are independent and have a com-
mon variance. These expressions are in terms of beta series.
In the case of null distribution, it is found that the ac-

curacy of the approximation by taking the first term alone

in the asymptotic series is sufficient for practical purposes.
Here, we note that Krishnaiah, Lee and Chang (1976) approxi- ;
mated the null distribution of certain power of the likeli-
hood ratio test statistic for sphericity with Pearson's Type
T distribution. But this approximation is based upon empirical
study. In the analogous real case, Khatri and Srivastava (1974)

derived the nonnull asymptotic distribution in terms of chi-

square series. In the final section of this paper, we discuss




the applications of our results to the area of inference on

multiple time series.
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2. Preliminaries

In this section, we define some notation and give some

lemmas which are needed in the sequel.

The Mellin's integral transform of a function f(x) of

real variable x defined for x > 0 is

M{f(-)lt} = f xt—1 f(x)dx (2.1)

0

where t is a cuomplex variate (Titchmarch (1937)).

Lemma 1. Let yc-l f(y) be a measurable function in (0,«)

and

J v&l £(y) dy < = .
0

Also let f(y) be of bounded variation in the neighborhood

of the point y = x. Then
ct+iw

16{ £ (x+0) + £(x-0)} = zii M{EC) e} x~F at

c=iw

where M{f(-)lt} for t = ¢ 4+ iv exists.

In the sequel, we shall assume that f(x) is absolutely
continuous in the interval (0,1). Hence f(x) is of bounded
variation in the neighborhood of x of interest. Furthermore,

ctix
f(x) = Zii f M{EC) |t} x~
c=1ix

Note that when f(x) = (1-x)b-1, 0 <x <1. Then

t o4t (2.2)

1 .
M{E() [t} = fo x5l (1-x)P"! ax = ;%%%£§§l . (2.3)




R

for Real(t) > 0, and Real(b) > 0. Hence

ct+iw
1 T(t) -t
2wl T(t+b) *
c-=1iw

(1_x)b—1
T (b)

dt = (2.4)

1
for ¢ > 0.

Lemma 2. Let ¢(t) = J xt p(x)dx be the moment function of

a random variable x with density p(x). If
$(t) = 0(t™")

with Real(t) tending to =, then ¢(t) can be expanded

as a factorial series of the form

Hes38

R, T(t+a) /T (t+a+v+i) (2.5)

$(t) = .

i=0

where a 1is any constant (Nair (1940)).

Lemma 3. Let the series z aixi converge to the function
i=1
g(x) in the neighborhood of x = 0 (or be its asymptotic

expansion when x = 0). Then
(e ]
eg(x) =1 + z Bixi (2.6)
i=1
where the coefficients Bj satisfy the recurrence relation
L
= = k a B, = 1. 2.7
By = 3 kzl KBy 0 Bo (2.7)

We use the following notations as defined in James
!
(1964). The complex multivariate gamma function Fp(a) is i
given by ‘\

3 P
I (a) = oPP-1)/2 o riacisny.
P i=1




The complex multivariate hypergeometric coefficient 1is

given by
[a] ;
a = I (a-1+41)
K i=1 ki
where |

(a)k = a(a+l)...(a+k-1)
K = (kl""’kp) is a partition of the integer k such that
k1 >.e+>k >0 and k = k, +...+ k_ . The transpose and
- - p - 1 P

conjugate of a complex matrix B are denoted by B' and B

respectively. Also, let CK(A) denote the zonal polynomial

]

of a Hermitian matrix A, (i.e., A = . ). 1In addition,
F (a;sc.05a_3 boyeea,b 3 A) = E ) [allK...[af]K Ef(A)
rq°1 r 1 q k=0 < TEI]K...[bq]K k!

rFq(al,...,a 3 bl,...,b s A,B)

r

...[ar]K CK(A) CK(B)

p " 1
K CK(IP) k!

where al,...,ar, b .,bq are real or complex constants.

10
Throughout this paper, etr B denotes the exponential of the

trace of B.
Lemma 4., Let I: pxp be a Hermitian matrix.

Then
1 - e-trL/q

- - 5 1
0Fo(-2 7, 1) oFo (3 ML) (2.8)

where M = I - qZ-l, L: pxp is a positive definite

Hermitian matrix, q is a constant and

C_(B) C_(D)
) == < (2.9)
k C (I ) k!

k' Tp

oFo (BsD) |

-1 8

k=0




Proof: By using the splitting formula (James (1964)), we

know that
: -1 ‘ - -1

- = - ey
OFo( z ,L) J OFO( T ULU',I)dU (2.10)
U(p)
where
- _ _ _ -1 =,
OFO(_X 1 ULd',1) = e-tT £ ULy,

dU is the invariant Haar measure on the unitary group U(p)
normalized to make the total measure unity. Since

-1 - -
tr £UL' = % tr L - tr(% MULT') (2.11)

where M = I - qz'{ We prove the result by using Eq. (2.11)

in Eq. (2.10).

Lemma 5. Let V be a pxp positive definite Hermitian matrix,

and T: pxp be an arbitrary complex symmetric matrix. Then

exp(—t:x.‘V/q)IVlb-p (tr V)m C'< (TV)dv
¥'=2v>0

bp+k+m

- fp(b,x) I (bp+k+m) EK(T) q /T (bp+k) (2.12)

where

. iy P
T (b,e) = 72 PP"1) b rbog414k.), ko= (k. ..ak ).
p i=1 i 1 P

Proof. We know (see Khatri (1966)) that

f exp(-tr V)IVI""p EK(VT)dV fp(b,m) &K(T).
TR

v 0

v Pt w PRGN, .




Substituti

ng Z15

L
VZ* for V in the above equation with Jacobian

1
IZIp (Khatri (1965)) where Z° is a Hermitian positive

definite matrix,

exp(-tr zv)|v|b‘p c (VI)dv =

V'=V>0

Now take 2Z

J exp(-tr(% - x)V)]VIb_p EK(VT)dV

V'=v>0

we have

= (% - x)

: p -1 -b
Fp(b,K) c (Tz ylzl

- - 1 -(bp+k)
Fp(b,K) CK(T)(E - Xx)

Equating the coefficient of x™/m! for both sides of the above

equation we obtain (2.12).

Lemma 6.

definite V

For any integer

» we have

K~

r, variate x and Hermitian positive

- X CK(V) r T
T ) —f5— = x" (tr V)T etr (xv) (2.13)
k=r « (k-r)!
© | x“i () (V) ) 2
Z E = (x"trV -x tr V) etr(xV) (2.14)
k=0 « k!
. xkgl(K)an(v) r+2 2 r r+l r+1
z 2 = {x tr Vo(tr V) -x (t- V)
k=r « (k-r)!
+ 2r xr+1 tr Vz(tr V)r—l-rxr(tr V)r
r 2 r-2
+ r(r-1)x tr VvV (tr V) tetr(xV)
(2.15)
k~2 -
o x a, (k)C (V)
z Z 1 K = {xa(tr V2)2+4x3 tr V3-2x3 tr V tr V2
k=0 « k!




2
+ 3x2(tr V)"-4x2 tr V2 + x tr V! etr(xV) (2.16)

K. .
@ x az(K)CK(V)

z = {2x3 tr V3+3x2(tr V)2-3x2tr V2
k=0 « k!
+ 2x tr v} etr(xv) (2.17)
where

-~

p
a2, (k) = jzl ky(kg-21)

(2.18)

a,(x) = 2 bk k2o3gk 4392
j=1 jod h|
and ¢ was defined earlier.

The above lemma was proved by Hayakawa (1972).

i
[
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3. Asymptotic Null Distribution of the
Likelihood Ratio Test Statistic for
Sphericity

In this section, we derive an asymptotic expression
for the null distribution of the likelihood ratio statistic
for testing the hypothesis of sphericity for complex
multivariate normal distribution. The expression obtained
is in the form of a beta series.

Let Z: px]1 be distributed as a complex multivariate
normal with mean vector u and covariance matrix I. The

density of Z in this case is known (see Wooding (1956))

to be
1 -1 = ="'
£(z) = etr[-Z “(Z-u)(Z-u) 1. (3.1)
- Wplzl - L2
Next, let Zl”"’ZN be N independent observations on Z
and let
N _ _ '
A= ) (2,-2.)(2,-2.) = (Aij) (3.2)

t=1 ~

where Z denotes the conjugate of Z, and

~

We are interested in testing the hypothesis H where
H: ZT = g¢ Ip and 02 is unknown. The hypothesis H can be
decomposed as H = Hl n HZ where Hl is the hypothesis that I

is diagonal matrix and H2 is the hypothesis that the diagonal

elements of L are equal given Hl is true. The likeli-

hood ratio test statistic for testing Hl and H2 are known to

be A, and ), respectively where

1 2

v




"R Y

v v'» va"
(3.3)
P
mn AP
i=1 ii
A, = (3.4)
(trA/p)p

where n = N-1. The likelihood ratio test for H is

A = A1A2' (3.5)
1y
Now, let w = A ‘%, Then
p
e L
w s — (3.6)

(5 e

where 2; >...> 2 are the eigenvalues of A. The moments

of w under the hypothesis H are known to be

E(Wh) =[Pph/fp(n)]F(np);p(n+h)/r(np+ph) (3.7)

1l/s
Next, let u = w where w is given by Eq. (3.6) and s is a

constant to be chosen to govern the rate of convergence for the
resultant series. The null hth moment of u is obtained by
replacing h with h/s in Eq. (3.7).By using the Mellin's in-

version transform (see Eq. (2.2)), the density of u becomes

P

ct+iw n/ T T'(n + % - i+ 1)
—h- ph/s 4=
£u) = Xpen) f TRl 1=1 . dh
2w I'(np + p ;)

c=iom

(3.8)




11

p
and K(p,n) = P(np)/ [ T T(n - 1 + 1)]. Set m = n - &,
i=

, where 6 1s also a converging

d = ¢ + ms and m + %

ot

factor to be chosen for the resultant series. Then, we have

d+ie
f£(u) = K(p,n) p P® o571 2L [ u”% s(t)de (3.9)
2ni diie
and
p t
I F(; + 8 -1 + 1)
- s(t) = pPt/s izl - . (3.10)
P(Pg + &p)

By the use of the formula for the asymptotic expansion of

gamma function
log T(x + b) = log V27 + (x + b - %) log x - x
Br+1(b)

- (-1)* (3.11)
rzl r(r + 1) x'

! for b bounded and Br(b) is the Bernoulli polynomial of degree

‘{h r. So, we have
T p_l . A
’ log ¢(t) = log(2m) = & p %P1 4 105 ¢V 4 ] —  (3.12)
r=1 t
where
v = (p2-1)/2 (3.13)
; r B (sp) p
' (-1)" s r+l _ )
A=t T x ) B 41 (8-1+1)] (3.14)
P i=1
Hence 1

$(t) = (2m)




é
i
;

S el e T TR T A e e T e e

(3.15)

The coefficient Qr can be obtained by the recursive equation

Eq. (2.7),

11’.‘
o, -1 § 1,0

(3.16)

Since ¢(t) = O(t-v), we can write ¢(t) as follows by applying

Lemma 2:

_ ® Q o T(t+a)
eVi1+ ] Iy [ R ——
r=1 ¢t i=0 T(t+a+v+i)

(3.17)

and a is a constant to be chosen to govern the rate of con-

vergence for the resultant series. Using Eq. (3.11) to expand

the gamma function on the right hand side of Eq. (3.17), we

obtain
log ——iﬁi:il—— = - (v+i) log t + E fii
I (t+a+v+i) j=1 ¢3
where
(-1)3 \
Aij = ;?;:I; {Bj+l(v+a+1, - Bj+1(a)]'
Thus

F(t+a) _ t-(v+i) (1 + E Eii 1

T(t+at+tv+i) 3

and Cij can be recursively computed by Eq. (2.7) as

1
C,i = 7 L A C i Ciq =1.
ij jgzl

(3.18)

(3.19)

(3.20)

(3.21)

Substituting Eq. (3,20) in Eq. (3.17) and equating the co-

efficient of same powers of t, Ri is determined explicitly as




ER——

13

i
jZO Ri_5 Ciog,3 = Q. Rp =1 (3.22)

Now using Eq. (3.17), (3.15) in Eq. (3.9) and noting that
the term by term integration is valid since a factorial

series is uniformly convergent in a half-plane (Doetsch (1971)),

we have
- d+i=
sm-1 1 -t T(t+a)
f = K . K R, —_—
(u) (psn) 1 u z j 2rwi J u T (t+a+v+]) dt (3.23)
j-o d
F -
: o1
— - 1
where K, = (27) 2 s’ P p(m+6)+1. Now using Eq. (2.4) in the

- 1

above integral, we have

£(u) = K(p,m) Ky ] Ry o®™ a0V e, 0 cu <1
3=0
(3.24)
Thus the c.d.f of u in terms of incomplete beta functions
1x('$') is
© T (sm+a)
, Prob (v < x) = K(p,n) K, | R, I (sm+a,v+j) ————— (3.25)
- ty=0 T (sm+a+v+j)
? where I (a+8)
; - a-1 . 8-l
| lx(a,B) . I(a) T(g) u (1-u) du . (3.26)
i
\ I (mp+8p)
{ Further expansion of X(p,n) = 5 and
1 T (m+§-1+1)
i=1
T'(sm+a)
gives us that
T (sm+a+v+i)
1-2 *
2 p(m+8)-% v : Ar
log K(p,n) = log [(2m) “ p m ]+ ] =
=1

g —m————e——_E L S A I R
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l
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i
i
|
i
(-1)* P B_,.(8p) A !
AN e —— 1] B, (s-141) - Ry - I (3.27) |
r r(r+l) 1i=1 P s |
and
1- Q*
=1 x
R(p,n) = (2n) 2 pP{™¥O)=% v g 4§ I
r=1lm
where
« 1 E X % * )8
Q = 7 PAp Qg s Q=1 (3.28)
=1
A*
T (sm+a) _ -(v+3) v Oir
108 TrsnratviT) log (ms) + rZ1 : (3.29)
(-1)*F A,
%*
B e—— 3 - = _J_r
AJ.r N [B_,q (a+v+]) B_,q(a)] X; (3.30)
s r(r+l)
and
*
T'(sm+a) _ o C
- @o)y" ) oy 7 i (3.31)
I'(sm+a+v+j) r=1l m
T O Sir o* L (3.32)
¢ T % 121 YA Gree T f50 T :
Hence, Eq. (3.25) is of the form
@ Q* © _
Prob (u < x) = (1 + z —%) z R, Ix(sm+a,v+j)(ms) 3
r=1 m° j=0

X

© C.
b1 )
=1 (sm)©

1
I (sm+a,v) + ! YT G,

(3.33)




The exact c¢.d.f.

n is swmall,

i
G, = Z R Ix(sm+a,v+i-j

o 173

can be calculated

a suitable choice of §

to expedite the convergence of the

We will now examine the first

when n is large.

Coa %
1= Ix(sm+a,v) (;—— + Ql) + Ry Ix(sm+a,v+1)/s
*
Coz2 Q; Coa x
G, = lx(sm+a,v)( sz + 5 +Q,) + Ry
4+ R, I {(sm+a v+2)/s2
2 “x ’
* *
Cos Q Coz Q,Co1 *
’ G3 = Ix(sm+a,v)(——§ + =t + Q3)
3 ) s
3 : * *
x Ciz Q1C11 Q2
. + Rl Ix(sm+a,v+1)( 3 + 5 + —=)
. s s s
- *
3 Ca1 Ql 3
+ R2 Ix(sm+a,v+2)(;§— + ;7) + R3 Ix(sm+a,v+3)/s .
From Eqs. (3.27) and (3.28), we obtain
: B, (8p)
* * 1 2
: Q = A = -3 % B,(6-1+1) - —=—r ],
; " i=1 P
Using Eqs. (3.14) and (3.16), we obtain

We know that

» * C
) QU Ci-3,3-2
=0 si-l

using Eq. (3.33).

series in Eq.

few terms of Eq.

Q1=A1=

ot I =y WRTPR ke N

* *
-sA1 = - sQl

(3.34)

When
will make m large in order

(3.33).
(3.33)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

Cii

S

x
Q

Ix(sm+a,v+1)(—5— + ;—)




: Also, from Eq. (3.22), we have

R1 + Co1 = Ql (3.40)

Eqs. (3.19) and (3.21) give

1
Co1 = Ap1= -5 [Bz(v+a) - Bz(a)]. (3.41)
Using the Bernoulli polynomial Bz(x) = x2 - x + % in
Eqs. (3.38) and (3.41) and set
; 55 = (2p°+ 1)/6p (3.42)
1 a = (1-v)/2 = (3—p2)/4 (3.43)
We obtain * *
A4) = Q) =Cyp =0
(3.44)
A; = Q =R =0

Using Eqs. (3.14), (3.16), (3.19), (3.21), (3.22)

and (3.44) we obtain r
Ry, + Cyp = Q (3.45)
1
Coz = %2 = % [B3(v+ao) - B3(ao)] (3.46)
2 B, (8op)
3
Q, = 4, = F [—=5— - E By(8o-1+1)1. (3.47)

P i=1

By equating Eq. (3.46) and Eq. (3.47) and using B3(x)

= x3 - 2 x2 + l x, we obtain,
, 2 3
1
! 2,6 ., 4 2
. ¢ = 3p” (p_-=3p -p~+3) ) (3.48)
b (2p8-6p*+3p2+1)

With the above choice of sz, R2 = 0.




Coz = _Q_z. = 2 =—A* = - *
7 3 7 257 Q
S, Sy S,

waere s, is the positive root of (3.48). Hence

Co2

2
0

+o*
Q2 = 0.
s

Now in Eq. (3.22), we have

From Eqs. (3.14) and (3.16), we have
_ _ L3 k3 %
Q3 = A3 7 750 Ay S0 Q5
and hence

R, = 3t
3 = 7% Q3 + 57

Using the identities given above, it is seen that

G1 = G2 =0
Ry
G3 B ;3 (Ix(somo+ao’v+3) - IX(Somo+a0’v))
)
where
m = n=-§
0 0

Thus by so choosing 60, a0 and so, we have the c.d.f.

u in asymptotic form as
Prob (u < x) = I (s m +a ,v)
- X 0 0 0

R
L 3 (1 (s m +a ,v+3)
3 3 X 0 o0 0
OSO

+
m

-4
- I(s m +a ,v)] + o(m0 ) (3.57)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

of




i8

Note that when p = 2, then s = 1, a = -1/4, 60 = 2/4,

v = 3/2. So, Eq. (3.10) becomes

P(t+8 ) T(t+6 -1)
2t 0 0 (3.58)

p(t) = 2
r(z(c+5°))

Using the duplicating formula that

r(2z) = o p22-1 T (z+%) (3.59)

we have

T(t-(1/4))
o (t) = 21-26, w% _— (3.60)
T(t+(5/4))

But, using ‘Eqs. (3.15) and (3.17), we have

o

r(e-(1/4)
Fr(t+(5/4)+1)

o h p1=28y T(e-(1/4))

T(t+(5/4)) i=1"

R Y. (3.61)

0¢( 1

6(t)

Hence

r(e-(¢1/4))

i=1 T(t+(5/4)+1)

For p = 2, Eq. (3.57) becomes
Prob (u < x) = Ix(n-1,3/2) (3.62)

which is the exact distribution of w (see Nagarsenker and
Das (1975)).

Krishnaiah, Lee and Chang (1976) approximated the
distributions of certain powers of the likelihood ratio stat-
istics for testing several hypotheses in multivariate anlaysis
with Pearson's type I distribution. The accuracy of this
approximation was found to be quite good. 1In the sequel,

we will refer to the above approximation as KLC approximation.
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Tables 1 gives a comparison of the accuracy of the approxi-

mations by taking the first term and the first two terms

respectively in (3.57).

In the table, the constant w is defined by

c = exp(—§/2) where Plw<c] = a°

and the values of ; are taken from the tables of Krishnaiah,
Lee and Chang (1976). When the first term in the expansion
(3.57) is used, the value of P(w<c) is denoted by g

whereas the corresponding value obtained by using the first

two terms is denoted by @y

TABLE 1

Significance Level Associated with the Asymptotic

Expression for the Likelihood Ratio Test for Sphericity

n p=3, a=0.05 p=6,
; . . ;
10 1.745 .0499 .0500 6.512
15 1.115 .0500 .0500 3.895
20 .820 .0499 .0499 2.791
K 28 .576 .0500 .0500 1.924
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TABLE 1 (Continued)

n p=3, a=0.01 p=6, a=0.01

w oy a, w a, a,
10 2.263 .0100 .0100 7.531 .0092 .0095
15 1.445 .0100 .0100 4.491 .0098 .0099
20 1.062 .0100 .0100 3.216 .0099 .0100
28 .746 .0100 .0100 2.216 .0100 .0100

The above table indicates that the first term in the
asymptotic expression alone gives a good approximation.

KLC approximation is based upon approximating certain power

of w with Pearson's Type I distribution by using empirical
merhods whereas the approximation given in this paper is

analytic in nature.

- —— o
oy
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4. Asymptotic Nonnull Distribution of the
Likelihood Ratio Test Statistic For Sphericity
In this section, we derive the asymptotic distribution
of the likelihood ratio test statistic for sphericity of
the complex multivariate normal distribution under the
following sequences of local altermative hypotheses:

(1) (1-qz° %) = v/m, (11) (1-q"11) = W/m

where V and W are fixed matrices as m+» and 0<q<», The expressions
obtained are in terms of beta series. In the analogous

real cases, Khatri and Srivastava (1974) obtained asymptotic
expressions in terms of chi-square series. To derive the
asymptotic distribution in the complex case, we need the

following lemma in the sequel.

Lemma 7. Let A: pxp be distributed as a complex Wishart

h

CWP(A;n,Z). Then the non-null ht moment of w defined in

Eq. (3.6) is

h ® (M) R ‘
h P -1yn K T(np+k) !
E(w') = B—— Jqz " ) ] =5 I _(n+h,«)

Fp(n) k=0 K k T (np+k+ph) =

(4.1)

where M = I-qE-l.

Proof: The distribution of the eigenvalues Ql,lz,...,lp

S of A is (James (1964))

- - - D
K(p,n,2) F (-2 5, [L[®P 1 (2,-2)% 1 de,  (4.2)
00 i 73 i
i< i=]1 .

where

-n _p(p-1)
! K(p,n,Z) = lfl f —
. Fp(n)Fp(p)




and L = diag (21,22,...,2p)

Using Lemma 4, Eq. (4.2) can be written as

- ~ - p
K(p,n,Z) e tr L/q 0FO(M/q.L)lLln P (zi-zj)z moday (4.3)
i<j i=1

where M = I-qZ-l.

Multiply Eq. (4.3) by wh, also expand 0FO(M/q,L) as in Eq.
(2.9) and perform the transformation L = UVU' where U is
unitary and V is Hermitian positive definite matrix. The

Jacobian 0of the transformation is

J(VL,U) = T (2.-2.)°2

h,(0)
jey 13 2

and the integration on U is

h,(U)dU = np(p'l)/fp(p)
U(p)

(see Khatri (1965)).

We have
phi.-1(n C (M) } -
A puty = 12710 5 g SR exp(~tr v/q) |v|*™P P (e v) PP
;‘ Fp(n) k=0 « q CK(I)k. v=b150
. X CK(V)dV .

Applying Lemma 5 to the integral, we obtain Eq. (4.1). Note
that for q = 1, we get the expression as in Pillai and
Nagasenker (1971).

;: ' We will first derive the asymptotic distribution of

1

w when (I-qZ ) = V/m. Let u = wl/s° where s, is the posi-

tive square root of the right side of (3.48) and w was defined

by (3.6) From the non-null hth moment of w given in Eq. (4.1),




we use the inverse Mellin transform on E(uh) = E(wh/SO)’

to get the density of u as

= C ()
£(u) = K, (p,n,Z) ) ] I (np+k) <y (u) (4.4)
k=0 « k!
where
ctix p
-h- T T(n+(h/s )+k, -i+1)
v(u) = J wThTL PRy o dh (4.5)
2mi c~ix F(np+k+(ph/so))
and
- P
K*(p’n’z) = lq z l]n/ I I'(n-i+1),
i=1
-1
M= 1I-q I = V/mo. (4.6)
Following the same argument as in Section 3 we obtain
c_(m) Q} ()
Prob (u < x) = |q Z_lln yoy £ m S{1 + ) ii 3
k=0 « k! 0 i=l m_
C*
x 2 Ra(k) Ix(somo+a0,v+a)(mos°)-a[l + z —od 1 (4.7
a=0 j=1 m?
where we obtain the following expressions analogous to
(3.22), (3.16), (3.14), (3.28) and (3.27):
i
jZO Ry_g (k) Cy gy 5 = Qu(k) 5 Ry(k) =1 (4.8)
1 &
Q (k) == [ 2 A (k) Q. _,(k); Qu(k) =1 (4.9)

=1
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and
o - (;11:1:5 [Br+1:iop+k) '121 By (6, 4k =141 (4.10)
* 1 X * * *
Q (k) = = Qzlz A0 Q_ (k) Qu(k) =1 (4.11)
AT(K) = :fii%; [igl B, (8, -i+1) - Bf*;idép+k) 1. (4.12)

The asymptotic expansion of !q E_lin gives

-1[n

iI_v/mo l (m0+60)

o r
expl-(m +s ) ( ] £V oy

r=1 rmr
0
= exp (~trV)[1 - 1 (60 tr V + % tr V2)
)
1,8 2 1 3
-—2'{(—°trv + = tr V)
3
m 2
0
1 1 2.2
-3 (s tr V + 3 tr V7) }
-3
+ O0(m 0) (4.13)
and
c_(M) m* = ¢ (v/m yu® = ¢ (V) (4.14)
K fi] K 0 0 K *

since the zonal polynomial CK(M) is homogeneous of degree k.

Furthermore the use of formula for the Bernoulli polynomial

n
B_(x+b) = rZO (3 B___(x)b" (4.15)

A~ P A . PRI WP FINE V. g
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gives
(-1)s 32(6 p+k)
Ay (k) = | 0 - E B, (8 +k -i+1)]
2 P i=1 0
1 K2 1 -
= A - 5 so[; - (1 + ;)k - al(K)] (4.16)
2
s0 B3(60p+k) E
A, (k) = b [——Ff— - B3(6°+ki-i+l) ]
P i=1
s2 .3 38, (6 p)K2 3B, (5 p) ) . |
=4, + L[4 7 + (—5— - 38038 - Dk }
6 p P P ° 0 |
1
1~ 3, ° !
-3 3,00 - (38 + ) a (). (4.17) !
From eqs. (4.11) and (4.12)
%* _ * _ * l 2
Q) (k) = Aj(k) = A) + 5 (2 By (8 plk+k”) (4.18)
* 1, * 2 2 * "
Qy (k) = 3[4 (k)5 + 2 A, (k)]
* 1
= q; + -5 (2 B,(5 pik + kD)2 (4.19)
8p 0
= L (3 B.(s p)k + 3 B.(8 p)kZ + KkI)
2 2 7 17
6p
* %*
where Al’ AZ’ Al, Q2 are as in Eq. (3.14), (3.27), (3.28),

al(r) and 52(K) are defined in Eq. (2.18).

Eq. (3.44), (3.49)

C

X *
= 0, Q2 C02 = Q2 +

2
s
0

Note that in

22 . ¢ (4.20)
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Also from Eqs. (4.8), (4.9)

Q (1) = AL (K)

Q, (k) = 3 (A (K)Q (k) + 24, (k)

Rl(k) = Ql(k) - C01 (4.21)
Ry(K) = Qu(k) = Cgp = (@ (k) = Cgp) € -

Substitute these identities in Eq. (4.7) and then use

Eqs. (2.13) - (2.17) for the summation over k. By neglecting
the higher order terms of mo, we obtain an asymptotic ex-
pression of Prob (u < x) as

Prob (u < x)

1 .
= —— s - 4+ ’~+
Ix(s°m°+ao,v) + dl(lx(somo+a0 V) ;x(somo a0 v+1) 1}

3 -
+ 10T o, I.(s m +a ,vti-1) + 0(a"d) (4.22)
2 i "x 70 0 o 0
m i=1
0
1 2 1 2
where dl =355 (tr V) 5 tr v
d2 1 3
- 1 - 1 3 _1
a1—60d1+—§-—+d2,d2-—32(trV) 3trv
P
v+1 1 2 tr V 2
a, = (2L _ g5 - L. y d, - d
2 ZSO 0 P P 1
v+1 di
ay = (5 + 9 ‘2_s0) dy + 5 + dg
2 3 1 3 1 2
d3 —5 (tr . + 3 tr v > tr V tr V




We now discuss the asymptotic distribution of w when

-12 = W/mo. In this case, we have

. -1 _ _ W oW\ -1 (4.23)
M=1-gq7I — (1 - )

0 0

We now substitute Eq. (4.23) in Eq. (4.4) and expand. It

may be noted that when compared with Eq. (4.6), - W(I—Wﬁno)—l
plays the same role as V in those equations and hence the
non—nﬁll asymptotic expression for the present case can be
obtained by treating - w(I—-W/mO)-1 as V in Eq. (4.22).
Further expanding - W(I-W/mo)-1 and neglecting the higher

‘order terms of m gives
0

Prob (u < x)

1
I (som0+a°,v) + E: dl [Ix(s°m°+ao,v) - Ix(somo+a°,v+1)]

3 .
+ 1—2 y a; I(s m +a ,v+i-1) + O(m 3
m i=1 x 00 0 0 (4.24)
where d L (tr w)2 - Ll w?
17 2p 2
d2
1 1 2 1 3 2 3
= — . = = - = W -= W
ay Godl + 5+ d2 : d2 > tr W tr W 3p2(tr ) 3 tT
v+1 2 2 3

1 2 1 3
- —— - - — - M B cm— - — + J
2 (Zsu 250 p)d1 d1+d3,d3 pz(:r W) ptr Wtr W tr W

2
dl
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5. Applications in Inference on Multiple
Time Series

L In this section, we discuss the applications of the
results of Sections 3 and 4 in drawing inference on the
spectral density matrix of the multiple time series.

i Let §'(t) = (Xl(t),...,Xp(t)) (¢t =1.2,...,T) be

a real stationary Gaussian multivariate time series with mean
vector 0 and covariance matrix R(t) = E{X(t) X'(t+1)}.

-~

The spectral density matrix F(w) at the frequency w is

given by

o«

F(w) = 3= ] exp(-1itw)R(1) (5.1)

= -0

A well kpnown estimate (e.q. see Wahba (1971)) of F(w) 1is

F(w) = (fij(w)) where
n
£, (0) = —irc 211(+—2—"5) (5.2)
13 (2n #1y __& 43 9T T .
Tt
s
:,i Iij(m) = gi(w) Zj(w)
1 123
), Z,(w) =~ — X, (t)exp(-itw).
% 3 (27T) % t=1 3
? where Z denotes the conjugate of Z. Then, it is known (see

Goodman (1963) and Wahba (1968)) that (2nl+1)%(w) is dis-

tributed approximately as central complex Wishart matrix
with (2n1+1) degrees of freedom and with E(i(m)) = Flw).

So, we can test the hypothesis H: F(w) = A(w) I_ in a

similar fashion as in the case of the test for sphericity

of complex multivariate normal distribution. So, analogous




o

. o
Frew 4,
kX

to the likelihood ratio test for sphericity, we propose

the following procedure for testing H. We accept or

reject H according as

T2 (5.3)
where
P[Tzcllﬂ] = (1-a) (5.4)
and
T - [Ew] (5.5)
(tr F(w)/p)P
l/s0
So, the approximate asymptotic distribution of T in

the null case is obtained from (3.57) by replacing n with

(2n1+1) and s, is the square root of the right side of

0

(3.48). Now, consider the alternative hypothesis A1 and

A, where A;: (I-q(F(m))'l) = V(w)/m and A,: (I—q'lF(w))
= W(w)/m where m = 2n1 + 1 -8, § is a constant, and
V(w) and W(w) are fixed matrices as m -+ «,

In the above cases, approximate asymptotic expressions
for the distribution functions of Tl/SO can be obtained by
replacing n with (2nl+1) on the,right sides of (4.22) and
(4.24) respectively.

Next consider k frequencies Wysese sy where w, = ijQ/T

and jl = (2-1)(2n1+1) + (n1+1). Then, it is known (e.g., see

Wahba (1971)) that %(wl),...,F(wk) are distributed independently

and approximately as central complex Wishart matrices with

(2n1+1) degrees of freedom and E(F(w,)) = F(w,). We now

3 3

discuss procedures for testing Hl""’Hk and HO simultaneously

,,..‘_...




against Al,...,Ak and AO where
k
Hi: F(mi) = X(wi)Ip, HO = 121 Hi
k
Ai: F(wi) # A(wi)Ip, A0 = igl Ai

We accept or reject H, according as

i
>
Ty <y
where
PIT >c 3 i=1,2,...,k|H0]
_k
=1 P[TizcilHi] = (1-a). (5.6)
i=1
RICIY
;= (5.7)

(tr Flu,)/p)P

The total hypothesis H, is accepted if and only if all

0

the individual hypotheses H, are accepted. We can compute

i

approximate values of a for given values of c, using the

i
results of Section 3. The power functions of the above

test under certain local alternatives can be computed using
the results of Section 4. We can also test the hypothesis

H, by using T0 = Tl"'Tk as test statistic. Approximate null

distribution of this statistic can be obtained by following

the same lines as in Section 3.
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