i
4

LEVEL

Cornell University -

i
. po -

ADA111013

DTIC
s ELECTE %
G, FEBLT 19823
e

B

Magnetomechanics

g: Dfér—a'fia’ﬁ'i‘rc‘iﬁwéT}ﬁ}::déx\fr A h

S r Researc

]

W A Departmentis of

%’ ‘ Theoretical & Applied

S Mechanics

and Ly L o/

— | Structural Engineering

" 82 02 17007



LEVEL 7

Topical Report

t \
':Z) TWO PAPERS ON EDDY CURRENT CALCULATIONS
IN THIN PLATES .

K.Y. Yuan, J.F. Abel, F.C. Moon
M.A. Morjaria, and S. Mukherjee

September 1981

submitted to the
0ffice of Naval Research
Structural Mechanics Program, Material Sciences Division
ONR Contract No. N00Q14-79-C-0224
Task No. NR 064-621

Departments of Structural Engineering
and Theoretical & Applied Mechanics

Cornell University
Ithaca, New York 14853 DT!C

G- ECTER
&. rco17 1992

B

CDETMBUTION SIATEMINE A
Approved for public releaso;

Distribution Unlimited

st SR



Report 7, Part 1

EDDY CURRENT CALCULATIONS IN THIN CONDUCTING PLATES
USING A FINITE ELEMENT-STREAM FUNCTION CODE

K.Y. Yuan, J.F. Abel, and F.C. Moon

presented at COMPUMAG-3, the
Third International Conference on the Computation of Magnetic Fields
Chicago
September 1981

to be published in
IEEE Transactions on Magnetics

March 1982

|

{ Accession Tor

= AEEN TS S
A s 2y D

. Ca 172 s

RN ~Distritottony
pyLe kY T T T
Y Aviall Lility Codes
corY 1 T T RO -
RPORTEE ,/' L aud/or
- Dist . opoctal

4




Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
AD INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEF e COMPLETING FORM

1. REPORT NUMBER .

3. RECIPIENT'S CATALOG NUMBER

7, Part 1 Aﬂﬂf‘ﬁ ff AR

4. TITLE (and Subtitle) S. TYPE-OF REPORT & PERIOD COVERED
EDDY CURRENT CALCULATIONS IN THIN CONDUCTING Topical Report
PLATES USING A FINITE ELEMENT-STREAM FUNCTION February 1979-August 1981
CODE 8. PERFORMING ORG, REPORT NUMBER

7. AUTHOR(s) - 8. CONTRACT OR GRANT NUMBER(s)
K.Y. Yuan, J.F. Abel, and F.C. Moon ONR Contract Number

N00014-79-C-0224
9. PERFORMING ORGANIZATION NAME AND ADORESS 10, PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS

Departments of Structural Engineering and Theo- NR 064-621
retical & Applied Mechanics, Cornell University,|’
Ithaca, NY 14853

11, CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE
Director, Structural Mechanics Program, Material| September 1981
Sciences Division, Office of Naval Research, 13. NUMBER OF PAGES
Arlington, VA 22217 3
4. MONITORING AGENCY NAME & ADORESS(i{ ditlerent from Controlling Ollice) 15. SECURITY CLASS. (of this report)
Unclassified

158, DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16§. DISTRIBUTION STATEMENT (of this Report)

This document has been approved for public release and sale; distribution
unlimited,

17. DISTRIBUTION STATEMENT (of the absiract entered in Block 20, if different lrom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

Eddy currents, Finite element method, Magnetic forces, Numerical methods,
Plates, Self-field effects

\\
\

aBSTnACT (Continue on reverse slde if neceseery end {dentlfy by bdlock number)

A stream function or vector potential for the current density vector is
used to develop a finite element code for calculating induced currents in
thin conducting plates. While two-dimensional, the code includes self
field effects for harmonic fields for skin depths on the order of the
plate thickness and larger. The solution of the resulting integro-
differential equation, using a Galerkin method, leads to a complex,
nonsymmetric, fully populated global matrix. In addition to the current,\
DD %%, 1473 A eniTion oF 1 oV 63 13 oBSOLETE _\_i(,.h,v‘{

$/N 0102 LF- 014- 6601 T
! 60 SECURITY CLASSIFICATION OF THIS PAGE (When Date Knuuj) ‘\.‘

e o . A 2o 4 AT



;2§L:>density, the code also calculates induc

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Dste Entered)

20. Abstract (continued)

ed temperatures due to Joule'heating
and the magnetic forces on the plate. The results are compared to jnfrared

neasurements of “induced currents in rectangular plates. Extension‘of the
code to transient problems using both fast Fourier transform and direct

integration methods is in progress.
\) ( . } ') , gve/?
“te i RE ’tﬁvg,;} 2 V[f

S/N 0102- LF-014- 4601
Unclassified

SECURITY CLASSIFICATION OF TH{IS PAGE(When Data Entered)



£DDY CURRENT CALCULATIONS [N THIN CONDUCTING
PLATES USING A FINITE ELEMENT-STREAM FUNCTION CODE*

K-Y. Yuan, J.F. Abel, F.C. Moon

Abstract - A stream function or vector potential for
the current density vector is used to develop a finite
element code for calculating induced currents in thin
conducting plates, While two-dimensional, the code in-
cludes self field effects for harmonic fields for skin
depths on the order of the plate thickness and larger.
Tha soiution of the resulting integro-differential
equatiaon, using a Galerxin method, leads to a complex,
nonsymmetric, fully populated global matrix., In
addition to the current density, the code also calcu-
lates induced temperatures due to Joule heating and the
magnetic forces on the plate. The results are compared
to infrared measurements of induced currents in rec-
tangular plates. Extension of the code to transient
problems using both fast Fourier transform and direct
integration methods {s in progress.

INTRODUCTICN

The goal of ongaing research at Cornell is to
develop numerical methods for the coupled analysis of
forces, currents, and stresses in thin elastic
structures exposed to time-dependent magnetic fields.
In particular the project is directed toward time de-
pendent magnetic forces and motfons of elastic plates
and shells., Both applied mathematical analysis and
#inite element numerical computer techniques are being
used. Verification of the newly developed computer
codes is carried out by direct comparison of the calcu-
lated results with experimental data and is carried out
at each stage of the development. The experiments
emplay a new infrared scanning technique to visualize
the induced eddy current patterns in the structures.

Most techniques for calculating stresses due %o
electromagnetic fields require a three-dimensional
sreatment aven {f the structure is one or two-
dimensional such as a beam, plate, or shell [1,2]. In
this research a stream function for the induced current
in the conducting structure has been used which reduces
the magnetics problem to a two-dimensional one and
allows one to use conformable finite element meshes for
the magnetic and elastic deformation fields.

flat nlate. The derivation for the case of a flat
nlate nas been given by Moon {[3], The details are not
repeated here; only the assential relationships are
racapitulated.

If the mid-plane of the plate {s chosen as the xy
slane, one obtains
L=7x(yn) =-nx7y (1)
and

72y = oh 2= (89 + sy . (2)

For the determination of Si, the current stream
function » ts assumed to be defined throughout three-

¥asearch sponsorad Dy the Office of Naval Research
under 3rant No. ¥00014-79-C-0224.

The authors are currently with the University of
Wlsconsin, Madisan, Wl 53706 (Yuan), and Cornell Uni-
sersity, lthaca, NY 14853 {Abel, Moon), raspectively.

dimensional space, and constant across the sheat thick-
ness. Application of the Biot-Szvart law and the di-
vergence theorem vialds B; for the midplane of the

plate {z=0):

w(x',y') d(area')
)2 + (_%)213/2

(3)

1
8 oY = Y o-
(x,y,0) = F 9 arga Tor - x.)z s Gy’

¢ has been set to zero on the boundary of the
plate in the above derivation. When the plate is
multiply connected, different constant values of ¢ will
be assigned on each interior boundary. These bcundary

conditions, together with the known Bg and (3), are

then used in (2) for the determination of the stream
function y.

Formulation

For steady state, harmonic current in a flat plate
plate, (2) may be nondimensionalized into the following
form

2 @(Eo“)

7
area [(x-5)2+(y-n)2+1)

dgdn

o - 12xR¢ + iR ]le

(4)
= {2eR0{x,y)

in which the coordinates are nondfmensional1zgd'with
respect to half the thickness Gg); p = Gg%)ae1“t;

Bg » Q%)ee1“t; the magnetic Reynolds number is

R = uuahz/Sw which is related to skin depth & through
R = %; (% 2; and B is the refarence magnetic field.

The finite element Galerkin method is used to

solve (4). ¢ is approximated giobally and locally by
G 6
E E E ‘
o= L M o ¢ = T N9 {5)
=1 k %k k=] X k

in which G is the total number of nodal points, E
denotes the Eth element, M, are the quadratic global
interpolation functions generated from the local ele-

ment shape functions NE. Six-nade triangular elements

are used here. The local element shape functions are
all quadratic in this case. The element algebraic
equations are

6§ 5 . 5 .
k:I Kjk 3y * i kfl ij o + 1 kil ij oy 1R< (6)
in which
€ p i oENE L af
T fe it d (72)



£ . E \E aaf
ij 2R [: Ny My dA (7b)
AE
°§k = R [ M (cun) W§ (2,n)dgdn (7¢)
ares
3 E. aE
Rk = «2qR IE stdA . (7d)
A

The weighting function R§ is given by

. K ()
nj(ﬁ:ﬂ) = f 7 T
AE [{x-g)"+(y-n)"+1]

3/zdxdy . (8)

B8ecause of the numerical difficulty associated with the
sharp variation of the Kernel! function in (8), the
weighting function is calculated analytically within
the element and numerically outside the alement. (7¢)
is then integrated entirely by numerical quadrature.

Since N§ 1s quadratic, six basfc integrations with
numerators 1, x, y, xz, xy, and y2 in (8) need to be
performed. To simplify the integration, each element
is first mapped onto a standard triangle, which is
independent of the coordinates of the nodes of the ele-
ment. The integratians are then performed. The ex-
pressions obtained are then used for the calculations
of (3) for all the elements.

The resulting giobal matrix is complex, fully
populated, and nonsymmetric for general nonuniform
meshes.

CAPABILITIES OF THE PROGRAM EDOY2

A fortran program EDDY2 has been develaped based
on the formulation of (6)-(8). It calculates the local
and nonlocal solutions of stream functiaon, eddy cur-
rent, temperature, and pressure. As of this writing,
the image solution and two-dimensional graphic output
capabilities remain to be implemented. iniform mag-
netic field and fields due to any number of magnetic
dipoles can be handled. Magnetic fields generated from
some types of coils of Interest will be added.

Input

The geometry of the plate and the description of
the axternal magnetic fielid are the two basic forms of
data needed by program £D0Y2, The total numbers of
nodal points, load cases, and elements need to be
specified, Coordinate and boundary condition must be
given for each input node, Intermediate nodes may be
generated faor any groups of nodal points that are uni-
formly spaced. Element {nformaiton may also be gener-
ated., Although only six-node triangles are included in
the present version of EDDY2, the program has been
structured so that other types of elements may be
added. Element group information and the master card
for each element group need, therefore, to be inputed
too0,

The program allows for different orders of numeri-
cal inteqrattons, Six- and seven-point formula are now
srovided., The order may be specified on the master
alement group card.

Qutput

values of the stream function, eqdy current,
temperature induced in-a half cycle of the current, and
time-averaged magnetic pressure are produced as output.
The stream function is calculated at the nodes of the
finite element mesh. Current, temperature, and
pressyre are evaluated at the centroid of each 2]ement.
The stream function and current are calculated in come
plex form. The modulus and phase angle of the current
are evaluated in the interest of spectral analysis for
the calculation of transient currents.

Examples

Two problems analyzed by EDDY2 are shown below.
Figure 1 shows the stream function contours for a4 te
1 rectanqular plate excited by a harmonic uniform field
with magnetic Reynolds number R = 0.0012. Flgures 2
and 3 give the stream function contours and fsotherms
for a notched plate subjected to a harmonic uniform
field with R = 0.001. Only half of the plate is shown
in both problems because of symmetry. In the analysis,
however, the whole plates are analyzed without taking
advantage of the symmetry conditions.

The CPU time is 145 seconds with 32 elements in
the first problem ysing the [BM 370-168 computer. Most
of the time is used in evaluating the nonlocal inte~
gration terms in (6). The computational time can obvi-
ously be reduced dby using the symmetry conditions and
by optimizing the program, Also, the quadratic rec-
tangular element with it much simpler experssions for
the nonlocal integration terms will substantially
reduce the CPU time.

1 T
1

240 h

!
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, 120 n

Fig. 1 Strezm funciion c2nteurs for
2 long rectangular 2late ax-
cited by a harmonic uniform
field (7 = 2.9012).
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A DOUNDARY INTECRAL METHOD FOR EDDY CURRENT FLOW AROUND CRACKS IM THIN PLATES

M.A. Morjaria, S. Mukherjee and F.C. Moon

Departmant of Theoratical and Applied Mechanics

Cornell University, Ithaca, New York

ABSTRACT

*

A boundary element mathod which employs a Green's function for a crack has been devcloped to calculate the

induced addy current flow around cracks in thin conducting plates.
function for the current density vector and is equivaleant to the electric field vector potential method.

The theoretical equations employ a stream
A low

frequency or large skin depth approximation leads to a Poisson equation for steady harmonic inductor fields.

Induced currents around a crack in a square place due to a uniform inductor field for various crack pesitions

and sites have been calculated in this paper.

The effact of the relative position and length of the crack, with respect to the plate width, on the eddy

current density near the tips of the crack is given specilal attention.

eddy current flow Jdetection phenomena.
INTRODUCTION

The boundary element method (BEM) (also called
the boundary integral equation method) has emerged as
an important computational technique for electrodynamic
Wu et al {1] and Ancelle et al [2] have ad-
dressed magnecoscatic problems by the BEM while Trow-

problems.

bridge {3] has considered problems by the magnetic po-
tential method. Very recesntly, Salen and Schneider
{4] have solved problems of eddy current flow in long
orismatic conductors by the BEM based on the electric
potential approach.

In this paper, we describe a powerful boundary
element technique for calculating induced eddy current
flows in conducting plates with through cracks using
The BEM has the im=-

portant advantage that only the boundary of a body

the electric potential approach.

(rather than the entire domain) needs to be discretised
in a numerical solution procedurve.

There have been some attempts to model eddy cur-
rent flow around annular cracks in rods and ia plates
by replacing cracks by slots (see for example Ref.
(sh.
in che vicinity of a crack leads to a singularity of
This high
concentration allows one to use eddy current testing

However, we have shown that the induced current

current density at the crack tips [6,7].

devices such as active and passive search coils to
detect the presence of cracks. Tt also results (n.a
temperature hot spot which can be detected by {nfrared
scanning [6,8]. The boundary element technique intro-
duced by che authors (46,7] and deacrited here allows

e £o model exactly che singular nature of current

These results may be useful to simulate

density at crack tips of thin plactes. This tachnique
can handle any arbitrary shape of the place and gener~
al magnetic fields.

In this paver we discuss application of the BEM
to eddy current flow in a cracked square plate due to
an uniform inductor fieid spplied normal *c the plate.
A number of crack sizes to placea size configurationms
has bYeen considered. Also, effect of the relative
position of a crack tip to the plate edge on the in-

duced eddy current distribution has been investigated.
GOVERNING EQUATIONS

A cthin plate with a crack {n it is shown {in Fig.
1. The plate is made of a conducting material of
conduceivity <. The plate boundary can be arbitrary
and its thickness (uniform) is h. The thin line
crack is of length 2a and can have arbitrary ori-
entation relative to the boundary of the plate. The
coordinate system for the problem 1s also shown in
Fig. 1.
of the crack and at the midsurface of the plate.

The origin of coordinates lies at the center

An external, oscillatory magnetic fileld, §°,
g in the
It is assumed that the current density is

is applied which induces a current demsity
plate.
uniform across the plate thickness and that the skin
depth (which is inversely proportional to the square
root oi the frequency) is large compared to the plate
thickness,



A stream function (or electric potential) formu-
lation is used in this problem. The stream functionm,

w(xl,x:), is defined as
I o= Ixuk) = <k x Ty (1

This equation guarantees the conservation of charge
equation V:J = 0 for charge free regious.
Using Ohm's law the governing differential equa-

tion for the stream function is obtained as {6,7]

d

2, = -1 (R0 1
KA v (33+83) )

B 1s the self magnetic fleld
due to the current J.

In the above,
It has been shown in ref.
(9], howevar, that for a sinusoidal applied field,
with the skin depth much greater than the thickness
of the plate, 3
applied fileld 3°.

can be neglected relative to the
This assumption simplifies the

problem, and, with Bg = ﬁg oot (with 1 = /~L
and , the frequency), the spatial part of 4 sacis-
fies a two-dimensional nonhomogeneous Poisscn's
equation

72y = LugB] = E0x;,x,) &

The boundary condition requires that the current
must be tangential to the plate boundary. Thus
is required to be constant on the boundaries 3C1
and 3C2. On one boundary, the value of 3 is set
4 =C and C

i3 obtained from the assumption that che net flux flow-

to zero, while on the other boundary

ing through the crack boundary is zero. This leads to
the condition
9 Jetds = 0 %)
E
where t 1is an unit tangent to acl and s 1is the

distance measured along a boundary in the anticlock-
wise sense. This formulation assumes that no current
flows across the crack or crack tip and leads to a
This 1is
analogous to the stress singularity in fracture me-
chanics.
cceurs acress a crack tip and thus relieves the singu-
Possible leakage of

(It is noted

singularity of the J field at a crack tip.
It is possible that some leakage of current

larity in actual conductors.
current 1s not considerved in this paper.
nere that infrared scans of eddy current flow around
cracks do fndeed show a large increase i{n temperature
at the crack tips, indicaring high current densicy

at the crack tips [(6].)

In summary, the boundary conditions on ¥, used

in this formulacion, are
v = 0 on the crack boundary 3C1 (5)
%& = ) on the sutside boundary 3C2 (8)

9‘%“%43-0 )
3C1
These boundary conditions, together with the

field equation (3), constitute a well posed oroblem.

BOUNDARY ELEMENT FORMULATION

Integral equations

An integral equation formulation for Poisson's

2quation (3) can be written as (Fig. 1) [6,7]

2m(p) = ¢ X(9,0)6(Q)ds, + |, K(p,q)£(q)da (8)
wf ] LY a
acz
This is a single laver poteantial formulation
where G,
boundary, must be determined from the boundary condi-
(or P) and

a source strength function on the outside

tion on it (equation 9).
q (or Q)
with capital letters denoting points on the boundary

The points »

are source and field points, rzsvectively,

of the bodvy and lower case letters denoting voints
inside the body.
oy A,

The area of cthe body B 1s denoted
It has been shown (6] that % from equation (8)
with the following kernel satisfies the boundary cen-
ditions (5) and (7) implicitly.

R(p,a) = Re(s(z,7,z2_] €
2,2,z ) = ta(ler,/3) - w(lr,D)  (10)
z, ] /zg-é ,
vhere T 5 , gril <1
- z = 422-4 -1 .
s - 2 , ‘al Y

Re denotes the real part of the complex argument,
z and z, are the source and Zield voint coordinates,
respectively, in complex notation and a suvervosed
bar denotes, as usual, the comolex conjugats of a com~
plex quantity.

The remaining boundary condition (6) on the out-
side surface is satisfied by using a differentiated

vergion of (8) and taking the limit as p inside 3

approaches a voint P on 3C2. Defining
- a .
B, = m@E2 -3 | g .o pe2. (an
1 7z 3z 2 3z .7

the boundary condition (6) becomes
.. ,
0= ag di(P,Q)ni(P)G(Q)dsQ + )Aﬂi(P,Q)ni(P)f(q)qu(lZ)
el
where
al to 3C2 at some locally smooth point om it.

n, are the components of the unit outward norm-

The current, J, at a voint inside the body is

obtained from equations (1) and (8).



Discretizacion of equations and solution s:ra:egz
The outer boundary of the bedy, aCZ, i3 divided

into Nz scraight boundary elements using N, (Nb -
NZ) boundary nodes and the incarior of the body, A,
is divided into o, triangular internal elements.

A discratized version of equation (12) is

O-T

In,fas, 1 Py @0y (RS (s

+ fni[AAiHi(PM.q)ni(Px)f(q)qu (13)
where PH is the point P where it coincides with

a node M at a center of a boundary segment on BCZ
and 4sy and AAL are boundary and internal elements
respectively.

A simple numerical scheme is used in which the
gource strengths G are assumed to be piecewise uni-
form on each boundary segment with their values to be
determined at the nodes which lie at the centers of
aach segment. Substitution of the plecewise uniform
source strengths into equation (13) and carrying out
of the necessary integrations, analytically and num-
erically, leads to an algebraic system of the type

{0} = [A}{G} + (d} (1%)

The coefficients of the matrix [A] contain
boundary integrals of the kernel. The vector ({d}
contains contributions from the ares intagrals and
the vector (G} cthe unknown source strengths at the
boundary nodes. The dimension of (G} depends only
on the number of boundary elements on ECZ and the
internal discretization is necessarv only for the
evaluation of integrals wich knowm integrands.

The solution strategy is as follows. The matrix
{A] and vector {d} 1in equation (14) are first eval-
uated by using the appropriate expressions for the
kernels and the prescribed function £ in equatiom
(3). Equation (14) is solved for the vector {G!.
This value of (G} 1is now used in a digcrecized ver-
sion of equation (8) to obtain the values of the
stream function  at any point p. Finally, the
current vector at any point is obtained from equations

analogous to (8).
NUMERICAL RESULTS

In the numerical computacions, ﬁ; in Eq. (13)
i{s assumed to be a constant. Eq. (3) can be non~

dimensionalized to the form

Na o~ -
7Tu(xy,%y) = 1, X, = xi/a. (15)

where

9

- KL 2a°
Yy = = R = == and the skin depth
14nB R 16"
3
— - Jau
5w/ =2 J - 2
wak, R EC1: 4.3

Tor the results in this paver a = 2. A typical

‘mesh for the results for example shown in Fig. 2d

has 48 boundary segments uniformly distributed alomg
the upper half (due to symmetry) of the boundary

of the plate. In order to evaluate the known area
integral in Equation 13, the internal area quadra-
ture was used. It took about 300 c.p.u. secs on
IBM 370/168 to obtain the results in Fig. 2d.

The equation (15) is identical to ome relating
to the torsion of shafts. The BEM was verified by
comparing the numerical results for the solution of
(15) in a square plate without a crack to kaown
analytical results for the torsion of a shaft. The
BEM mecthod has also been checked against a finice
element technique developed for eddy current prob-
lems [101.

Eddy current stream lines (; lines) are shown
in Figs. 2 and 3 for a square plate with a crack in
it. Fig. 2 (a) = (¢) shows how the stream lines
are affected by varying the size of the plate while
keeping the crack size same. Due to symmetry only
the upper half of the plate is shown in Fig. 2. Fig.
2 (d) szovs the effect of moving the crack towards
one of the plate edges. Fig. 3 shows a close up of
the stream lines near right crack tip for Fig. 2 (e).
The crowding of stream lines near crack {ps leads
to large gradient of ; and therefore large induced
curreats in this region. The local temperature is
proportional to the square of the current density
(3-3). Figure 4 shows calculated temperature scans
aio;g a line slightly above the crack (§2 = ,0125)
for the results shown in Fig. 2. From Figs. 4 (a) -
(¢) one can conclude that as the crack size increases
relative to the plate size the hot spots at crack
tips are more significant compared to those at the
edges. The effect of moving the crack near the plate
edge gives rise to significant hot spots as shown
in Fig. 4 (d) and (¢)}. This becomes more apparent
when we look at the 'Eddy Current Intensity Factor'
defined below. It has been showm [6,7] that the
eddy current density squared is inversely proportion-
al to the distance r from a crack tip. We can de-
fine an eddy current intensity factor, MIII as

~a

ps a
7 = Mg T

¥



for the

vy

Table 1 shows tha calculatad values of M

two crack tips for tha rvesults shown in §1;. 2.

It {s seen that the value of ¥___ remains practical-
ly constant for varying plate ;Z;-s. However it
changes significanctly as a crack tip is brought near

an adge of the plate.

Table 1. Stress Intensity Factor MIII

a 2xi Right Left Figures 2, 4
T T Crack Crack
Tip Tip
0.05 1.0 0.125 0.125 (a)
0.10 1.0 0.130 0.130 ¢-)]
0.25 1.0 0.145 0.145 (2)
0.10 0.6 3.96 1.30 (d)
0.10 0.3 15.45 6.93 (e)
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