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THE EFFECT OF FLUCTUATING SPACE CHARGE FIELDS ON
SIDEBAND INSTABILITIES IN FREE ELECTRON LASERS

I. INTRODUCTION

Several recently proposed free electron laser conceptsl_h involve
sufficiently large amplitude signal strengths that electron trapping
in the ponderomotive wave which results from the beating of the electro-
magnetic pulse and the static helical magnetic pump field can have a

¥ significant effect on the operation of the device. Trapped electrons

will execute periodic oscillations in the ponderomotive potential which
can give rise to excitation of sidebands of the primary electromagnetic
spectrum at harmonics of the electron bounce frequency. The +rapped
electron bounce frequency is anharmonic, and depends upon the amplitude
of both the static magnetic field and the radiation spectrum. Therefore,
system response may be quite sensitive to the radiation amplitude.

Qur purpose in this work is to examine the gain of the sideband
modes which result from the trapped electron motion under a variety of

operating conditions, and subject to the inclusion of a fluctuating

space-charge iield. In this sense our work represents an extension

over a previous analysis of sideband instabilities by Kroll and
Rosenbluth,5 in which the space-charge effect was ignored. We find,
typically, that the space-charge effect can be important when the beam
density 1is sutficiently high that the invariant plasma frequency is com-
parable to the bounce frequency ~f the energetic electrons in the pon-

] deromotive notential.

The organization of this paper is as follows. In Section 11, we

derive the general dynamical equations which govern the evolution
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of the primary and sideband signals in a system in which an energetic
electron beam is propagating along the axis of a static helical magnetic
field. The electron beam is assumed to be cold, and electrostatic (i.e.,
space~charge) effects are included in a self-consistent manner. The
equation governing the electron trajectories is derived in Section III, and
solved for the case in which both space—charge contributions and a tapered
wiggler (i.e., helical pump) field are included. Anharmonic effects on the
bounce motion of electrons in the ponderomotive potential are included to
lowest order. The gain for both the primary and sideband signals are
computed in fection IV. A summary and discussion is provided in Section V,
and the consequences for the operation of both free electron laser

amplifiers and oscillators are discussed.
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II. GENERAL EQUATIONS

The physical configuration we study consists of a relativistic
electron beam interacting with a static, helical magnetic field which

can be represented by the vector potent.al
~ z - A . VA -
QW(Z) = - Aw(z) [%xcos( é dz kw) + Ey51u(é dz kw)], (1)

as well as scattered electromagnetic and electrostatic fields of the

form6

z
J A A dz’'k -
Q (z,t) (z)[%xcos( g z wt)

z
- B si dz’k - we)],
€y51“( g z wt)]

(2)
A (z,t) = A_(2) [%xcos(éz dz "k _-w_t+6)
= %ysin( gz dz’k_ - wt+e)],
and
d (z,t) = & (z)cos( fz dz’k ~wt+a),
)
(3)
¢s(z,t) = ¢s(z)cos(£z dz‘n<S - wgt =R as)’

where the amplitudes of the scalar and vector potentials ¢ (z),
d (z), A (z2), A (z), and As(z) and the wave vectors of these potentials
S Y

kw(z), k (2), ks(z), k (z), and Ks(z) are assumed to be slowly varying




functions of z. The frequencies w and w, as well as the relative
phases 6, u , and o of the wave fields are taken to be independent

of z. It should be noted that our assumption that the spatial variation
of the fields depends solely on z is valid, strictly speaking, only near
the axis of a realizable free electron laser. In the interests of
computational simplicity, we choose to write the electrostatic fields

in the alternate form

¢ (z,t) @1_(z)cos Y(z,t) + @ 2(z)sin P(z,t),

(4)

@S(z,t) @Sl(z)cos ws(z,t)-+ @Sz(z)sin ws(z,t),

where Y(z,t) = fz dz'(kw + k) - wt and ws(z,t) =
0
z
g dz”(k + k) - w.t + 6.

In this form, Q and & represent the primary radiation spectrum
which may result either from coherent Raman scattering of low frequency
noise on the electron beam or from a coherent external source of
radiation. For a sufficiently large amplitude primary spectrum, elec-
tron trapping in the ponderomotive wave produced by the beating of the
static pump and primary radiation fields can give rise to the excitation
of sidebands of the primary spectrum at harmonics of the electron bounce
frequency. As a result,in the subsequent analysis we shall assume that
st—w | << w and adopt the ordering IAsI << |A| << |Aw|.

: ' AN AR 2 =

The fields satisfy Maxwell's equations (Bt c BZ )éT ANCQA

and Bzut d

T AWJZ,where &Tand¢T represent the total vector and scalar




potentials of the wave fields,and {(z,t) denotes the driving current.

After substituting the potentials from Eqs. (2) and (4) and averaging

over the long time scale T = 21/ 8w where Sw = |w —ws|, we obtain
Ty z
(w¥=c?k?)A = = 2céw dt[chos( S dzk - w t)
0
=1/8

z
~J sdal fde"k = w £)],
N o

. T/2 . (5)
(w*=-c?k)A = - ZC&{/’ dt [J cos( f7dz"k - w_t+8)
) s's X ¥ ) s
-T/2

z
- Jsin( fdz'k_ - wt+ 0)],
p s $

T/2

! L 2

2k (KA ) - 2N Jf dt[J sin( S%dz"k - wt)
VA C X (s}

-T/2

2
+ Jcos( f dz"k - wt)
¥ o

T/2
2 A) = 28 ~/F dt[J'sin( fzdz'k - t + 0)
s s c X s s

1
2k %3 (k
Sy 2
ST/ 2 ¢

vz
+ chos( é dz ks - w t + 8],

and

(¢l ) Sw T/2 (COS W)
(kw+k) o &4 o= f dt I\ i J o (7)




(I)Sl (Sw T/z et ll)S
(kw+ks) & f dt Jz : (8

e _1/2 sin ws
In the above, it has been assumed that the frequency shift between the
primary and sideband fields satisfies the conditions 21/8w = 21N/w =
2n(N+m)/wS where N and m are integers (N>>1 and N>>m), and that the
gradients of the scalar potentials may be ignored.

The nonlinear driving current is derived under the assumption
that the initial velocities of all the electrons are identical, and
that only the initial phases vary. Therefore, the electron distri-

bution can be written in the form

Bdpghe) =0 5 {: de_ W(t)) 8[z-€ (¢, ©)18[p-p(t 5 0)]s (9)

where W(to) is a weighting function which describes the distribution
of initial phases, n, and v__ are the initial beam density and axial
velocity, E(to,t) and Q(to’t) are the axial position and momentum of
a particle at time t which entered the interaction region (i.e.,

2z > 0) at time to. The driving current associated with such a

distribution is

sle-n(e,,2)]

R 5 s SR (10)
nz(to,z)

00
%(z,t) == enbvZO { dtOW(tO)Q(to,z)

00

where T(t ,2z) =t + /2 dg’fv (& ,z7) is the time required for a
o o z' o

particle which entered the interaction region at time t  to travel an
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axial distance z, and vz(to,z) is the axial velocity of a particle at
position z which entered tlie interaction region at time tye

If the beam electrons initially have negligible transverse
momentum, then we may approximate M ~ -(eAw/c)cos( gzdz'kw(z')),

Z

ny N —(eAw/c)sin( Jhn dz'kw(z')), and the nonlinear current
i 0

. ¥ G[t—T(to,z)]
%(z,t) v LA B Qw(z) S dtOW(to)

n,(t »z)
(1D
—%Z{m dtOW(to)G[t—T(to,z)]>
Substitution of (11) into Maxwell's equations (5)-(8) yields the
following set of equations
!
2. A m™N g W
(w2-c?k?)A =- %V 20w m Cosw(wo 2) (wo) ’
21N o YW ,2v_({ ,2)
0 z''o
-mN
(12) i
wiv, A i cost (¥ _,2)W(Y )
2. fdd _ b zo'w PYgito? Q 5
il 21N f e y(lbo 2, (b ,2)
7N
g TN
21(1’5 X (kliA NS mbvzoAvg " sinp(y_,z )W(wo) ’
z 2TN ¢2 o Y(wo,z)vz(wo,z)
-mN
wiv A (™ sing (v, )W) (13)
o? oy (KA ) = 22 [ gy ——8-0 =L
s 'z 8's 21N ¢ o Y\Q)o,z)vz(wo,z)
-mN
and
% 4en Vs L COSU)(‘POOZ)
(k +k ) =— —D 22 ww) (14)
w 4 4 |
) Na ° O\sinp(y_,z)
2 -nN o

——— - s YT T R
? .

& Y b
\ L > ),vlfr‘ 7'\‘“-‘::,\, ur bd -
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81 . cosy_(¥_ 2)
(k +k) ——h—— d\pW(\p (15)

"ll!l .
s: sind (U, ,2)
where § = -w t_, is the initial phase, mé = Aﬂeznb/m,
f%az"\k + k- st (16)
W(wo,z) = bt & da W vZ(Wo,z)
and
wS w - w, 3
Wy 2) === w(w,z)+( )i dz” k
z ks k
+wy SPazl—-—} ¢ (G (17)
] o wS W

The problem, therefore, reduces to solution of the axial orbit equation

for vz(wo,z) or, alternately, for w(wo,z).
It will be evident in the following section that the equation
describing the evolution of ¢ is invariant under the transformation

g >+ 21, 0 >0+ 2m(w - wS)/w. As a consequence, we have the symmetry

w(wo + 2m, 8 + 27 Ou—ms)/m ,2) = w(wo,e,z) + 27 , (18)

which is also possessed by ws. 1f it is also required that W(wo+2n) = W(wo),
then the integrals in Eqs. (12)-(15) are of the general form

[22 dwoF(wo,B,z) where F(wo,e,z) satisfies (18). The decomposition

of these source integrals into a sum of N integrals over intervals

of 21 1is possible, and we find that for large N




1 o 1 am 3
N f dll}oF(ll}o,e,z) = W {) do fﬂ dd)oF(wO,e,z).
-mN - !

Thus, for sufficiently large N (i.e., for sufficiently small Sw/w)

Eqs. (12)-(15) can be written as

]

: 2 D P 2
= - v < > .
(w ck® )a WV, a. cosw/Yvz 1 |

| (19)
2 ey 2 F i < 5
(ws ek )aS wbvzoaw cost/sz p
S0 G e zha < sin U/yv_ >
z b ¢ R W, 2
(20)
b % 2 20 :
2ks Bz(ks as) = il = aw < sin ws/yvz > :
and i
2
=_E_%.VA__<COSQ)>
v w c2(k +k ) 2 ‘
w
(21)
2w§ vZO
o S i ; - 4
7 TR ) EAW 2 8
1 . - 2wb2vZO
= SRR s
ke w_cZCk +) SHaREds .
w
(22)
2
2wb Ves :

e < i
Pg2 w cZ(k k) Sin e C e :
s W S




2m
)
where the averaging operation is defined by < *** > = (om) g dé

x f1 dy, W(Wo), and we have defined the a's and {'s as the normalized
-1

amplitudes a = eA/mc2 and ¢ = e@/mcz.

10




E III., THE AXIAL ELECTRON TRAJECTORIES
Since the vector and scalar potentials are independent of the
transverse coordinates, these coordinates are cyclic and the corresponding
canonical momenta are constants of the motion. In view of this, the axial

momentum equation takes the form

d

3 [ 3 . .
1 mc2<-,a—z- Y 6?1 siny -~Pz cosy) + i ws (glsinws-%zcosws)>

[y

2 2
me® d 2_mCc
— u <(kw+k )awa siny + (kw+ks)awassin U)‘:) } (23)

2Ya; Y

,

where u2 =018 a‘i, and terms of second order in the wave fields and in the
gradient of the amplitudes of the wave fields have been neglected. The

variation in total electron energy is given by

d Q 3
T i ("a'; w(cpl sinp - cpz cosy) + 3z ws (CPSISin‘PS*PSZCOS‘PS))

- % (w aa siny + wsawassinws) (24)

Combination of (23) and (24) yields

| d c2y? ( )
£ [ i .=
i —Yg— (k+k )(¢31 siny cpz cosy) + (ks+k )(cpslsinws ¢Szcosws)
i ¢ d c? VZ
— —— 2 - — —
" 2y2dz M v ([kw+k Y ]awa siny




where terms in the product of (w—ws)/w and either ¢51 or wsz
have been ignored .

Substitution of the axial position for the time as the independ-
ent variable and the phase for the axial velocity can be made by noting

that d/dt = vzd/dz and dy/dz = kw+k - w/vz. Therefore, Eq. (25) can be

cast into the form

22 L2
k +k k +k
d2 . d (w)c d 2 uC(w ) g
y o= — (k _tk) - _— - a a {siny
2 22 4 2
dz dz 2y v dz Y v
T X

w Zwbu 7
+ £ —f sin¢s> + ——3-——5—9 siny (cosy) -cosy{siny;

v
Yrr

+ :;-”s— [sinws(cosws) - cosws(sinws)]> . (26)

where ¢ = as/a, v, Ew/(kw+k) is tte velocity of the ponderomotive wave

—1 5
so thac Y, u(l - vf_/cz) 2 {s the relativistic factor corresponding to

the ponderomotive frame. In the derivation of (26) terms of order
(kw+k)-ldw/dz have been ignored. Equation (26) reduces to that found
by Kroll and Rosenbluth5 in the limit in which space-charge effects
can be ignored, i.e., wi << 2yioawak‘,2]c2/yr, where v, = (1 - vio/cz)-%-
We include the space-charge effect for a diffuse beam limit in
which we may approximate w = ck and ws o cks. Therefore, under the

assumptions that k<< k,ks and dk/dz ~ 0 we find

12




d2 K2 Wy
b B = e iy = my, 38 S
dz r

+ GKz(sinw<cosw> - cosy<siny>

w W
S q
+ £ sinp <cosy > = — cosy_<siny >), (27)
w s s W s s

where K2 = 4kiawacoswr/ud measures the strength of the ponderomotive pot-

e W
ential, GKZ = Zuzwifygcz measures the electrostatic potential, ws = Tf-w
+ Akz + 0, Ak = kw(w - ws)/w, and

a 2
-1 w d u d > (28)
siny_ = = hme o a. T T ae kw
r 2a a (kw dz w Zki dz

describes the effects of the gradients in the wiggler amplitude and
period (hence, the acceleration or deceleration of the ponderomotive
frame). Solution to (28) is found by expansion of ¥ about the resonant

phase, and we assume Yy = wr + §¢ where \Gw\ << 7, As a consequence,

2
4 Sy =~ —K2 sy + l-Kztan 1 Gwz + i-szwB
d 2 2 r 6
z ;
2 w
ek : S _\ 2
= Coswr sin <tuwr + Aker/ + SKT(SY=-<8y>). (29)

Observe that upon linearization of (27) 2n/K is the bounce period in the

i b

ponderomotive potential, and 27/d8K is the oscillation period (i.e., the

1 invariant plasma period) in the space-charge wave.

@ D

I If we write Sy = &y where ﬁw(o) and Gw(l) denote the

b

contribution to the phase to zeroth and first order in the effects due to




Fmﬂ-:-‘f 5

2 2

(0) o o
/] = 4tan &r + acos Kaz -7

‘Q

8 tan wr cos2 Kaz (30)

3]

for small deviations from wr. In Eq. (30)

2
1 |4 5 2 3
K, EK-T¢ (1 + 3 tan wr) (32)

is the anharmonic bounce period in the ponderomotive wells, and a is a
constaat fixed by the initial condition w(O) (z = 0) = wo which implies

that wo - wr = q + aztan wr/ﬁ for o << 1. The first order correction

is given by

2

) oy e K oK 3 tan?
W Zeosy, BK, [1 e L) wr)]

wilun

2
X {[ * 8aAKK+ (1 + tanzxpr)] [cos (AK¢Z+¢1‘) - cos¢r]sinKz

+ [sin (AK+z+¢r) sin¢r]cous

2
a K 5 2 "
+ ~——8AK+ (1 + 3 tan wr) Kzsind)rsanz}
2
+ . (o - <a>) KzsinKz (33)
2k 2

. QD i 7 (L) i =2
where ¢_ = wswr/w + 0, &K, Ak * K, and &y 7 (2=0) = azaw (z=0) = 0.
It is important to recognize that this solution requires a2 < AK+/K,

which implies that all electrons are deeply trapped and have phases

close to wr'




Iv. THE SMALL-SIGNAL GAIN
The gain per pass of the primary and sideband waves in a system of

of length L follows from (20)

2 L
v _ Y %w .
& ="708% @ dz < sin Yy > (34)
0
0
and
wz a L
g o it W dz < sin Vg 7 (35)
s 2w ey a
s 'o
0

where the radiation wavevectors, electron energy, and wave amplitudes
have been assumed to be slowly-varying functions of z. These expressions
may be readily evaluated using the solutions for the phase described in
(30) and (33).

In the case of the gain per pass of the primary wave, we have to

lowest nontrivial order

<sinh> sty [1 Lgy®2 51 < gy >]. \

Because of the average over the relative phase between the primary and

(L

sideband signals, this implies that only those components of ¥ due
to the space-charge potential can contribute to g to this order.

Specifically, the coupling between the primary and sideband waves can- |

not affect the gain of the primary wave to first order in ¢. In addition,




the space-charge effect is manifested by means of a beating between the
bounce motion of electrons in the ponderomotive potential and the space-
charge wave itself. In evaluating these averages, we shall assume a

distribution of initial phases of the form

WY = Ry, +8) W A=), (36)

in the range - T < wo-i 7 where A << 1 measures the spread in phases,
and H is the Heaviside function. This distribution describes a tight,
uniform bunching of electrons about the resonant phase and is depicted

schematically in Fig. 1. As a consequence, g can be written in the form

wz 1 a 2
b~ W A sinKL , 2sin2KL |
E & 2y a sin § )1+ 75 [ KL T 3l
k2 AR
— (%os 2KL - ——Tﬁa:—> 5 (37) ¥
2K

which vanishes when sinwr =0 (i.e., for untapered wigglers). Evidently,
the space-charge contribution to the gain vanishes in the limit in

which A > 0. This conclusion is quite general and not dependent on the
particular choice of W(wo). It can be shown from (33) that the con-
tribution to the gain from the space-charge potential must vanish whenever
the spread in wo vanishes. Finally, we observe that the space-charge tends f
to reduce the gain whenever sin2KL > 2KLcos2KL. This inequality holds for

KL < /4 (when the bounce length of electrons in the ponderomotive well i
is longer than the system) but not in general and, for proper choices of

the parameters, the space-charge effect could be made to enhance the gain.




s

dp/dZ

UNTRAPPED

TRAPPED

Fig. 1 — Schematic representation of phase space distribution about
the resonant phase, showing the separatrix for a tapered wiggler




In computing the gain of the sideband signal, we note that

, 1
< sin ws >N (ws/w) < w( ) cos wéO) > and the space-charge effect does

not contribute. Gain, therefore, arises because the presence of the
sideband induces an oscillation in the electron bounce motion. We

find that

)
w, KL a 2
— b W KA 5 2
g e = (1 e (U5 S tan iy )
s l6wsyoc coslpr a ASAKi 3 r

.
2 sinx \

— KLA 5 2 d +

+ 96 (1 + 3 tan lPr) dX+ ) ( X+ ) ’ (38)

where Zn = AK+L/2, and it is the lower sideband which is excited (i.e.,

AK v K).

The preceding applies to operation of a free electron laser
amplifier. However, when operation is in the oscillator mode it is the
relative gain G(= gs/g) which is the significant quantity in determining
whether the sideband signal will grow from noise. The close frequencies
of these modes insure nearly equal loss rates; hence, the relative gain
must be near unity in the steady-state and greater than unity if the
sideband is expected to grow from noise. Comparison of Eqs. (37) and
(38) shows that since K » [AKil the space-charge contribution to the
relative gain will be important only when ¢K >K, and in this case

2
e wKL ‘ e A K o) 2
E Awssin2¢r il = a [}AK+ (G g EAn lpr)

2
2 sinx
6K sin2KL +
F KZ QQSZKL - ToORL )] ( ~ ’ (39)

o




and the effect of the space-charge field is to enhance the relative gain

of the lower sideband when KL < n/4. Note that the only constraint on

the magnitude of 6K imposed by the analysis is that AZGEZ < Kz.
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V. SUMMARY AND DISCUSSION

In this paper, we have investigated the question of free electron
laser operation in the trapped particle regime from the standpoint of the
excitation of sidebands shifted from the primary spectrum by the bounce
frequency of the electrons trapped in the ponderomotive potential. The
analysis described the interaction of a bunched cold electron beam with
the static wiggler, the radiation fields of the primary and sideband
modes, and with fluctuating space-charge fields. Gradients in the wiggler
field have been included as well. Further, in order to make the problem
analytically tractable, we have included the anharmonic contributions to
the trapped electron trajectories only to lowest order. This necessitates
the assumption of tightly bunched electrons about the resonant phase.

It was found in the computation of the gain per pass that the
coupling of the electron orbits to the fields of the sideband modes had
no effect on the gain of the primary spectrum to lowest order in ag.
It should be remarked here that the space-charge components of the
sideband waves were found to be unimportant to the gain of either radia-
tion mode for the paramcter regimes under consideration. However, the
space-charge fluctuations which couple to the primary radiation spectrum

are found to provide a contribution of order A2<SK2/K2

» Where A2 measures the
trapped electron spread gabout the resonant phase. Since A2 < 1 in the
present analysis, we conclude that the space-charge contribution to the

gain of the primary wave can be important only if 6K2 > K2. It is in-
structive, therefore, to consider specific experiments (either in current

operation or proposed) to determine whether space-charge effects will

be important in the trapped parvicle regime.




T %

The first example is the experiment being conducted at Los Alamos

T

National Laboratory8 which is intended to operate in the infrared
(at 10.6 ym). In this case a constant amplitude linear wiggler of about

2.4 kG is allowed to vary in period from 2.7 to 2.4 cm over a length of 1

g —" - g w— W

m. As a consequence, the resonant phase is such that cos wr ~ +94., The
experiment employs an electron beam of 20 MeV energy (Ay/y ~ .01) with a
| radius of .5 mm, and the maximun anticipated curreant is 25A. Finally, the
input signal intended to bunch the electron beam is to provide between D =
1 GW at 10.6 um into an optical system with a 56 cm Rayleigh length. It is
readily apparent, therefore, that for an equivalent system using a helical

wiggler GKZ/K2 s .009 and the space-charge effect is likely to be

T L

negligible. Indeed, this appears to be the case for all present or future
free electron laser experiments which are to operate in the infrared due to
tie high enérgy, low current electron beams employed in such experiments.
In contrast, however, the space-charge effects may be important in
free—elcctron lasers intended to operate in the millimeter or submillimeter
range of wavelengths. Such devices operate at much lower energies and are,
thus, able to achieve higher beam currents. One example of such an
experiment is to be conducted using a van de Graaf accelerator4 capable of
produc:ng a 2A beam of 3 MeV electrons (with effective Ay/y ~ .005) with a
radius of approximately 2 mm. The wiggler field to be employed is uniform
and of approximately 4 m in length with a 2 cn period and an amplitude of
between 400-500 G. The radiation field amplitude required to trap the beam
0 is about a ~ 1.6 x 10“5 (at approximately a .2 mm wavelength). Using these
parameters it follows that GKZ/K2 < 1.2 and, therefore, this experiment

constitutes an intermediate case in which the space-charge fields may have

an effect on the emission.

e




For still higher currents, the space-charge effect becomes still more

9

important. A free electron laser experiment is planned” which

makes use of the Experimental Test Accelerator at Lawrence Livermore
National Laboratory to test effeciency enhancement schemes with a tapered
wiggler. Typical heam properties are a 4 MeV energy at a current deunsity
of greater than 500 A—cm_z. Beam densities, therefore are expected to
reach about 1011 electrons/cm3. The projected wiggler field is linear and
of 3 kG maximum amplitude with a period of 10 cm, and an input radiation
pulse of about 930 kW/cm2 (at a wavelenth of 3mm) is to be used to trap the
beam with an effective Ay/y ~ 9%. As a counsequence, 6K2/K2 ~ 4.1/cos Ve
(where wr is variable, 0.5 < cos wr < 1), and it is clear that space-charge
effests are important for such an experiment.

In conclusion, space-charge effects are important only when 6K2 A Kz
(i.e., the electron bounce period in the ponderomotive potnetial is longer
than the invariant plasma period). Such a condition is not generally
satisfied for free electron laser experiments which operate at infrarad
wavelengths where beam currents and energies are of the order of several
tens of Amperes and MeV's. However, experiments operating at submillimeter

wavelengths employ beams of much lower energy (several MeV) and higher

current (1lkA) and collective space-charge effects are important.
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