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Abstract

This report examines the problem of adaptively tracking a maneuvering
target in two dimensional space using passive time delay measurements.
The target is free to maneuver in velocity and to make depth changes at
times unknown to the observer.

Tracking is accomplished by using the basic polar model of target and
observer motion previously developed, and included in this report for
the convenience of the reader. However, the important distinction is that
now a nonlinear prefilter has been added to the tracking system. This leads
to two major benefits: the first, is that the need for extended Kalman
filters is completely eliminated which gives the tracking system a much
larger degree of *robuscness‘ than it previously had. The second benefit
is a decoupling of the depth estimator from the polar range estimator,
which considerably reduces the cemputational level of the adaptive tracking

system. _--
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Chapter 1

1.1 Introduction to Target Tracking

During the past several years much effort has been spent in the

development of sophisticated digital filtering algorithms for tracking

maneuvering targets. A common method has been to model the target
dynamics in a rectangular coordinate system which results in a linear
set of state equations, but forces the measurements to be nonlinear
functions of the state variables. With this model an extended Kalman

filtering algorithm is frequently used both to provide current state

variable estimates and, by a one-step prediction process, to linearize

the next measurement vector. This method works moderately well until
the target makes an abrupt change in its trajectory in response to
pilot or missile-guidance program commands. In this situation the
velocity and prosition estimates can, and orten do, diverge from the
true unknown values. The inherent problems of this apprcach can lead
to large bias errors and sometimes complete filter divergence.
Earlier work on the maneuvering target tracking problem includes
Jazwinski's limited memory filtéring [1}, in which the filter gains
are prevented from decaving to zero. Another technique, des-~rited
bv Thorp {2]. involves switching between two Kalman tfilters in res-
ponse to a detected maneuver. A third approach, due to Singer [3],
models the tacget trajectory as a response of the target model to

a time-correlated random acceleration, With this method additicnal




state variables are used to generate the correlated forcing func-

tions wvhich, in turn, increase the dimension of the Kalman filtering
algorithm. In this manner the technique provides the filter with
statistical information concerning target maneuvers based on an as-
sumed range of possible aaeleratious. Singer's method was subsequen-
tly extended by many others.

Parallel to the effort was the method of modeling major changes

in target trajectories by a semi-Markov process. An application of
% this approach to tracking maneuvering targets in two-dimensions by
Moose [4] was successfully extended by Gholson and Moose [5] to
three~dimensional tracking.

The general approach which uses the "adaptive semi~Markov man-
euver model" of [4] and [5] implies a discretization of possible
vehicle accelerations or velocities. The estimation algorithm then
views the maneuvering vehicle as if it is responding to commands which

are modeled by a semi-Markov process, i.e., a random process with a

finite number of "states'" (commands) which are selected according to

the transition probabilities of a Markov process. A semi-Markov pro-
cess differs from a Markov process in that the duration of time in

one state prior to switching to another state is itself a random var-
ble [6]. Incorporating the semi-Markov concept into a Bayesianm estimator
was done in [4] and [5]. This estimation algorithm provides a substan-~
tial improvement in filter stability, which means that large bias

errors are prevented from being built up due to unmodeled target accel-
erations. An important aspect of this adaptive estimation algorithm

1]

{5 i3 elimination of a '"growing memory" which is prevalent in many

adaptive filters. !

n
“«




1.2 Target Modeling

With the brief history of the maneuvering target tracking pro-
blem presented in the previous section, we see a general progression
in the sophistication of tracking filter design stemming primarily
from the method in which the unknown target accelerations are modeled.
This trend is graphically outlined in Figure 1.

Initially, target maneuvers were modeled as the response to
uncorrelated, zero-mean variations about a nonaccelerating target,
shown in Figure 1(A). As a result, the estimation algorithm could
follow only those maneuvers which were comparable with the input noise
level. Furthermore, the filtering results during nonmaneuvering sit-
uations were seriously degraded due to the uncorrelated input noise.
As shown in Figure 1(B), Singer [3] attempted to model large-~scale
maneuvers by assuming a time-correlated input process and incorpora-
ting the statistics into the subsequent filter design. In Figure 1(C)
large-scale target maneuvers were modeled as a stochastic process whose
mean-value switched randomly from among a finite set of predetermined
values, The adaptive estimation algorithm mentioned in the previous
section could then be used to track the maneuvering target. This
method was seriously restricted, however, by the requirement of a
large number of preselected mean values in order to ensure cocnvergence
of the estimation process. 1t has been shown (6) that by combining
the concepts illustrated in Figure 1(B) and Figure 1{(C) the number of
mean values required to prevent filter divergence is greatly reduced.
This combinatior is illustrated in Figure 1(D). The primary benefit
of this aporoach is the large saving in computational effort. An

additional benefit, at least from a subjective viewpoint, is that the
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time-correlated,randomly switching,mean-forcing function more ade-

quately models real-world target maneuvers.

The basic target modeling ideas are shown in Figure 2. The tar-
get trajectory 1s generated by the random selection of an input time-
correlated Gaussian process whose mean value i 1is applied to the tar-
get plant dynamics for a random duration of time. This input distur-
bance process lasts until a new input Uy is randomly chosen from among
a finite set of n possible inputs. With this model as a background
and using an appropriate choice of state variable equations to repre-
sent target dynamics, either submarine or aircraft, it is possible
to develop an "optimal" (in the minimum mean~square error sense)
tracking filter that adaptively learns, then quickly adjusts itself

for each major alteration of target trajectory.

1.3 Incorporation of Singer Process into the Target Dynamics

In incorporating the correlated process, the linearized
poiar model of [6]) is preserved. To this end, consider a target whose
motion in rectangular coordinates is described by
; = —ax + u, + w;
v'a"( - -aw)"t + v (1.3.1)
where
a 1s a drag coefficient
uy 1s the deterministic {nput in the x direction randomly

chosen from a set of N possible inputs.

w; is the Singer correlated acceleration process acting

in the x direction with a time constant Tc = 1/a.




A similar set of equations exists for the y and z directions.

Defining

the following continuous time state variable model is obtained for

Ve is a white Gaussian random process acting in the x direction

P

Equation (1.3.1)
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w (1.3.3)
X

C=(J - A/a - a)

-at
>

J=(1l - )/a




1.4 Development of the Polar Plant Model

The lineavized polar model is developed using a modified ver-
sion of the approximate modeling technique of Reference (5) except that

now, the origin of the corrdinate svstem is moving.

o CHANNEL MODEL
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Referrving to Figure 3.
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(x = x) (v_.=-v)
. S Q . . -8 [e] . .
- S - M A A Y - 4.2
N 5 (.s o) + 3 (ys yc) (1.4.2)
P st is expanded as follows keeping only the linear teras:
ak_,_l'.okv-g—p—e (x -x )+ (v ~v_ )
' ik Skvl Sk sl T Sker 5%
+ 3o 30
T (x =x_ )+ (v -y, ) (1.%.3)
x e o o Woly oy Yo

Assuning a linear drag model for the Source as given in (1.3.1), upon

substituting (1.4.1) into (1.4.3) for the Source connectsd termsg, and we get
- - . '
(xk+l xk) Ax, + wa + Cux

k k k

S - xo)
0 - -+ —_—
Ok 5 }

-y,

+==2—"9 | Ay + Bw' + Cu
p ‘k s s s s

{Ax _+ Bw' + Cu
s s s

k X x sx ik

(1.4.4)

In the above equation and in all subsequent analy¥sis, subscripts s and

o rafer to the Source and the Observer, respectively.

Now

and (1.4.5)

(y

o, . TV, 2y, T

K+l K %

Combining terms with like coefficients in {1.i.3) and making use of

(1.4.3),

L et #lkal.




(x_ - x) (y =v)
= o V - 's 'o .
Sl T + Af 5 X 3 ;s]:
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x y K
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Consider the coefficient of 3 appearing in Equatien (l..i.6)

(xg = %o) 4 (¥g ~ ¥5)
o) 2

are the direction cosines between

the X and Y axes, respectivelw, and the o direction. Hence

X_ = x_) -
( s 2’ W' o+ s - 4 (1.4.7)
s )

b X R ¥ 3

{s tne sum of the projeczicns of w' aad w' conto the : direczion. This
3 -
x Sy
sum acting in the ¢ direction can be replaced by a single equivalent
term denoted by w; . In a similar manner the coefficiencs of C and T
]
are called ug and ws respectively. The coefficiant of A in (1.3.6)
o} e}
represancs the projecticn of the Source velocity cato the radial direc-
tion. This coefficient must be recasc in a diffarenc Iormulation in

order to complete the state model of (1.5.6). Toc this end Iguaction

(1.5.2) {s rewritten as follows:

O
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(xg = %)) . (vyg = ¥, ., L. (xg = x) . - (yg = ¥,) ;
o Xq 0 g T F 0 "o 2 0
(1.4.8)
(x_ =) (y. = vy,)
using S > 2 io + s > 2 Yo H Vo Cos sso (1.4.9)

where V, = observer velocity, BSO is the bearing between Vg and the target.

using 1.4.8 and 1.4.9 yilelds

(x_ = x) | (v, = v) .
S 0 ¢ +—35_"0 . a5 +V CosB (1.4.10)
2 S [o] 3 Q SO

Subscitucing Equations (1.4.9) and (1.4.10) for the coefficients of
T and A, respectively, in (1.4.6) and collecting like terms results in

the following state variable model:

ol =

: ! + + (A- V Cosg r P.4.110)
Pegr T Pk + Aﬁk + Bws + Cus Dws (A-T) ( o °so)“ Gl

" "k °k

A similar approach is taken to develép a state model for 5k+l
By assuming that the Observer maintains a constant velocity for long
periods of time, and that w;p is a zero mean correlated GAUSSIAN random
process acting in the p direction the following state equations are

easily obtained,
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The underlying cconstraint for the state model (i...12) vequires that

the Observer adopt a constant velocity profile.
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Z Channel

Using a discretized version of the basic linearized drag model of
Section 1.3, and letting d.r be the target depth the following state model

is presented.

r
dT 1 A B dT C D
dy = (0 E F dp +uz Al + |G wzk (1.4.13)
w' 0 0 e-aT w' 0 J
. o Y4

k+1

The state model is also subject to the constraint of a constant velocity
observer.

It is interesting to observe that both state models (1.4.12) and
(1.4.13) are identical although the types of manipulations involved in the
derivations are quite different. For example, a Tavlor series expansion

is used to derive (1.4.12) whereas no such expansion is used in deriving

(1.4.13).




2.1 Two Dimensional System Analysis

To develop the measurement equations use is made of Figure (4) below.

Hassab (7) at NUSC developed the following set of equations for the dif-

ference in arrival times T and Ty Where 3 represents the time delay dif-

ference between the direct path along (r) and the surface reflected path.

ocean surface

source

: J
observer —_—.— = — = -

ocean bottom

Figure 4. Two Dimensional (Range and Depth) Tracking Geometry
From Hassab we have:

2 b

T = [(e? + 4 a’-add? -l
) (2.1.1)

1
]
K + 4 dkd) -rl/c

T, = [(r2 + 4 d

2
and r2 = 02 + 4°

C = gpeed of sound in water

9 |
Now, by making the assumption that the square of target range (r™) is much
|

¢
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2
larger than the observer depth squared (do') then 1, becomes, where ¢ is

1

the polar target range.

2dd
s a—9oT 2 2
Ty o°C (2.1.2)

If, in addition, we have the "shallow water ranging situation,” i.e. that
(dkz/rz) is << 1. For example, if r > 2.25 dk’ our error of approximation
is less than 1.4%, thus T, becomes

24 (d -d.)
. = k w T (2.1.3)
2 oC

where dw = total ocean depth.

Examining the set of equations 2.1.2 and 2.1.3, we see we have two non-
linear algebraic equations in terms of our state variables ¢ and dT' At this
point in the past, these equations were linearized in a Taylor's series ex-
pansion to yield a linear measurement of p and dT' By doing this periodically
in time, an extended Kalman filter tracking system (6) was developed and
reported upon.

It was decided to eliminate the extended Kalman filters in order to
reduce svstem complexity and computational burden, and to increase the
robustness of the tracker against any possible filter divergence problems.
This was done by developing the nonlinear prefilter discussed in the fol-

lowing section.

2.2 Development of the Nonlinear Prefilter

In order to limeagrize the time delay measurements, we notice that each
is a nonlinear function of the system state variables polar range and target

depth (p, dT)' Bv dividing t, bv Ty and lettring a = (do/dk) the ratio of

1

observer depth to depth of water under the keel we have the following expres-

sion containing only d..

13




T
FR— (2.2.1)

To determine true target polar range p substitute equation (2.2.1)
into equation 2.1.2 and solve for p. Defining the system parameter (bo) =
2 dodw/C where dw is ocean depth and C is the sound velocity, we get

bo
- (2.2.2)
1t AT

In reality, we do not have T and 1, given to us but only the noisy set of

measurements

zt, = 1, + Vv

1 1 1
(2.2.3)
T, = + v
2T T
where vy and v, are Gaussian random processes with zero mean and variances
> 2
% and -7 respectively. This results in the noisy set of measurements
z1.d
1w
ZdT T Zt, +az
1 o0'T2
(2.2.4)
b
zp = S
21, + a z
17 %%

2.3 Measurement Linearization

Considering first the case of target depth, define the random process

v, = (sz - dT) to be the measurement error. Combining equations 2.2.1,

d

2.2.3 and 2.2.4 yields




Y - (rl + vl) dw ) ‘rldw
d (1 +a )+ vy +av) (1) +a71y)
or
a dw V1T2 - vzrl
Va T T 1.+ v, +av (2.3.1)
T T 1 o2
where T = (rl + aorz).

The target depth error term is thus the ratio of two Gaussian random

processes x and y. The terms x and y are both sums and differences of

the zero mean Gaussian processes vy and Vy- Thus they are both strongly

correlated, and in the case of the denominator y,nonzero mean,which becomes

very important in determining the structure of the density function of vy

From Figure (5) we see the structure of the linearized measurement zd._ =

T
(dT + vd).
>— d
o w
ZdT
Noisy Time Delay
Measurements

Figure 5. Nonlinear Prefilter for Target Depth Measurement

We now want to examire the measurement error v, of the polar range

equation zp =p +v_. Take the difference of equations 2.2.2 and 2.2.4,

c

we find that




where Tr =7 + aorz and

p = bo/TT, the true polar range.

v., to be (v1 + aovz). Thus v,

b b
v = o _ o
P (rl + aorz) + (vl + aovz) (11 + ar )
S (vl + aovz)
) (rT + 4 + aovz)

(2.3.2)

. 2
is Gaussian, with zero mean and variance o

(2.3.3)

Nonlinear Prefilter fcr the Target Range Measurement

T T
012 + 302022. The measurement error as shown in Figure (7) becomes
v = B,
+
p Vo Ty
ZTl Py
+
+ >
+
Zt,
Figure 6.
Sinee e bt

Equation 2.3.2 can be simplified considerably if we define the random process

T




3.1 Statistical Analysis for Polar Range Measurement Error

Suppose we have a function Y(x) given by v = ~-ax/(x + k) where a and
k are constants and x is a zero-mean Gaussian random process with variance
uz. If we sketch Y(x), we see from Figure (7) that it is singled valued in
x. In other words, one value of x produces one unique value of v. However,
there is a singularity at the point x = -k. 1In practice, there is a near-
zero probability of x being in the vicinity of -~k. For example, in shallow

water with a = 1/2, p = 30,000, Tp = (9.6 + 77/2) msec and o, =0 equal

2

to 5 msec, then (~k) is 8.75 standard deviations away from 0. This means

that the pr[~9.25b < x < 8.25b] < 3.4 x 10—16, however this number increases

rapidly as target range increases.

2 2
I = = N
X VT h (0, 01 +3002)
—.X
-a -3
|
i
{
Figure 7. Plot of Nonlinear Transformation of a
Gaussian Random Process
For the single valued functions Y = g(x) = -a x/(x + k), the density on

v, P,(y) is given by

17




-1
Po(y) =P [x = g'l(y)]*gg-a—y—(-v—)— (3.1.1)

Letting x = g_l(y) = -ky/(v + a), and Pl(x) the zero-mean Gaussian density
results in
2
ak —kzy“
5 eXp
av2n (y + a)

Pz(y) = (3.1.2)

2 2
25°(y + a)
By making the substitutions a = p, k = Tpr X SV, ¥ =V, the measurement

%

T
2 2 2 2 .
error, and op = (01 + a 9, ) we have for the density of the peolar range

measurement error

p T -1 2 v .
Py(v ) = /_T 5 exp ( ZT — (3.1.3)
op/2m (o + v ) [20,7C + v

The nature of this density function is shown in the following figures for
' the target and observer at fixed depths, but closing in range.
It appears that the densitv function PZ(Vp) given by equation (3.1.3)
is of a form that does not appear in such complete sets of integrals as,

, Tables of Integrals, Series and Products, by GradshTevn and Ryzhik,

Academic Press, 1980. 1In addition, it does not seem likely that there is H

I a closed form for the expected value (v = -ax/(x + k)), or for the expected
R 2 2.2 2 g 2

value of vp = a"x"/(x + k)~ where x is N(0,c"). Thus one must use numerical
| integration in order to get an approximation for the mean and the variance

of measurement error (vp). Examining the densitv function, we see that

it is a smooth continuous curve. As target range closes the mean and variance

becomes smaller and the densitv becomes more and more symmetrical approaching

a near Gaussian like density.

After severzl discussions with Dr. A. H. Nuttall of NUSC, New London,

CT, it was decided to limit anv measurements of . which exceeds a certain

threshold. This would guarantee that the variance of the measurement error
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vp remain bounded and constant for fixed target range. This is due to the
small, but finite probability (especially at long ranges of p) that vT(tk)

equal - rT(tk) in equation (2.3.3) at some time t In other words, it is

K
possible that occasionally a bad data point will crop up and must be dis-

carded. It was found that only a few stored values of E(vo) and E(vpz)

were needed in the tracking system as the target range closed.

3.2 Statistical Analysis of the Target Depth Measurement Error

Repeating the target depth measurement error equation 2.3.1, we have

- !
aodw (vlr2 vzrl)

a’- T (t

ptovptagyy)

where vy and v, are the statistically independent, zero mean, Gaussian measure-

ment errors associated with measuring T and Ty-
¢
i = - = E = '
Letting x (avl bvz) and y (TT + 1 + aovz), we have E(x) 0,
2, 2 2 2 2 2 _ .2 2 2 2
E(x7) = o, = (a 9 + b I, }, and E(y) = Tps 5 = (11 + a "o, ). Now E

define (r) to be the correlation coefficient of the linearly related randon
variables (x) and (v). It will be assumed in this section that r is known
and will be developed later in this report. The joint density function
Pl(x,y) for correlated Gaussian random variables x and v becomes

2 - -9
r x~ 2rx(y - v) (v - v)“}
Pl(x,y) s o exp L: 8{:_5 - B * 2

L)
—~
(9%}
o
—
~

v - /
X - 'y

where: r = Eﬂﬁll

Ox ‘.‘y
v = E(y)

( 27t
a=t2ﬂ’ Ty 'vy v’l—r]
3= (21 - 27t




Now let z equal x/y where the joint densitv function P(x,vy) is the known
Gaussian distribution of (3.2.1). 1In order to find the density function
of z, we need to identify the region of the x,v plane that is valid. To
do this, let z be any possible value of z. Then for the probability of
z = (5] sz, we have two regions - the first for y positive, yields x <

yZ > and the second for vy negative results in x > vz . Using Figure (8),

the probability becomes for Region I and II

X < vz

I

I L L L T T A7 =

Region I

T —

L L oY rE T e e -

Ir

X > vz
-0

Region II

Figure 8. The Regions of Interest for Z = X/Y

Pelz 22 ] = []° P (x,y) dx dy + i P (x,y) dx dy  (3.2.2)
o -® -® z v
o
To get the probability density functions P(zo), we must differentiate

the cumulative probabilityv distribuation of equation 3.2.2. When we do 1

this, and make the substiturion zo = z, we have

© 0o

P(z) = [ v Py(yz, v) dy - [y Pl(}'Z. v) dy (3.2.3)
J -0
11

L
L_ . ——— -
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T

|
! ,
! where Pl(x = vz, y) is the joint density of x, v with vz substituted for x.
| [
3 l The first integral (Il) becomes
| -
1 » r ) -2
Il =a j v exp =81 Z %Elf—-(y -v) + ik;—izl;} 5
|
, © L Uy *y :y _._ldy
; Expanding, collecting terms, and letting
| 2
| an Bz e, B
. 5 i
X X "y Uy i
2y8 | Ox
b= = lrz - = (3.2.4)
°x %y { Jy
Il becomes: -2
-8 v
2 = 2
Il =qe Y f ye-(ay + by) dy ) (3.2.5)
o 2 -t
® 2 R—- © 2 _l
Noting that f ye-(ay * bY)dy = éL' 1- beéaétg f = dt! and that the
o a b 2% J
/2a
right hand integral is the standard normalized Gaussian probability integral
1- F{—E-] we have for 1
oy 1
VZaJ
_3—2 5
v 2
'} 72 }- ?4:/; )( b T-}
Il =55 e ¥ ]l ~ be J3 |1 - F{—~— I (3.2.6)
L k /22’ |
Likewise for I
2 =2 "
-B% b2
& 9 ba [x (_b] 5
I, a e Y (1+be /- Fl/‘;, (3.2.7)

Combining equations 3.2.3, 3.2.6 and 3.2.7, we have for the density

function of z -2
-8y 5
0'2 %— b-_- /— " .1
; v L Z ; Y
P(z) === 7 i1+ be /2 F‘—b——%i‘ (3.2.8)
a vy a T ._)
\'/-a l
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i ' where a, 8 are defined in 3.2.1, and a, b in equation 3.2.4.

To get a physical feel for the form of the densitv function P(z) where

z = x/y, if we let E(y) =y = O then b = 0, and P(z) reduces to the fol-

lowing when 8 is replaced by (2 - 2r2)-l
i P(z) = < = A - rz
! a 2
2 r X 2 2]
b [} y [z - ;——J + ox (1 -1 {J

y

(3.2.9)

This has the form of the familiar Cauchy density function centered at z = %—5.

y

Unfortunately, in our case y = 1. which is the weighted sum of time delays

T
7, + a 1., and this is never zero.
1 o2

If we now look at the first term of P(z) in 3.2.8, we see that the

(852 5

Cauchy density is weighted by the term exp i~ —*5). Now by taking the J

! integral of the entire first term with respect to z we have just the previously

S g

mentioned exponential term for its contribution to the total probability
distribution of z. If this contribution is large (near unity) then the
second part of equation 3.2.8 contributes little, and P(z) is nearly a
Cauchy density. 1In order to compute this weight we must go back and deter-

mine the correlation coefficient r.

3.3 Determination of Correlation r in Target Depth Measurment Error

The additive measurement error v, was previously found to be

o g A Ak O S S AR 4 DA e M B\ et N s -

aodw (rzv

d
Tr

1" V)

(TT + vy + aovz)

When we originally substituted z = x/y, we let x be a Gaussian process given

; a d
{ 0w . . .
; by Ty (rzvl - rlvz), and y also Gaussian is given by «T + 1 + aovz), We
i = 32322 22 = 32=32
? found that the E(x) 0, < a”3, + b 52 , E(¥) T and v 1 +
i 2 92
a0 5; . In this substitution a equals aodwtz/rT, and b equals aodwrl/rT.

The basic definition of the correlation coefficient r is given by

-




L EGv) - EGOE() (3.3.1)
o 3.

where the expected value of x = 0. The first numerator term becomes
E(xy) = E[(av1 - bvz)(-rT + vy + aovz)]

2
Y = - b
E(xy) ao ab 7 (3.3.2)

2

With the second numerator term equal to zero and O and Cy given above

the correlation coefficient r can be expressed as

2 O
1
r= EERRENVE NEISYE (3.3.3)
NN R A e
2 s ZJ o 42
201 1!

A typical scenario might be:

p = 25,000
d = 3,000
w
do = 1,000
3 = 10 ms
Ty = 80 ms
a = 1/2

o

then if T, =Ty =>r equals .838

if S, = 251=>r equals .514

indicating a strong correlation between x and y.




Chapter 4

State Estimation and Adaptive Tracking Svstem Structure

4.1 Introduction

In this section, we will discuss the basic estimator system structure.
We will make use of the linearized measurements containing the nonstationary,
non-Gaussian, statistics that was previously discussed in Chapter 3 of the

report.

Referring to Figure (9), the nonlinear time delay measurements ZTl

are fed into the nonlinear prefilter. This unit develops a linearized

and ZT2
Bias J
Removal {*—
(stored)
e
11 + Zdt - Target Depth dt
NonLinear + Igéiman r—-
ilter Target depth
PRE-FILTER Linearized Estimate
Measurements
t2 . p
o——pn Adaptive -
Range »
Estimator Target Range
Estimate
Bias ——
Removal
(stored)
ol

Basic Estimation Structure

Figure (9)




measurement of target range (p) and depth (dt). The errors in measuring
these target parameters are both non-Gaussian and nonstationary depending
upon the geometry of the tracking situation. As target range closes,or
opens the mean value, and variances of these errors change, and must be ac-
counted for.

An offline computer program was developed to generate the variation in
the mean value and variance of v as a function of target range 5. Details
of this work is presented in the accompanying appendix along with the out-
line of the pitfalls to be avoided in using numerical integration routines
on functions containing an isolated singularlity. Results shown in Figure

(11) illustrate that, for stationary Gaussian measurement errors o, and 7,

1 2

associated with time delays t, and t,, it is possible to simply store ofif-

1
2
line as a small catalog the necessary values of E(vp) and E(vp“).
In order to evaluate the mean and variance of the target depth error
7K data was generated at fixed target ranges. It was then operated upon
T

by the nonlinear prefilter shown in Figure (10), and then numerically

Zrl
-
O Zdr
- =~ (depth)
Linearized
Measurements
- (range)
Z
b o
D =
( )
ZTZ

Figure (10)
NONLINEAR PREFILTER

-26~-
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integrated to yield a set of means and variances for usein the target depth

estimation portion of Figure (9).

4.2 Target Depth State Estimation and Data Generation

A conventional Kalman filter was developed for the state equation
X+l T $ X + Y L where ¢ and y are given by eq. 1.4.13 and 1.3.3. The
filter of the form X4~ d X + Kk+l [ZdT(k+1) - HY Ek] gives estimates of
the target depth &T(k+l) which is the first or upper component of the
estimated state vector Xy1e

A large number of computer runs were made using noisy data generated
by the following technique. 1In Figure 12 a discrete time system model is
presented showing the development of noisy time delay measurements Z. (k)

1

z . . . = 3 =
and T2(k) The upper portion shows the generation of §k+l [¢ §k +I‘Uk
+ g_wk] where ¢, [, and ¥ are discussed in eq. 1.4.12 with cos Beo = 1.0.

The deterministic input U, is unknown to the tracking filter and serves to

k

generate large scale target maneuvers in velocity. A measure of randomness

in target trajectory (xl = p. and Xy = ék) is generated bv applying a Gaussian

k

random input to the simulated target, exponentially correlated, forcing

W
%
function component as state vector Xq = Wo(k).

Once p is generated, it is acted upon in a noniinear manner to

k+l
generate Ty and Tss which when added with the Gaussian random measurement
errors v,, v, produce the noisy time delay measurements ZTl and ZTZ.

With the background completed, we will now present some computer simula-
tion. The results shown are tvpical of those that were observed over manv

trial tests. In Figure 13 (low noise case) the first figure is a plot of

the linearized nonGaussian raw data ZdT(k). The target is at a fixed range

of o = 25,000, and¢ at a mean depth of 600 feet making slow randocm changes
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on the order of + 30-40 feet. Measurement errors of cl = 2.5 msec and

g, = 5 msec were added to 1, and T, in Figure 12.

1
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Noisy Depth Data Z, (k)
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Figure (13)
’
In Figure 14, the target range has been increased to 40,000 and ol'
increased by a factor of 4.0. Notice the data shows a bias due to an
excessive number of large positive readings. In the future, bad data

points that are nonrealistic will be "windowed out."”
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Figures 15 and 16 show the convergence of the tracking filter, for
the previous sets of data given by Figures 13 and 14. The deﬁth estimators
provide a good track as the target makes + 1 ¢ random depth changes (+ 30

feet) about the mean value of 600 which is unknown to the tracking filter.

Again the targets range is fixed at 25,000 and 40,000 with the observer

at a mean depth of 1000, target 600, and water depth Dw = 3000.
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4.3 Depth Estimation for Variable Range Targets

The work presented in the previous section dealt only with targets at
fixed ranges, which for most scenarios is a very unrealistic situation.
In order to provide depth estimation for a target whose range is time
varying, and with an initial estimate of range and depth, a study was
performed to analyze the effects of range and noise variances on the depth
estimates previously developed.

It has been determined that both range and depth estimation improve

as the observer increases his depth. Now with target depth initially

unknown, and this being an exploratory engineering study we have

decided to investigate two scenarios. The first has observer at 1000 ft
and the target at 600, the ccean depth shallow at 3000 ft. The second is
a reversal of magnitudes with target at 1000 and observer at 600. Values
obtained then would allow the estimator to perform anywhere within this
range without going to a new set of tabulated means and variances.

What we need as the target's range varies, is to compensate for the
changing bias introduced in the nonlinear data operation of the nonlinear
prefilter of figure (10) page 26. Now,the data generation svstem of
figure (12) page 29 was exercized at a series of discrete target ranges
9y = 5K, 10K, 15K, ..., 90K. Additive Gaussian noises vy and v, were
generated from a serlies of tenm independent random generators. The noisy
measurements 23 and zrz(pi) were then fed into the nonlinear prefilter,
Taking the output and subtracting = the measurement error was obtained.
Bv averaging a sequence of 250 noisv measurements a value of mean and
variance of v, was obtained, for each target range vy This was repeated

d

for each of the ten random sequences to produce a good "™onti-Carlo" set

35




of mean values and variances. The results are shown in figures 17 and 18,
It is to be noted that the curves also show the effect of increasing the
variance of the Gaussian measurement errors vy and vy from 2 to 5 ms.
Figure 19 gives an idea of the form of the density function of the
additive noise vy The range (p) is fixed at 50K and the scenario of
d, = 1000 and depth of target equal to 600 is used. If the area under
o

the curve f vy P(vd)dvd is integrated, a value very close to the

desired value of ~50 feet is obtained.
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Results for Depth Estimation

In figure 20, the target is closing the range from p = B0K to
20K at a constant depth of 900. An initial depth estimate aT(O) equal to
200 was chosen with the observer at 600, and ocean depth 3000. The
standard deviation ¢f 3 ms was chosen for additive noises vy and Vye
In this, and the figures to follow raw depth measurements Zdp out of the
nonlinear prefilter are shown. Note the decay (on the average) of the
noisy measurements as the target closes the range, making the received
signal to noise ratio increase.

Figure 21, illustrates the case of higher noise power 9, =9, .
= 5 msec and target closing from 50K to 20K. The initial depth estimate
is again chosen to be 200 with target at an unknown fixed depth of 900.

In figure 22, a target closes from 10K to 1K and makes large-scale
random changes in depth. The estimate is initialized at aT(O) = 200 and
appears to follow very accurately. Note the fact that the unfiltered
measurements are not very noisy. This is due to the close range, high
signal to noise ratio that is in effect even though 01 50, = 3 msec.

Figure 23 is the same scenario as the previous figure, but with
target range increased from 50K to 20K and depth still making major
random variations. Tracking is still quite good with the exception of
the tracker lag that develops, which introduces an offset of 100 or more
feet. This ability of the tracker is primarily due to the addition of
the Singer correlated acceleration which was previously built in to the
filter. It is also to te pointed out that the tracker continually uses

new stored values of the mean and variance of the ronGaussian measure-

ment and error since the target is constantly changing range.
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A final set of runs were made to study some different scenarios
that might be of interest to the Navy. The first, shown in figure (24)
is a tracking situation where the observer is maintaining a fixed range
cf o = 30 K, and the target is making rapid large scale random depth
changes. The filter was initialized at a depth estimate of 200 feet
for the target. Target depth (dT) is shown as the light curve, and the
depth estimate (&T) as the heavy curve. The raw data (sz) out of the
nonlinear prefilter is also shown. The worst errors were on the order
of 100 feet lasting for about 30 time samples, or 300 sec of data.

Figure (25) shows the target at a fixed range of p = 30 K proceeding
at a constant depth of 250 feet. The observer is at 1000 maintaining
the 30 K fixed range, and using the old catalogue set of means and
variances for the target at a fixed 600 foot depth. A fixed bias is
observed of about 60 to 70 feet, gradually decaying towards zero as
a new set of means and variances were automatically changed in the

filter.
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Chapter 5

The Polar Range Adaptive State Estimator

The heart of the adaptive filter summarized in this report, is in the
forming of the total estimate of the target states, from a weighted sum of
state estimates conditioned on the N possible discrete input levels up(i).
Consider the state model (1.4.12). This state model views the target input
acting in the polar direction as being derived from a time correlated Gaus-
sian density having a mean value uo. Next consider a series of N such
Gaussian curves with displaced mean values up(i), i=1,2, ..., N and
partially overlapping "tails" as shown in Figure 26. If a bank of N Kalman

filters is formed, each filter based on the state equations of equation

(1.4.12) with the deterministic input U, being a different one of these N

WP . (2) (3) (4) LM

u u u

(1)

Series of N Partially Overlapping Gaussian Curves with Mean Values u

Figure (26)

mean values, then a series of N estimates is obtained, each conditioned on

a different Gaussian curve. Next a weighted sum of these estimates is




obtained in a manner to be disclosed below, and this weighted sum is taken
to be the total unconditioned estimate of the target states given by equation

5.1.
. FIPYED
(k) = [ x0T (ktl) W (kbD) (5.1)
i=1

Now as the target executes a series of evasive maneuvers in the polar
channel, the changing input necessary to produce these maneuvers is viewed
as randomly switching among the N Gaussian curves. By applying semi~Markov
statistics to this switching process a series of N probabilities wi, i=

1, 2, ..., N is generated where i

‘ wi = Pr {target input is being derived from the Gaussian
curve whose mean value is up(l)} OR,
W Getl) = Pr (k) = oDz (5.2)
i

and

x ) (v = Efx(k+1) Ju_ (k) = WPz,

Equation (5.1) is a total probability erpression developed from the basic

relation that
x(k+1) = E{x(k+1)|Z(k+1)}

is the optimal mean~squared estimate. It is well known that the optimal
input-conditioned estimates are provided by suitably matched Kalman filters.

In particular, for the iEE filter

(1)

- mi(i)(k) - Hl’u(i)]
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9 where

R(lcb]) = M(k+1) BT (mM(x+1) BT + R]7TH,

M(k+1) = 6P(K) 01 + ¢ Qu°
; and E
| P(k+1) = {I - K(k+1)H] M(k+1)

The matricesAé, I and ¢ are used to denote the respective coefficient

matrices in (1.4.12).
The following (repeated here for completeness) is an outline of the
analysis given in [5] to calculate the recursive weighting coefficients

Wi’ i=1,2, ..., N. Defining Z(k+1) = {Z(k), z(k+1)}, applv Baves Theorem

to (5.2) and we obtain

Pr fu(k) = u P12} pizeal) @) = o)

p{z(k+1) [Z(k)}

5 Z(R)

Wi(k+l) = (5.3)

The time varying denominator is independent of i and is therefore common to
each wi(k+l) as a normalizing constant. The first numerator factor is deter-
mined from the semi-Markov input process. Expanding this factor in a total
probability expression,

(1) y (1), ()
Priu(k) = u ’!z2(k)} = § Priu(k) = u ’ju(k-1) = u’, 2(k)} W, (k)
j=1 ’
And since Z(k) has no influence on the Markov state transitions,

N

-

Priuo = o« Dz = ] o2 w00 (5.4)
i=p J4 3
]
where the semi-Markcv probability is
s = priug) = o i1y = o

ji




e

;A‘
i
t
1
:
A,
1
i
!

is near unity for j = i and near zero for j # i.

Combining (5.3) and (5.4)
n

W (k+1) = Cp{z (kD) [ulk) = o za0r T e,

W .
4 i1 j(k) (5.5)

where Ck is a normalizing constant

is the desired recursive relation for wi. The required density p is ap-

proximately normally distributed and has distribution
Pz Ju) = o', 2007+ N GebD), VOeD (5.6)

where

(1) (

m (k) = Ho %) + 7 uP o]

and
V(k+1) = [BM(k+1) H' + R]

These probabilities can thus be expressed in a vector recursive form

as
W =C P o W (5.7)

where gk is a time varying diagonal matrix whose elements have been previously

computed in each of the (N) Kalman filters from eq. (5.6) we have

Py =N [mi(k+l), V(k+1)]

The term Ck is a normalizing constant computed at each iteration to

ensure that the sum of probabilities equals unity. The matrix 9 is a
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precomputed matrix whose elements contain statistical knowledge of the

randomly switching plant inputs. In practice, the diagonal elements are
nearly unity and the off diagonal terms are set equal.

Although it might appear from equation (5.1) that an entire Kalman
filter algorithm is being executed N times (for each of the possible inputs)

at each time iteration, such is not the case, since the process and measure-

ment covariances Q and R are the same for each filter.

What differentiates the different target "states' is the discrete
levels ui; however, the target dynamics remain unchanged! The entire
covariance, and gain analysis of the Kalman filter algorithm becomes iden-
tical for each state in a given channel and, consequently, need be executed

just once rather than N times. The adaptive filter structure is shown in

Figure 27.

5.2 Computation of Additional Required Covariance Term

After an initial investigation, it has been found necessary to com-
pensate for the lack of exact statistica. knowledge concerning target
maneuver commands. In other words, the ug of the filter bank rarely,
if ever, match exactly that of the plant.

The mathematical basis for the error compensation technique is
based upon the following statistical analysis.

In the state estimation algorithm, for a system with an unknown to
K’ and random disturbance Wi
x(k+1) = tx(k) + Tu(k) + ¥w(k) (5.8)

the tracking filter deterministic input u

the predicted covariance matrix P(k+1/k) is given by

P(k+L/k) = sP(k/K)oL + ¥Q(k)¥r. (5.9)




However, this is true only if the deterministic input to the plant is
known exactly. Consider the situation when a mismatch exists between the
plant input U and the deterministic input ui used in the filtering
algorithm. Assuming a linear estimator of the Kalman variety, we seek
to optimize the estimate

X (k+1/k+1) = x(k+1/k) + K(k+1)[z(k+1) - Hx(k+1/k)]
where X(k+1/k) is the one step predicted estimate of x. The gain matrix
K(k+l) is as yet unspecified.
Let x(k+l/k) = ¢x(k/k) + Tul
;c(k+l/k+l) = (I - I(H][cb;c(k/k) + Fui] + KH[¢xk + Fuk + ‘Pwk] + K Vsl

where K = K(k+1).

Defining the estimation error at time (k+1) as ;k+l = ;k+l - X we have
x(etL/kH1) = [T~ KH][$(R(k/K) = x(K)) + T(u' = w) = ¥ ] + Rv(ik+l)
The error covariance matrix becomes
P(kHL/k41) = E(x ) %)
=[1 - KH][6P(k/K)sT + ¥Q¥® + DI[T - k)T + KRK'

+ cross terms which go to zero under the expectation operator. The new

additional quantity D has the value

p = re((at - )t - )T+ rEGd - W) G - a0 DT

+ GEL(RK/O) - x(0) (ub - w) I
The condition for choosing K(k+l) is to minimize
trace [P(k+1/k+1)]
To find this value for K(k+l) it is necessary to take the partial

derivative of P(k+l/k+1l) with respect to K(k+l) and equate it to zero.

The optimum value for K(k+l) is found to be of the standard form

(5.10)

(5.11)

(5.12)
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K(k+1) = P(k+1/K) HY[HP(k+1/K)H' + R]™T (5.13)

where
P(k+1/k) = [P(k/K)$® + ¥Qu™ + D] (5.14)
where P(k+1/k) is computed using the new additional error term. The
subsequent calculations are identical with those for the Kalman filter.
Thus the effect of the mismatch in the two inputs is propagated throughout
the entire Kalman filter algorithm. From earlier work, we have found the
estimates of the target states to be close enough to allow the assumption
that E{x(k/k) - x(k)} = 0. In other words, our estimater is an unbiased

estimater. Thus D reduces to I‘E{(ui - u(k))(u1 - u(k) )T}FT.

Let Su be a uniformly distributed random variable equal to (uk - ui).
Now by setting the range of the random variable equal to - Au £ Su £ + Au
2 2

2
the variance is easily shown to equal Au . Here Au is the spacing between
12

adjacent pairs of levels ugs Uy This analytic result turns out to

i+1°

equal very closely the experimentally obtained values in the 1979 ONR
Report of Moose and McCabe. Thus the one step predicted covariance matrix

P(k+1/k) = [6P(k/K) - + ¥Q¥T + T A_u2 riy. (5.15)

12
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5~3 Range Estimation Results

In order to have a benchmark with which to compare the adaptive estimator's
performance the following scenario was devised. A target at the extreme range
of 100,000 was generated on a closing trajectory of 25 ft/sec at a depth of 600.
The target's plant model was matched exactly with that of the filter. This
was done to simulate and test the performance of the optimal (non-realizable)
tracking filter. 1In addition, it also provided a test of the nonlinear
brefilter and the adaptive state estimator whose weights were all set at zero

for the unmatched filters and unity for the single matched filter.

Target tracking results are shown in figures 28 and 29 for additive noises
of 1 and 5 m sec, respectively. Examining the figures we see that for each,
two different simulations are shown. They represent the performance
that one would expect out of the unrealizable filter when two widely different
sequences of random numbers are used in the data simulator that is shown in
figure 12 on page 29. Notice that the vertical scale has been changed in
figure 29 to show the effect of the nonlinear prefilter. The range estimates ( e )

are shown darker than the actual range ( p ).

The data simulation of Figure 12, page 29 made use of the following
parameters: the maneuver time constant (1/a) was chosen as 25 seconds, the
singer correlated acceleration time constant (1l/a) in equation 1.3.1 was
selected to be 40 sec, and the data rate was chosen to be one sample every
10 seconds. Although studies were made indicating a marginal increase in
tracking performance, for sample intervals of 2 and 5 seconds, the sample
interval was retained at 10 seconds in order to reduce the computation burden

for real world applications.

In the adaptive estimator of Figure (27), 6 levels of input ug were
chosen to span the expected target velocity range of 430 (ft/sec) for an
opening target and -45 (ft/sec) for a closing target. If the velocity
ranges were greater than this number N,could be increased slightly. The
ui's were chosen to model +30, +15. 0, -15, -30, -45 (ft/sec).

The next figure (30) shows the realizable adaptive filter tracking
in the presence of high noise (5 m sec). The target makes a random step
change in velocity at time k = 150, which corresponds to 1300 seconds into
the sceanrio. The raw data out of the nonlinear prefilter is shown aslmost

filling the plot. Notice though, that the variance becomes smaller with
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decreasing range then grows as range increases. This is typical of all
simulations in this report, and point out the nonstationary random processes

involved. Output of the estimator (darkline) is seen to fluctuate about the

true value of range with maximum errors on the order of 5000 which corresponds

to 10-15%. From this point on, in the presentation of the results of the

ranging portion, the noisy measurements Zp will not be shown.

In figure 31, we see the results of tracking a medium range (0-45k)
target as it undergoes a maneuver at k = 140 and k = 340. The target is
on a closing trajectory then reverses its velocity at 140 and 340. The
estimate § tracks very well at close ranges and progressively gives noiser
estimates as the targets range increases. This is due to the variance of
the measurements, which are not shown, increasing with range. The additive

time delay noise is 0y = 0, = 3 m sec.

Several conclusions can be drawn from figure 31. The first is that we
need to limit ourselves to close proximity targets, or smooth the estimate

p (k), or operate in an environment with smaller additive noises.

Figure 32 shows the effects of decreasing the measurement error to a
standard diviation of 1 m sec. The target makes a maneuver at k = 140 and
the estimate § tracks extremely well throughout the scenario. The next
figure (33) shows the weighting coefficients uy and uj as they vary due to
the target maneuver. It is seen that the weights switch appropriately from

0 to unity as required.

The last figure (34) in this section illustrates velocity estimation
3 vs time for a target that abruptly reverses velocity at k = 140. The
adaptive state estimator very quickly maintains track as shown. The additive

time delay measurement noise has been increased back to 3 m sec. The process

noises driving the plant (target) model is excessive and will be reduced in the

following work.
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5-4 Modification to the Adaptive State Estimator

In order to operate in a noisy environment where the additive measurement
errors attached to t; and T, are greater than or equal to 3 m sec, it becomes
necessary to smooth both the weighting coefficients and/or the output estimate

5k+1' It was found that a simple first order digital filter of the form

Y

o (5.4.1)

= a, + bp
158 B L WS |
was successful for good smoothing and small lag in tracking maneuvers. The

Y] . ~
term pk+l represents the smoothed output range estimate at tk+1 and P+l
the "rough" filter input. Coefficients a and b were set at 0.9 and 0.1

respectively.

In addition, to output smoothing the weighting coefficients W, (k)

i=1,2, ..., 6 were averaged as follows:
N-1

Vi) = 2 Tw (k) (5.4.2)
j=0

Y
Here wi(k) represents the time averaged output of the moving window averager
equation 5.4.2. Numerous simulations were performed as N was changed from

10 to 30. The results follow.

Figures (35 and 36) illustrate the filters range tracking performance
for the case of low signal to noise ratios (long ranges), and the effect of
averaging the probability weighting coefficients wi(k) on the smoothness of
the filters output. The scenario used to generate figures (35,36) starts
the target at a constant range of 50,000 feet with zero closing velocity and
then changes the target velocity to -15 ft/sec after 2,500 seconds. Figures
35 and 36 show the filters range estimate superimposed on the target range
output with 30 and 10 data points averaged respectively. It is easilyv seen
that as the number of averaged data points decreases the smoothness of the

range estimate also decreases.

Figures (37 and 38) illustrate the performance of the filter's range and
velocity estimates and the adaptive nature of the weighting functions. The
figures also show how the number of averaged data points Qiﬂk) effects all of
the above mentioned parameters. The scenario used to generate figures (37, 38)
starts the target at a range of 50,000 ft. and a velocity of =30 ft/sec

(-means toward observer) and changes the targets velocity to +30 ft/sec after

2,500 seconds. Figures 37 and 40 show range estimates superimposed over the
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plant range output with 20 and 10 data points averaged respectively. Figures
38 and 41 show velocity estimates superimposed on the plant velocity output
with 20 and 10 data points averaged respectively. Figures 39 and 42 show the
learning performance of the weighting factors associated with the filiters whose
deterministic inputs (ui) most nearly matches that of the plot output.

Figures 39 and 42 average 20 and 10 data points respectively. 1In all of these
types of curves shown in figuves (37-42), the curves become smoother as the

number of averaged data points increases.

Figure 43 shows the range estimate superimposed over the target range
output for a scenario with a number of velocity changes. The scenario starts
the target at 50,000 ft. with a closing velocity of -30 ft/sex. At 1,500
seconds a maneuver is made with velocity changing to +30 ft/sec, and then
again changing to ~30 ft/sec at 3,500 seconds. The adaptive tracking filter

quickly determines that a maneuver has been made and adjusts itself to provide

a good estimate.
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6 Conclusion

An adaptive state estimator has been developed and extensively tested to
track a target making random large scale maneuvers in velocity and random depth
variations as well. The target/observer scenario is constrainea to the vertical
plane in the ocean environment. This was intentionally done so as not to compete

with well established bearing tracking programs.

The adaptive estimator made use of a nonlinear prefilter to wicouple the
state variables that model target motion in both depth and range. An additional
benefit was the elimination of all extended Kalman filters in the tracking
system. This results in a more robust tracker and significantly fewer computa-
tions. The cost of doing this, is that the linearized measurements contain

nonstationary and non-Gaussian measurement errors.

System inputs to the tracking system consists of noisy time difference
measurements of bottom/direct, and surface/direct multipath time delavs. The
adaptive tracker pre-filters the noisy multipath measurements in a nonlinear
operation and then transmits the new linearized depth and range measurements
intoc their respective filtering channels. The depth channel gave good estimates
as the target underwent random depth changes. The range channel was more complex,
in that since the target is free to make major random velocity changes it required
six Xalman filters and an adaptive weightiug technique to span the expected range
of all targec velocities. Computationally this was quite easily done since each
fiiter was only third order, and had the same Kalman gain and ccvariance matrix
which oniy required one basic computacion ~ommon to all six filters. The filters
differed only in the deterministic input ui i=1, 2, ..., N built into each.

As the target changed range in 5k increments new means and variances were pro-
gramed into the Iilter bank thus compersating for the effect of nonstationary

linearized measurement errors.

Overall tracking results seem quite good, =specially in the low signal to

noise ratio cases. Ar on-going effort is underway tc study techniques of

averaging data to Gaussianize the measurem2nt errors and will be rencrzed upon

in a later reporct.




Appendix

Problem: Find the mean and variance of the density function at the output

of a non-linear filter whose input is N(O, GTZ) using numerical integration

techniques.

N, op2) | -pV v
v, = L I P
T Vo T

Pivp)
t
@)
Fig. 1

The mean and variance of p(vp) can be computed using the following
two methods:
A) Calculate the output density function from the input which produces

p(vp) and integrate as usual.

2 2 an = [ v dv =m
P T “t Vp mean o vp p( p) 0
2 r— 2 o
+ : . 2
(Vp P) OT V2w (Vp + P) variance = j (VP - m) p(vp)dvp

-0

p(vp) =

(4)




Fig. 2

Note: 1) The tails of this function decrease slowly enough to cause prcblems

in the calculation of the variance.
2) There is a singularity at -p which must be dealt with.

These problems will be discussed in further detail latter on.

_p V
B) Let — . g(x) and calculate the mean and variance as follows:
VT + TT
ol 2
mean = [ g(x) p(x) dx where p(x) = N(0, ¢°)
. - 2
. -
i VT
9
I “O'r—
1 o -p ‘7T e 4
)
mean = - (B)
—_ ] o B (Vo + 1) op Vom

@

- A Y




' Note: Both mean and variance functious have singularities at -7

T

! Calculation of Mean and Results

l The mean of p(vp) was calculated using both methods A and B. The
numerical integration was performed by the IMSL routine DCADRE which
uses cautious Ronberg extrapolation.

The singularity in eq. A caused the program to halt due to exponent

underflow (i.e. p(vp) < 10-99). To avoid this problemn, p(vp) was defined

as 0 whenever it's value was less than 10-99.

The singularity in equ. B caused the program to halt due to exponent
overflow (i.e. g(x) p(x) > 1099). In this case, it was assumed that the area

under g(x) p(x) from -(e + TT) to 1., was equal to that from <. to -(1. - €)

T T

-6, *
for small ¢ (e < 10 b). Since these two areas are of opposite sign, they

T

should cancel each other allowing integration from A to -(g + TT) and from

~

-(TT - €) to B without affecting the final answer. (See Fig. 4.)
The mean was calculated using dif-

ferent values of p and T where P*TT =

500. Method A and B produced corresponding n

answers whose differences were limited

tc the 3rd and Ath significant digit.

The values of the mean associated with

each p are listed in Table 1.

%
: was chosen as small as possible without causing exponent overflow.
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Calculation of the Variance and Results
' The variance was calculated using method A.
2 2
| e
2 - 2 2
® v p7% (v+p)7 o2
var = f 5 dv
' = (V+§) o /2n
F(v) )
I T
- 2
lim PT 20y
One can see that the oo F(v) = ———— ¢ = const. This is due to
' o V21
T
11 v2 v2
the fact that 0 = — =1,
Voo 2 2
(v + p) v

So at large values of |v| the integral is that of a constant which becomes 1
unbounded as the limits of integration increase in magnitude. Therefore
a practical integration interval of ~1C0*P to 100*P was selected to produce

a bounded and useful variance.

The variance associated with each p are listed in Table 1.
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