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Abstract

This report examines the problem of adaptively tracking a maneuvering

target in two dimensional space using passive time delay measurements.

The target is free to maneuver in velocity and to make depth changes at

times unknown to the observer.

Tracking is accomplished by using the basic polar model of target and

observer motion previously developed, and included in this report for

the convenience of the reader. However, the important distinction is that

now a nonlinear prefilter has been added to the tracking system. This leads

to two major benefits: the first, is that the need for extended Kalman

filters is completely eliminated which gives the tracking system a much

larger degree of ;robustness)( than it previously had. The second benefit

is a decoupling of the depth estimator from the polar range estimator,

which considerably reduces the computational level of the adaptive tracking

system.
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Chapter 1

1.1 Introduction to Target Tracking

During the past several years much effort has been spent in the

development of sophisticated digital filtering algorithms for tracking

maneuvering targets. A common method has been to model the target

dynamics in a rectangular coordinate system which results in a linear

set of state equations, but forces the measurements to be nonlinear

functions of the state variables. With this model an extended Kalman

filtering algorithm is frequently used both to provide current state

variable estimates and, by a one-step prediction process, to linearize

the next measurement vector. This method works moderately well until

the target makes an abrupt change in its trajectory in response to

pilot or missile-guidance program commands. In this situation the

velocity and position estimates can, and often do, diverge from the

true unknown values. The inherent problems of this apprcach can lead

to large bias errors and sometimes complete filter divergence.

Earlier work on the maneuvering target tracking problem inclu(des

Jazwinski's limited memory filtering [1], in which the filter gains

are prevented from decaying to zero. Another technique, des-ri-ed

by Thorp [2]. involves switching between two Kalman filters in re,.-

ponse to a detected maneuver. A third approach, due to Singer [3],

mode's the target trajectory as a response of the target model to

a time-corre!ated random acceleration. With this method additional
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state variables are used to generate the correlated forcing func-

tions which, in turn, increase the dimension of the Kalman filtering

algorithm. In this manner the technique provides the filter with

statistical information concerning target maneuvers based on an as-

sumed range of possible aaeleratious. Singer's method was subsequen-

tly extended by many others.

Parallel to the effort was the method of modeling major changes

in target trajectories by a semi-Markov process. An application of

this approach to tracking maneuvering targets in two-dimensions by

Moose [4] was successfully extended by Gholson and Moose [5] to

three-dimensional tracking.

The general approach which uses the "adaptive semi-Markov man-

euver model" of [4] and [5) implies a discretization of possible

vehicle accelerations or velocities. The estimation algorithm then

views the maneuvering vehicle as if it is responding to commands which

are modeled by a semi-Markov process, i;e., a random process with a

finite number of "states" (commands) which are selected according to

tho transition probabilities of a Markov process. A semi-Markov pro-

cess differs from a Markov process in that the duration of time in

one state prior to switching to another state is itself a random var-

ble [6]. incorporating the semi-Markov concept into a Bayesian estimator

was done in [4] and [5]. This estimation algorithm provides a substan-

tial improvement in filter stability, which means that large bias

errors are prevented from being built up die to unmodeled target accel-

erations. An important aspect of this adaptive estimation algorithm

is its elimination of a "growing memory" which is prevalent in many

adaptive filters.
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1.2 Target Modeling

With the brief history of the maneuvering target tracking pro-

blem presented in the previous section, we see a general progression

in the sophistication of tracking filter design stemming primarily

from the method in which the unknown target accelerations are modeled.

This trend is graphically outlined in Figure 1.

Initially, target maneuvers were modeled as the response to

uncorrelated, zero-mean variations about a nonaccelerating target,

shown in Figure 1(A). As a result, the estimation algorithm could

follow only those maneuvers which were comparable with the input noise

level. Furthermore, the filtering results during nonmaneuvering sit-

uations were seriously degraded due to the uncorrelated input noise.

As shown in Figure 1(B), Singer [31 attempted to model large-scale

maneuvers by assuming a time-correlated input process and incorpora-

ting the statistics into the subsequent filter design. In Figure I(C)

large-scale target maneuvers were modeled as a stochastic process whose

mean-value switched randomly from among a finite set of predetermined

values. The adaptive estimation algorithm mentioned in the previous

section could then be used to track the maneuvering target. This

method was seriously restricted, however, by the requirement of a

large number of preselected mean values in order to ensure convergence

of the estimation process. It has been shown (6) that by combining

the concepts illustrated in Figure 1(B) and Figure 1(C) the number of

mean values required to prevent filter divergence is greatly reduced.

This combination is illustrated in Figure I(D). The primary benefit

of this approach is the large saving in computational effort. An

additional benefit, at least from a subjective viewpoint, is that the

3
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Figure 1. Historical development of maneuvering target model inputs.
(A) Zero-mean white Gaussian plant disturbance. (B) Correlated, zero-
mean plant disturbance. (C) White Gaussian noise with randomly switching
mean. (D) Correlated Gaussian noise with randomly switching mean.
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Figure 2. Target motion model.
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time-correlated,randomly switching,mean-forcing function more ade-

quately models real-world target maneuvers.

The basic target modeling ideas are shown in Figure 2. The tar-

get trajectory is generated by the random selection of an input time-

correlated Gaussian process whose mean value ui is applied to the tar-

get plant dynamics for a random duration of time. This input distur-

bance process lasts until a new input uj is randomly chosen from among

a finite set of n possible inputs. With this model as a background

and using an appropriate choice of state variable equations to repre-

sent target dynamics, either submarine or aircraft, it is possible

to develop an "optimal" (in the minimum mean-square error sense)

tracking filter that adaptively learns, then quickly adjusts itself

for each major alteration of target trajectory.

1.3 Incorporation of Singer Process into the Target Dynamics

In incorporating the correlated process, the linearized

polar model of [6] is preserved. To this end, consider a target whose

motion in rectangular coordinates is described by

x -x + u + w'
x x

' -aw' + w (1.3.1)
X X x

where

a is a drag coefficient

ux is the deterministic input in the x direction randomly

chosen from a set of N possible inputs.

w' is the Singer correlated acceleration process acting
x

in the x direction with a time constant T - I/a.
c

5
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w is a white Gaussian random process acting in the x direction
x

A similar set of equations exists for the y and z directions.

Defining

x 2  x

x - .l
I3 x

the following continuous time state variable model is obtained for

Equation (1.3.1)

x 0 1 0 x 0 0

2 0 -a 1 x2 + u + 0 w (1.3.2)
x 2 x

3  0 0 -a1 

Discretizing (1.3.2) in time yields

[x] [1 A B [x1 [C, VD]
IX 0 E F x + A u + G w (1.3.3)

Sx 3  0 0 e- aT 0 +

k+l k

where

A - (1 - e-'T)/C

B -[1 + (ae- T -aT)B=[+a -cie )I (a- a)] I (cia)

C - (aT - 1 + e-aT)/a
2

D - [T + (aA - aJ)/(- a)]/(a)
C (,J - A) - a)-ciT

E -- e 
-a )

F - (e-aT -e -T)/(ax- a)

6
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1.4 Development of the Polar Plant Model

The linearized polar model is developed using a modified ver-

sion of the approximate modeling technique of Reference (5) except that

now, the origin of the coordinate system is moving.

P CHANNEL MODEL

0 calculation:

Referring to Figure -3.

"-2 1Y /2
- (x " x ) + ( - y 0 )

O ( YS x 0 o ; 0 ( X s " x3X

)c " 0

source

r v

observer so- V
I y/I o /

/ /
//

x°  -. I /

Figure 3. (eometrv 'f the Observer-Source Scenario
in Polar Coordinates
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S 0 (s 0 2
(Xs -:)+Ys Yc)  2

0 is expanded as follows keeping only the linear terms:
k+1

k~Cx k-x x ) y +
ok k+1 'k s o'k Sk+l - s (

+ ao
o (xkl- xok + o__ (Ykl- Yo (1.-'J)

0x-l 0 Yo!k 0

Assuming a linear drag model for the Source as given in (1.3.1), upon

substituting (1.4.!) into (1.4.3) for the Source connected terms, and we get

(+ + 0 Ai + Bw' + Cu + Dw

k+l k k s s s sx x

(ys - y)
+ 0 [Av + Bw' + Cu + N

p 'k s SY Y Y

(xs -X)- _ (Ys : )  [o.
- 1Ok(O * -

p k 0o. k k

(1.4.4)

In the above equation and in all subsequent analysis, subscripts s and

o refer co the Source and the Obser-:er, respectively.

Now

0 k+l 0 k

and (1.4.5)

(Yo , 0,k+l

Combining terms with like coefficients in (I.4.&, and making use of

(1 .4.5),

p I 8
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(x - o) - o

(x8 - x) (y -y)s 0 s
____k S 0

+ 0( + W J
0 S s

X y K

xs - ) (S

"C u + u
x y 'k

(x s x 0o (ys "yo )

+ (sX + w I y k

(xs - x ) (ys - y )
p o a

(1.4.6)

Consider the coefficienc of B appearing in Equation (i...6

(x5 - x°) and 's - o are the direction cosines between

the X and Y axes, respectively, and the o direction. 'Hence

(XS o W (Ys Y 0 wt
S S s 7

x y

is tne sum of the projections of w' and w' onto the : irection. This

sum acting in the P direction can be replaced by a single equivalent

:erm denoted by w' In a similar manner the coefficients of C ands
0

are called u and w respectively. The coefficient of A in (1.4.()

represents the projection of the Source velocity onto thne radial di:ec-

tion. This coefficient must be recast in a different formulation in

order to complete the state model of . To this end EZuation

(1.,.2) is rewritten as follows:

AA
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(x0s  x (Ys - 0 (x s - x * (Ys - y'0
0 + y -+ X -

P s p 0 P 0

(1 .4.8)

(X's -:) (ys -yo )

using x + - V Cos S (1.4.9)o o 1.9 so

where Vo = observer velocity, S0 is the bearing between Vo and the target.

using 1.4.8 and 1.4.9 yields

(x s -x ) * (Ys " YO)0 ( -x + P s - V 0 CosB (1.4.10)

p p "s 0 s0

Substituting Equations (1.4.9) and (1.4.10) for the coefficients of

T and A, respectively, in (1.4.6) and collecting like terms results in

the following state variable model:

1 0+A5+ Bw' + Cu .6-, + (A-T)(V Cos8 ~ (41
k~l + k S so K

k k 0 k

A similar approach is taken to develop a state model for k l

By assuming that the Observer maintains a constant velocity for long

periods of time, and that w' is a zero mean correlated GAUSSIAN random
sp

process acting in the p direction the following state equations are

easily obtained.

rI A E1 CorcG

wt 0 e -a.' ' 1 o 0 o j k

,he underlying ccnstraint for the state model (i. .12) requires that

the Observer adopt a constant velocity profile.

l0
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Z Channel

Using a discretized version of the basic linearized drag model of

Section 1.3, and letting dT be the target depth the following state model

is presented.

k = + Kwk (1.4.13)

dT E T + z k

0 e
-

k

-6-
k+l k

The state model is also subject to the constraint of a constant velocity

observer.

It is interesting to observe that both state models (1.4.12) and

(1.4.13) are identical although the types of manipulations involved in the

derivations are quite different. For example, a Taylor series expansion

is used to derive (1.4.12) whereas no such expansion is used in deriving

(1.4.13).

i
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2.1 Two Dimensional System Analysis

To develop the measurement equations use is made of Figure (4) below.

Hassab (7) at NUSC developed the following set of equations for the dif-

ference in arrival times T1 and T 2 . Where T represents the time delay dif-

ference between the direct path along (r) and the surface reflected path.

ocean surface

d

source
!d

observer -

ocean bottom

Figure 4. Two Dimensional (Range and Depth) Tracking Geometry

From Hassab we have:

T, [(r + 4 d 4dd) -r]/C

k kT 2  [(r 2 + 4 d k 2+ 4 d kd)!, r]/C

and r = 2 + d2

C speed of sound in water

9

Now, by making the assumption that the square of target range (r-) is much

12
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larger than the observer depth squared (d ) then T becomes, where c is

the polar target range.

T-2 d od T
oT = (2.1.2)

I PC

If, in addition, we have the "shallow water ranging situation," i.e. that

(dk 2/r2 ) is 1. For example, if r > 2.25 d our error of approximation

is less than 1.4%, thus T2 becomes

2 d k(dw - dT )I kw= T

T 2  PC (2.1.3)

where d = total ocean depth.! w
Examining the set of equations 2.1.2 and 2.1.3, we see we have two non-

linear algebraic equations in terms of our state variables p and d . At this

point in the past, these equations were linearized in a Taylor's series ex-

pansion to yield a linear measurement of p and dT. By doing this periodically

in time, an extended Kalman filter tracking system (6) was developed and

reported upon.

It was decided to eliminate the extended Kalman filters in order to

reduce system complexity and computational burden, and to increase the

robustness of the tracker against any possible filter divergence problems.

This was done by developing the nonlinear prefilter discussed in the fol-

lowing section.

2.2 Development of the Nonlinear Prefilter

In order to Linearize the time delay measurements, we notice that each

is a nonlinear function of the system state variables polar range and target

depth (p, d T). By dividing 7I by T2 9 and letting a = (d o/d k ) the ratio of

observer depth to depth of water under the keel we have the following expres-

sion containing only d-.

13
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T1 aodT

T2  dw - dT

Solving for dT we get for the true target depth
Tld

dT = TI 1w (2.2.1)

To determine true target polar range P substitute equation (2.2.1)

into equation 2.1.2 and solve for p. Defining the system parameter (bo ) =

2 d d /C where d is ocean depth and C is the sound velocity, we get
o w w

b
0 (2.2.2)

p=1 + aT

In reality, we do not have T1 and T2 given to us but only the noisy set of

measurements

zT1  T1 + vI

(2.2.3)

z= 1 2 + v 2

where vI and v, are Gaussian random processes with zero mean and variances
2 2

7 and respectively, This results in the noisy set of measurements

zdT = zT1 + aozT2

(2.2.4)
b

0ZO ZT 1 + aoZT
2

2.3 Measurement Linearization

Considering first the case of target depth, define the random process

vd = (zdT - dT) to be the measurement error. Combining equations 2.2.1,

2.2.3 and 2.2.4 yields

140
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(r + v) dw  T dwvd
d (r + aot 2 ) + (vI + aov 2) (T1 + aoT 2)

or

Vd = T 'w [~T 1+ av> 2231

where tT = (T1 + aoT 2).

The target depth error term is thus the ratio of two Gaussian random

processes x and y. The terms x and y are both sums and differences of

the zero mean Gaussian processes v1 and v 2 ' Thus they are both strongly

correlated, and in the case of the denominator ynonzero mean,which becomes

very important in determining the structure of the density function of vd.

From Figure (5) we see the structure of the linearized measurement zd =

(dT + vd

Z Zd

Noisy Time Delay 0
Measurements

ON+

Figure 5. Nonlinear Prefilter for Target Depth Measurement

We now want to examioe the measurement error v of the polar range
0

equation z = p + v. Take the difference of equations 2.2.2 and 2.2.4,
p

we find that

1.)

-
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| b b0 0
0 (T 1  + aT 2  + + aov2 ) ( 1 + ao 2)

v -- o-2 
(2 .3 .2)v(T  + a v

T 1 o 2

where TT T 1 + a T2 and

p = b o/T the true polar range.

Equation 2.3.2 can be simplified considerably if we define the random process

vT to be (v + a v ). Thus v is Gaussian, with zero mean and variance a =
2 2 2

01 + a o2 The measurement error as shown in Figure (7) becomes

-P vT
V + (2.3.3)P v T  

+  
rT T

VT_

Z-.

+ z

b0

Z aa 0

i+

Figure 6. Nonlinear Prefilter fcr the Target Range Measurement
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3.1 Statistical Analysis for Polar Range Measurement Error

Suppose we have a function Y(x) given by y = -ax/(x + k) where a and

k are constants and x is a zero-mean Gaussian random process with variance

1 2 If we sketch Y(x), we see from Figure (7) that it is singled valued in

x. In other words, one value of x produces one unique value of y. However,

there is a singularity at the point x = -k. In practice, there is a near-

zero probability of x being in the vicinity of -k. For example, in shallow

water with a°  1/2, p = 30,000, T T (9.6 + 77/2) msec and a, 02 equal

to 5 msec, then (-k) is 8.75 standard deviations away from 0. This means

that the pr[-9.25b < x < 8.25b] < 3.4 x 10 , however this number increases

rapidly as target range increases.

I 2 2 2
I X = V = N C0, a 1 + a 2

K =TT

-K X-a -a

Figure 7. Plot of Nonlinear Transformation of a
Gaussian Random Process

j For the single valued functions Y g(x) -a x/(x + k), the density on

y, P2(y) is given by

I
I

17
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3 P(y) = P [x = g-1 (y)I dg- 1 (v)(31
2 1 dy

Letting x = g- (y) - -kv/(y + a), and P (x) the zero-mean Gaussian density

results in

_ ak F 2 1 1
Pe2 (y) 2 kxp - 2 (3.1.2)

J/2 (y + a) L2,-(y + a)

By making the substitutions a = p, k = TT , X = VT, y = vC the measurement

error, and aT = (a12 + a 0 ) we have for the density of the polar range

measurement error

P 2

P2(V exp F2 2 (3.1.3)
P = ( + v LJT2(p + v)r 2 (0 ) L2 -)

The nature of this density function is shown in the following figures for

the target and observer at fixed depths, but closing in range.

It appears that the density function P(v P) given by equation (3.1.3)

is of a form that does not appear in such complete sets of integrals as,

Tables of Integrals, Series and Products, by GradshTeyn and Rvzhik,

Academic Press, 1980. In addition, it does not seem likely that there is

a closed form for the expected value (v = -ax/(x + k)), or for the expected

value of v 2= ax /(x + k) where x is N(O, . Thus one must use numerical
k

integration in order to get an approximation for the mean and the variance

of measurement error (v ). Examining the density function, we see that

it is a smooth continuous curve. As target range closes the mean and variance

becomes smaller and the density becomes more and more symmetrical approaching

a near Gaussian like density.

After several discussions with Dr. A. H. Nuttall of NUSC, New London,

CT, it was dec:ded to limit any measurements of - which exceeds a certain

threshold. This would guarantee that the variance of the measurement error

18
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v remain bounded and constant for fixed target range. This is due to the

small, but finite probability (especially at long ranges of p) that v T(tk )

equal - TT(tk) in equation (2.3.3) at some time tk* In other words, it is

possible that occasionally a bad data point will crop up and must be dis-

carded. It was found that only a few stored values of E(v 0 ) and E(v p)

were needed in the tracking system as the target range closed.

3.2 Statistical Analysis of the Target Depth Measurement Error

Repeating the target depth measurement error equation 2.3.1, we have

aodw (vIT 2 - v2T)
Vd TT (TT + v, + av 2)

where v I and v 2 are the statistically independent, zero mean, Gaussian measure-

ment errors associated with measuring T1 and T 2 .

Letting x = (av - bv 2) and y = (-T + vI 
+ aov2 we have E(x) = 0,

2 2 22 2 2 2  2 2 2 2
E(x") = = (a I + b ? and E(y) = T v = - + ao ). Now

define (r) to be the correlation coefficient of the linearly related randon

variables (x) and (y). It will be assumed in this section that r is known

and will be developed later in this report. The joint density function

Pl(x,v) for correlated Gaussian random variables x and v becomes

= (xy) a exp 2  
2 rx(y- Y) + (y - V) (3.2.1)

x -V2

where: r = E(xy)13X  ,T y

y= E(y)

a = 2Tr x y r-

= (2(1 - r2)) -1

20



Now let z equal x/y where the joint density function P(x,v) is the known

Gaussian distribution of (3.2.1). In order to find the density function

of z, we need to identify the region of the x,y plane that is valid. To

do this, let z be any possible value of z. Then for the probability of

z y < Z0, we have two regions- the first for y positive, yields x <

yzo, and the second for v negative results in x > yzo . Using Figure (8),

the probability becomes for Region I and II

x = VZ
x < yz

T0

Region I

x > vz

Region II

Figure 8. The Regions of Interest for Z = X/Y

SZ V 0 W

PR[z < z_] = f °'P1 (x,y) dx dy + f f Pl (x,v) dx dv (3.2.2)

0'

To get the probability density functions P(z ), we must differentiate
0

the cumulative probability distribution of equation 3.2.2. hen we do

this, and make the substitution z = z, we have
0

Y'
P(z) = f y Pl(yz, y) dy - f y el(YZ, y) dy (3.2.3)

O -- -

,A
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where P(x= vz, y) is the joint density of x, v with yz substituted for x.

SThe first integral (I I ) becomes

_ _ - -)2

T= a yexp 
- 2r (y 2 dvo "<x . -_

Expanding, collecting terms, and letting(2 2r~a z 2rSZ + -8f
a- 2 a0 21

b- 2YB (rz - -1 (3.2.4)
~x 7V Jy

1 becomes: -2
2 2

S ye dv (3.2.5)0 b 2  2-_

.(v2+by) 1e 2a~ e
Noting that ye -  dy =,4/ dt and that the

right hand integral is the standard normalized Gaussian probability integral

1 - F I ab we have for I

-2
-By2 b2  ]

e - al - F1 be (3.2.6)
2 ae y - a

L

Likewise for 12 -2

- ~ l~be 4aF/7T F (3.2.7)
2 2a L V aj]

Combining equations 3.2.3, 3.2.6 and 3.2.7, we have for the density

function of z -2

2 I b
P(z) 4 a /-T b I(

=-- i + be F- (328)

a ~ 22

Ut~ *. -..-.-.-----
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where a, 3 are defined in 3.2.1, and a, b in equation 3.2.4.

To get a physical feel for the form of the density function P(z) where

z = x/y, if we let E(y) = y = 0 then b = 0, and P(z) reduces to the fol-

lowing when 5 is replaced by (2 - 2r2 )-I

cc 2
P(z) = = xv (3.2.9)a 2 r x 2 x2( 2,7

This has the form of the familiar Cauchy density function centered at z = X.
y

Unfortunately, in our case y = rT which is the weighted sum of time delays

1 + ao2, and this is never zero.

If we now look at the first term of P(z) in 3.2.8, we see that the

Cauchy density is weighted by the term exp - Now by taking the

integral of the entire first term with respect to z we have just the previously

mentioned exponential term for its contribution to the total probability

distribution of z. If this contribution is large (near unity) then the

second part of equation 3.2.8 contributes little, and P(z) is nearly a

Cauchy density. In order to compute this weight we must go back and deter-

mine the correlation coefficient r.

3.3 Determination of Correlation r in Target Depth Measurment Error

The additive measurement error vd was previously found to be

aodw (T2v1 - T1V 2 )

d T T (TT + V1 + aov2)

When we originally substituted z = x/y, we let x be a Gaussian process given
ad

by 0T (T2vI  T v2), and y also Gaussian is given by (rT + v + av 2). We
T 2 2 2 2 2

found that the E(x) = 0, x a :I + b 2"- E(y) = T and -=

" -, . In this substituition a equals ao d w2/T, and b equals ao dWT1 /.

The basic definition of the correlation coefficient r is given by
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r a E(xv) E(x)E(y) (3.3.1)
i Oy

where the expected value of x = 0. The first numerator term becomes

E(xy) 2 E[(av I - bv2) (T T + vI + a )]

E(xy) = au 2 a D72 (3.3.2)
1 o 2

With the second numerator term equal to zero and and y given above

the correlation coefficient r can be expressed as
a TI2 12

To2l 2i
r = (3.3.3)

T 2 21 1+a 2

l2} i" + i . )~1I

A typical scenario might be:

p = 25,000

d = 3,000

do 1,0000

TI 1 0 ms

T2 80 ms

a = 1/2
0

then if 2 = i=>r equals .838

if a2 = 2CTl=>r equals .514

indicating a strong correlation between x and y.
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Chapter 4

State Estimation and Adaptive Tracking System Structure

4.1 Introduction

In this section, we will discuss the basic estimator system structure.

We will make use of the linearized measurements containing the nonstationary,

I non-Gaussian, statistics that was previously discussed in Chapter 3 of the

report.

Referring to Figure (9), the nonlinear time delay measurements ZTI

and ZT2 are fed into the nonlinear prefilter. This unit develops a linearized

|Removal

(stred)

Target Depthdon Zt Kalman go.

NonLinear Filter Targe depth

PRE-FILTER Linearized Estimate
Measurements

Z T2 + . Z QAdaptive

Range Ow

I Estimator Target Range
Estimate

Bias
Removal
(stored) 

doI
Basic Estimation Structure

l Figure (9)
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I
measurement of target range (p) and depth (dt). The errors in measuring

these target parameters are both non-Gaussian and nonstationary depending

upon the geometry of the tracking situation. As target range closes, or

opens the mean value, and variances of these errors change, and must be ac-

counted for.

An offline computer program was developed to generate the variation in

the mean value and variance of v as a function of target range o. Details
P

of this work is presented in the accompanying appendix along with the out-

line of the pitfalls to be avoided in using numerical integration routines

on functions containing an isolated singularlity. Results shown in Figure

(11) illustrate that, for stationary Gaussian measurement errors a and 7,

associated with time delays T1 and r2, it is possible to simply store off-

line as a small catalog the necessary values of E(v ) and E(v P).

In order to evaluate the mean and variance of the target depth error

vd T, data was generated at fixed target ranges. It was then operated upon

by the nonlinear prefilter shown in Figure (10), and then numerically

Ztl

-go- (depth)

Linearized
Measurements(., z (range)

b )

Figure (10)

NONLINEAR PREFILTER

-26-
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integrated to yield a set of means and variances for use in the target depth

estimation portion of Figure (9).

4.2 Target Depth State Estimation and Data Generation

A conventional Kalman filter was developed for the state equation

4.+. * + 1 wzk where (D and ' are given by eq. 1.4.13 and 1.3.3. The

filter of the form Ek+l = 0 4) + K k+ [ZdT(k+l) - Hk gives estimates of

the target depth dT(k+l) which is the first or upper component of the

estimated state vector

A large number of computer runs were made using noisy data generated

by the following technique. In Figure 12 a discrete time system model is

presented showing the development of noisy time delay measurements Z (k)
'I

and Z (k). The upper portion shows the generation of X =
[D 4 + r U

_ Wkk+

+ p W] kIwhere (P, r, and W are discussed in eq. 1.4.12 with cos so= 1.0.

The deterministic input Uk is unknown to the tracking filter and serves to

generate large scale target maneuvers in velocity. A measure of randomness

in target trajectory (xI = ok and x2 = ck) is generated by applying a Gaussian

random input W to the simulated target, exponentially correlated, forcing

function component as state vector x3 = W (k).

Once pk+l is generated, it is acted upon in a noulinear manner to

generate T, and T which when added with the Gaussian random measurementI 2f

errors vI , v2 produce the noisy time delay measurements Z and Z
2 T T2

With the background completed, we will now present some computer simula-

tion. The results shown are typical of those that were observed over many

trial tests. In Figure 13 (low noise case) the first figure is a plot of

the linearized nonGaussian raw data ZdT(k). The target is at a fixed range

of p = 25,000, and at a mean depth of 600 feet making slow randcm changes

29
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on the order of + 30-40 feet. Measurement errors of a, 2.5 msec and

02 5 5 msec were added to T and T in Figure 12.

8

0

0
C?

00

0

000
0

00

~0 I

Oo i

0-0
C)

0
Pcti

Noisy Depth Data Z (k)
dT

Figure (13)

In Figure 14, the target range has been increased to40,00 and a 1

increased by a factor of 4.0. Notice the data shows a bias due to an

excessive number of large positive readings. In the future, bad data

points that are nonrealistic will be "windowed out."
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Figure (14)

Figures 15 and 16 show the convergence of the tracking filter, for

the previous sets of data given by Figures 13 and 14. The depth estimators

provide a good track as the target makes + I a random depth changes (+ 30

feet) about the mean value of 600 which is unknown to the tracking filter.

Again the targets range is fixed at 25,000 and 40,000 with the observer

at a mean depth of 1000, target 600, and water depth DW = 3000.
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4.3 Depth Estimation for Variable Range Targets

The work presented in the previous section dealt only with targets at

fixed ranges, which for most scenarios is a very unrealistic situation.

In order to provide depth estimation for a target whose range is time

varying, and with an initial estimate of range and depth, a study was

performed to analyze the effects of range and noise variances on the depth

estimates previously developed.

It has been determined that both range and depth estimation improve

as the observer increases his depth. Now with target depth initially

unknown, and this being an exploratory engineering study we have

decided to investigate two scenarios. The first has observer at 1000 ft

and the target at 600, the ocean depth shallow at 3000 ft. The second is

a reversal of magnitudes with target at 1000 and observer at 600. Values

obtained then would allow the estimator to perform anywhere within this

range without going to a new set of tabulated means and variances.

What we need as the target's range varies, is to compensate for the

changing bias introduced in the nonlinear data operation of the nonlinear

prefilter of figure (10) page 26. Now,the data generation system of

figure (12) page 29 was exercized at a series of discrete target ranges

= 5K, 10K, 15K, ..., 90K. Additive Gaussian noises v1 and v, were

generated from a series of ten independent random generators. The noisy

measurements zr1 and z2(o i) were then fed into the nonlinear prefilter.

Taking the output and subtracting .i the measurement error was obtained.

By averaging a sequence of 250 noisy measurements a value of mean and

variance of vd was obtained, for each target range .. This was repeatedd I

for each of the ten random sequences to produce a good "Monti-Carlo" set
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of mean values and variances. The results are shown in figures 17 and 18.

It is to be noted that the curves also show the effect of increasing the

variance of the Gaussian measurement errors vI and v2 from 2 to 5 ms.

Figure 19 gives an idea of the form of the density function of the

additive noise vd. The range (p) is fixed at 50K and the scenario of

do = 1000 and depth of target equal to 600 is used. If the area under

the curve f vd P(Vd)dvd is integrated, a value very close to the

desired value of -50 feet is obtained.
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Results for Depth Estimation

In figure 20, the target is closing the range from p = 80K to

20K at a constant depth of 900. An initial depth estimate dT(0) equal to

200 was chosen with the observer at 600, and ocean depth 3000. The

standard deviation cf 3 ms was chosen for additive noises vI and v2 .

In this, and the figures to follow raw depth measurements zdT out of the

nonlinear prefilter are shown. Note the decay (on the average) of the

noisy measurements as the target closes the range, making the received

signal to noise ratio increase.

Figure 21, illustrates the case of higher noise power a, = 2

= 5 msec and target closing from 50K to 20K. The initial depth estimate

is again chosen to be 200 with target at an unknown fixed depth of 900.

In figure 22, a target closes from 10K to 1K and makes large-scale

random changes in depth. The estimate is initialized at dT (0) = 200 and

appears to follow very accurately. Note the fact that the unfiltered

measurements are not very noisy. This is due to the close range, high

signal to noise ratio that is in effect even though a1 = 02 = 3 msec.

Figure 23 is the same scenario as the previous figure, but with

target range increased from 50K to 20K and depth still making major

random variations. Tracking is still quite good with the exception of

the tracker lag that develops, which introduces an offset of 100 ol more

feet. This ability of the tracker is primarily due to the addition of

the Singer correlated acceleration which was previously built in to the

filter. It is also to be pointed out that the tracker continually uses

new stored values of the mean and variance of the nonGaussian measure-

ment and error since the target is constantly changing range.
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A final set of runs were made to study some different scenarios

that might be of interest to the Navy. The first, shown in figure (24)

is a tracking situation where the observer is maintaining a fixed range

of p - 30 K, and the target is making rapid large scale random depth

changes. The filter was initialized at a depth estimate of 200 feet

for the target. Target depth (dT) is shown as the light curve, and the

depth estimate (dT) as the heavy curve. The raw data (zdT) out of the

nonlinear prefilter is also shown. The worst errors were on the order

of 100 feet lasting for about 30 time samples, or 300 sec of data.

Figure (25) shows the target at a fixed range of P = 30 K proceeding

at a constant depth of 250 feet. The observer is at 1000 maintaining

the 30 K fixed range, and using the old catalogue set of means and

variances for the target at a fixed 600 foot depth. A fixed bias is

observed of about 60 to 70 feet, gradually decaying towards zero as

a new set of means and variances were automatically changed in the

filter.
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Chapter 5

The Polar Range Adaptive State Estimator

The heart of the adaptive filter summarized in this report, is in the

forming of the total estimate of the target states, from a weighted sum of

(i)state estimates conditioned on the N possible discrete input levels u
p

Consider the state model (1.4.12). This state model views the target input

acting in the polar direction as being derived from a time correlated Gaus-

sian density having a mean value u . Next consider a series of N such
p

Gaussian curves with displaced mean values u (i), i = 1, 2, ... , N and
p

partially overlapping "tails" as shown in Figure 26. If a bank of N Kalman

filters is formed, each filter based on the state equations of equation

(1.4.12) with the deterministic input u being a different one of these N
p

(1) (2) (3) (4) (N)u u u u u

Series of N Partially Overlapping Gaussian Curves with Mean Values u (i)

Figure (26)

mean values, then a series of N estimates is obtained, each conditioned on

a different Gaussian curve. Next a weighted sum of these estimates is
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obtained in a manner to be disclosed below, and this weighted sum is taken

to be the total unconditioned estimate of the target states given by equation

5.1.

x(k+l) N xM(k+l) W. (k+l) (5.1)

~i=l

Now as the target executes a series of evasive maneuvers in the polar

channel, the changing input necessary to produce these maneuvers is viewed

as randomly switching among the N Gaussian curves. By applying semi-Markov

statistics to this switching process a series of N probabilities W, i =

1, 2, ..., N is generated where

W. = Pr (target input is being derived from the Gaussian

(i)
curve whose mean value is u } OR,p

W (k+l) = Pr fu (k) = u(i) IZ(k+l)} (5.2)i p

and

x(i) (k+l) = E{x(k+l) lu P(k) = u(i) Z(k+l)}.

Equation (5.1) is a total probability expression developed from the basic

relation that

x(k+l) = E{x(k+l)IZ(k+l)}

is the optimal mean-squared estimate. It is well known that the optimal

input-conditioned estimates are provided by suitably matched Kalman filters.

th
In particular, for the i- filter

M (i) Mx (k+l) t (k) + Fu i) + K(k+l) [z(k+l)

- Hx(i)(k) - Hru(i )
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where K(k+l) = M(k+l) H HT k l H T+ R] -

M(k+l) = 'DP(k) 0 + QI QT

and

P(k+l) = [I K(k+l)H] M(k+l)

The matrices 4D, r and ~pare used to denote the respEctive coefficient

matrices in (1.4.12).

The following (repeated here for completeness) is an outline of the

analysis given in [5] to calculate the recursive weighting coefficients

W., i = 1, 2, ... , N. Defining Z(k+l) = {Z(k), z(k+l)}, apply Bayes Theorem

to (5.2) and we obtain

W (k+l) = Pr {u(k) = u (i )iZWk piz(k+1)lu(k) = uM') Z(kY (5.3)
1 p~z(k+l)IZ(k)},

The time varying denominator is independent of i and is therefore common to

each W .(k+1) as a normalizing constant. The first numerator factor is deter-

mined from the semi-Markov input process. Expanding this factor in a total

probability expression,

Prfu(k) =u(il>Z(k)) I Pr{u(k) =U(i)lu(k-l) = (j) Z(kYl W (k)
j =1

And since Z(k) has no influence on the Markov state transitions,

(ruk)=UI NPr~u~k) 9_ u '(,=. (k) (5.4)
j=l J1 '3

where the semi-Markov probability is

4 Pr~u(k) u u'u(k-1) u

50



is near unity for j = i and near zero for j # i.

Combining (5.3) and (5.4)

n
W.(k+l) = CkP{z(k+l)lu(k) u )

, Z(k)W  8 .. W.(k) (5.5)

) =~l jl I

where Ck is a normalizing constant

is the desired recursive relation for W.. The required density p is ap-
1

proximately normally distributed and has distribution

P{z(k+l)lu(k) = u(i) Zk n, N{m (k+l), V(k+l)} (5.6)
1

where

m.(k+l) = Nil x(i)(k) + 7 u(i)(k)]i

and

V(k+l) = [HM(k+l) HT + R]

These probabilities can thus be expressed in a vector recursive form

as

ak+l Ck -k T  k 
(5.7)

where P is a time varying diagonal matrix whose elements have been previously

computed in each of the (N) Kalman filters from eq. (5.6) we have

P.i = N [mi(k+l), V(k+l)]

The term Ck is a normalizing constant computed at each iteration to

ensure that the sum of probabilities equals unity. The matrix 9 is a
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precomputed matrix whose elements contain statistical knowledge of the

randomly switching plant inputs. In practice, the diagonal elements are

nearly unity and the off diagonal terms are set equal.

Although it might appear from equation (5.1) that an entire Kalman

filter algorithm is being executed N times (for each of the possible inputs)

at each time iteration, such is not the case, since the process and measure-

ment covariances Q and R are the same for each filter.

What differentiates the different target "states" is the discrete

levels ui; however, the target dynamics remain unchanged! The entire

covariance, and gain analysis of the Kalman filter algorithm becomes iden-

tical for each state in a given channel and, consequently, need be executed

just once rather than N times. The adaptive filter structure is shown in

Figure 27.

5.2 Computation of Additional Required Covariance Term

After an initial investigation, it has been found necessary to com-

pensate for the lack of exact sta istica. knowledge concerning target

maneuver commands. In other words, the u. of the filter bank rarely.
1

if ever match exactly that of the plant.

The mathematical basis for the error compensation technique is

based upon the following statistical analysis.

In the state estimation algorithm, for a system with an unknown to

the tracking filter deterministic input uk9 and random disturbance wk'

x(k+l) = ,x(k) + Fu(k) + w(k) (5.8)

the predicted covariance matrix P(k+1/k) is given by

T T
P(k+l/k) = P(k/k) r + TQ(k)Yr

. (5.9)
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However, this is true only if the deterministic input to the plant is

known exactly. Consider the situation when a mismatch exists between the

i
plant input uk and the deterministic input u used in the filtering

algorithm. Assuming a linear estimator of the Kalman variety, we seek

to optimize the estimate

x(k+l/k+l) = x(k+l/k) + K(k+l)[z(k+l) - Hx(k+i/k)] (5.10)

where x(k+l/k) is the one step predicted estimate of x. The gain matrix

K(k+l) is as yet unspecified.

Let x(k+l/k) - Ox(k/k) + rui

x(k+l/k+l) = [I - KH][cx(k/k) + ru ] + KH[ xk + ruk + Ywk] + K Vk+ I

where K E K(k+l).

Defining the estimation error at time (k+l) as Xk+l = xk+ - Xk+1 we have

i
x(k+i/k+l) = [I - KH][O(x(k/k) - x(k)) + r(u - u.k) - Twk] + Kv(k+l) (5.11)

The error covariance matrix becomes

P(k+l/k+l) = E(k+I XT)

=[I - Kj[pP(k/k) O
T + YQYT + D][I - KH] T + KRKT

+ cross terms which go to zero under the expectation operator. The new

additional quantity D has the value

D = rE{(u i - Uk)(ui - uk)T}rT + FE{u
i - uk)(X(k/k) - x(k))rTPT (5.12)

,TT

+ OE(x(k/k) - x(k))(u i - uk) r r

The condition for choosing K(k+l) is to minimize

trace [P(k+l/k+l)]

To find this value for K(k+l) it is necessary to take the partial

derivative of P(k+/k+1l) with respect to K(k+l) and equate it to zero.

The optimum value for K(k+l) is found to be of the standard form
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K(k+l) = P(k+l/k) H T [HP(k+1/k)HT + R]- 1 (5.13)

where

P(k+l/k) = (P(k/k) T + YQ T + D] (5.14)

where P(k+l/k) is computed using the new additional error term. The

subsequent calculations are identical with those for the Kalman filter.

Thus the effect of the mismatch in the two inputs is propagated throughout

the entire Kalman filter algorithm. From earlier work, we have found the

estimates of the target states to be close enough to allow the assumption

that E{i(k/k) - x(k)} = 0. In other words, our estimater is an unbiased

estimater. Thus D reduces to rE{(ui - u(k))(u i 
- u(k) ) TT

Let Su be a uniformly distributed random variable equal to (uk - ui

Now by setting the range of the random variable equal to - Au 6u S + Au
2 2

2
the variance is easily shown to equal Au . Here Au is the spacing between

12

adjacent pairs of levels ui , ui+ I. This analytic result turns out to

equal very closely the experimentally obtained values in the 1979 ONR

Report of Moose and McCabe. Thus the one step predicted covariance matrix

P(k+l/k) = [OP(k/k) r + QY T + F Au2 rr . (5.15)
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5-3 Range Estimation Results

In order to have a benchmark with which to compare the adaptive estimator's

performance the following scenario was devised. A target at the extreme range

of 100,000 was generated on a closing trajectory of 25 ft/sec at a depth of 600.

The target's plant model was matched exactly with that of the filter. This

was done to simulate and test the performance of the optimal (non-realizable)

tracking filter. In addition, it also provided a test of the nonlinear

prefilter and the adaptive state estimator whose weights were all set at zero

for the unmatched filters and unity for the single matched filter.

Target tracking results are shown in figures 28 and 29 for additive noises

of 1 and 5 m sec, respectively. Examining the figures we see that for each,

two different simulations are shown. They represent the performance

that one would expect out of the unrealizable filter when two widely different

sequences of random numbers are used in the data simulator that is shown in

figure 12 on page 29. Notice that the vertical scale has been changed in

figure 29 to show the effect of the nonlinear prefilter. The range estimates ( )

are shown darker than the actual range ( p ).

The data simulation of Figure 12, page 29 made use of the following

parameters: the maneuver time constant (1/a) was chosen as 25 seconds, the

singer correlated acceleration time constant (1/a) in equation 1.3.1 was

selected to be 40 sec, and the data rate was chosen to be one sample every

10 seconds. Although studies were made indicating a marginal increase in

tracking performance, for sample intervals of 2 and 5 seconds, the sample

interval was retained at 10 seconds in order to reduce the computation burden

for real world applications.

In the adaptive estimator of Figure (27), 6 levels of input u. were

chosen to span the expected target velocity range of +30 (ft/sec) for an

opening target and -45 (ft/sec) for a closing target. If the velocity

ranges were greater than this number N, could be increased slightly. The

ui's were chosen to model +30, +15. 0, -15, -30, -45 (ft/sec).

The next figure (30) shows the realizable adaptive filter tracking

in the presence of high noise (5 m sec). The target makes a random step

change in velocity at time k - 150, which corresponds to 1500 seconds into

the sceanrio. The raw data out of the nonlinear prefilter is shown almost

filling the plot. Notice though, that the variance becomes smaller with
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decreasing range then grows as range increases. This is typical of all

simulations in this report, and point out the nonstationary random processes

involved. Output of the estimator (darkline) is seen to fluctuate about the

true value of range with maxim= errors on the order of 5000 which corresponds

to 10-15%. From this point on, in the presentation of the results of the

ranging portion, the noisy measurements Zp will not be shown.

In figure 31, we see the results of tracking a medium range (0-45k)

target as it undergoes a maneuver at k = 140 and k - 340. The target is

on a closing trajectory then reverses its velocity at 140 and 340. The

estimate A tracks very well at close ranges and progressively gives noiser

estimates as the targets range increases. This is due to the variance of

the measurements, which are not shown, increasing with range. The additive

time delay noise is a, = a2 = 3 m sec.

Several conclusions can be drawn from figure 31. The first is that we

need to limit ourselves to close proximity targets, or smooth the estimate

(k), or operate in an environment with smaller additive noises.

Figure 32 shows the effects of decreasing the measurement error to a

standard diviation of 1 m sec. The target makes a maneuver at k = 140 and

the estimate tracks extremely well throughout the scenario. The next

figure (33) shows the weighting coefficients u. and u. as they vary due to1 J
the target maneuver. It is seen that the weights switch appropriately from

0 to unity as required.

The last figure (34) in this section illustrates velocity estimation

vs time for a target that abruptly reverses velocity at k = 140. The

adaptive state estimator very quickly maintains track as shown. The additive

time delay measurement noise has been increased back to 3 m sec. The process

noises driving the plant (target) model is excessive and will be reduced in the

following work.
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5-4 Modification to the Adaptive State Estimator

In order to operate in a noisy environment where the additive measurement

errors attached to TI and T2 are greater than or equal to 3 m sec, it becomes

necessary to smooth both the weighting coefficients and/or the output estimate

^Pk+l" It was found ihat a simple first order digital filter of the form

Pk+1 = apk + bpk+l (5.4.1)

was successful for good smoothing and small lag in tracking maneuvers. The

term k+1 represents the smoothed output range estimate at tk+1 and pk+l

the "rough" filter input. Coefficients a and b were set at 0.9 and 0.1

respectively.

In addition, to output smoothing the weighting coefficients wi (k)

i =1, 2, ..., 6 were averaged as follows:
N-1

w(k) w, (k-j) (5.4.2)

j=0

Here w.(k) represents the time averaged output of the moving window averager1

equation 5.4.2. Numerous simulations were performed as N was changed from

10 to 30. The results follow.

Figures (35 and 36) illustrate the filters range tracking performance

for the case of low signal to noise ratios (long ranges), and the effect of

averaging the probability weighting coefficients w. (k) on the smoothness of1

the filters output. The scenario used to generate figures (35.36) starts

the target at a constant range of 50,000 feet with zero closing velocity and

then changes the target velocity to -15 ft/sec after 2,500 seconds. Figures

35 and 36 show the filters range estimate superimposed on the target range

output with 30 and 10 data points averaged respectively. It is easily seen

that as the number of averaged data points decreases the smoothness of the

range estimate also decreases.

Figures (37 and 38) illustrate the performance of the filter's range and

velocity estimates and the adaptive nature of the weighting functions. The

figures also show how the number of averaged data points w .(k) effects all of

the above mentioned parameters. The scenario used to generate figures (37, 38)

starts the target at a range of 50,000 ft. and a velocity of -30 ft/sec

(-means toward observer) and changes the targets velocity to +30 ft/sec after

2,500 seconds. Figures 37 and 40 show range estimates superimposed over the
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I
plant range output with 20 and 10 data points averaged respectively. Figures

38 and 41 show velocity estimates superimposed on the plant velocity output

with 20 and 10 data points averaged respectively. Figures 39 and 42 show the

learning performance of the weighting factors associated with the filters whose

deterministic inputs (u i) most nearly matches that of the plot output.

Figures 39 and 42 average 20 and 10 data points respectively. In all of these
types of curves shown in figuzes (37-42), the curves become smoother as the

number of averaged data points increases.

Figure 43 shows the range estimate superimposed over the target range

I output for a scenario with a number of velocity changes. The scenario starts
the target at 50,000 ft. with a closing velocity of -30 ft/sec. At 1,500

seconds a maneuver is made with velocity changing to +30 ft!sec, and then

again changing to -30 ft/sec at 3,500 seconds. The adaptive tracking filter

I quickly determines that a maneuver has been made and adjusts itself to provide

a good estimate.
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6 Conclusion

An adaptive state estimator has been developed and extensively tested to

track a target making random large scale maneuvers in velocity and random depth

variations as well. The target/observer scenario is constrained to the vertical

plane in the ocean environment. This was intentionally done so as not to compete

with well established bearing tracking programs.

The adaptive estimator made use of a nonlinear prefilter to wtcouple the

state variables that model target motion in both depth and range. An additional

benefit was the elimination of all extended Kalman filters in the tracking

system. This results in a more robust tracker and significantly fewer computa-

tions. The cost of doing this, is that the linearized measurements contain

nonstationary and non-Gaussian measurement errors.

System inputs to the tracking system consists of noisy time difference

measurements of bottom/direct, and surface/direct multipath time delays. The

adaptive tracker pre-filters the noisy multipath measurements in a nonlinear

operation and then transmits the new linearized depth and range measurements

into their respective filtering channels. The depth channel gave good estimates

as the target underwent random depth changes. The range channel was more complex,

in that since the target is free to make major random velocity changes it required

six Kalman filters and an adaptive weighting technique to span the expected range

of all target velocities. Computationally this was quite easily done since each

filter was only third order, and had the same Kalman gain and covariance matrix

which only required one basic computation common to all six filters. The filters

differed only in the deterministic input u. i = 1, 2. ... , N built into each.1

As the target changed range in 5k increments new means and variances were pro-

gramed into the filter bank thus compensating for the effect of nonstationary

linearized measurement errors.

Overall tracking results seem quite good, especially in the low signal to

noise ratio cases. A. on-going effort is underway to study techniques of

averaging data to Gaussianize the measurement errors and will be re'orted upon

in a later report.
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Appendix

Problem: Find the mean and variance of the density function at the output

of a non-linear filter whose input is N(O, aT 2 using numerical integration

techniques.

N(O, 0T ) ' T
V TVT + TT

Fig I

The mean and variance of p(v p) can be computed using the following

two methods:

A) Calculate the output density function from the input which produces

p(v p) and integrate as usual.

2 2 mean-f v p(vp) dv = m
p(v tT - V e T p

(Vp + P) aT b (v + P) variance = m)2 p(v )dv
pi p p p

(7)
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I

-p 0

Fig. 2

Note: 1) The tails of this function decrease slowly enough to cause problems

in the calculation of the variance.

2) There is a singularity at -p which must be dealt with.

These problems will be discussed in further detail latter on.
-p VT

B) Let V = g(x) and calculate the mean and variance as follows:

mean =f g(x) p(x) dx where p(x) N(O, ucl)

-V2
VT

I ~mean =f T 2

0__ _f_ (V +t~ ' 7 (B)
-~ T T' T

A r

2 2
variance =fg(x) p(x) dx -m

-~ A

Fig. 3
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I I

Note: Both mean and variance functions have singularities at -TT

Calculation of Mean and Results

The mean of p(vp) was calculated using both methods A and B. The
p

numerical integration was performed by the IMSL routine DCADRE which

uses cautious Ronberg extrapolation.

The singularity in eq. A caused the program to halt due to exponent

underflow (i.e. p(v ) < 10- 99). To avoid this problem, p(v ) was definedp p

as 0 whenever it's value was less than 10- 9 9 .

The singularity in equ. B caused the program to halt due to exponent

overflow (i.e. g(x) p(x) > 10 99). In this case, it was assumed that the area

under g(x) p(x) from -(E + T T ) to TT was equal to that from 7 T to -(-T - E)

for small E (E ). Since these two areas are of opposite sign, they

should cancel each other allowing integration from A to -(e + T T) and from

(TT - E) to B without affecting the final answer. (See Fig. 4.)

The mean was calculated using dif-

ferent values of p and rT , where P*rT

500. Method A and B produced corresponding

answers whose differences were limited

to the 3rd and 4th significant digit.

The values of the mean associated with

each p are listed in Table 1.

I4

was chosen as small as possible without causing exponent overflow.
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I

Calculation of the Variance and Results

The variance was calculated using method A.
2 2

VT

2 T 2 2

V2 PTT (v + p)2 aT22

var f V e dv00 (V + a ) r2 ,T

F(v) 2

lim FITT 20T2
One can see that the F(v) = e = const. This is due to

a~T

2 2the fact that lim V2 v2

v-W(v+ P)2 v2

So at large values of lvi the integral is that of a constant which becomes

unbounded as the limits of integration increase in magnitude. Therefore

a practical integration interval of -i00P to 100*P was selected to produce

a bounded and useful variance.

The variance associated with each P are listed in Table 1.
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