
g) LEVEL 
NRL Memorandum Report 4656 

The EfTect of Fluctuating Space Charge Fields on 
Sideband Instabilities in Free Electron Lasers 

pH 

H. P. FREUND 

'cience Applications, Inc. 
McLean. VA 22102 

P. SPRANGLE AND C. M. TANG 

Plasma Theory Branch 
Plasma Physics Division DT1C 

ELECTE 

FEB 1 8 1982 

October 22, 1981 

NAVAL RESEARCH LABORATORY 
Washington, D.C. 

m 
^2 02   18 097 

Approved for public release; distribution unlimited. 

*m 



SECURITY  CLASSIFICATION Of   TMI S  PAGE   f*»l»fl  0«U hnlo'fJl 

REPORT DOCUMENTATION PAGE 

I      REPORT  NUMBER 

NRL Memorandum Report 4656 ^|i> A! / / 

2   GOVT  ACCESSION NO 

4     TITLE (mnd Sublllll) 

THE EFFECT OF FLUCTUATiNG SPACE CHARGE 
FIELDS ON SIDEBAND INSTABILITIES IN FREE 
ELECTRON LASERS  

7,   AuTMORf»; 

H. P. Freund*, P. Sprangle, and C. M. Tang 

READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

3     RECIPIENTS CATALOG NUMBER 

1 i 
5     TYPE OF  REPORT « PERIOD COVERED 

Interim report on a continuing 
NRL problen^ ______ 

l     PERFORMING ORG.  REPORT NUMBER 

B     CONTRACT OR GRANT  NUMBEPf».) 

t.    PERFORMING ORGANIZVTiON  NAME  AND ADDRESS 

Naval Research Laboratory 
Washington, DC 20375 

I, CONTROLLING OFFICE NAME AND ADDRESS 

Defense Advanced Research Projects Agency 
Arlington, VA 22209 

10     PROGRAM  ELEMENT, PROJECT,  TASK 
AREA *  WORK  UNIT  NUMBERS 

62301E;DARPA3817; 
47-0867-0-1 

12     REPORT  DATE 

October 22, 1981 
13     NUMBER OF PAGES 

34 
  ! ^ .„in-* nllUtl     I   15     SECURITY  CLASS,  (ol IM» rmporlj 

TT^^ÖFmTG AGENCY NAME a ADDRESS,,- *.,.,.*. KS ^n.,, Hi       UNCLASSIFIED_ 

IS.     DECLASSIFICATION'DOWNORADING 
SCHEDULE 

16.    DISTRIBUTION  STATEMENT (ol Ihlt Rmporlj 

Approved for public release; distribution unlimited. 

17.    DISTRIB 
UTION STATEMENT (ol », .*.u.<l .n..,.ä to Block 20.  11 tÜüfVIi <"" *-P°"> 

18.    SUPPLEMENTARY NOTES 

♦Present address: Science Applications, Inc., McLean, VA 22102 

19.   KEY WORDS fConrlnu« on r» 

Free electron lasers 
Sideband instabilities 
Microwave generation 

..,.. .id. iln.c.itr -"< id.niilr by Mo«* numb.o 

20.    ABSTRACT fConflmi« on r»v 
^TTld. II n,c...mr. And Id.nllly by block numb.r) 

TRACT (Lonllnu. on rmvmwmm ..«- .. " .   — « ,        . 1 u;«U 

We consider the sideband instabilities that can occur in free electron lasers which 
operate in the regime where the bulk of the energetic electron beam is trapped m the 
ponderomotive potential generated by the beating of ^e «lectromagnet. p^ wxth the 
static wiggler field. The general dynamical equations which govern the evolution of the 
system in the presence of sideband modes are derived for modes propagating along the 

of symmetry. AH space-charge effects are included in a self-consistent J™. and axis i „XContinues) 

DD    F0RM    1473      eoniON or i NOvesisoBSOLEie 
I JAN 73 s/N  010j.014.68oi 

SeCUHlTV CLASSIFICATION OF  THIS PAOS (**»* "•>• •"""«» 

mummt u     V, 

-      . 



ECURITY  CLASSIFICATION Of  TMIi P*Ot (Whmn D.I« CnHr.d; 

20     ABSTRACT (Conllnu^j^ 

i the gains for both the primary signal and the upper and lower sidebands are computed. 
We find the lower sideband to be excited, and discuss the consequences for operation 
of both free electron laser amplifiers and oscillators. The effect of the space-charge 
waves on the gain depends upon the number of bounces undergone by the trapped 
electrons in the length of the system, and can act either to enhance or reduce the gain of 
the sideband.i, 

SeCuniTV CLASSIFICATION OF THIS PAOEflWl«! Dml» Enltrtd) 

ii 

M H 



CONTENTS 

I.   INTRODUCTION    .  

II.   GENERAL EQUATIONS      3 

III. THE AXIAL ELECTRON TRAJECTORIES     H 

IV. THE SMALL-SIGNAL GAIN    15 

V.   SUMMARY AND DISCUSSION  20 

ACKNOWLEDGMENTS  22 

REFERENCES      23 

DT1C 
^LECTES? 

Ik FEB18 1982 

B 

;.■    '     • 

DTIC   ■ 
v       .       I 

1  Justil 

By- 
pistril 

jAval]  ' ad/or 
,:.'■'' '   'l Diöt 

ui 

m 



THF FFFECT OF FLUCTUATING SPACE CHARGE FIELDS ON 
smEBlS INSTABILITIES IN FREE ELECTRON LASERS 

I.    INTRODUCTION 

Several recently proposed free electron laser concepts1"4 involve 

sufficiently large a.plitude signal strengths that electron trapping 

in the ponderotnotive wave which results fro. the beating of the electro- 

.agnetic pulse and the static helical magnetic pump field can have a 

significant effect on the operation of the device.  Trapped electrons 

„ill execute periodic oscillations in the ponderomotive potential which 

can give rise to excitation of sidebands of the primary electromagnetic 

spectrum at harmonics of the electron bounce frequency.  The -rapped 

electron bounce frequency is anharmonic. and depends upon the amplitude 

of both the static magnetic field and the radiation spectrum.  Therefore, 

system response may be quite sensitive to the radiation amplitude. 

Our purpose in this work is to examine the gain of the sideband 

modes which result from the trapped electron motion under a variety of 

operating conditions, and subject to the inclusion of a fluctuating 

space-charge .ield.  In this sense our work represents an extension 

over a previous analysis of sideband instabilities by Kroll and 

Rosenbluth,5 in which the space-charge effect was ignored.  We find, 

typically, that the space-charge effect can be important when the beam 

density is suificiently high that the invariant plasma frequency is com- 

„f i-hP enereetic electrons in the pon- 
parable to the bounce frequency of the energetic • 

deromotive ootential. 

The organization of this paper is as follows.  In Section II. we 

derive the general dynamical equations which govern tbe evolution 
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of the primary and sideband signals in a system ia which an energetic 

electron beam is propagating along the axis of a static helical magnetic 

field. The electron beam is assumed to be cold, and electrostatic (i.e., 

space-charge) effects are included in a self-consistent manner.  The 

equation governing the electron trajectories is derived in Section III, and 

solved for the case in which both space-charge confributions and a tapered 

wiggler (i.e., helical pump) field are included. Anharmonic effects on the 

bounce motion of electrons in the ponderomotive potential are included to 

lowest order.  The gain for both the primary and sideband signals are 

computed in Section IV. A summary and discussion is provided in Section V, 

and the consequences for the operation of both free electron laser 

amplifiers and oscillators are discussed. 

■■*SJr'"Ä*V' 



II.   GENERAL EQUATIONS 

The physical configuration we study consists of a relativistic 

electron beam interacting with a static, helical magnetic field which 

can be represented by the vector potential 

^(2) = - Ml) [|xcos( /
Z dz^) + ,|ysir(/

Z dz\)], (!) 

as well as scattered electromagnetic and electrostatic fields of the 

form 

z  ^ 
A (z,t) = A (z)L| cos( / dz k - u)t) 

- e sin( / dz'k - uit) ] 
%    o 

^s(z,t) = As(z) [|xcos(/ dz'kg-(ost+G) 

- | sin( fZ  dz"k - w t+e)], 
%    o     s   s 

(2) 

and 

(z,t) = $ (z)cos( / dz^K - ü) t + a ), 
o 

$ (z,t) = 0 (z)cos(/ dz'<  - a) t + a ), s        s      n     s   s    t, 

(3) 

where the amplitudes of the scalar and vector potentials $ (z), 

$ (z), A (z), A (z), and A (z) and the wave vectors of these potentials 
w 

k^z), k (z), k (z) , K (z), and K (z) are assumed to be slowly varying 
s s 

■%<l$tt..' 



funcr.ions of  z.     The   frequencies    to    and U    as well as  the relative 
s 

phases Q,   a  ,   and a  of the wave fields are taken to be independent 

of z.  It should be noted that our assumption that the spatial variation 

of the fields depends solely on z is valid, strictly speaking, only near 

the axis of a realizable free electron laser.  In the interests of 

computational simplicity, we choose to write the electrostatic fields 

in the alternate form 

(z,t) = *. (z)cos <Kz,t) + * . («)8in ^(z,t). 

$ (z,t) = 4 ,(z)cos ^ (z,t)+ $  (z)sin (]; (z,t), 
s        si       s        s ^       s 

(4) 

where    ^(z,t)   =  fZ dz'Ck    + k)  - a>t  and *   (z,t)   = 
w 

w t + e. 
s 

/ dz'(k + k ) 
w   s 

o 
In this form, A and $ represent the primary radiation spectrum 

which may result either from coherent Raman scattering of low frequency 

noise on the electron beam or from a coherent external source of 

radiation.  For a sufficiently large amplitude primary spectrum, elec- 

tron trapping in the ponderomotive wave produced by the beating of the 

static pump and primary radiation fields can give rise to the excitation 

of sidebands of the primary spectrum at harmonics of the electron bounce 

frequency.  As a result,in the subsequent analysis we shall assume that 

Iw -to I « to and adopt the ordering |A | « |A| << |A | . 
's s 

The fields satisfy Maxwell's equations 0* - c^2)^ ^^i 

and  3  8    $L" 4TTJ .where A^and $    represent  the  total vector and  scalar 
z  t    T z' ^T T 

...■.-jMt'ÄÄ 



potentials of the wave fields,and J(z,t) denotes the driving current. 

After substituting the potential! from Hqs. (2) and (4) and averaging 

over the long time scale T = 2w/£tt where 6a) I U -W I, we obtain 

-T/2 
(a)2-c2k.2)A    =  -  2c&o  /        dt[j  cos(  /    dz'k  -  m  t) 

J » o 
-T/2 

-J  sin(  / dz'k  -  ..   C)J, 
y        o 

. T/2 (5) 
(co2-c2k2)A    = - 2c&i)/        dt  [J coi( /zdz'k    - a .t+o) s s     s J x s s 

-T/2 

z 
- J  sin(  / dz'k     - ui  t  +  9)J, 

v s s 
0 

- T/2 
2k1;.t   (A  )   =      --0      /       dt[J sin(   /Zdz'K  -  Mt) 

-T/2 

z 
+  J cos (  / dz  k - ut) 

T/2 
2kS  (k* A ) -   —    / dt[j  sin(  /Zdz'k    - u  t + 
szss c^/ X Ä SS 

0) 

-T/2 

+ J  CüS(  /Zdz'k    - u>,t  +  8)], 
y        o        s      b 

and 

(k +k ) 
w 

(6) 

\ *    / a>       J z \ s i n 4'/ 

.v.- 



si 
(k +k ) 

6U3 
0) 

S2 

, COS IU v 

•/ ,.,    Vain v ' 
s 

In the above, it has been assumed that the frequency shift between the 

primary and sideband fields satisfies the conditions 2n/&u  = ZTTN/O, = 

2TT(N+m)/^ where N and m are integers (N » i and N-> m), and that the 

gradients of the scalar potentials may be ignored. 

The nonlinear driving current is derived under the assumption 

that the initial velocities of all the electrons are identical, and 

that only the initial phases vary.  Therefore, the electron distri- 

7 
bution can be written in the form 

f(«.*.t) = n v  r  dt0 W(to) 6[Z-ato,t)Mr^(to,t)], 
U _/V1 

(9) 

„here W(to) is a weighting function which describes the distribution 

of initial phases, t^ and ^ are the initial beam density and axial 

velocity. at0,t) anl Q(Vt) are the axial position and momentum of 

a particle at time t which entered the interaction region (i.e., 

z > 0) at time t .  The driving current associated with such a 

distribution is 

6[t-T(to,«)] 

^(Z,t) = - e%vzo r  dtoW(to)rj(to,Z)   ^(t^.)  ' 

T(t ,1) iä tn + /
Z dz7vz(to,Z') is the time required for a 

d thr interaction region at time t0 to travel an 

where  .-0,-.   0  o 

particle which enterec 

6 
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axial distance  z,  and v   (t   ,z)   is  the axial velocity of  a  particle at 

position  z which entered  tlie  interaction region at   time  t  , 

If  the  beam electrons  initially have negligible  transverse 

momentum,   then we may  approximate    T\    ^ -(eA /c)cos(   / dz^k   (l ))1 x —    w      o     w 

n ^ -(eA /c)sin( /' dz'k (z')), and the nonlinear current 
y —    w      o     w 

6[t-T(t .z)] 
J(z,t) a, en, v    - A (z) / dt W(t )   - -  r- 
K,    '      —      b zo V c ^w       o  o   r]   {t   ,z) 

\ -c" Z  O 

-^r dtow(to)6[t-T(to.z)]) . 

(11) 

Substitution of  (11)   into Maxwell's equations  (5)-(8)   yields  the 

following set of equations 

(a)2-c2k2)A  =- 

(u>2-c2k2)A  =-      '" 
s s    s 

t(l*V    A      f"        ccsiiiii^, z) W(ii)   ) 
b   zo   w   /    ., 0 o_ 

27TN       /    ^o   Yd»   .«)V.0L.«)     ' 
^-TTN 

v
ZoAw    /■^    c.gg.CjVfW^ 

2TTN / %      ~'yii>o,z)Vz^oiZ) 

•/-1iN 

Vi 2^ 3z(A )  =       ,iiN 

A      f ■i«#(^.l )W(^   ) 
OWl ,.       0 Q' 

W& J       ^'o   y(4>0,z)vz(i>a,z)      ' 

2k^   8  (kc
2A )  = -* 

S      Z      S   S ^TTN 

-TTN 

TTNC"    /       ^o     Y^0.
z)Wz) 

-TTN 

(12) 

(13) 

and 

(k +k  ) 
w 

4en v      / 
b  zo I 
 Q— I dip W 

Hi)       /      0 
-TTN 

COttyty   »z) 

'■t sin\j;(ijj   ,2), 

(14) 

(mam i 



4en v  r^      /cos^g(^  Z) 

where ^ = -« to, is the initial phase, ^ = ^*\/n. 

(16) 

and 

so 

1 -(-Hrd2'1-- ^^n'Z) " IT  ^^O'^ + 

S
  O \  l  "  "/ + .   /

ZdZ^^-^^  +*   • 
(17) 

The problem therefore, reduces to solution of the axial orbit equation 

for v (4) ,z) or, alternately, for H^Q**) * 

It will be evident in the following section that the equation 

describing the evolution of * is invariant under the transformation 

^  -^ +  27., Ü > 6 + 2Tr(a - W )/«•  As a consequence, we have the symmetry 

tyty    + 2TT, 6 + 2TT(W-üJ )/a) ,z) = i){i>o,Q,z)  +  2TT , (18) 

which is also possessed by ^  If it is also required that VK^ir) = N^) , 

then the integrals in Eqs. (12)-(15) are of the general form 

fm  d^ Ml   ,e,Z) where F^.S.z) satisfies (18).  The decomposition 
-TTN  O 

Yo 0 

of these source integrals into a sum of N integrals over intervals 

of 2TT is possible, and we find that for large N 

8 

■wt'/sfc'sr-'Wvi..*"'« , 



--./... *. ,■.,-...-■.. -'■■■■■ 

1   r 7TN I    9TT    ^ 

-TTN 

Thus, for sufficiently large N (i.e., for sufficiently small 6w/aj) 

Eqs. (12)-(15) can be written as 

(OJ
2
 - c2k2 )a = - a^vzo

a
w
< cos^/Yvz >, 

(a)2   -  c?k   2)a     = 
s s       s 

- co2v    a <  cositi  /yv  >   , 
b  zo w s       z 

(19) 

U L V 
2       ZO 

2k2 9   (k2 a  )  =    <   a    <  sin (jVyv    >   , 
z b     c       w z 

Zk^ 9   (k* a  )   =    to2 -^§ a    <  sin Ü  /w    > 
^s  "z^^s  "s' "'b    c2 s       z 

(20) 

and 

acojv. 
ZO 

L0   C2(k   +k    ) 
w 

2< v b    zo 
v,        w c'd^+k ) 

<cos  if;  >     , 

< sin ij;  > 

(21) 

9 
2LO, ^v 

b    zo 
51 

rS2 

OJ c2(k +k ) 
S „ S 

2üJ
2
 v 

b    zo 
OJ c2(k +k  ) 
SWS 

<  cos ÜI    >     , rs 

<  sin ip    >     , s 

(22) 

^^>.'Äfr''-*<'i,'.»;r ;ir _ ^ ^_: .:. 



2TT 
where the averaging operation is defined by < ••• > =   (jtr)   /  d6 

o 
■JT 

f    d^o W(^0) t   ancj we i,ave defined the a's and ^'s  as the normalized 
-IT 

2 9 
amplitudes a = eA/mc and s- = e^/mc . 

10 

-     V 

I 



■ 

III.  THE AXIAL ELECTRON TRAJECTORIES 

Since the vector and scalar potentials are independent of the 

transverse coordinates, these coordinates are cyclic and the corresponding 

canonical momenta are constants of the motion.  In view of this, the axial 

momentum equation takes the form 

pz 
= - mc2(fe ^ ^iSin^ -*2cos^ +   h % (Cp

Si
sinV Vosv) dt 

mc2 d   2 m c 
2y    dz !1 ~ K +k )a a siwli  + (k +k )a a sin ijj )  , w W  s w s     ^/ 

where u2 S 1 + a2, and terms of second order in the wave fields and in the 
w 

gradient of the amplitudes of the wave fields have been neglected.  The 

variation in total electron energy is given by 

(23) 

dt ^ = " Vz (lb ^ Si^ - ^2 ^^ +h   ^  ^Sl
si^s^s2

cosV) 

- i (U awa sinii + ^a^sin^g) (24) 

Combination of (23) and (2I4) yields 

d c 
— v = - — 
dt  z     Y 

4r ((k+k )(V1 sini^-^ cosi^) + (kc+k )(<P sinii* -f>   cos^ )) 

£2 
2Y2'- 4 ^-^k+k -^]aw' 

Ü) v \ 
+ [kw+k

s-^r]awVlnU)' 

a sinijj 

(25) 

11 
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where   terms   in  the  product of   (u-ü) )/(*)  and either  ty       or ^ 

have  been  ignored . 

Substitution of   the axial  position  for   the   time  as   the  independ- 

ent variable  and  the  phase for  the  axial velocity  can be made by noting 

that  d/dt  = v d/dz  and dtii/dl  » k +k - w/v.     Therefore,   Eq.   (25)   can be 
z w z 

cast   into   the   form 

• 

1- ^  ^   ±  (k +k) 
J   ^ J w 

dz dz 

(k +k)c2     ,      ,       y2c2(k 
w d     z 

2 2 
2Y v        dz 

r r 

V 
(kw+k^ /  .    , 

+   E     BitHJJ 
bi s 

\ 2L02y2v       / 

/ ' r r 

;lfli|j(cos^) -cosHsiniJj) 

+ —  fsin^   \COSIJJ   ) -  costjj   (sin^   )] 1  . (26) 
U)      "" s s s s     / ) 

where e H a /a, v  =w/(k +k) is the velocity of the ponderomotive wave 
s    r     w 

so thac Y  E ud - v2/c2)"i2 is the relativistic factor corresponding to 
' r r 

the ponderomotive frame.  In the derivation of (26) terms of order 

(k +k)~1di)j/dz have been ignored.  Equation (26) reduces to that found 

by Kroll and Rosenbluth in the limit in which space-charge effects 

2     4    22 _/i   2,2.-Ij 
can be ignored, i.e., ^  «  2y^a^ak^c   /y^,  where Yzo B U " 

v
zc/

c '  ' 

We include the space-charge effect for a diffuse beam limit in 

which we may approximate w ^ ck and o^ a ck,.  Therefore, under the 

assumptions that k << k,k and dk/dz ä 0 we find 
w      s 

12 



2 2 ^ 
J_ ^ =  _ —^]-- (sin^ -  sini|;    + «— sin^  ) 

2 cosi^ r w ^ 
dz r 

2 
+ 6K   (sini|j<cosi|j>  -  costiJ<sint|j> 

Hi W 

+ — sinil)  <COSI|J  >  - — COSI|J^sini^  >), 
Ul s 

where K     =   4k a acosiji  /y    measures  the  strength  of  the ponderonotlvp not 
w w r w 

entiai,   tSK2   S  2u ur/Y  c    measures  the  electrostatic  potential,   *„  ^ — ^ 
DO a LU 

+ Akz + 0,   Ak =  k  (w - a) )/a),  and 
2     .        \ 

(28) 

w 

describes   the  effects  of  the   gradients   in   the wiggler  amplitude and 

period   (hence,   the acceleration or  deceleration of  the  ponderomotive 

frame).     Solution to   (28)   is   found by  expansion of  ^  about   the  resonant 

phase,   and we  assume  IJJ =  i^    + 6I|J where  |ölfi|   « IT.     As  a  consequence, 

2 
-$—  ^   at   -K2   &il) + ~ K2tan i>r&ii2  + j- K26*3 

dz 

■    ^       aln (-^i    + Akz.-G) + 6K2(^-<6^>). (29) 
cosijJr \ lü  r / 

Observe that  upon  linearization  of   (27)   2n/K  is  the bounce period   in  the 

ponderomotive  potential,   and  2ir/6K  is  the  oscillation  period   (i.e.,   the 

invariant   plasma period)   in  the  space-charge wave. 

If we write  Sijj =   6l^0^   + 6^(1   ,  where  H' and   6iK       denote  the 

contribution  to  the phase  to  zeroth and  first  order   in   the effects due  to 

13 
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■WM—WW—II 11 I.  

2 a2 
6i|/0)  1 T-tan  ijir + ctcos Kaz - ^ tan ^r  C0S2 KaZ 

for small  deviations   from ij^.     In Eq.   (30) 

2 
K = K - ^ (1 +4 tan2* ) 
a      16     J     r 

(30) 

(32) 

is the anharmonic bounce period in the ponderomotive wells, and a is a 

constant fixed by the initial condition *(0)(Z = 0) = ^ which implies 

that ^ - *r = a + cx2tan ^/6  for a  « 1.  The first order correction 

is given by 

&\p (1)~ Zcos* r AK± [l  - 16AK± 
(1+1 tan2*r) 

l ±  .aJL (1+1 tan
2*r)  [cos (AK±i+*r) - cos^JsinKz 

+ [sin (AK+z+(()r) - sin4>r]cosKz 

*   #<1+3""2* )  Kzsincfi sinKz > 
r r I 

6K 
2 

2K 
(a - <oi>)  KzsinKz 

(D.^r 

(33) 

(I),-., where * E u> * /.) + 0. AK+ i Ak ± K. and ^U;(z=0) = S^v  (z-0) = 0 
r   S r 2 

It is important to recognize that this solution requires a < AK±/K, 

which implies that all electrons are deeply trapped and have phases 

close to if» - 

14 



IV.    THE SMALL-SIGNAL GAIN 

The gain per pass of the primary and sideband waves in a system of 

of length L follows from (20) 

% 0)1 

2WcY  a o / 
dz < sin ijj > (34) 

and 

gs = 

(i) 

2üJ 
b  JL f   dz < a 
cYo a  J 

sin iis  > (35) 

where the radiation wavevectors, electron energy, and wave amplitudes 

have been assumed to be slowly-varying functions of z.  These expressions 

may be readily evaluated using the solutions for the phase described in 

(30) and (33). 

In the case of the gain per pass of the primary wave, we have to 

lowest nontrivial order 

< sin ^ > 2; sln ^r [1 " | < 6^(0)2 > " < ^(1)^(0) >]■ 

Because of the average over the relative phase between the primary and 

sideband signals, this implies that only those components of ||)   due 

to the space-charge potential can contribute to g to this order. 

Specifically, the coupling between the primary and sideband waves can- 

not affect the gain of the primary wave to first order in t.     In addition, 

15 
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the space-charge effect is manifested by means of a beating between the 

bounce motion of electrons in the ponderomotive potential and the space- 

charge wave itself.  In evaluating these averages, we shall assume a 

distribution of initial phases of the form 

f(,V = ""T H(V*r + A) il ^r f A ~ V' 
(36) 

in the ranee - IT < IJJ < TT where A « 1 measures the spread in phases, 
— o — 

and H is the Heaviside function. This distribution describes a tight, 

uniform bunching of electrons about the resonant phase and is depicted 

schematically in Fig. 1.  As a consequence, g can be written in the form 

2 T (9 
Wu L av7 I     hl 

b     w •  ,1. I 1 x A 
e %      — sm y    ) 1 "T  10 6 — 2üJY c a r I    12 

sinKL  2sin2KL 
KL  ""mT- 

OK2   I        9VT   sin2KL\ (37) 

which vanishes when sini|; = 0 (i.e., for untapered wigglers) .  Evidently, 

the space-charge contribution to the gain vanishes in the limit in 

which A ->■ 0.  This conclusion is quite general and not dependent on the 

particular choice of W(^ ) •  It can be shown froin (33) that the con~ 

tribution to the gain from the space-charge potential must vanish whenever 

the spread in IJJ vanishes.  Finally, we observe that the space-charge tends 

to reduce the gain whenever sin2KL > 2KLcos2KL.  This inequality holds for 

KL < TT/4 (when the bounce length of electrons in the ponderomotive well 

is longer than the system) but not in general and, for proper choices of 

the parameters, the space-charge effect could be made to enhance the gain. 
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M> 

Fig. 1 — Schematic representation of phase space distribution about 
the resonant phase, showing the separatrix for a tapered wiggler 
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In computing the gain of the sideband signal, we note that 

< sin *s > ^ (Wa/w) < ty cos ^0) > and the space-charge effect does 

not contribute.  Gain, therefore, arises because the presence of the 

sideband induces an oscillation in the electron bounce motion.  We 

find that 

2
VT
2 

U), KL 
8s ~ + 

u). KL        a / 
b         w / 

16a) Y C cosih      a \ so    rr \ 
1 'mr ci + 3tan V 

x KLA  ,, . 5   2 
+ -g^- (1 + - tan ijj 

9 
\ /sinx V 

where x+ = AK+L/2, and it is the lower sideband which is excited (i.e., 

AK ^ K). 

The preceding applies to operation of a free electron laser 

amplifier. However, when operation is in the oscillator mode it is ths 

relative gain G(= g /g) which is the significant quantity in determining 

whether the sideband signal will grow from noise.  The close frequencies 

of these modes insure nearly equal loss rates; hence, the relative gain 

must be near unity in the steady-state and greater than unity if the 

sideband is expected to grow from noise.  Comparison of Eqs. (37) and 

(38) shows that since K > |AK+| the space-charge contribution to the 

relative gain will be important only when 5K>K, and in this case 

G « + JKL 

4u sin2^ 'A ] 24 [A 
5   2 

(1 + - tan \h  ) 3    yr 

cos2KL - sin2Kl 
2KL )]j (i?)' ■ (39) 
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and the effect of the space-charge field is to enhance the relative gain 

of the lower sideband when KL < TI/A.  Note that the only constraint on 

the magnitude of 6K imposed by the analysis is that A 61  < K . 
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V.     SUMMARY AND DISCUSSION 

In this paper, we have investigated the question of free electron 

laser operation in the trapped particle regime from the standpoint of the 

excitation of sidebands shifted from the primary spectrum by the bounce 

frequency of the electrons trapped in the ponderomotive potential.  The 

analysis described the interaction of a bunched cold electron beam with 

the static wiggler, the radiation fields of the primary and sideband 

modes, and with fluctuating space-charge fields.  Gradients in the wiggler 

field have been included as well.  Further, in order to make the problem 

analytically tractable, we have included the anharmonic contributions to 

the trapped electron trajectories only to lowest order.  This necessitates 

the assumption of tightly bunched electrons about the resonant phase. 

It was found in the computation of the gain per pass that the 

coupling of the electron orbits to the fields of the sidebaud modes had 

no effect on the gain of the primary spectrum to lowest order in a . 
s 

It should be remarked here that the space-charge components of the 

sideband waves were found to be unimportant to the gain of either radia- 

tion mode for the parameter regimes under consideration.  However, the 

space-charge fluctuations which couple to the primary radiation spectrum 

2  2  2        2 
are found to provide a contribution of order A 6K /K , where A measures the 

2 
trapped electron spread about the resonant phase.  Since A  < 1 in the 

present analysis, we conclude that the space-charge contribution ID  the 

2   2 
gain of the primary wave can be important only if OK > K .  It is in- 

structive, therefore, to consider specific experiments (either in current 

operation or proposed) to determine whether space-charge effects will 

be important In the trapped particle regime. 
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The first example is the experiment being conducted at Los Alamos 

National Laboratory8 which is intended to operate in the infrared 

(at 10.6 yra).  In this case a constant amplitude linear wiggler of about 

2.4 kG is aUowed to vary in period from 2.7 to 2.4 cm over a length of 1 

m.  As a consequence, the resonant phase is such that cos ^ ~ .94.  The 

experiment employs an electron beam of 20 MeV energy Ulf/f ~ 'OD  with a 

radius of .5 mm, and the maximum anticipated current is 25A.  Finally, the 

input signal intended to bunch the electron beam is to provide between .5 - 

1 GW at 10.6 m  into an optical system with a 5b cm Rayleigh length.  It is 

readily apparent, therefore, that for an equivalent system using a helical 

wiggler 6K2/K2 ~ .009 and the space-charge effect is likely to be 

negligible.  Indeed, this appears to be the case for all present or future 

free electron laser experiments which are to operate in the infrared due to 

the high energy, low current electron beams employed in such experiments. 

In contrast, however, the Loace-charge effects may be important in 

free-electron lasers intended to operate in the millimeter or submillimeter 

range of wavelengths.  Such devices operate at much lower energies and are, 

thus, able to achieve higher beam currents.  One example of such an 

experiment is to be conducted using a van de Graaf accelerator capable of 

producing a 2A beam of 3 HeV electrons (with effective AY/Y ~ .005) with a 

raJius of approximately 2 mm.  The wiggler field to be employed is uniform 

and of approximately 4 m in length with a 2 cn period and an amplitude of 

between 400-500 G. The radiation field amplitude required to trap the beam 

is about a -  1.6 x  10~5 (at approximately a .2 mm wavelength).  Using these 

parameters it follows that 6K2/K2 < 1.2 and, therefore, this experiment 

constitutes an intermediate case in which the space-charge fields may have 

an effect on the emission. 
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For still higher currents, the space-charge effect becomes still more 

o 
important.  A free electron laser experiment is planned which 

makes use of the Experimental Test Accelerator at Lawrence Liverraore 

National Laboratory to test effeciency enhancement schemes with a tapered 

wiggler.  Typical beam properties are a 4 MeV energy at a current density 

of greater than 500 A-cm .  Beam densities, therefore are expected to 

11 3 
reach about 10  electrons/cm .  The projected wiggler field is linear and 

of 3 kG maximum amplitude with a period of   10 cm, and an input radiation 

9 
pulse of about 930 kW/cm (at a wavelenth of 3mm) is to be used to trap the 

2 2 
beam with an effective Ay/y ~ 9%.  As a consequence, 6K /K - 4.1/cos ^ 

(where ty    is variable, 0.5 _< cos ij; < 1), and it is clear that space-charge 

effects are important for such an experiment. 

2   2 
In conclusion, space-charge effects are important only when 5K > K 

(i.e., the electron bounce period in the ponderotaotive potnetial is longer 

than the invariant plasma period).  Such a condition is not generally 

satisfied for free electron laser experiments which operate at infrared 

wavelengths where beam currents and energies are of the order of several 

tens of Amperes and MeV's.  However, experiments operating at submillimeter 

wavelengths employ beams of much lower energy (several MeV) and higher 

current (IkA) and collective space-charge effects are important. 
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