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RECENT ADVANCES IN THEORY AND METHODS FOR THE ANALYSIS OF
CATEGORICAL DATA: MAKING THE LINK TO STATISTICAL PRACTICE

STEPHEN E. FIENBERG

Departmenits of Statistics and Social Science
Carnegie-Mellon University
Pitisburgh. PA 13213, USA

Tell me whereon the //kelihood depends.

Wm. Shakespeare
As You Like It
Act 1. Scenc 3. 5¢6.

Life is the art of drawing sufficrent
conciusions from insufficient premises.

Samuel Butler
Notebooks

1. INTRODUCTION

It is a greal honor to present a lecturec named after Sir R.A. Fisher. especially at a

session of the Inlernational Siatistical Institute. an organization on whose behalf he

expended so much energy. Fisher was one of the most productive and original

siatisticians of this century. and much of modern statistical theory and methods has its

origins in his work. This is especially true of the current methods for the analvsis of

categorical data via loglinear models. the topic of my lecture.




The work 1 shall describe has as its foundation Fisher's notions of “likelinood” and
"sufficiency.” and the general theory for loglinear models is intimately linked 10 results
for exponential families. that are implicit in some of Fisher's most profound theoreticai
papers. Amongst Fisher's contributions to statistical methodology are scveral papers on
contingency table analysis and the distribution of chi-square statistics (see Fienberg.
19802 for a discussion of this work). These. along with Fisher's observations in other
papers and suggestions by Fisher to his colleagues. serve as the precursors to the more
general resuits that have been the focus of atlention in recent vears.

Fisher was not simplv a great statistician. hc was also a greal scientist.  And hc
worked hard at translaiing his theoretical statistical results into practical methods. of usc
to biologists and agriculiural scientists with whom he worked. For exampic¢. it was for
them that Fisher wrote Statistical Methods for Research Workers, a book that has
served as a statistical bible for statisticians and non-stausticians alike, since it was firs!
published in 1925. Thus. in the spirit of Fisher's own work, | shall discuss not onl
the basic statistical theory for the analysis of calegorical data using loglincar models.
but also the implicaiions of this theory for general statistical practice in the reporting
of tabular materials. and some of the erciling new subsiantive areas where the theory 1s

currently being put to practice.

Sir R.A. Fisher was elected a member of the International Staustical Insutuie 1n 1931
Beginning at the end of World War 11. he worked with Stuart A. Rice lo revitalize and
rcorganize the Institute. which had been dominated up to that time by Europeans and
by government siatlisticians. Over the next 11 vears. Fisher siruggled 10 open up the
ISI membership 1o rescarch statisticians and (o integrate their aclivities with those
slatisticians of other persuasions. In her biography of Fisher. his daughter (Box. 1978)
chronicles these activities. and quotes from a leller he wrote in 1956. as foliows:

We reallv have a terrifically long way 1o go in making the Instituic as useful
as il could be, since 1 think the great majority of our foreign membership
quite take 11 for granted that it 1s primarili an assembly of officials
concerned with national statistics. vital and cconomic. and of their more
academic economic adwvisers. Thesc people cannot deny the importance of
mathematical siatistics . . . and if we put in undeniably good mathemaucians
who insist on talking of the natural sciences and in terms of scientific
research and holding sessions relevant 10 thc apphcations of mathematical
statistics to scientific research. we have done a preltv good gencration's work.

Box (1978, p.433).
Fisher was not compietely successful in thesc atiempts. bul he continued 10 work on IS]
activities. and participate in its meetings. In recognition of his many contributions. the
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Institute elected Fisher as an honorary member in 1950. and along with P.C.
Mahalanobis as Honorarv President in 1957 (only two others had been previously so
honored). Even in his "retirement.” Fisher travelled to Japan 1o atiend the 1960 ISi
meelings. and to Paris to atlend the 1961 meetings. the last ones held before his death
in 1962.

The next section outhines the statistical theory for loglinear models in the analvsis of
categorical dawa. and links it to the more gencral theory of exponential families. We
focus there on maximum likelihood estimation. its usc of minimal sufficient statistics.
and methods for assessing the goodness of fit of a model. Section 3 briefly describes
the application of loglincar model methods for the analysis of mulli-dimensional
contingency lables. and then takes the form of an aside. In it we discuss the
implications of loglinear model theory for the reporung of results from large-scale
government sample surveys. especially in the form of tables of cross-classified counts.
In Section 4., we turn 1o the applications of the results of Section 2 to "non-
conlingency lable” problems in (a) the Bradlev-Terryv paired comparisons model. (b) the
analvsis of social networks. and (c) the use of the Rasch model in intelligence testing
and its potential for innovativc survey analysis. In each case. the non-contingency table
problem is transformed and is re-represenied as a problem in contingencv-table form.

whose solution has been studied previously.

Much of modern statistical practice relies heavily  on the computational
implementation of methodology. In Section 5§ of this paper. we briefly summarize the
state of the art of computation for loglincar model methods. and mention somc 1OPiCs
of curren! research activity that mayv allow these methods to be of greater practical use
in the future.

2. LOGLINEAR MODELS AND EXPONENTIAL FAMILY THEORY

The analysis of categorical data. focuses on the fitting of models to collections of
counts. often fashioned into the format of cross—classifications or contingency lables.
For purposes of describing the loglinear model approach 1o such analvses we will
consider a vector of observed counts failing into t cells.

X = X% x‘).

2.1




These counts are realizalions of a set of random variables
X = (Xl. X, oo X))

(2.2)
whose expectations and log~e\xpeclations are
m = (ml. m. ... m)
(2.3)
and
A= “z' \ x)
(2.4)
where
m = EX) 1= 12..1
| (2.5)
and
A= log m o= 1.2
| (2.6)

For the 1\2 contingency lable t=4. and the observed counts arc ofien displaved as

Two basic sampling models. for probabilitv distributions for the random variables X.

have becn :be focus of aitention in the literature on the analysis of contingency tables.

A. The Poisson Modcl. I the {.\'} are observations from independent Poisson

distributions the probability density or likelihood funclion is given by

(2.7
This model can be thought of as appropriate when the counts represent the simultaneous

record of ¢ Poisson processes. obscrved for a fined period of time.

B. Product-multinomial Model. Now suppose we pertition the set of t cells into 7

sels. Jk. where the kih set contains ¢ cells and

G _.”:'..._..:‘**“




(2.8)
Then if the counts in these sets are observations from r independent multinomial

distributions. the sums
= C . = 2
n, Z“ JL )\l K 1.2..... T.

2.9)
are fixed by design. The probability density or likelihood function for tms general i

nL m. XI
n“‘ ( ) nltj (—) .
X b n (2.10) 1

' b

situation 1s

subject to the constraints
= 9 = R
z"J; m = for k .1.-....r.
(2.1 ]
Each of the constraints in (2.11) can be characterized by a vector whose components

are 1 if if]L and 0 otherwise. !

When r = 1. we have observalions from a single mullinomial. When r = 2 and t =

4, we have observations from two binomials. Thus. the product-multinomial includes
two of the most widelv used sampling models for the 2x2 table. i.e. the two-binomial

model, and the single four-cell multinomial model.

Both the Poisson and product-multinomial sampling models. are special cases of the
exponential family of distributions. introduced first by Fisher in his 1934 invited address
o the Roval Statstical Society (Fisher. 1935). and elaborated upon by Darmois.
Koopman. and Pitman. The general form of the exponential family density (e.g. see
Andersen. 1980 or Barndorff-Nielsen. 1978) is

f(lx.t, ..... 1,‘|HI.H: ..... Hr) = [c(Hlﬁ: ..... HI‘)]"‘ exp{}::f1 Hlt‘} h(ll.l: ..... 1!‘)
(2.12)
Both (2.7) and {(2.10) can be writien in this form. with =X and H‘ = /\|. although
(2.10) is subject to the constraints {2.11) leading to the use of adjusted Hl‘s based on
the differences of )«"s (for detajls, see Andersen. 1980. pp. 20-27). Exponential family
theory suggests that the log-expectations X should be the kev paramelers of interesl.
By reexpressing the X"s as linear functions of a reduced number of parameters. we

arrive at the notion of loglinear models for the two basic sampling models.

A well~known result in basic probability. exploited by Fisher in much of his work on
categorical data problems, links the Poisson and produci-multinomial models:
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RESULT 1. Suppose that X follows the Poisson sampling model. Then the
conditiona) distribution of X. given the restriciions (2.9). is that of the product

multinomial in (2.10).

To specify a class of loglinear models. for the vector of expectations. m. we need lo
specify a lincar subspace of the 1-dimensional space in which the vector of
logexpectations, A. lies. Call this subspace M (for model!). Thus we can represen:! the
components of X as linear combinations » = A(#) of newly defined parameters #. and
we preserve the exponential family structure of (2.12). We now turn to the probiem of

maximum likelihood eslimation of the loglinear parameters 8. and of A = A(#) iiself.

The following general results on maximum likelihood estimation for # were onginally
developed by Birch (1963). ard later exiended by Bishop (1969). Haberman (1974). and
others. They turn out 1o be special cases of more general results for exponential

families as has been noted bv Dempster (1971) and others.

RESULT 2. Corresponding to each parameter in ¢ there is a minimal sufficient
stalistic that 1s expressible as a linear combination of the {x,}. (More formally. if
M is used 10 denote the loglincar model specified by m = m(#d). then the MSS's

are given by the projection of x onio M, ie. Pyx.)

RESULT 3. The maximum likelihood estimate under the Poisson modecl. m of m
= exp AM#). if it exists. is unique and satisfies the likelihood egquations:
Pan= PMX .
2.13)
1.¢. the MLE is found by setting the minimal sufficient statistics equal to their

expectations.

We note that the MLE 8 of 6 is defined implicitly via the MLE mof m = cxp
A(A) in expression (2.13). In the statement of Resull 3. we assume that m exists.
Necessary and sufficient conditions for the existence of MLE's are relatively complex.
and we refer the interested reader to Haberman (1974) for details.

For product-multinomial sampling situations. the basic multinomial constraints (i.c..
that the counts must add up 1o the multinomial sample sizes) must bc taken into
account. Thus we need to ensure that the constraints (2.11) are in fact satisfied. To
do so. we let M+ be a loglinear model for m under product-multinomial sampling which




corresponds 10 a loglinear model M under Poisson sampling. such that the multinomial
constraints. (2.11) "fix" a subset of the parameters. ¢, used to specify M Then

RESULT 4 The MLE of m under produci-muliinomial sampling for the model
M+ is the same as the MLE of m under Poisson sampling for the model M

Result 4 follows direcily from Results 1. 2. and 3. and forms the basis of the unified
approach 1o loglinear model problems. with and without multinomial constraints. as
described in Bishop. Fienberg. and Holland (1975). Woolson and Brier (1981) show that
a similar result holds for estimates of m (and thus ) derived using the weighled least
squares approach of Grizzle. Starmer. and Koch (1909). The key 1o the result in both
cases is the loglinear struciture of the parametric model. and the cxponenual family

representation of the sampling model.

It is interesiing lo note that Fisher implicitly exploited Result 4 in his discussion of
the degrees of freedom of the Pearson chi-square statistic for 2xN contingency tables
(Fisher. 1922b). The generalization of Fisher's formulation of the chi-square problem

has led to the following well-known theorem.

RESULT 5 1f mis the MLE of m under a loglinear modei. and if the model 1s
correct. then the statistics
X* = X 1(.\)-51 i):/rﬂn‘
| (2.14)
and
G =X X log (x"/fn )

{2.1%8)
have asymplotic X disiributions with 1-s degrees of freedom. where s is the total
number of independent constraints implied by the loglinear model and the
multinomial sampling constraints, (2.11) (if anyv). 1f thc model 1s not correct then

X- and G-. in (2.14) and (2.15). arc stochastically larger than ,’ll:_ .

In Result 5. X° is the usual Pearson A- stalistic for testing goodness of fil. and G- is
minus twice the loglikelihood ratio comparing the restricted model m = exp A{#) to the
unrestricted model.  Fisher (1922a) had noted the asymplotic equivalence of X° and G-
in certain situations. and suggested that the Pearson statistic X- achicved ils validiy
because it is an approXimation to the loglikelihood ratio siatistic.

R




3. LOGLINEAR MODELS. MARGINAL TOTALS. AND THE REPORTING OF
SURVEY DATA

The loghnear mode! theory described in the preceding section was developed primarily
to deal with the analvsis of multidimensional cross~classified tables of counts. In this
section. we review how the results of Section 2 can be apphied o such tables. and In
the course of doing so we draw conclusions about the reporting of large scale national
probability samples of the tvpe carried by governmen! agencies and others around the

world.

We begin with a simple biomedical example.  An cxperiment was designed o study
the effects of two analgesic drugs on posi-partum pain of women who had ciperienced
normal deliveries. A (otal of 718 women were studied and they were assigned to onc

of four treaiment groups:

A B - 0 dosage of drug A and drug B, i.c. placebo
A'B. - 100 mg. of drug B
A:B; - 200 mg of drug A
A'B. - 200 mg of drug A and 100 mg. of drug B.

The outcome variable for the study was reduction of pain (or change):

C1 - no reduction
C. ~ reduction.

The resulting data form the 2x2x2 cross—classification given 1 Table 3-1. part (a)




TABLE 3-1
The Results of an Experimen! Involving Two Analgesic
Drugs Intended 1o Reduce Post-Partum Pain

(a) observed counts: {\ ‘}

Level of Level of C}
Drug B Drug A
A 558
B ,A\: 44
A 33
B A 28

{b) estimated cxpected counts. {ﬁlm} under model (2.2) and (3.3) subject

(3.1
Level of Level of C_‘
Drug B Drug A
A 54.7
B A 44.3
A 33.3
B A 24"

Pain Change

160

Grand Toual

131.7

153.7

160.3

Totals

187

185

T18

{0 <onstraints

Toials

170
176

187

185
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For the data in Table 3~1. the totals for AxB are fined by design (the lolals differ
somewhal from one another due to the manner 1 which the study was conducted). We

are interested 1n the effects of drugs A and B on the response variable C. Let

X = no women in group A B who respond C .
i N b’
Then the two-wav lotals. adding over k. are fixed, 1e.
m = X . 1) = L2
e P
(3.1
where a "+" implies summation over thc corresponding subscripl. Expression (3.1
corresponds to the product-multinomial constramts (2.11)
One possiblc mode! for the data of Table 3-1 15
m .
log -% = w - w ~ W
m b -
3l
(3.2
where
Tow = 3w = 0
1= Ty , NI
(3.3}

Model (3.2) is referred to as a /ogrt model and 11 postulates the addiine eftecls of
drugs A and B on the logarithm of the odds of pain change moomo L sing Result 4
of Section 2. we can also represent the logil model ot (3.2) equivalentlr as & loghnear
model for m . e

[R13

logem =u-u +u ~-u <~ U -u.  -u
1

" v - e JAY] HEEETY KIS
(3.4
with the usual ANOVA constrainls that whenever a u-term fs summed over a subscripl
the sum equals zero. c.g.

uw = X

[ iy ved 121

0
e

—~
'l
'n
-

Since (3.5) 1s subject to the constraints of eguation (3.1). u. {u‘ Pofu toand {u |

il - ce
are 1n effect fixed by design. while
w=2u . woo=2u . and w = 2u .
3 Tyt 1300 2 PRI

(3.0)

The minimal sufficient stanstics for model (3.2) {or (3.4) subject o (3.1)) are the
three sets of two~way marginal totais:
ix 1. LSS g

(3.7

and. using Result 3. the likelihood equations are:

P . T A > e ;. N i . 2 . .
vk g s s - R ki e -t




M,

11
m = N L) = 12 '
m = ko= 12
m = N o= 12

(3.8)
The solution to the likelthood equations does not have a closed-form expression and
some form of numerical technique 1s required. such as iterative proporutonal fitting le.g
se¢ Andersen. 1980: Bishop. Fienberg. and Holland. 1975 or Haberman. 1974, 197§).

Part (b} of Table 3-1 displavs the MLE's. {r‘T}I.}. for our example. The goodness—of -

fit statistics. (2.14) and (2.15). 1ake values
X~ = 0.014. G = 0014

with 1 d.f. Comparing these values with various tail values of the * distribution. we
see that model (3.2) fits the dala extreme/y well.  Thus the summary of the 2322
arrayv {xm} in terms of the minimal sufficient staustics (3.7) is a meanmngful one. B)
reporting only the I1wo-way marginal tolals. we provide others with “sufficient
information” 1o esumate the parameters of inierest. In facl. reduced models also f1t
the data in Table 3-]1 extremely well. and thus we can express the "sufficient

informatior” even more compactly.

The ideas just described in the context of the 231\2 1able generahize i a
straightforward fashion to loglincar modeis for 1ables of more than 3 dimensions.
Supposc we are interesied in reporting the results of 2 national simple random sample
of adulls. age 2§ or older. conducted to provide information on the interrelationship
between educational achicvement! (variabie 1 measured 1n terms of 4 categories). and
occupational satisfaction {variable 2 with 2 categories). and how il varies with sex
(variable 3 with 2 categories) and ethnic origin (variable 4 with. sav. B calegories). We
have a single multinomial sample. but the models of interest are ones that condition on
the "background variables.” sex and ethnic ongmn.  Thus. in analvzing the resulting

4x3x2x8 cross~classification. we would focus on models conditional on

=)

m = % k=1
s = 1,

8

(=)

(3.9)

An example of a loglinear model for the array of expected cell counts {mw} 1s




e TR

12
log m = u =-u - u = u ~u
N ! 20 3 4
- - -.u - -u

13k [IE 23 bR RET

(3.10)
This mode! postulates simultaneous interrelationships between cach of the two “response”
variables (variables 1 and 2) and each of the two “explanatory" variables (variables 3
and 4). as well as between the 1wo explanalory vanables themselves. This modei docs
no! include anv of the four terms that arc interpretable as second-order interactions
involving 3 variables. nor does it include the 4-variable. third-order 1nteracuon.
Models containing such terms mught be of interest lo us. however. as they sharc with

(3.10) several desirable features from the viewpemt of reporting of survey resulis.

For loglinear models of the sort being considered here. the mummal sufficient
statistics alwavs take the form of sels of marginal totals. In our particular example.
thev are the five two-dimensional marginal tables corresponding to the five two-factor
terms 1n the model: the marginal tables for educational achievement by sex. {x .
corresponding 1o {“.;.,, }.  educationa! achievement by ethmc group. {x I
corresponding (o {u‘_“}: occupational satisfaction by ses, {x.h_}. corresponding 1o
{u, “,}: occupational satisfaction by ethnic group. {x 1. corresponding to {u_ }: and
sey by ethmic group. (x“‘ }. corresponding 1o {u;‘ b}. If we werc 1o report onh
thesc five two-wa\ lables (a7ong wrth a descripiron of our mogel/) then 1 would be
possible for a rcader with appropriate slauistical training to construct a four-dimensional
table sufficienthy close 1o the observed 1abic that he would suffer essentially zero

information loss {in the Fisherian sensc). provided that the model fits the daia.

The mmphications of 1he use of loglinear models for the analvsis and reporting of
muludimensional cross—classified survey data are thus relatively clear:

{1) By the usc of model building we are ofien led to particular forms of summar
appropriale for our data.

(2) In the casc of cross-classified dala and loglinear models this summary takes the
form of certain sets of margina) lotals. specified by the model.

(3) If we report all of the marginal totals appropriale for a loglincar mode! that
fits the data well. then another investigator can. in effecl. reconstruct the data
with little or no loss in information.

Few governmeni or other survey organizations adopt such a model-based approach to
analysis and reporting. and we are usually left to ponder the relevance of tables thai
arc reported.




The approach 10 reporuing just described for survev-based cross-classiied data
assumed that we are dealing with cither a simple random sample, or perhaps with a
stratified random sample. where the vanables underbying the strata (f thes have any
intrinsic nteresid are ncluded amongst the ewvplanatory vanables 1t the loglincar modcis.
The analvsis and reporung of categorical data from sample designs imvolving clustering
or uncqual probabilitics of selection 15 more compiex (sce e.g.. Brier. 1980: Felleg:. 1980:
and Rao and Scott. 1981}, but the principles behind the reporting remain the same. We
should noi report summaries of a survey involving categorical variables only 1mn & form
which prevents others from reconstrucuing what 1s essentially an equivaient yversion of
the ongmal data or some subset thereof (i.c. summaries that do noi 1nclude an
appropriatc set of munimal sufficient statistics). This 1s the tvpe of practicai advice
that | believe Fisher might have given had he been more extensively involved n the
analysis of survey data’

4. THE USE OF LOGLINEAR MODELS FOR SOME "NON-CONTINGENCY" TABLE
PROBLEMS

The application of the loglinear model results from Section 2 to multidimensional
contingency 1ables focussed on models where cach set of the parameiers in the
logarithmic scale 1s associated with one or more dimensions of the table. Onc of the
values of general theoretical resulls i1s thal they are often applicable to specific setuings
bevond those which led to the formulation of the general structure.  This 15 certainly
true for results on the analvsis of calegorical data problems. Fortunatelv manv of the
"non-conlingency table” applications of the loglinear model results have contingency
table-like representaions so thal we can /nterpre: the results of our analvses using
whatever intuition we have gleaned from the analysis of contingency table data using

loglincar modecls.

4.1 THE BRADLEY-TERRY PAIRED COMPARISONS MODEL

To illustrate this approach le! us consider the Bradiey-Terry model for binary paired
comparisons. a statisical topic which has been studied extensively for almost three
deccades (for an excellent review of this literature sec Bradley. 1976). Suppose t items
(c.g.. different tvpes of chocolate pudding) or trecatments. labeled T. T...T. are
compared in pairs by sets of judges. (Or suppose that t football tcams éompctc in
pairs in a series of maiches.) The Bradiey-Terrs model postulates that the probability
of T being preferred to T. 15

vue - e e e e -
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4.1)

)

where each » 2 0 and wc add thc constraint that Z:vl ” 1. The model assumes

independence of the same pair by different judges and different pairs by the same
judge. In the example of the football matches we assume the independence of
outcomes of the malches.

TABLE 4-]
Lavout for Data in Paired-Comparisons Study with t = 4

Against

T - X X X
} 1 13 i=
T X, - N ..
For ) )
T X X -= X,
T X X X -
- + 40 -

In the tvpical paired comparison cxperiment. T s compared with T n z (0 umes.
and we let X be the obscrved number of tmes T is preferted 10 T in these n
comparisons. Table 4-1 shows the tvpical lavout for the observed data when ( = 4
with preference (for. against) defining rows and columns. Clearly the binomial

constraint.

4.2
is of the form (2.9). and we can apply Result 4 of Section 2 to convert (4.1) into a
model for cxpected values for a Poisson sampling setting. i.c.
log m = ¢ - ﬂ, Y
‘ @.3)
where

(4.4)
with suitable side constraints. But this. as was noted in Fienberg and Larntz (1976). is




e
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simply the model of quasi-svmmetry in a squarc contingency table (see Bishop.

Fienberg., and Holland. 1975, Chapter 8). The minimal sufficient statistics are (from
Result 1)

S N R R

4.5

(actually either the row or column totals are redundant). and wc can use a trick.

suggested in Bishop. Fienberg, and Holland. to transform the problem o0 one for a

three-wayv table of cxpected counts. We generale duplicate tables and set

m k=1,
mllk = .
m k=12,
(4.6}
and. for the observed counts.
X k=1
xnl =
" X, k=2
(4.7)

Then the loglinear version of the Bradiev-Terry model given by (4.3) and (4.4) becomes
the mode! of no-sccond-order interaction in the new 3-dimensional lable. whose
minimal sufficient statislics are ({.\‘”.}. {.\'M). {\w}). Thus we can analvze the fit of
the model and variations on it in a familiar conuingency table sctling of the sort

described in Section 3.

These results on the loglinear representation for the Bradley-Terry model are by now
reasonably well-known. and thev can be extended 1o more compley setungs invohvng
ties. multiple comparisons. and rankings. Recent results by Mever (1981) are of speaal
use in given conlingency lable representations to some of these genecralizations. For the
remainder of this section we describe two other classes of categorical data problems
where loglincar modecls are proving to be useful. and for which standard contingency
lable representations arce especially helpful for both theorctical and computational

reasons.

4.2. MODELS FOR SOCIAL NETWORKS

A direcied graph consists of a set of g nodes. and a collection of direcied arcs
connecting pairs of nodes. Such graphs have been used to depict social networks
describing rclationships between pairs of individual actors. Figure 4-1 contains an
example of such a graph for the relationship "social friendship.” for 12 5ih gradc boys.




T - - . ) ! ! P

l6

Each bov was asked to name the two boys with whom he was the frienclicst outside
the classroom. Table <-2 summarizes the information from the directed graph of

Figure 4-1 1n the form of a 12x12 sociomatrix or adjacency matrix, X, with clements

1 if 1 chooses j as his friend
k =
! 0 otherwisc.
(4.8)
where by convention. the diagonal terms L 0.

Holland and Lemhardt (1981) note that for any pair or @vad n a network. with

adyacency matrin X,
AN (1-x ) + =) Nt (l-,\x)(l—\‘) =1,
| o (4.9)
for 1 = J. and that exacth onc of the terms on the left hand side ot (4.9) 1s 1 and the
remaining three are 0. They then suggest the following model 1o describe these
outcomes (using X as the matrix of random variables of which the adjacency matry x

is a rcalization):

log Priti-X Mi-X ) = 1] =)
log Pr[(l~X“),\". = 1] = A+ ,6" .« #H
iog PriX (1-X ) = 1] A e s fer
log Pr[X”X” = 1] TN e v s f - . O . ”

(4.10)
where the “.} are "dvadic” effects included here {(but only implicitly in Holland and
Leinhardt) to assure that the mulunomial constraint (4.9) is satisfied. and where

e = X 6 = 0.
| 1D
There arc 100 many parameters 1in this model for complete idenufication. and so

Holland and Leinhard: set

(4.1

They refer to the resulting model] as P
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TABLE 4-2
Sociomatrix for Social Friendship Among 12 Sth Grade Boys

ABC DEF GHI JKL

Al g 1 i 11

B! i i L N S

Ci | S T

D i i V11

Fi 1. i D S

Gi S S Pl |

i 1] ) S U

i 13 11 ; l

g 11 v 1 g i

1 ; i I

i 1. 1 ; l

N 11 i 1 i
1
!

FIGURE 4-1

Sociogram or Directed Graph Representing Data in Sociomatrix of Table 4-2
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If we assume that the dvads are independent, then we have a product~-multinomial
sampling mode! with onc observation per muliinomial. (This model doesn't vel take
inte account the extra constraints in the data of Table 4-2 where the row sums of x
are all restricted 1o equal 2). Holland and Leinhardt make direct us¢ of the
exponential family theory results on maximum likelihood estimation (c.f. Section 2) to
estimate the parameters in P Fienberg and Wasserman (1981a. 1981b) note. however.
that therc is a direct link between the P, model and a loghincar mode! for a muli-
dimensional table representation of the probabilities in (4.10). In parucular. thev work

with the four-dimensional arrav:

Xlll‘ = xl'xr
= X {1-X)
nie [} 1
= (1-X X
HO 1! I
= (I-X }i-X )
10w 1 i
(4.13)
Note that
X = X
1k~ 1313
(4.14)

because the dvad (1.} is thc same as the dvad (j.i). Thus. if {x m} is a recalization of
{Xu_} we only need to consider one “triangle” of {xl } in which 1 > j But b
retaining all 4g- cells in the gxga2x2 1able we are able 10 express the minimal sufficient

statistics for the parameters of p, as marginal totals of {x . }:
Uk

l': .\"li = z|(| xw‘u
L 1= L8
T X i = 12
T

0.
(4.15)
Finalls. by coupling (4.15) with (4.9) and (4.14). and then recxpressing. we can gel an
alternative set of sufficicnt statistics:
ix o o s b fx b Ax o} iy )
e 1ok LRI e e PRI
(4.16)
(allowing for redundances resulling from symmelrias and duplications). But (4.16) and

the set of six two-dimensional marginal totals of the four-dimensional array. and it can

be shown (Mever. 1981) that fitting p, o x = {x”} is equivalent to fitling the no-
second~order inieraction model 1o the newly created redundant array {\m\}.
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This siandard contingency table representation for Holland and Leinhardtl's P, modc])
leads to superior numerical solutions to the likelihood equations. It aiso leads naturally
to a generalization of P, where

po= pc e T i
| (4.17)
Fitting this model to {x”} is equivalent to fiting the standard loglincar mode! to {.\;W}
with minimal sufficient statistics
LS PR AV S ¢ S O

1ok LY

4.18)

We now return to the data in Table 4-2 on social friendships amongst 12 grade §
bovs. and recall that the row totals were fixed lo equal 2. by design. This leads 10 a
relatively complex hyvpergeometric sampling scheme. but we can approximate results for
it by using the methods for P, just described and then focus only on the parameters
{4} and p. Our analysis of the data in Table 4-2 is relatively straightforward.
Measuring the fit of Holland and Leinhardt's P, model using the likelihood ratio
criterion of expression (2.15). we get G' = 104.15 with 98 d.f. (The general formula for
d.f. is glg-1) and g = 12, but we need lo adjust here for the zero marginal total in the
6th column.) Next we fit the "differential reciprocity™ model. (4.17). whose filled 1s
summarized by Gd = 92.84 with 87 d.f. (the d.f. calculation here is quite problematic.
but the results do not depend on a precise calculation). Thus we can check on the fil
of p o the data in Table 4-2 by taking

AGT = GI"‘]— G, = 13
with “"approximately” 11 d.f. The p, mode!l fits reasonably well. The boys who attract
the most friendship (e.g. boys 2. 3..9. 16. and 11) do not appear to reciprocate in a
differential manner from those who airact little friendship. given thai we adjust for

their differing Jevels of attractiveness.

What is especially  attractive about the mulii-dimensional contingency  1able
representation of the social network data problem as outlined here is that il carries
over to networks involving mulliple relationships. For delails. see Fienberg. Mever. and
Wasserman (1981). Yet this tvpe of representation is nol a panacca. The sparseness of
the array {x”b} makes the application of the usual asympiotics. and in particular Result
5 of Section 2. problematic at best. The array {x 1} is of size 4g” but v = 2g(g-
1). and the P, model has 2g paramelers. For a more detailed discussion of the relevant
asympiotics for this problem see Fienberg and Wasserman (1981a) and Haberman (1981).
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4.3 THE RASCH MODEL

We now turn to vet another problem which begins with a representation as a iwo-
way table of 0's and 1's. and ends up as a relatively stundard multi-dimensional
contingency lable problem. The results of ab///ty tests are often siructured in the
form of sequences of 1's for correct answers and 0's for incorrect answers. For a lesl

with k problems or items adminisiecred to n individuals. we let
1 if individuai 1 answers item ) correcily
0 otherwisc.

(4.19)
Thus we have a two-way lable of random variables {Y } with realizations {,\'.:}. An

alternative representation of the data is wm the form of a nx2* 1able {W } where

1, i

the subscript i still indexes individuals and now 3y dieeesd, refer to the correciness of the

responses on ilems 1.2...Kk. respeclively. ic.
1 if 1 responds G, j.)
I 0 otherwise.

-(4.20)

The Rasch mode! (Rasch. 1960 as reprinted in 1980: Birnbaum. 1957) for the {Y‘_} is

POY =1)
S T
(4.21)
where
Tp =20 =0
(422
Differences of the form p, = p are typieally described as measuring the relauve
abilities of individuals 1 and r. while thosc of the form voomoyare described as

measuring the relative difficulties of items ) and s. Expression (4.21) is a /ogit model
in the usual contingency lable sense for a 3-dimensional arrav whose first laver is {_\'“}
and whose marginal totals adding across lavers is an nxk table of 1's. Because lhe
Rasch model depends on the item parameters in a non-lincar way. i1 1s no! at all clear

whether we can collapse the array {w I} by adding over subjects for estimation
[

fendae

purposes. We return to this matter below.
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Duncan (1982) has proposed that we should view certain tvpes of survey data i much
the same wav as we do ability test data.  For example. he describes a 4-item scale
included 1n a survev pertaining 1o beliefs about cffects of marijuana. If wc can
consider these iems in isolation from the rest of the survey quesiions (see the
discussion of this in Section 3 on reporting). then we can displayv the relevant data as
an nx4 array of the form (4.19), and we can explore the appropriateness of the Rasch
model as a description of the observed data. In the coniext of Duncan’s examples the
individual parameters. {"1}‘ can be thought of as values for a “latent trait” of the
survev respondents in much the same way as psvchomelricians have intepreted these
parameters as measuring the single latent trait. ability. Duncan discusses the matler. not
considered here. of structuring the ,u"s according lo mulitiple dimensions. and hec links

the nouion of background variables and stratification to differing latent trait structures.

Maximum likelihood estimation for the paramcters of the Rasch model (4.21) has
been the focus of several authors ncluding Rasch and Andersen. Linconditional
maximum likelihood (UML) estimates can be derived but they have rather problematic
asvmptotic properiics. €.g.  the cstimates are inconsisien! as n - oc and K remains

moderale. although theyv arc consistent when both n and kK - o (Haberman. 1977).

Before turning 1o an alternative 10 the UML approach. we point out a recentlv-
derived result for UML estimates for the Rasch model which hinks up 1n vel another
way with loglinear structures for contingency lables. In order to derive necessary and
sufficient conditons for the existence of UML estimates (& problem not really discussed
tor any ot the data structures in this paper). Fischer (1981} embeds the matnx v =

{y } into a larger (n+K)x(n-k) matrix of the form:

0 (Y
A= {al} =
i .‘ 0
(4.2%
where ¢ s an nxk matny of I's. so that, for all (i.j)
a =a = 1
{4.24)

Then he notes that the Rasch model of (4.21) is transformed o an incomplete version
of the Bradlev-Terry model of expression (4.1) discussed al the beginning of this

section. i.c.

_.hq‘
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r 1 = k+1...Kk+n
P(al=1) =
' r <« r j= 12K
(4.25)
and similarly for the other non-zero block of entries in A, where
m nr = 1.2...n
log = 4T M
. 17271
(4.20)
and
r s = 1.2k
log = v o=
” ‘ 1 *s
(4.27)

Thus. using a three-dimensional representation for A alluded to at the beginning of this
section. we can show that estimation results for the UML approach to the Rasch model

correspond 1o those of for the no-second-order interaction model applied to an

incomplete three-dimensional contingency
kxkx2 and nxn\2. and a duplicated version of the nxka2 table with lavers y. and e - y.

consisting of two zero blocks of dimension

Now. we turn (o a conditional approach 1o likelihood estimation (CML) advocated
innially by Rasch. who noled that the conditional distribution of Y given the individual

marginal totals {v = v } depends only on the item parameters. {+ }. Then each of

the row sums {v } can take onlv k-1 distinct values corresponds 1o the number of
,-
Next. we recall the alternate represeniation of the data in the form

correct responses.
Adding across individuals

of an mx2* array. {W_ }. as given bv expression (4.20).

dgda L

we creale a 2 conlingcr\xé.\' kLablc. X. with entries

X o= w

b BN 28
Earlier. we asked the question of whether we could work with this collapsed array.
The answer is ves. since all of the information we need to preserve is the response
pattern. i.c. {j,.J:.....j)}. and the number of "correct” responses that correspond o that
pattern. Such information allows us o completely reconstruct the original matrix of
responses. Y. except for the labelling of individuals. and thus we can usc the 2' array

X to represent the conditional distribution of X given {Y ~=-".-}'

Duncan (1982) and Tjur (1981) independently noted that we can esumale the ilem
parameters for the Rasch model of (4.21) using the 2 array X. and the loglincar modcl
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AX]
log m = w s X0
iy s N i
e (4.29)
where the subscript § = Zf‘ : jo¢ = 1if J = 1 and is 0 otherwise. and
v =0
L
(4.30)

The amazing result. due to Tyur (1981). s that maximum likelihood esumauon of the
2 conuingency lable of expected values. m = {m y} using a Poisson sampling
scheme and the loghnear model (4.29), produces lhé! :cohdnional masimum likelihood
estimates of {+ } for the originai Rasch model. Tjur proves this equivaience by (1}
assuming that the individual parameters are independent identically distributed random
variables from some completely unkpown distribution. =: (2} integraling the conditional
distribution of Y given {\'P:}".} over the mxing distribution. =: (3) embedding this
"random cffects” model in an “extended random model™. and (4) noung that the
likelihood for the extended model 15 equivalent to that for (4.29) applied to x (using
Result 4 of Section 2 above).

TABLE 4-3
Muluplicative Representation of Expecied Values of Model (4.29) for the Case k = 3

ltem C
Yes No
Item A ltem A
Yes No Yes No
Yes abeS  abS, bS, BS
ltem B ) ) .
No acS, as ¢S N

< i ¢

For k=3. the loglincar version of the Rasch model for the 27 1able. i.e. (4.29). can be
represenied in multiphicative form for the expected values m as in Table 4-3.  The

minimal sufficient statistics are

(4.31)
and
fx . X o+ X o+ X x +N 4y
11 1o 1 on (R0 oMo oo (3131}
(4.30)
But these are the minimal sufficient staustics of the model of quasi-svmmetry
preserving one-dimensional marginal totals which was first proposed by Bishop.

Fienberg. and Holland (1975, Chapter 8). Indeed. that model 15 cquivalent 1o (4.29),
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Thus following the prescription of Bishop. Fienberg, and Holiand (19735, p.308). we can
re-represen! the data 1in a 4-dimensional redundant form (as a 2x2a2x6 tabie) and
estimate the Rasch mode! 1lermn parameters using a standard loglinear mode! fitied 1o a

% 4-way lable (although no! the d4-way 1able w of expression (=.20)) Additional

simplifications ¢nsue here because

(2.33)

Plackett (1981). i a verv brief secuor of the 2nd edinor of ms monograpk on
categorical data analvsis. notes that the Q-stauistic of Cochran (1950 can be viewed as a
means of testing that the ilem parameters in the Rasch model are all cqual and thus
zero. 1¢. v = 0 for all j This observation is intumately related 1o the resulls just
described. and our original data representation in the form of an nxk (ndividual b
item) array ¥ 15 exactly the same representation used by Cochran. By carmving ou! a
conditional tesi for the equalitv of marginal proportions given mode! (4.29) ¢ quas:-

svmmelry preserving one~dimensional marginals. we get a lest that 1s essenually 1

equivalent to Cochran’s test. Bul this is also the test tor {v = 0} within model (4.20).

Duncan (1982} gives several cxamples of the application of the Rasch mode! 10 sunvey
research problems. and he presents severai extensions of the model. indicaling how they

can be represented in a multi-dimensiona! table format such as tha: of Table 4-2

S. COMPUTATION FOR LOGLINEAR MODEL METHODS

As we noted in Section 3 on multi-dimensional contingency tables. we do not
necessarily get closed-form estimates of the MLE's m of the expecied counts.  Thus
some form of iterative numerical procedure 1s often required.  The most popular
numerical procedure for calculating MLE's is the method of rteratrve proportional
fitting (IPFP). which iteratively adjusis the entries of a conuingency 1able 1o have

marginal tolals specified by the likelihood equations.

To iliustrate the algorithm we consider a three-wav lable of independent Poisson

counts. x = {x L}. Suppose we wish lo fit the loglinear mode! of no-sccond-order
s

interaction for the mean m, i.e. the model given by expression (3.4). The basic IPFP

takes an iniual table m'", such that log (m'™) satisfies the mode! (1vpically we would

use m“1 = 1 for all ij. and k) and sequentially scales the curren! fitted lable 1o
[}
satisfy the three sets of the two-way margins of the observed table. x.  The ih

iteration consists of threc steps which form:

[ _.l‘.‘d\.\'- et . . . .
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m - = m \ com

i i ' )

[ ) s
m = m \ m

(.1

{The first superscript refers to the teration number. and the sccond 1o the step number

within 1terations).  The algorithm continues until the observed and fitled margins arg
sufficienthy close.  For a delailed discussion of convergence and some of the other
properies of the algonthm. sec Bishop. Fienberg and Holland {1975 or Haberman
(1974,

Commeon alternatives to the [PFP are versions of Newion's method or other
algorithms which use nformation about 1the second derivatives of the likehhood
funcion. While such methods have quadratic convergence properties compared ¢ the
linear properties of the IPFP. and arc oflen quite efficient (se¢ c.p. Haberman (1974),
or Fienberg, Mever and Stewart (1979)), thev are of limited use for models of high
dimensionality  becausec of storage requirements, Newton's method also automaticalls
produces an estimate of the vanance-covariance matrix of the parameters. bul this 1s
what requires all of the storage space. Currently, the mos: widely-used computer
program tha!l emplovs a Newton-hke ajgorithm i1s GLIM. which 1s distributed by the

Numerical Ajgorithms Group of the Umited Kingdom (Buaker and Nelder. 1978).

Recent  research on numerical procedures for maximum likelihood estimation 1n
loglinear modcls has focussed on alternative aijgorithms that will handie the tvpes of
large data arrays thai arisc in praclical problems. For exampie. Fienberg. Mever. and
Wasserman (1981) describe an application of the social network methodoiogy of Section
4.3 in which the basic daia consist of three correlated 7373 adjacency matrices. We
briefly outline three different approaches thal have been proposed to handle large data

arravs.

Onc approach to increasing the storage capacity of current problems is found in work
in progress by Fienberg. Mever. and Stewart (1981). who have been developing programs
for both loglinear and logit models using a variant of Newton's method. Tharr
algorithms involve the construction of the upper hall of a pxp weighted cross-product
matrix where p is the dimension of the paramecter vector #. and take full advantage of
the sparseness of the nxp design matrix without actually constructing it. The algorithms

proceed via Newton's method with variablc step length. using a Cholesky decomposition
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with pivoting. A special feature of these algorithms 1s a subroutine thai checks for the
eustence of MLE's. m. by performing @ pivoled Cholesky  decomposition on &
substant:ally reduced problem. It should be possible to usc thesc algorithms. wher they
become available. as replacements for the Newton-like algorithms in programs such as
GLIM.

Mcintosh (1981) has proposed the use of vet another alternative to IPFP. the method
of consugate gradients. Unlike Newton's method which uses the full matrin of sccond
dernatives of the likelthood funcuion. the method of conjugale gradients works
carrving oul an "opumal” sequence of one-dimensional masimizations.  The method of
conjugate gradients has storage reguirements similar 1o that of IPFP. but has
“superiinear” convergence properties.  Mclniosh (1981) provides numerical comparisons
of different algomthms for several contingency table cxamples. bu: these tail 10
demonstrate the areas of superioriiv of the current versions of his conjugale gradient

algorithms. which have becn implemented within GLIM.

Finally. we note the recent work of Mever (1981). who considers generalizalions of
IPFP due 10 both Haberman (1975) and Csiszar (1975).  Mever has developed 2 new
method for esumating MLE's thal s espenally attractive for large problems and which
combines the advantages of both Newtor's method and IPFP.  Basicallyv. his approach is
1o break the large problem into manageable but overlapping subproblems. Then he
iterates wn an IPFP-like manner amongst the subprobiems. for cach of which he uses

Newton's method.

All of the computational approaches just discussed are currentiy under active
development.  We exvpect that these and other efforts will ulumately expand the scope
and size of calegorical data probiems that can be analyvzed using loglinear moael

methods.

6. CONCLUDING REMARKS

In this lecture | have examined a variety of categorical data problems using models
that arc linear in the logarithms of the expecled cell values. The methods and models
are linked to a small core of theoretical statistical results depending on exponential
family theorv. and the concepts of minimal sufficient statistics and mavimum likelihood
estimation. All of thesc results have as their foundation research work of Sir R.A.
Fisher.

R TTRe L w e  waes oo
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The bullding of bridges from stauistical theory 1o slalistical praclice 15 an activity
which Fisher thought to be especially appropriate for ISI Mectings. | hope thal many
of vou will have crossed such a bridge with me todav. and in the process gained an
appreciation for the richness of the theoreucal results on  loghnear models for
categorical data analvsis. and the many different pracnical arcas to which they may be

applied.
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SUMMARY

The past 20 vears have seen an enormous growih ' the stauistica: hierature on the
anzlvsis of categorical data. much of 1t based or the use of loghnear models. This
paper reviews som¢ of the gencral resuiis on maximum likelihood esumation for
loghinear models anc Links them back 1o 1deas thai have their foundations in the work
of Sir R.A. Fisher These resulls have special reievance for the analvsis of
muludimensional conlingency  tables. and for tne reporling of date from large-scale
sampie Ssurveys. Ir. addition. the resills are apphicable 1o other calegomical data
problems tha: are often representable in conlungency labie form. The paper concludes
with a bnef descripior of the state of ihe art of computauon for ioglinear model
methods.

s s
RESUME

Les vingt anne@s prccedentes ont assxslc/a\ une croissance considerable de la huc{alure
statisque lrailant l'analyse des taubles de conungence. souven! en ulilisant des mod\cles
log—lineﬁires. Cet arlicle passe en revue gquclques résultats ge’ne’rau.\ sur ]'estimation
maximum de vraisemblance pour les modcles log—lme’axres. el les rehe : des |de€s
provenan! de loeuvre de Sir R.A. Fisher. Ces reéSultats ont un rapport particulier 3
I'analvse des tables de contingences multidimensionelles. et au reporiage des donne?s
d'enqu’e\les el/endues‘ En plus. ces re/sullals peuvenl servir 3 Vanalvse d'autres donne/es
calegoriques gqui permillent une prcfcmauon tabulaire.  L-aruicle se conclut avec une
courte descriptior. des méthodes numeriques uu'nsee/s b prc/scm pour l'analvse des

/
modtles log~Iincaires.
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