MAINTENANCE TRAINING
SIMULATOR DESIGN AND ACQUISITION:
ISD-DERIVED TRAINING EQUIPMENT DESIGN

By

Rahn J. Hritz
George R. Purifoy, Jr.
Box 158
Valencia, Pennsylvania 16059

LOGISTICS AND TECHNICAL TRAINING DIVISION
Technical Training Branch
Lowry Air Force Base, Colorado 80230

February 1982
Interim Report

Approved for public release; distribution unlimited.
NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The Public Affairs Office has reviewed this paper, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This paper has been reviewed and is approved for publication.

EDGAR A. SMITH
Contract Monitor

ROSS I. MORGAN, Technical Director
Logistics and Technical Training Division

DONALD C. TETMEYER, Colonel, USAF
Chief, Logistics and Technical Training Division
Title: Maintenance Training Simulator Design and Acquisition: ISD-Derived Training Equipment Design

Author(s): Robin J. Hritz, George R. Purifoy, Jr.

Performing Organization Name and Address: Applied Science Associates, Inc., Box 158, Valencia, Pennsylvania 16059

Contract or Grant Number(s): F33615-78-C-0019

Program Element, Project, Task, or Work Unit Numbers: 63751F 23610301

Report Date: February 1982

Number of Pages: 86

Distribution Statement (of this report): Approved for public release, distribution unlimited.

Supplementary Notes:做得了

Key Words:
- Acquisition
- Maintenance simulators
- Maintenance training
- Model specifications
- Simulator design
- Training
- Training devices

Abstract: This technical paper presents a model for documenting training equipment designs derived from an Instructional System Development (ISD) analysis. The model contains blanks to be completed by the ISD analyst(s). Since the model is appropriate for documenting various kinds of possible designs, the model is accompanied by an appendix, which provides instructions for applying the model. The model provides a method for communicating a specific training equipment design to the Simulator System Program Office (SimSPO) after the ISD analysis has established a need for a maintenance trainer. The model has been specifically organized and formatted so that it can be easily used by SimSPO personnel to prepare the procurement specification that eventually goes to contractors for bids.
The model provides the ISD analyst an opportunity to specify such design information as (a) characteristics of the target population who will use the trainer, (b) a list of the training objectives to be achieved using the trainer, (c) a list of the tasks to be practiced and/or acquired on the trainer and a list of the malfunctions to be presented by the trainer for isolation and/or correction, (d) a scenario discussing how the trainer will be used to achieve the specified training objectives, (e) a list of the physical and functional characteristics of the components to be represented on the trainer, and (f) a description of the instructional features required on the trainer to facilitate training objective achievement.

When utilized, the model will standardize the communication between ISD and SimSPO personnel.
MAINTENANCE TRAINING SIMULATOR DESIGN AND ACQUISITION:
ISD-DERIVED TRAINING EQUIPMENT DESIGN

By
Rohn J. Hritz
George R. Purifoy, Jr.
Box 158
Valencia, Pennsylvania 16059

LOGISTICS AND TECHNICAL TRAINING DIVISION
Technical Training Branch
Lowry Air Force Base, Colorado 80230

Reviewed by
James R. Burkett
Chief, Training Systems Section

Submitted by
Allen J. Partin, Lt Col, USAF
Chief, Technical Training Branch
This model for documenting training equipment designs was prepared by Applied Science Associates, Inc. (ASA), Valencia, Pennsylvania, under Air Force Contract No. F33615-78-C-0019. Mr. George R. Purifoy, Jr. is the Principal Investigator and Project Director. The sponsor is the Technical Training Branch (at Lowry Air Force Base Colorado) of the Logistics and Technical Training Division of the Air Force Human Resources Laboratory (at Wright-Patterson Air Force Base Ohio). Dr Edgar A. Smith is the Project Engineer.

This study is one of a series of related studies under Project 2361, Simulation for Maintenance Training. Project 2361 is an advanced development program to develop, demonstrate, test, and evaluate selected applications of computer-based simulation for Air Force maintenance training. The objective of this program is to build baseline knowledges about techniques, procedures, and principles necessary for broad application of simulation in maintenance training. Simulator training devices are being fabricated and demonstrated in an operational training environment in order to establish cost, reliability, and training effectiveness information. These data will contribute to a determination of training value factors for eventual Air Force use. Demonstration of the training/cost-effectiveness of simulation techniques, coupled with analyses of effective simulation management tools, will provide the necessary empirical data to design user handbooks, and to prepare life cycle management guides for the effective utilization of simulation in maintenance training.

This report contains a model for documenting a training equipment design. The model, in the form of a military specification, is to be completed by the Instructional System Development (ISD) analyst(s) when the need for a maintenance trainer has been identified. The model provides a method by which a training equipment design can be communicated to the System Project Office (SPO) Training Equipment Acquisition Manager. Included as part of this model is an appendix which provides instructions for applying the model in specific situations.

The authors wish to acknowledge the assistance and cooperation of the many individuals who contributed information and critiques ideas. From ASA: Dr Hobart Harris, Ms Jennifer Smith, and Mr Vernon Hanson. From the Air Force:
<table>
<thead>
<tr>
<th>Name</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Edgar A. Smith</td>
<td>AFHRL/LRT 3306 TES/ATF</td>
</tr>
<tr>
<td>Lt. Col. P. W. Stoughton</td>
<td>Lowry AFB</td>
</tr>
<tr>
<td>MSgt. Dennis Kox</td>
<td></td>
</tr>
<tr>
<td>MSgt. Rex W. Sprouse</td>
<td></td>
</tr>
<tr>
<td>TSgt. Tommy J. Brown</td>
<td></td>
</tr>
<tr>
<td>CMSgt. Jackie L. Clark</td>
<td></td>
</tr>
<tr>
<td>SMSgt. Allan F. DeWalt</td>
<td></td>
</tr>
<tr>
<td>MSgt. Morrison E. MacKay</td>
<td></td>
</tr>
<tr>
<td>MSgt. Duane L. Loecck</td>
<td></td>
</tr>
<tr>
<td>MSgt. Frank R. Fowler</td>
<td></td>
</tr>
<tr>
<td>TSgt. Harold D. Pinell</td>
<td></td>
</tr>
<tr>
<td>TSgt. David A. Simpson</td>
<td></td>
</tr>
<tr>
<td>SSgt. Gary L. Buchanan</td>
<td></td>
</tr>
<tr>
<td>SSgt. Barry J. Graeber</td>
<td></td>
</tr>
<tr>
<td>SSgt. Patrick D. Wilson</td>
<td></td>
</tr>
<tr>
<td>Mr. Gerald C. Carroll</td>
<td>ASD/ENETT WPAFB</td>
</tr>
</tbody>
</table>

Edward AFB

WPAFB
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SECTION I: INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Purpose and Use</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SECTION II: ISD-DERIVED TRAINING EQUIPMENT DESIGN</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>SCOPE</td>
<td>6</td>
</tr>
<tr>
<td>1.1</td>
<td>SCOPE, GENERAL</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>PERFORMANCE ENVIRONMENT TO BE SIMULATED</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>BRIEF DESCRIPTION OF REQUIREMENTS</td>
<td></td>
</tr>
<tr>
<td>1.3.1</td>
<td>TRAINING OBJECTIVES, GENERAL</td>
<td>7</td>
</tr>
<tr>
<td>1.3.2</td>
<td>TRAINING APPLICATION, GENERAL</td>
<td>7</td>
</tr>
<tr>
<td>1.3.3</td>
<td>SIMULATION CHARACTERISTICS, GENERAL</td>
<td>8</td>
</tr>
<tr>
<td>1.3.4</td>
<td>INSTRUCTIONAL FEATURES, GENERAL</td>
<td>8</td>
</tr>
<tr>
<td>1.3.5</td>
<td>TRAINER CONFIGURATION, GENERAL</td>
<td>9</td>
</tr>
<tr>
<td>1.4</td>
<td>DEFINITIONS</td>
<td>9</td>
</tr>
<tr>
<td>1.5</td>
<td>REFERENCES / DOCUMENTS</td>
<td>13</td>
</tr>
<tr>
<td>2.0</td>
<td>TRAINING OBJECTIVES</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>TRAINING OBJECTIVES, DESCRIPTION</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>GENERAL INFORMATION</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>TARGET POPULATION CHARACTERISTICS</td>
<td></td>
</tr>
<tr>
<td>2.3.1</td>
<td>PREVIOUS WEAPON SYSTEM(S) EXPERIENCE</td>
<td>15</td>
</tr>
<tr>
<td>2.3.2</td>
<td>NEGATIVE TRANSFER</td>
<td>15</td>
</tr>
<tr>
<td>2.3.3</td>
<td>TARGET POPULATION ASSUMPTIONS</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>TASKS AND MALFUNCTIONS</td>
<td></td>
</tr>
<tr>
<td>2.4.1</td>
<td>TASKS</td>
<td>16</td>
</tr>
<tr>
<td>2.4.2</td>
<td>MALFUNCTIONS</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>LEARNING OBJECTIVES</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>TRAINING APPLICATION</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>TRAINING APPLICATION, DESCRIPTION</td>
<td>17</td>
</tr>
</tbody>
</table>
Table of Contents (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2 CLASSES OF EXERCISES</td>
<td>17</td>
</tr>
<tr>
<td>3.2.1 CLASSES OF EXERCISES, DESCRIPTION</td>
<td>17</td>
</tr>
<tr>
<td>3.2.1.1 WARM-UP INITIALIZATION ACTIVITIES</td>
<td>18</td>
</tr>
<tr>
<td>3.2.1.2 TRAINER, INSTRUCTOR, AND STUDENT ACTIONS</td>
<td>18</td>
</tr>
<tr>
<td>3.2.1.3 ADDITION OF EXERCISES/MALFUNCTIONS</td>
<td>19</td>
</tr>
<tr>
<td>3.3 TRAINING ENVIRONMENT</td>
<td>19</td>
</tr>
<tr>
<td>3.3.1 INSTRUCTOR INFORMATION</td>
<td>19</td>
</tr>
<tr>
<td>3.3.2 UTILIZATION</td>
<td>19</td>
</tr>
<tr>
<td>3.3.3 SUPPORT EQUIPMENT, TOOLS, AND JOB MATERIALS</td>
<td>20</td>
</tr>
<tr>
<td>3.3.4 OTHER INSTRUCTIONAL EQUIPMENT AND MATERIALS</td>
<td>20</td>
</tr>
<tr>
<td>4.0 SIMULATION CHARACTERISTICS</td>
<td>20</td>
</tr>
<tr>
<td>4.1 SIMULATION CHARACTERISTICS, DESCRIPTION</td>
<td>20</td>
</tr>
<tr>
<td>4.2 PICTURES (SKETCHES AND/OR PHOTOGRAPHS) OF THE SYSTEM(S)/SUBSYSTEM(S) BEING SIMULATED</td>
<td>21</td>
</tr>
<tr>
<td>4.2.1 MAJOR COMPONENT LIST</td>
<td>21</td>
</tr>
<tr>
<td>4.2.2 SIMULATED DISPLAYS, CONTROLS, INDICATORS, SRUs, LRUs, AND PARTS</td>
<td>21</td>
</tr>
<tr>
<td>4.2.3 SIMULATED SUPPORT EQUIPMENT</td>
<td>21</td>
</tr>
<tr>
<td>4.3 FIDELITY LEVELS</td>
<td>21</td>
</tr>
<tr>
<td>4.3.1 CHARACTERISTICS OF DISPLAYS AND CONTROLS</td>
<td>22</td>
</tr>
<tr>
<td>4.3.1.1 CHARACTERISTICS OF SUPPORT EQUIPMENT AND TOOLS</td>
<td>22</td>
</tr>
<tr>
<td>4.3.2 ENVIRONMENT FIDELITY</td>
<td>22</td>
</tr>
<tr>
<td>4.3.3 PROBABLE ENGINEERING CHANGES</td>
<td>22</td>
</tr>
<tr>
<td>4.4 OFF-THE-SHELF DISPLAY, CONTROLS, INDICATORS, SRUs, SRUs, AND PARTS</td>
<td>23</td>
</tr>
<tr>
<td>5.0 INSTRUCTIONAL FEATURES</td>
<td>23</td>
</tr>
<tr>
<td>5.1 INSTRUCTIONAL FEATURES, DESCRIPTION</td>
<td>23</td>
</tr>
<tr>
<td>5.2 INSTRUCTIONAL CAPABILITIES</td>
<td>24</td>
</tr>
<tr>
<td>5.2.1 FREEZE CAPABILITY</td>
<td>24</td>
</tr>
<tr>
<td>5.2.2 MALFUNCTION SELECTION</td>
<td>25</td>
</tr>
<tr>
<td>5.2.3 SIGN-IN CAPABILITY</td>
<td>25</td>
</tr>
<tr>
<td>5.2.4 NUMBER OF RESPONSES</td>
<td>25</td>
</tr>
<tr>
<td>5.2.5 MONITORING INSTRUCTIONAL FEATURES</td>
<td>25</td>
</tr>
</tbody>
</table>
Table of Contents (Continued)

5.2.6 AUGMENTED FEEDBACK INSTRUCTIONAL FEATURES 26
5.2.7 NEXT ACTIVITY FEATURES 26
5.2.8 STIMULUS INSTRUCTIONAL FEATURES 26
5.2.9 CUE ENHANCEMENT FEATURES 27

5.3 STUDENT STATION(S) ... 27
5.3.1 STUDENT STATION, NUMBER AND KIND 27
5.3.2 STUDENT STATION: DISPLAYS, CONTROL, AND INSTRUCTIONAL EQUIPMENT ... 27

5.4 INSTRUCTOR STATION(S) ... 28
5.4.1 INSTRUCTOR STATION(S), NUMBER AND KIND 28
5.4.2 INSTRUCTOR STATION(S): DISPLAYS AND CONTROLS 28

6.0 TRAINER CONFIGURATION .. 28
6.1 TRAINER CONFIGURATION .. 28
6.2 STUDENT STATION, INSTRUCTOR STATION RELATIONSHIP 28
6.3 OTHER CONFIGURATION CONSIDERATIONS 29
7.0 NOTES .. 29

APPENDIX: ISD-DERIVED TRAINING EQUIPMENT DESIGN HANDBOOK RATIONALE AND GUIDANCE, PARAMETERS, AND LESSONS LEARNED 31

0.0 SCOPE ... 31
0.1 SCOPE, GENERAL .. 31
0.2 PURPOSE OF MODEL ... 31
0.3 USE .. 31
0.4 FORMAT ... 32

1.0 SCOPE ... 33
1.1 SCOPE, GENERAL .. 33
1.2 PERFORMANCE ENVIRONMENT TO BE SIMULATED 33

1.3 BRIEF DESCRIPTION OF REQUIREMENTS 34
1.3.1 TRAINING OBJECTIVES, GENERAL 34
1.3.2 TRAINING APPLICATION, GENERAL 34
1.3.3 SIMULATION CHARACTERISTICS, GENERAL 35
1.3.4 INSTRUCTIONAL FEATURES, GENERAL 35
1.3.5 TRAINER CONFIGURATION, GENERAL 35

1.4 DEFINITIONS .. 35
1.5 REFERENCES/DOCUMENTS 36
Table of Contents (Continued)

2.0 TRAINING OBJECTIVES .. 36
2.1 TRAINING OBJECTIVES, DESCRIPTION 36
2.2 GENERAL INFORMATION .. 37
2.3 TARGET POPULATION CHARACTERISTICS 38
 2.3.1 PREVIOUS WEAPON SYSTEM(S) EXPERIENCE 39
 2.3.2 NEGATIVE TRANSFER 39
 2.3.3 TARGET POPULATION ASSUMPTIONS 40
2.4 TASKS AND MALFUNCTIONS 40
 2.4.1 TASKS .. 40
 2.4.2 MALFUNCTIONS .. 42
2.5 LEARNING OBJECTIVES ... 44
3.0 TRAINING APPLICATION ... 44
3.1 TRAINING APPLICATION, DESCRIPTION 45
3.2 CLASSES OF EXERCISES .. 45
 3.2.1 CLASSES OF EXERCISES, DESCRIPTION 45
 3.2.1.1 WARM-UP AND INITIALIZATION ACTIVITIES 46
 3.2.1.2 TRAINER, INSTRUCTOR, AND STUDENT ACTIVITIES 48
 3.2.1.3 ADDITION OF EXERCISES/MALFUNCTIONS 50
3.3 TRAINING ENVIRONMENT .. 51
 3.3.1 INSTRUCTOR INFORMATION 51
 3.3.2 UTILIZATION ... 51
 3.3.3 SUPPORT EQUIPMENT, TOOLS, AND JOB MATERIALS 53
 3.3.4 OTHER INSTRUCTIONAL EQUIPMENT AND MATERIALS 53
4.0 SIMULATION CHARACTERISTICS 54
4.1 SIMULATION CHARACTERISTICS, DESCRIPTION 54
4.2 PICTURES (SKETCHES AND/OR PHOTOGRAPHS) OF SIMULATED SYSTEM(S)/SUBSYSTEM(S) 54
 4.2.1 SIMULATED COMPONENT LIST 55
 4.2.2 SIMULATED DISPLAYS, CONTROLS, INDICATORS, SRUs, LRUs, AND PARTS 55
 4.2.3 SIMULATED SUPPORT EQUIPMENT 55
4.3 FIDELITY LEVELS .. 56
 4.3.1 CHARACTERISTICS OF DISPLAY AND CONTROLS 56
 4.3.1.1 CHARACTERISTICS OF SUPPORT EQUIPMENT AND TOOLS 57
Table of Contents (Continued)

4.3.2 ENVIRONMENTAL FIDELITY 57
4.3.3 PROBABLE ENGINEERING CHANGES 58

4.4 OFF-THE-SHELF DISPLAYS, CONTROLS, INDICATORS, LRU's, SRU's, AND PARTS .. 58

5.0 INSTRUCTIONAL FEATURES ... 59
5.1 INSTRUCTIONAL FEATURES, DESCRIPTION 59

5.2 INSTRUCTIONAL CAPABILITIES 60
 5.2.1 FREEZE CAPABILITY ... 60
 5.2.2 MALFUNCTION SELECTION 62
 5.2.3 SIGN-IN CAPABILITY .. 63
 5.2.4 NUMBER OF RESPONSES .. 64
 5.2.5 MONITORING INSTRUCTIONAL FEATURES 64
 5.2.6 AUGMENTED FEEDBACK INSTRUCTIONAL FEATURES 66
 5.2.7 NEXT ACTIVITY FEATURES 67
 5.2.8 STIMULUS INSTRUCTIONAL FEATURES 68
 5.2.9 CUE ENHANCEMENT FEATURES 69

5.3 STUDENT STATION(S) ... 70
 5.3.1 STUDENT STATION(S), NUMBER AND KIND 70
 5.3.2 STUDENT STATION: DISPLAYS, CONTROLS, INSTRUCTIONAL EQUIPMENT ... 71

5.4 INSTRUCTOR STATION(S) .. 72
 5.4.1 INSTRUCTOR STATION(S), NUMBER AND KIND 72
 5.4.2 INSTRUCTOR STATION(S), DISPLAYS AND CONTROLS 72

6.0 TRAINER CONFIGURATION ... 73
6.1 TRAINER CONFIGURATION, DESCRIPTION 73
6.2 STUDENT STATION, INSTRUCTOR STATION RELATIONSHIPS 73
6.3 OTHER CONFIGURATION CONSIDERATIONS 74
SECTION I
INTRODUCTION

This report contains a model for documenting training equipment designs. Attached to the model is an appendix which contains the instructions that are necessary to tailor the model to specific applications. The model and the attached appendix are in Section II of this report.

The model for documenting training equipment designs is designed to be completed by the Instructional Systems Development (ISD) analyst(s) when the need for a maintenance trainer has been identified. The model is written in a military specification format. A completed application of the model serves as a vehicle for communicating a ISD-derived maintenance trainer design to the Simulator System Program Office (SIMSPO), at Wright-Patterson Air Force Base, Ohio. At SIMSPO the document is translated into the final specification that goes out to contractors and vendors. A model for the specification prepared by SIMSPO is provided in another report.

The model for documenting a specific training equipment design has the following characteristics or features:

1. The model contains blanks to be completed by the ISD analyst(s). The blanks permit the requirements to be stated in a manner convenient to the ISD analyst(s). The appendix accompanying the model provides instructions on what content is to be inserted in the blanks. Often the appendix contains suggested wording that is appropriate for completing the blanks.

2. Most of the paragraphs and/or subparagraphs to be included in the specific application of the model are selected by the ISD analyst(s). That is, specific paragraphs or subparagraphs can be deleted or retained depending upon the specific application. However, it is suggested that if a particular paragraph or subparagraph is desired to be deleted the ISD analyst should include the paragraph or subparagraph heading and in the blanks insert "not applicable." In this way the SIMSPO will know that the particular paragraph or subparagraph was purposefully deleted (rather than just forgotten).
3. Application of the model in a specific situation is independent of any ISD procedure used to determine the training equipment design requirements. That is, the completion of the model is not predicated on any special or unique ISD procedure. The model represents the information or design requirements that must be or should be communicated to the SIMSPO regardless of how that information or those requirements were determined. However, it should be pointed out that decision-making procedures leading to all the design requirements indicated in the model are spelled out in a document titled "Maintenance Training Simulator Design and Acquisition - Handbook of ISD Procedures for Design and Documentation." The decision-making procedures specified in that Handbook or in any other ISD procedural handbook (e.g., 3306th Procedural Handbook) can be used to derive the training equipment design, while the model can be used to document the training equipment design resulting from the applied procedures. If Maintenance Training Simulator Design and Acquisition - Handbook of ISD Procedures for Design and Documentation is used, then the completion of the model for a specific application, can be facilitated since many of the forms being completed in that procedure can be directly inserted into the model.

4. It is perfectly acceptable for the ISD analyst(s) to enter only what is known to him(them) at the time of completing the specific application of the model. For example, if all the training objectives are not known at the time of submitting the completed design, the analyst(s) should list all the objectives that are known and indicate that "the list provided herein is only a partial list and is not meant to be exhaustive." The same rationale and approach apply to entire paragraphs and/or subparagraphs of the model. For example, if the environmental characteristics to be simulated are not yet known, the analyst(s) can either:

a. Insert in the blanks "to be determined" or

b. Enter the expected environmental characteristics to be simulated and state that "The above characteristics should not be taken as absolute and only represent a determination based upon the data available at the time of completion."

5. Although the model is organized in a purposeful manner, there is no priority or order implied in completing the specified paragraphs and/or subparagraphs. That is, the

ISD analyst(s) should feel free in supplying the information requested in any order he(they) deem appropriate; e.g., paragraph 3.0 can be completed before paragraph 2.0.

6. Because of the limitation of the available data base, the preparer of a specific application of the model might find it useful to state in paragraph 1.0 that "The information and requirements specified herein are limited by the availability of the data base and time restriction and as such the specified design should not be considered absolute and only represent the design features which could be determined from the available data."

7. The design of the model recognizes the iterative nature of an ISD analysis and the time constraints surrounding the determination of the training equipment design; as such, the model can be completed in stages and updated as warranted by the ISD analyst(s) as the original data base is expanded and analyzed. That is, the ISD analyst(s) may find it useful to complete certain sections of the model as the ISD analysis is in progress. In this way the specification can be updated throughout the ISD analysis cycle. This same degree of freedom and flexibility should be recognized and granted after the specific application of the model is submitted to SIMSPO. That is, the general purpose of the model approach is to communicate to SIMSPO the design requirements that are known at the time they are known. SIMSPO and the ISD analyst(s) should be considered cooperative partners in a mission with one goal or purpose - to obtain a maintenance trainer which is both training effective and cost efficient. Both groups should cooperatively work toward this goal and have an understanding that design requirements can, at times, be illusive, difficult to specify, and difficult to document or justify.

8. Some of the information requested, e.g., specification of the characteristics of the target population, is included not as requirements but as useful information to SIMSPO and the contractor. That is, some of the requested information does not necessarily establish design requirements, but provides necessary guidance and background information to the contractor.
Purpose and Use

The model is designed primarily as a communications vehicle between the ISD analyst(s) and SIMSPO. As a communications device the model is intended to convey both to SIMSPO and the contractor precisely (as is possible) the type and kind of trainer that is desired (e.g., what the trainer should do, how the trainer is intended to be used to help students meet the specified objectives, the degree of fidelity required of the trainer, and the type of instructional features that are necessary). As any communication device, the model and any specific application of it, should not be considered perfect. Communication between any two individuals or groups of individuals is riddled with ambiguity, imprecision, and personal interpretation. However, the model is purposefully designed to reduce or at least minimize these problems. The model serves the following functions:

1. The model organizes and formats the design requirements in a standardized way. This facilitates the communications by assuring that certain design requirements are always located in the same place within the specific application of the model and are approximately stated in the same fashion.

2. A specific application of the model can be used as an interim communication document or as a document that evolves as the ISD analysis is accomplished. Typically the ISD analysis is started and as training equipment requirements are identified they are documented. As the ISD analysis progresses and the data base is expanded, new training equipment requirements are identified and previously identified requirements may be modified. However, at some point, the ISD analyst(s) must submit a final recommendation (typically at the Training Requirements Review Meeting - TRRRM). The model specification is designed to be used as a pre-TRRRM communication device as well as the device for communicating the final recommendations prepared by the ISD analyst. As a pre-TRRRM communication device the ISD analyst(s) can communicate the results of the ISD analysis as they are determined. The resulting document can then be modified and expanded, and previously identified requirements can be further clarified. As a pre-TRRRM document the specific application of the model can be used to stimulate interaction between the SIMSPO and the ISD analyst(s) to assure that the communication is being understood by both parties. As the TRRRM approaches
these approximations can be formalized. The formalized or final communication, however, should not be considered perfect. There will most likely be the need for SIMSPO and the ISD analyst(s) to continue clarifying the specified requirements before SIMSPO can prepare the specification that goes to the contractor.

The model for documenting training equipment designs has been constructed to assure that the results of the ISD analysis and training equipment design requirements are clearly communicated in a standardized format and organization. Through such communication it is anticipated that maintenance trainers will be acquired, which meet the training need and prepare students to perform on the job.
SECTION II
ISD-DERIVED TRAINING EQUIPMENT DESIGN

1.0 SCOPE.

1.1 SCOPE, GENERAL.

a. This specification establishes the training equipment design requirements for a maintenance trainer. This specification is to be completed by the ISD analyst(s) following an ISD analysis.

b. The following requirements are established in this specification:

(1) Training Objectives (Paragraph 2.0)
(2) Training Application (Paragraph 3.0)
(3) Simulation Characteristics (Paragraph 4.0)
(4) Instructional Features (Paragraph 5.0)
(5) Trainer Configuration (Paragraph 6.0)

c. Each of these requirements is briefly described in subparagraph 1.3 of this specification.

d. Instructions for completing this specification are provided in the Appendix. The information supplied in this specification by the preparer is subject to the limitations of the data base available to the preparer as well as the time available for conducting the ISD analysis.

1.2 PERFORMANCE ENVIRONMENT TO BE SIMULATED.

a. This specification establishes the training equipment design requirements for a maintenance trainer which shall represent system(s)/subsystem(s) of ________________________.

b. The purpose of the trainer is to provide maintenance training which is directly transferable to the system(s)/subsystem(s) specified in Item a above in the following task areas:

6
1.3 BRIEF DESCRIPTION OF REQUIREMENTS.

Each of the requirements specified in paragraph 1.1 of this specification is briefly described in the subparagraphs below.

1.3.1 TRAINING OBJECTIVES, GENERAL.

a. The training objectives which shall be attained by the students using the trainer are specified in paragraph 2.0 and its accompanying subparagraphs in this specification.

b. More specifically paragraph 2.0 and its accompanying subparagraphs provide:

 (1) The identification of the AFSC that will use the trainer.

 (2) A description of the characteristics of the target population.

 (3) A list of the task (and part-tasks) that are to be acquired and/or practiced on the maintenance trainer.

 (4) A list of the training objectives to be achieved by the target population using the maintenance trainer.

1.3.2 TRAINING APPLICATION, GENERAL.

a. A description of how the maintenance trainer shall be used to achieve the training objectives specified in paragraph 2.0 and its accompanying subparagraphs is provided in paragraph 3.0 and its subparagraphs in this specification.

b. More specifically paragraph 3.0 and its accompanying subparagraphs provide:

 (1) The class of exercises and/or malfunctions to be presented by the intended maintenance trainer.
(2) A description of how the maintenance trainer shall be used by the target population to attain the specified training objectives and to acquire and/or practice the specified tasks (and part-tasks). This description contains the necessary initialization activities, the planned student activities, the planned instructor activities, and a general description of the recording and scoring features.

(3) A description of the learning environment in which the trainer shall be used. This description contains information on the planned utilization of the maintenance trainer, and a list of the support equipment and tools that shall be required to acquire and/or practice the specified tasks and training objectives.

1.3.3 SIMULATION CHARACTERISTICS, GENERAL.

a. The physical and functional characteristics of the components represented on the maintenance trainer are specified in paragraph 4.0 and its accompanying subparagraphs in this specification.

b. More specifically, paragraph 4.0 and its accompanying subparagraphs provide:

(1) A list of the components that shall be represented on the trainer.

(2) A description of the physical and functional characteristics of components that shall be represented on the trainer. This description provides the level of fidelity that each component being represented shall have.

1.3.4 INSTRUCTIONAL FEATURES, GENERAL.

a. The instructional features that the maintenance trainer shall have to assist the student in attaining the specified training objectives and to acquire/practice the specified tasks (and part-tasks) are specified in paragraph 5.0 and its accompanying subparagraphs in this specification.

b. More specifically, paragraph 5.0 and its accompanying subparagraphs provide:
(1) A description of the stimulus, response, feedback, and next activity controls which shall be incorporated into the maintenance trainer.

(2) A description of the student station. (Optional.)

(3) A description of the instructor station. (Optional.)

1.3.5 TRAINER CONFIGURATION, GENERAL.

The configuration(s) that the trainer shall have is(are) specified in paragraph 6.0 and its accompanying subparagraphs in this specification.

1.4 DEFINITIONS.

The terms used herein shall have the meaning specified in this paragraph.

Exercise. An experience the student is exposed to in order to attain a training objective and/or to acquire and/or practice the performance of a specific task or part-task. An exercise is composed of the presentation of the stimuli, the set responses made by the student, the feedback given to the student concerning the correctness of his response(s), and the determination of the next activity the student is to be exposed to after making a response or a set of responses. An exercise is to be envisioned as a unit of instruction.

Feedback. Information given to the student concerning the correctness of his response(s) to a particular stimulus. There are two kinds of feedback; feedback which the student receives from the simulated equipment itself (e.g., the reaction of a display as a control is manipulated) and augmented feedback. Augmented feedback is the feedback given to the student by the instructor or by the instructional features built into the trainer. Augmented feedback usually consists of a message which contains a summary of the student's response(s), the correctness of the student's response(s), the consequences of any incorrect response(s), and the reason why a particular response was incorrect.

Fidelity. The degree to which components, parts, LRUs, SRUs, etc. (which are being simulated) are physically and functionally like the actual components, parts, LRUs, SRUs, etc.

Initialization. The activities and functions to be performed by instructor to make the trainer ready for use by the student.
Instructional Features. Are devices or mechanisms on the trainer which control critical aspects of the learning environment, such as presentation of the stimuli, recording and scoring of responses, presentation of augmented feedback messages, and selection of the next activity the student is to be engaged in. The following are instructional features.

a. On-Off/Select Sensing. A control on the trainer which allows the instructor to turn on or off the devices or mechanisms which sense the student's response(s) or to select only those responses which are to be sensed for a given student exercise. A response that is sensed by the trainer is not necessarily recorded by the trainer.

b. On-Off/Select Recording. A control on the trainer which allows the instructor to turn on or off the devices or mechanisms which record the response(s) or to select only those student responses which are to be recorded for a given exercise. A response that is recorded by the trainer is not necessarily scored by the trainer. All responses recorded by the trainer, however, must be sensed by the trainer.

c. On-Off/Select Scoring. A control on the trainer which allows the instructor to turn on or off the devices or mechanisms which score the recorded responses or to select only those recorded responses to be scored for a given exercise.

d. On-Off/Select/Reporting. A control on the trainer which allows the instructor to turn on or off the devices or mechanisms which report student response(s) or score(s) or allows the instructor to select what response(s) or score(s) are to be reported.

e. On-Off/Select Monitoring. A control on the trainer which allows the instructor to turn on or off the devices or mechanisms which monitor the status of the controls and/or displays of the system or subsystem being simulated or to select which controls and/or displays are to be monitored for a given exercise. All system displays and/or controls, which are monitored by the trainer, are sensed, recorded, and reported by the trainer.

f. Reporting Devices. A device used to report student responses and/or scores and/or the status of the system being simulated. Reporting devices are only used if the trainer is reporting responses, scores, or the system status to the instructor. Reporting devices as used in this specification are either computer controlled printers or CRT (video) screens.
g. **Storage Devices.** A device used to store student responses, scores, or the status of the system being simulated for future retrieval (e.g., diagnostic purposes or for planning future next activities for the student). Storage devices, as used in this specification are either hardcopy (e.g., printouts which are filed in a convenient manner) or electronic devices (e.g., diskettes, magnetic tape, hard disks, etc.).

h. **Adjustable Criteria Control.** A control on the trainer which allows the instructor to adjust (change or modify) the value student responses are compared to during scoring. This control is only appropriate if the trainer is automatically scoring student responses.

i. **On-Off/Select Feedback Control.** A control on the trainer which allows the instructor to turn on or off the devices or mechanisms that provide the student with augmented feedback messages or to select the time or schedule of the augmented feedback message given to the student during a given exercise.

j. **Feedback Message Adjust.** A control or device which allows the instructor to adjust (change or modify) the augmented feedback message that is given to the student during a given exercise.

k. **Rate Adjust Control.** A control on the trainer which allows the instructor to adjust (change or modify) the rate at which stimuli are presented to the student during a given exercise.

l. **Signal-to-Noise Adjust.** A control on the trainer which allows the instructor to adjust (change or modify) the ratio of signal to noise for a given exercise.

m. **Cue Enhancement Control.** A control on the trainer which allows the instructor to highlight (magnify, intensify, or otherwise make more noticeable) a stimulus or response for a given exercise. The control can be an on-off control, where all stimuli or responses are highlighted, or a select control, where the instructor can select which stimulus or response is to be highlighted for a given exercise.

n. **Malfunction Insertion.** A control on the trainer which allows the instructor to select a malfunction which has been pre-programmed into the trainer.

o. **System Parameter Control.** A control on the trainer which allows the instructor to pre-set (before the exercise begins) a system parameter value or allows the instructor to input system parameter values during the exercise. The control can
be used to make operational a malfunction condition, providing the system parameter being altered signifies a malfunction condition.

p. On-Off/Select Next Activity. A control on the trainer which allows the instructor to turn on or off the next activity pre-programmed for the student or allows the instructor to select the next activity from a list of pre-programmed next activities.

q. On-Off Freeze. A control on the trainer which allows the instructor to turn on or off the pre-programmed freeze instructions within the trainer or to freeze the trainer in a given state when a freeze is not pre-programmed. A freeze shall cause all displays, controls, indicators, etc. to remain fixed in their position at the moment of the freeze.

Line Replaceable Unit (LRU). A part of a system or subsystem with a function of its own and designed to be removed from the system or subsystem without being disassembled. It is the smallest unit to which a malfunction can be isolated by the 0-level maintenance personnel.

Negative Transfer. A condition where previous learning and/or habits of the target population interfere with the learning of new knowledge and/or the performance of new skills.

Part-Task. A segment or only part of a task. It typically does not have a goal or mission of its own and only takes on meaning in light of the entire task.

Pre-programmed. When an instructional feature or capability is labeled pre-programmed, it means that the capability is controlled automatically by the trainer and requires no input from the instructor.

Shop Replaceable Unit (SRU). A part of a subsystem or a part of an LRU, with a function of its own. It is the smallest unit to which a malfunction can be isolated by l-level maintenance personnel.

Signal-to-Noise Ratio. The proportion of true message (signal) to amount of interference (noise). Think of a telephone message, where the signal is the voice of the speaker and where the noise is the static or interference on the line heard by the listener.

Subsystem. Part of a system, when the system is comprised of two or more parts. A subsystem has a purpose and function of its own.
and is designed to interact with its peer subsystems in order to attain the purpose or mission of the system.

System. An assemblage comprised of interrelated and interacting subsystems designed to attain a predetermined purpose, e.g., the flight control system of an aircraft.

Target Population. The population of students who will use the maintenance trainer to attain the specified objectives and/or to acquire and/or practice the specified tasks and part-tasks.

Task. A statement describing the activities a performer must complete to attain a specific goal or mission. The statement at a minimum contains a verb describing the action taken and an object to which the action is addressed.

Trainer. Training equipment which represents the actual equipment with some degree of fidelity. The trainer is used by students to obtain hands-on practice of task performance and to acquire certain training objectives. The term trainers as used in this specification can be sophisticated (e.g., computer controlled) or can be two-dimension representations of the actual equipment (e.g., a mock-up).

Training Objective. A statement describing what is expected of the student at the end of instruction or any time during the instruction. This statement describes the behavior the student is expected to display. If possible, the objective should also contain a description of the conditions under which the expected behavior is to be displayed, providing such conditions are easily identifiable during the ISD analysis. In addition, if possible and to the extent practical, the criteria to which the student's performance will be compared to should be identified. However, this definition recognizes the difficulty in establishing both conditions and criteria early in the cycle.

Variable Input or Select Control. When an instructional feature or capability is labeled variable input or as a select control it means the capability must be entered by the instructor before the capability is automatically controlled by the trainer. For example, a criteria adjust that is variable input requires the instructor to set the value of the criteria before the exercise is started; i.e., the criteria value is not pre-programmed.

1.5 REFERENCES/DOCUMENTS.

The following reference/documents were used in the preparation of this ISD-derived training equipment design:
2.1 TRAINING OBJECTIVES, DESCRIPTION.

a. This paragraph and the subparagraphs below specify the characteristics of the intended target population and the training objectives to be attained by the student using the intended maintenance trainer.

b. This paragraph and the accompanying subparagraphs provide:
 (1) The identification of the AFSC(s) who will use the trainer.
 (2) A description of the characteristics of the target population.
 (3) A list of the tasks (and part-tasks) that are to be acquired and/or practiced on the maintenance trainer.
 (4) A list of the training objectives to be achieved by the target population using the maintenance trainer.

2.2 GENERAL INFORMATION.

a. The target population(s) to be trained is(are) ______ (AFSC). The specific characteristics of the target population(s) are specified in subparagraph 2.3 herein.

b. After successful completion of the training program, graduates shall have a speciality code of ______ (AFSC) and shall be capable of performing ______ level maintenance.

c. The maintenance trainer shall be used for ______ training.

d. The maintenance trainer shall be used in the following course(s):
2.3 TARGET POPULATION CHARACTERISTICS.

The intended target population shall have the characteristics specified in the subparagraphs below.

2.3.1 PREVIOUS WEAPON SYSTEM(S) EXPERIENCE.

The students using the maintenance trainer to acquire and/or practice the tasks (and part-tasks) specified in subparagraphs 2.4.1 and 2.4.2 of this specification and to achieve the training objectives specified in subparagraph 2.5 herein should have previous experience with the following weapon system(s).

2.3.2 NEGATIVE TRANSFER.

Because of the previous weapon system(s) experience specified in subparagraph 2.3.1 herein or because of previous training of the target population it is anticipated that the intended target population should have difficulty in learning the following skills and knowledge and/or tasks:
2.3.3 TARGET POPULATION ASSUMPTIONS. (Yes __ No __)

The intended target population(s) described herein should possess the following prerequisite behaviors:

__

__

__

__

2.4 TASKS AND MALFUNCTIONS.

a. The tasks (and part-tasks) to be acquired and/or practiced on the maintenance trainer are listed in subparagraph 2.4.1 of this specification.

b. The classes of malfunctions to be simulated for purposes of isolation and/or correction are specified in subparagraph 2.4.2 below.

2.4.1 TASKS.

The tasks and part-tasks to be acquired and/or practiced using the maintenance trainer are listed below:

__

__

__

__

2.4.2 MALFUNCTIONS.

The classes of malfunctions to be simulated on the maintenance trainer for the purpose of isolation and/or correction are listed below:

__
2.5 LEARNING OBJECTIVES.

The training objectives to be attained by the target population using the maintenance trainer are listed below:

3.0 TRAINING APPLICATION.

3.1 TRAINING APPLICATION, DESCRIPTION.

The subparagraphs below describe how the maintenance trainer shall be used by the intended target population(s) to acquire and/or practice the performance of the tasks (and part-tasks) specified in subparagraph 2.4.1 and 2.4.2 of this specification and to attain the training objectives specified in subparagraph 2.5 herein. The following subparagraphs also describe the characteristics of the learning environment.

3.2 CLASSES OF EXERCISES.

The maintenance trainer shall present the following classes of exercises to the intended target population(s):

3.2.1 CLASSES OF EXERCISES, DESCRIPTION.

Each of the exercises listed in subparagraph 3.2 above, is further described in the subparagraphs which follow.
3.2.1.1 WARM-UP AND INITIALIZATION ACTIVITIES.

a. Warm-Up. The maintenance trainer shall be "ready" for initialization within ___ minutes after power turn-on.

b. Initialization. Initialization shall include all the functions to be accomplished by the instructor to initialize, verify initialization, and configure the maintenance trainer for training. Initialization activities shall include the following:

__

__

__

c. After warm-up initialization shall take no longer than ___ minutes.

3.2.1.2 TRAINER, INSTRUCTOR, AND STUDENT ACTIONS.

Each of the classes of student exercises specified in subparagraph 3.2 herein, is further described in this subparagraph by specifying the activities of the trainer, the instructor, and the student during execution of the exercise:

a. Student Activities.

__

__

__

b. Instructor Activities.

__

__

__

c. Trainer Action and Reaction.

__

__

__
3.2.1.3 ADDITION OF EXERCISES/MALFUNCTIONS. (Yes ___ No ___)

a. The maintenance trainer shall provide a means for adding the following future exercises and/or malfunctions:

b. The addition of future exercises/malfunctions shall be made by

3.3 TRAINING ENVIRONMENT.

The subparagraphs to follow describe the conditions in which the maintenance trainer shall be used.

3.3.1 INSTRUCTOR INFORMATION.

a. The maintenance trainer shall be designed to be operated by ___ (number) instructors. Operation shall include warm-up, initialization, monitoring, and observing students during any of the exercises specified in subparagraph 3.2 herein.

3.3.2 UTILIZATION.

The trainer shall provide efficient training as described in subparagraphs 3.2.1.1 and 3.2.1.2 herein. The trainer will be used in the following situations:

a. A classroom demonstration situation having an instructor student ratio of ___.

b. A student practice situation involving no more than ___ students.
c. Approximately ___% of the time spent on the trainer by the student in a practice situation shall be without instructor assistance.

d. Approximately ___% of the time spent on the trainer by the student in a practice situation shall require instructor assistance.

e. Approximately ___% of the total instruction time shall be spent by the student on the trainer.

3.3.3 SUPPORT EQUIPMENT, TOOLS, AND JOB MATERIALS.

To engage in the exercises specified in subparagraph 3.2 herein, the following support equipment, tools, and job materials shall be used:

3.3.4 OTHER INSTRUCTIONAL EQUIPMENT AND MATERIAL. (Yes __ No ___)

The following instructional equipment and materials shall be used by the student while engaged in the exercise specified herein:

4.0 SIMULATION CHARACTERISTICS.

4.1 SIMULATION CHARACTERISTICS, DESCRIPTION.

The subparagraphs below specify the physical and functional characteristics of the components that shall be represented on the maintenance trainer. The following subparagraphs also specify the aspects of the environment that shall be simulated.
4.2 PICTURES (SKETCHES AND/OR PHOTOGRAPHS) OF THE
SYSTEM(S)/SUBSYSTEM(S) BEING SIMULATED. (Yes ___ No ___)

A pictorial representation of the system/subsystem being simulated is provided below: _________________________________.

4.2.1 MAJOR COMPONENT LIST.

The maintenance trainer shall be composed of the following major components:

__
__
__

4.2.2 SIMULATED DISPLAYS, CONTROLS, INDICATORS, SRUs, LRU's, AND PARTS.

Below is a list of all the displays, controls, indicators, SRUs, LRU's, and parts that shall be simulated and contained on the maintenance trainer:

__
__
__

4.2.3 SIMULATED SUPPORT EQUIPMENT.

Following is a list of all support equipment that shall be simulated.

__
__
__

4.3 FIDELITY LEVELS.

The maintenance trainer shall represent the system(s)/subsystem(s) specified in subparagraph 1.2a of this specification to the extent necessary to acquire and/or practice the tasks (and part-tasks) specified herein, to identify and/or correct the
malfonctions specified herein, and to attain the training objectives specified in subparagraph 2.5 of this specification. The level of fidelity necessary is further specified below in terms of the characteristics of displays, controls, etc., and the characteristics of the environment.

4.3.1 CHARACTERISTICS OF DISPLAYS AND CONTROLS.

a. The displays, controls, indicators, LRUs, SRUs, and parts listed in subparagraph 4.2.2 herein shall have the physical and functional characteristics specified in Table 4.0. (Insert Table 4.0.)

b. The system(s)/subsystem(s) being simulated shall sense the activation of the controls specified herein and provide corresponding output displays and/or reactions as specified herein. The system(s)/subsystem(s) being simulated shall be simulated without the insertion of special lesson procedures unless otherwise stated in this specification.

4.3.1.1 CHARACTERISTICS OF SUPPORT EQUIPMENT AND TOOLS.

The support equipment and tools specified in subparagraph 4.2.3 herein shall have the physical and functional characteristics specified below.

4.3.2 ENVIRONMENTAL FIDELITY. (Yes No ___.)

The following aspect of the job performance environment shall be simulated:

4.3.3 PROBABLE ENGINEERING CHANGES. (Yes No ___.)

The maintenance trainer shall be designed to accommodate the possible and probable engineering changes specified within this subparagraph:
4.4 OFF-THE-SHELF DISPLAY, CONTROLS, INDICATORS, LRUs, SRUs, AND PARTS.

a. Those displays, controls, indicators, LRUs, SRUs, and parts listed in subparagraph 4.2.2 of this specification and described in subparagraph 4.3.1 of this specification which are not identified in this subparagraph as off-the-shelf and/or standard items will be the responsibility of the contractor to furnish.

b. Those displays, controls, indicators, LRUs, SRUs, and parts listed in this subparagraph shall be interfaced with the other displays, controls, indicators, LRUs, SRUs, and parts to the extent necessary for the operational use of the maintenance trainer. The contractor shall have the responsibility of assuring the interface.

c. A list of off-the-shelf or standard items is provided below:

5.0 INSTRUCTIONAL FEATURES.

5.1 INSTRUCTIONAL FEATURES, DESCRIPTION.

The subparagraphs below specify the instructional capabilities of the maintenance trainer and provide a list of the instructional features controls which shall be required on the maintenance trainer.
5.2 INSTRUCTIONAL CAPABILITIES.

Accomplishment of the training objectives specified in subparagraph 2.5 of this specification requires that the maintenance trainer have several instructional capabilities. The maintenance trainer shall be provided with an instructional system which monitors, controls, evaluates, and provides instructor/student augmented feedback as specified in Table 5.0 and as clarified in the subparagraphs below. (Insert Table 5.0.)

5.2.1 FREEZE CAPABILITY. (Yes ___ No ___)

a. The maintenance trainer shall freeze under the following conditions:

b. The freeze shall cause all displays, controls, indicators, etc. to remain fixed in their position at the moment of the freeze.

c. The freeze shall be activated by:

d. When unfrozen (deactivated) the maintenance trainer shall:

24
5.2.2 MALFUNCTION SELECTION. (Yes ___ No ___)

a. Simulated malfunctions shall be selected in the following manner:

b. Once selected a malfunction's effects shall remain in effect until:

c. The maintenance trainer shall be designed to permit the creation of future malfunctions specified in subparagraphs 3.2.1.3 of this specification.

5.2.3 SIGN-IN CAPABILITY. (Yes ___ No ___)

a. During sign-in the trainer shall request the following information:

b. Sign-in information entry shall be the responsibility of:

5.2.4 NUMBER OF RESPONSES. (Yes ___ No ___)

There shall be ___ number of responses per student. All responses shall be stored for ___ weeks.

5.2.5 MONITORING INSTRUCTIONAL FEATURES. (Yes ___ No ___)

a. The following variables and/or responses shall be sensed/recorded by the trainer:

b. The following system values shall be monitored by the trainer:
c. The following criteria shall be pre-programmed and/or entered or adjusted by the instructor:

5.2.6 AUGMENTED FEEDBACK INSTRUCTIONAL FEATURES. (Yes No ___)

a. The following augmented information shall be provided in the feedback message presented by the trainer:

b. The feedback schedule for each objective/exercise shall be as follows:

5.2.7 NEXT ACTIVITY FEATURES. (Yes No ___)

After an objective/exercise has been completed by the student the next activity introduced to the student shall be as follows.

5.2.8 STIMULUS INSTRUCTIONAL FEATURES. (Yes No ___)

a. The trainer shall present the stimuli for the objectives/exercises specified below at the rates specified below:

26
b. The trainer shall present the stimuli for the objectives/exercises below with the ratio of signal-to-noise specified below:

5.2.9 CUE ENHANCEMENT FEATURES. (Yes No ___.)

The following cues shall be enhanced during the following objectives/exercises:

5.3 STUDENT STATION(S). (Yes No ___.)

5.3.1 STUDENT STATION, NUMBER AND KIND.

a. There shall be ___ kinds of student station(s).

b. There shall be ___ of kind one, ___ of kind two.

5.3.2 STUDENT STATION: DISPLAYS, CONTROL, AND INSTRUCTIONAL EQUIPMENT.

In addition to the displays, controls, indicators, and parts specified in subparagraph 4.2.2 herein, the student station shall contain the following:
5.4 INSTRUCTOR STATION(S). (Yes __ No __.)

5.4.1 INSTRUCTOR STATION(S), NUMBER AND KIND.

a. There shall be ____ kinds of instructor stations.

b. There shall be ____ of kind one, ____ of kind two.

5.4.2 INSTRUCTOR STATION(S): DISPLAYS AND CONTROLS.

The instructor station shall contain the following displays and controls:

6.0 TRAINER CONFIGURATION.

6.1 TRAINER CONFIGURATION, DESCRIPTION.

The subparagraphs below specify the configuration of the maintenance trainer.

6.2 STUDENT STATION, INSTRUCTOR STATION RELATIONSHIP. (Yes __ No __.)

a. External Interface:

b. Internal Interface:

 c. Other:

| |
6.3 OTHER CONFIGURATION CONSIDERATIONS. (Yes ___ No ___)

7.0 NOTES.
APPENDIX

ISD-DERIVED TRAINING EQUIPMENT DESIGN HANDBOOK:
RATIONALE AND GUIDANCE, PARAMETERS, AND LESSONS LEARNED

0.0 SCOPE.

0.1 SCOPE, GENERAL.

This appendix contains the instructions that are necessary to tailor the ISD-Derived Training Equipment Design model to a specific application.

0.2 PURPOSE OF MODEL.

a. A specific application of the model is prepared by the ISD analyst or the ISD team. The model is designed to communicate to the SPO Acquisition Manager and engineer the training equipment design decisions and requirements that resulted from the ISD analysis.

b. Within the SPO the specific application of the model is verified, augmented through appropriate engineering design studies and consultation and is consolidated into a complete procurement specification. The specification prepared by SPO personnel becomes the statement of work for a formal source selection process to identify and contract with the most cost-efficient training equipment manufacturer. The model has been configured to be part of the specification prepared by SPO personnel. This approach minimizes the potential for distortions of the ISD analyst's design and guarantees that the results of the ISD analysis are precisely communicated to the training equipment manufacturing community.

0.3 USE.

a. This appendix is designed to assist the ISD analyst/team in tailoring the model for documenting training equipment design to a specific application. The model contains blanks that must be filled and appropriate subparagraphs that might be selected to specify the design requirements of the training equipment. Any subparagraph marked "NO" in the model means the subparagraph and its accompanying subparagraphs are not appropriate.
b. This appendix does not provide a procedure for making the training equipment decisions. The procedures for making the training equipment decisions are documented in Maintenance Training Simulator Design and Acquisition - Handbook of ISD Procedures for Design and Documentation.

c. It is not a requirement to complete the model or a specific application of the model in the order in which the paragraphs and subparagraphs appear in the model; i.e., there is no implied priority in the sequence of the paragraphs contained in the model.

d. The information supplied by the ISD analyst in applying the model must be tempered by the data base available to the ISD analyst and the time available to perform the ISD analysis. Often because of these restrictions the information supplied by the analysts will be incomplete and thus not necessarily specific to the level of detail desired. For example, often the list provided will only be partial lists. However, the ISD analyst should make an attempt to communicate all the decisions and assumptions known to him at the time of completing this model for a specific application.

e. The instructions provided in this appendix assume the procedures specified in Maintenance Training Simulator Design and Acquisition - Handbook of ISD Procedures for Design and Documentation have been followed. However, it should be recognized that any ISD procedure can be utilized. It should be recalled that the purpose of the model is to communicate to the vendor and SPO Acquisition Manager the functional characteristics of the intended maintenance trainer. The communication of these characteristics is not dependent upon the procedures used to derive the characteristics.

0.4 Format.

a. The following paragraphs and subparagraphs carry the same numerical designation as the paragraphs and subparagraphs in the model.

b. This appendix contains rationales for each paragraph and subparagraph in the model. The rationale discusses the purpose the paragraph or subparagraph serves; i.e., the reason why the paragraph or subparagraph appears in the model. Following the rationale is a brief discussion of how the blanks are to be filled; i.e., it suggests wording or concepts for the blanks and describes the sources that might be used in filling the
blanks. Each paragraph or subparagraph contains a section on "Lessons Learned," which reflects any warnings or cautions the ISD analyst/team should observe.

1.0 SCOPE.
Rationale and Guidance: This paragraph and accompanying subparagraphs describe the content of the model.

Parameters: No blanks to be completed by the ISD analyst.

Lessons Learned: None.

1.1 SCOPE, GENERAL.
Rationale and Guidance: This subparagraph lists the major paragraphs in the model, so that the user can easily locate major paragraphs.

Parameters: No blanks to be completed by the ISD analyst.

Lessons Learned: None.

1.2 PERFORMANCE ENVIRONMENT TO BE SIMULATED.
Rationale and Guidance: This subparagraph specifies the system(s)/subsystem(s) to be simulated and specifies the general purpose of the proposed or intended maintenance trainer. This information needs to be clearly communicated to the vendor. The philosophy adopted by the model is to maximize the degree of engineering latitude left to the trainer manufacturer without jeopardizing training effectiveness. Thus the vendor needs to know this information to design the maintenance trainer.

Parameters: This subparagraph contains two blanks to be completed by the ISD analyst.

a. "This specification establishes the training equipment design requirements for a maintenance trainer which shall represent _______ system(s)/subsystem(s) of _________."

In the first blank insert the name of the system or subsystem to be simulated; e.g., the flight control system.

In the second blank insert the name of the weapon system; e.g., the F-16 aircraft.
b. "The purpose of the trainer is to provide maintenance training which is directly transferable to the system(s)/subsystem(s) specified in Item a above in the following task areas:

Insert the task areas to be acquired and/or practiced on the intended maintenance trainer. Do not specify all the tasks, only the task areas. Tasks are innumerated in subparagraph 2.4.1 of the model. Task areas are the groups of tasks identified and organized in Step 1, Substep 6 of the ISD procedures.

Lessons Learned: None.

1.3 BRIEF DESCRIPTION OF REQUIREMENTS.

Rationale and Guidance: This subparagraph and the accompanying subparagraphs briefly describe the major paragraphs specified in subparagraph 1.1 of the model.

Parameters: No blanks to be completed by the ISD analyst.

Lessons Learned: The model, although written in a military specification format, does not follow the format of either MIL-T-81821 or MIL-STD-490. As such the subparagraphs accompanying this subparagraph are needed and facilitate quick and easy location of the specified requirements and design decisions.

1.3.1 TRAINING OBJECTIVES, GENERAL.

Rationale and Guidance: This subparagraph briefly describes the contents of paragraph 2.0 of the model. This subparagraph is included to assist the ISD analyst, the SPO Acquisition Manager and the engineer to easily and quickly locate requirements in the model.

Parameters: No blanks to be completed by the ISD analyst.

Lessons Learned: None.

1.3.2 TRAINING APPLICATION, GENERAL.

Rationale and Guidance: This subparagraph briefly describes the contents of paragraph 3.0 of the model. This subparagraph is included to assist the users to easily and quickly locate requirements in the model.

Parameters: No blanks to be completed by ISD analyst.

Lessons Learned: None.
1.3.3 SIMULATION CHARACTERISTICS, GENERAL.

Rationale and Guidance: This subparagraph briefly describes the contents of paragraph 4.0 of the model. This subparagraph is included to assist the users to easily and quickly locate requirements in the model.

Parameters: No blanks to be completed by the ISD analyst.

Lessons Learned: None.

1.3.4 INSTRUCTIONAL FEATURES, GENERAL.

Rationale and Guidance: This subparagraph briefly describes the contents of paragraph 5.0 of the model. This subparagraph is included to assist the users to easily and quickly locate requirements in the model.

Parameters: No blanks to be completed in ISD analyst.

Lessons Learned: None.

1.3.5 TRAINER CONFIGURATION, GENERAL.

Rationale and Guidance: This subparagraph briefly describes the contents of paragraph 6.0 of the model. This subparagraph is included to assist the user to easily and quickly locate requirements in the model.

Parameters: No blanks to be completed by ISD analyst.

Lessons Learned: None.

1.4 DEFINITIONS.

Rationale and Guidance: This subparagraph contains a list of the definitions of the terms used in the model. Many of the terms used in the model have different meanings to different people; e.g., the vendor may have a different meaning of augmented feedback than the ISD analyst. This subparagraph, then establishes the meanings to be applied.

Parameters: No blanks to be completed by the ISD analyst.

Lessons Learned: If you find it necessary to alter or change the definitions, be sure to change this subparagraph. It is essential
that the ISD analyst, SPO Acquisition Manager, engineer, and vendor all use the same set of definitions. A lack of standard definitions will increase the likelihood that training equipment design requirements will be misunderstood.

1.5 REFERENCES/DOCUMENTS.

Rationale and Guidance: It will be helpful to the SPO Acquisition Manager and the engineer if a list of reference documents is specified. This will assure that everyone involved is using the same data basis as the ISD analyst.

Parameters: Insert the title of any references or documents that were used to establish the training equipment design. These might include such things as:

a. Logistical Support Analysis (LSA) documents.
b. Technical Orders (T.O.s).
c. Other Military Specifications or Standards which were used in preparing this specific application.

Lessons Learned: None.

2.0 TRAINING OBJECTIVES.

Rationale and Guidance: This paragraph describes the contents of subparagraphs to follow. It is the intent of this paragraph and the accompanying subparagraphs to communicate to the SPO Acquisition Manager, engineer, and vendor the characteristics of the target population and the specific training objectives to be attained.

Parameters: No blanks to be completed by the ISD analyst; however, the subparagraphs to follow contain blanks.

Lessons Learned: None.

2.1 TRAINING OBJECTIVES, DESCRIPTION.

Rationale and Guidance: This subparagraph lists the specific contents of this section of the model.

Parameters: No blanks to be completed by ISD analyst.

Lessons Learned: None.
2.2 GENERAL INFORMATION.

Rationale and Guidance: This subparagraph contains general information which the SPO Acquisition Manager, engineer, and vendor will find useful. It describes the target population and the type of graduates expected from the training programming in which the maintenance trainer will be used.

Parameters: This subparagraph contains five blanks to be completed by the ISD analyst. The ISD analyst should only complete the blanks for which he has information. If the information requested is unknown then specify "Unknown" or "To be determined."

a. "The target population(s) to be trained is(are) (AFSC)."

Insert the predominate Air Force Specialty Code (AFSC) of the entering students, the target population. If there is more than one predominate AFSC enter more than one. This information will help the readers to understand the previous training experienced by the target population(s). Such information influences the design of the training equipment and forms the basis of many of the decisions made by the ISD analyst(s); i.e., many of the decisions made can be justified by clearly specifying the AFSC of the target population. The ISD analyst will normally receive this information from the using command.

b. "After successful completion of the training program, graduates shall have a specialty code of (AFSC) and shall be capable of performing level maintenance."

In the first blank enter the AFSC of successful graduates of the training program, where the maintenance trainer will be used. If more than one apply enter more than one. This specialty code indicates to the vendor the type of personnel that will be required to support the operational system in the field and as such indicates the terminal (end) goals of the training equipment.

In the second blank enter the level of maintenance the graduates will be expected to perform on the operational equipment; I = Intermediate Level, O = Organization Level.

c. "The maintenance trainer shall be used for ____ training."
Enter "Field," "Resident," and/or "Depot" training, if known. (If not known enter "Unknown"). Such information will influence the design and construction of the maintenance trainer; e.g., it will assist the engineer to determine the durability of the trainer.

If more than one AFSC is specified in Item b above and if more than type of training is indicated in this blank then be sure to indicate which type of training applies to which AFSC.

d. "The maintenance trainer shall be used in the following course(s): ____________________________ ."

Enter the course titles in which the trainer is expected to be used (if known). (If not known enter "Unknown"). If more than one AFSC was specified in Item b above, beside each course in parentheses enter the AFSC to which the course applies.

c. "The course(s) specified above shall be taught at the following location(s) ____________________________ ."

Enter the location(s) of the course(s) specified in Item d; i.e., enter facility name, city, state, and country. This information will help the engineer determine such things as the power supply and source that are available. It will also help the engineer to determine the shipping conditions and the operational environment of the trainer. If information is not known enter "Unknown."

Lessons Learned: None.

2.3 TARGET POPULATION CHARACTERISTICS.

Rationale and Guidance: Characteristics of the target population greatly influence the design of the trainer. It is helpful if the vendor knows as much about the target population as possible.

Subparagraph 2.2, Item a, specifies the predominant AFSC(s) of the target population; often this is not enough information. Frequently the ISD analyst knows more about the target population; this additional information should be recorded in the subparagraphs below. Subparagraph 2.3.1, PREVIOUS WEAPON SYSTEM(S) EXPERIENCE, if known, will assist the vendor in understanding why certain tasks were selected to be in the training program, while other tasks were not. Subparagraph 2.3.2, NEGATIVE TRANSFER, alerts the vendor to potential learning difficulties that the target population might have; thus, it is anticipated he will be able to devote special consideration to these areas when he
designs the trainer. Subparagraph 2.3.3, TARGET POPULATION
ASSUMPTIONS, provides the ISD analyst space to record other known
information about the target population which was not appropriate
to record or document in the other two subparagraphs.

Parameters: No blanks to be completed by the ISD analyst.

Lessons Learned: This is a new requirement.

2.3.1 PREVIOUS WEAPON SYSTEM(S) EXPERIENCE.

Rationale and Guidance: One way to describe the target population
is to specify the type of experiences they have been exposed to in
the past. If the target population has had experience with weapon
systems which are similar to the weapon system(s) under consider-
ation, these weapon systems should be listed in this subparagraph.
This information is not intended to be a requirement as much as it
is to provide guidance and background to the vendor. This
information also clarifies many of the decisions made by the ISD
analyst.

Parameters: Enter any previous weapon system(s) which the target
population has been exposed to which is(are) similar to the
weapons system(s) under consideration. If more than one predom-
inate AFSC has been specified in subparagraph 2.2, Item a, then
beside each weapon system listed in this subparagraph indicate,
in parentheses, which AFSC has been exposed to that weapon system.

Lessons Learned: None.

2.3.2 NEGATIVE TRANSFER.

Rationale and Guidance: Exposure to previous weapon systems can
inhibit the learning of new knowledge or the acquisition of new
skills. In the new weapon system tasks might be performed
slightly different than performed on the previous weapon system.
Thus exposure to the previous weapon system might interfere with
the target population learning the task on the new weapon system.
These instances of negative transfer greatly influence the design
of the training equipment. That is, the trainer should be
designed to minimize or at least account for the problems associ-
ated with a negative transfer situation. By specifying these
instances of negative transfer, the vendor is better able to
design the trainer so that it is optimally effective.

Parameters: Enter the instances of negative transfer. Use FORMS
1 and 2 as your source. Recall that one of the questions asked is
"Is negative transfer likely." For each instance the question is answered Yes, an entry should be made in this subparagraph. Be sure to describe carefully the occurrence of negative transfer so that the vendor can easily understand the potential training problem. If more than one AFSC has been specified in subparagraph 2.2, Item a, then indicate which AFSC is likely to have the specified negative transfer problem.

Lessons Learned: This is a new requirement.

2.3.3 TARGET POPULATION ASSUMPTIONS.

Rationale and Guidance: This is an optional subparagraph. It should only be used if you have made any assumptions about the entering behaviors of the target population which have not been specified in subparagraphs 2.3.1 or 2.3.2. If you have not made any assumptions enter a check beside "NO." If you have made any assumptions it is reasonable to record these assumptions so that it is clear to everyone what assumptions were made during the ISD analysis.

Parameters: Enter any assumptions made about the behaviors of the target population. These should be entered as skill and knowledge statements; e.g., the target population can operate test unit XXXZZZ. Only list the skills and knowledge which are known and assumed to be outside the normal range of the specified AFSC(s).

Lessons Learned: This is a new requirement.

2.4 TASKS AND MALFUNCTIONS.

Rationale and Guidance: This subparagraph and its accompanying subparagraph provide a means for documenting the tasks that shall be acquired and/or practiced on the maintenance trainer and the malfunctions that are to be isolated and/or corrected using the trainer. This is a header paragraph only.

Parameters: No blanks to be completed by the ISD analyst.

Lessons Learned: None.

2.4.1 TASKS.

Rationale and Guidance: This subparagraph requires the ISD analyst to list the tasks (and part-tasks) to be acquired and/or practiced on the interded maintenance trainer. Tasks (and part-tasks) which are not to be acquired and/or practiced on the maintenance trainer should not be included in this subparagraph.
Parameters: Enter the task titles that will be acquired and/or practiced on the trainer. If only part of a task is to be acquired and/or practiced using the trainer, specify the entire task and clearly indicate the part(s) which is(are) to be acquired and/or practiced on the trainer. For convenience, you may elect to present the information in table form.

<table>
<thead>
<tr>
<th>TASK NO.</th>
<th>TASK TITLE</th>
<th>T.O. REF</th>
<th>AFSC</th>
<th>COURSE</th>
</tr>
</thead>
</table>

For each task or part-task, whether reported in table form or not, specify the task number (same as on FORM 1), task title (same as on FORM 1), Technical Order (T.O.) reference (same as on FORM 1), the AFSC that will be required to acquire and/or practice the task (required if more than one AFSC was specified in subparagraph 2.2., Item a), and the course title the task will be taught in (only required if more than one course is specified in subparagraph 2.2, Item d). The tasks should be listed in hierarchical fashion, starting with function, then procedure. Tasks should be properly grouped within the hierarchy. Tasks and part-tasks to be practiced and/or acquired on the maintenance trainer are determined following the procedures in the Handbook of ISD procedures. Do not provide a complete LSA or task description — this information will not be useful at this time. However, you may consider providing such descriptions or LSA to the vendor or contractor upon award of the contract.

NOTE: Be sure to list the T.O.s referenced in this subparagraph in subparagraph 1.5.

Lessons Learned: Completion of this subparagraph does not require a listing of the step/activities involved in each task; thus, it is important to clearly phrase the task title and the number of the task, so that easy reference can be made to a FORM 1 or an LSA.
2.4.2 MALFUNCTIONS.

Rationale and Guidance: It is necessary for the vendor to know what types (classes) of malfunctions are to be simulated by the maintenance trainer. This subparagraph is not requesting each specific malfunction, only classes of malfunctions; e.g., you need only specify the "isolation of fuses" and not the isolation of specific fuses such as "isolation of fuse 36 X DL," providing that all the fuses are basically the same. If the fuses are different they should be listed as a separate malfunction class. The list provided should be a representative sample of the possible malfunctions.

The list you provide should be organized in a systematic fashion; e.g., malfunctions which are to be isolated to a certain subsystem should be listed before those malfunctions which can be isolated to a given LRU or SRU within that subsystem. Thus, in presenting the list you may find it convenient to nest malfunctions within malfunctions.

When generating the list of malfunctions from the ISD analysis be careful to specify if the malfunction is only to be isolated by the target population or to be isolated and corrected. If the malfunction is to be corrected by physical manipulation (e.g., actually replacing a defective fuse) then this must be considered in the design of the maintenance trainer. If the malfunction once isolated is only corrected by the student pressing a button (e.g., indicating or signaling the removal and replacement of the fuse), then the design of the trainer would be different.

It should also be apparent that malfunction isolation can take on many forms. For example, isolating malfunctions following detailed T.O.s is different than isolating a malfunction which is not proceduralized in a T.O. The latter type of isolation behavior requires knowledge of the logic of the system and perhaps even knowledge of the software driving the system. Thus, when listing the malfunctions you must make it clear what type of isolation behavior is required.

Parameters: Enter a list of malfunctions. The classes of malfunctions listed should be derived using the procedures in "Maintenance Simulator Design and Acquisition - Handbook of ISD Procedures and Documentation."

For ease of presentation the information requested may be presented in table form.
For each malfunction, whether reported in table form or not, specify if the malfunction is to be isolated (if yes, indicate if adequate T.O. exists), if the malfunction is to be corrected (if yes, indicate if physical removal and replacement is required or if removal and replacement can be just signaled by the student), the AFSC that will be required to isolate and/or correct the malfunction, and the course title in which the malfunction will be presented. The latter two items are only required if the trainer is being designed for more than one AFSC and if the trainer will be used in more than one course.

Lessons Learned: Specifying the malfunctions to be simulated is one of the most critical tasks in preparing and communicating the training equipment design. Experience has indicated that trainers frequently are manufactured with inadequate malfunction isolation and/or correction capabilities. Often in the past the malfunctions to be simulated by the trainer have been determined by the vendor, based upon the likelihood and frequency of the malfunction in the operational equipment. As the operational equipment is in service longer, new malfunctions often emerge, malfunctions which were not originally anticipated and designed into the training equipment. This severely limits the utility of the maintenance trainer. The model recognizes that it is difficult to "see" into the future, however, this problem is somewhat minimized by completing subparagraph 3.2.1.3. Other problems or complaints have centered around the nature of the malfunctions specified by the vendor. In the past there has been an attempt to specify the number of malfunctions the maintenance trainer should simulate (i.e., the number of malfunctions the vendor should build into the trainer). This has often resulted in the vendor selecting malfunctions which are basically the same, or are considered trivial, just to meet the number requirement. It is essential that the list developed for this subparagraph clearly communicates that a representative sample has been selected and that trivial malfunctions are not to be included.
2.5 LEARNING OBJECTIVES.

Rationale and Guidance: To properly design a maintenance trainer it is essential for the vendor to know what learning objectives are going to be achieved using the trainer. When specifying the objectives be sure to describe:

- the behavior expected of the student.
- the condition under which the behavior is expected (if known).
- the criteria of successful performance (if known).

Parameters: Enter the training objectives using FORMS 4 and FORMS 2 of the TSO procedural Handbook as a source. FORMS 2 should provide the behavior as well as any conditions, while FORM 4 provides information concerning possible criteria. For ease of presentation consider presenting the objectives in table form.

<table>
<thead>
<tr>
<th>BEHAVIOR</th>
<th>CONDITION</th>
<th>CRITERIA</th>
<th>AFSC</th>
<th>COURSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If more than one AFSC will be using the trainer be sure to specify what objectives are to be attained by what AFSC. If the trainer will be used in more than one course, be sure to specify in what course the specific objective will be presented.

Lessons Learned: None.

3.5 TRAINING APPLICATION.

Rationale and Guidance: The subparagraphs to this paragraph describe how the maintenance trainer will be used to accomplish the specified objectives. The intended use of the trainer influences the design of the trainer. This paragraph is only a header paragraph.

Parameters: No blanks to be completed by the ISD analyst.

Lessons Learned: None.
3.1 TRAINING APPLICATION, DESCRIPTION.

Rationale and Guidance: This subparagraph describes the content of the subparagraphs to follow.

Parameters: No blanks to be completed by the ISD analyst.

Lessons Learned: None.

3.2 CLASSES OF EXERCISES.

Rationale and Guidance: The purpose of this subparagraph is to communicate to the vendor the types of exercises that the maintenance trainer shall present to the student. This subparagraph only requests a list of the classes of exercises. The exercises listed in this subparagraph are further described in subparagraphs 3.2.1, 3.2.1.1, and 3.2.1.2.

Parameters: Enter the list of exercises to be presented to the student via the maintenance trainer. The preliminary utilization plan developed during the ISD process should serve as the primary source for the contents of this subparagraph. You need not enter specific exercises but only classes of exercises. Classes of exercises are defined as a group of training objectives, tasks to be acquired and/or practiced, and/or malfunctions to be isolated and/or corrected. For ease of presentation consider presenting this information in table form.

<table>
<thead>
<tr>
<th>EXERCISE</th>
<th>OBJECTIVES, TASKS AND MALFUNCTIONS</th>
<th>AFSC</th>
<th>COURSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(enter title)</td>
<td>(enter task #, objective #, and malfunction #)</td>
<td>(use only if more than one AFSC)</td>
<td>(use only if more than one course)</td>
</tr>
</tbody>
</table>

Lessons Learned: None. This is a new requirement.

3.2.1 CLASSES OF EXERCISES, DESCRIPTION.

Rationale and Guidance: This is only a header subparagraph indicating that the next three subparagraphs describe the exercises listed in subparagraph 3.2.
Parameters: No blanks to be completed by the ISD analyst.

Lessons Learned: None.

1.2.1.1 WARM-UP AND Initialization ACTIVITIES.

Rationale and Guidance: This subparagraph assumes that the warm-up and initialization activities will be the same across all exercises. The information requested in this subparagraph is the length of time of warm-up, a list of the initialization activities, and the length of time of the initialization activities. This information is included in the model only to provide guidance to the vendor.

Parameters: There are three blanks to be completed by the ISD analyst.

a. "Warm-Up. The maintenance trainer shall be 'ready' for initialization within ___ minutes after power turn-on.

Enter the maximum amount of time desired for warm-up in minutes. When determining warm-up time consider the following factors:

- the time available between class session (the end of one class and the beginning of the next class).
- the time available between exercises within a given class session (if the trainer is to be powered down between exercises).
- operating environmental condition (a colder environment will require a longer warm-up).

A review of maintenance trainer specifications indicates that usual time allotted for warm-up in a normal classroom environment is approximately 15 minutes.

b. "Initialization. Initialization shall include all the functions to be accomplished by the instructor to initialize, verify initialization and configure the maintenance trainer for training. Initialization activities shall include the following: __
Enter the desired initialization activities. The following activities should be considered.

- Loading the operational (application) program for the exercise being presented to the student.
- Verifying the loading of the operational (application) program.
- Selecting a given exercise from a menu (pre-programmed).
- Selecting a given malfunction from a menu (pre-programmed).
- Setting parameters (electronically or mechanically) to create a malfunction condition not pre-programmed.
- Activating the interfaces between components (e.g., turn-on of printer).
- Selecting and setting applicable instructional features.
- Receiving a set of directions indicating the value of displays during initialization.
- Loading 35mm slide projector.
- Loading and running a diagnostic program.

Often the selection of initialization activities is left to vendor or contractor; you should only enter those activities which you want and desire. If you are going to leave the selection of the initialization activities to the vendor or contractor, delete the last sentence in item b and substitute "The contractor shall determine the initialization activities."

c. "After warm-up initialization shall take no longer than ______ minutes."

Insert maximum number of minutes for instructor to complete the initialization activities. Consider the same factors as in Item a, above, plus the time devoted to warm-up. Note that
warm-up time plus initialization time equals the number of minutes it will take to have the trainer ready for training.

Lessons Learned: None.

1.2.1.2 TRAINER, INSTRUCTOR, AND STUDENT ACTIVITIES.

Rationale and Guidance: Subparagraph 3.2 specified the classes of exercises to be presented to the student. This subparagraph describes each of these exercises in more detail. For each exercise specified describe the activities of students, the activities of the instructor, the actions and reactions of trainer to student actions, and any special features the trainer must have. If all the exercises are to be run in the same manner then only one scenario needs to be entered.

This information will help the vendor visualize how the trainer will be used. These descriptions should be as brief as possible, but should clearly communicate to the vendor how the intended trainer is to be used.

Parameters: There are four blanks to be completed by the ISD analyst for each class of exercise specified in subparagraph 3.2.

a. "Student Activities"

Enter the activities that the student will be engaged in during the given exercise. Consider the following:

. Location of T.O.s.
. Use of T.O.s, if exercise is primarily procedural.
. Use of job aids and test equipment.
. Need for remedial instruction if student performs poorly.

Consider the following paragraph as an example.

(1) When presented with the exercise the trainer will inform the student of the objective he must achieve.

(2) The student will locate the appropriate T.O.

(3) The student will follow the procedures in the T.O., using the necessary support equipment.
For additional information (e.g., the specific location of a component or visual of the actual component) the student will request a specific slide by pressing a button next to the component; the slide will then appear.

After completion of the exercise the student will receive augmented feedback information on his performance.

b. "Instructor Activities"

Enter the activities of the instructor during the given exercise. Consider the following:

- Observation of the student.
- Augmented feedback obligations.
- Monitoring the system (status of displays and controls).
- Freeze the system, if a fatal error occurs, etc.

Do not include initialization activities since they are presented in subparagraph 3.2.1.1.

c. "Trainer Action and Reaction"

Enter any actions or reactions of the trainer during the given exercise. For example, when the student sets the XYZ control, movement of the leading edge flaps will be shown on a display in degrees.

d. "Special Features"

Enter any special features that the trainer must have for the given exercise. Consider the following:

- Monitoring capabilities.
- Ability to set rate of stimulus presentation.
- Ability to highlight cues.
- Ability to freeze automatically (or on demand).
- Ability to select next activity after completion of the exercise.
- Ability to print a report of student's performance.
NOTE: Specific instructional features are also discussed in paragraph 5.0.

It is not necessary to separate in the text you provide, student activities, instructor activities, trainer actions, and special features; i.e., the narrative you provide must only discuss these issues but the discussion can be organized in any manner you deem appropriate. Recall that the purpose of this subparagraph is to provide information to the vendor concerning how you feel or see the intended trainer being used.

Lessons Learned: The design requirement specified here usually appears in paragraph 3.1 of the specification prepared by the SPO (SIMULATOR DESCRIPTION). In the past the approach has been to generalize across all exercises presented to the student. This approach is new since it involves specifying requirements for each class of practical exercise, if the scenario is different for each exercise or student problem.

3.2.1.3 ADDITION OF EXERCISES/MALFUNCTIONS.

Rationale and Guidance: The purpose of this subparagraph is to help the engineer determine the future growth requirements of the trainer. This is a "Yes" or "No" subparagraph; if you can anticipate the need to have the trainer present more exercises/malfunctions in the future check "Yes," otherwise check "No."

It is often difficult and expensive to add new exercises/malfunctions to the trainer once the trainer has been designed and fabricated. Often the Air Force is locked into a given vendor for the addition of new exercises or malfunctions. To avoid this problem the trainer should be initially designed to permit the Air Force to add new exercises/malfunctions easily and relatively inexpensively. This can only be accomplished if the ISD analyst can foresee the type of exercise/malfunctions which might be needed in the future. Thus part of the cost of future additions can be absorbed into the initial design.

Parameters: There are two blanks which need to be completed by the ISD analyst.

a. "The maintenance trainer shall provide a means for adding the following future exercises and/or malfunctions: ________________ ."

Enter a list of future exercises and/or malfunctions (if known).
b. "The addition of future exercises/malfunctions shall be made by ____________________ ."

Enter the type of personnel (e.g., qualified Air Force personnel, instructor, etc.). Provide as much information as possible. Also you might want to provide a brief description of how the future malfunctions might be created; e.g., "All future malfunctions will be created by the instructor, setting system parameter values from a terminal or keyboard."

Lessons Learned: This is a new requirement.

3.3 TRAINING ENVIRONMENT

Rationale and Guidance: This is a header subparagraph which explains the purpose of the subparagraphs to follow. The purpose of the subparagraphs to follow is to define the training environment in which the trainer will be used. This information will assist the vendor in designing and constructing the trainer.

Parameters: No blank to be completed by the ISD analyst.

Lessons Learned: None.

3.3.1 INSTRUCTOR INFORMATION

Rationale and Guidance: The purpose of this subparagraph is to inform the vendor how many instructors will be required to conduct the exercises and to operate the trainer during a typical classroom session.

Parameters:

1. "The maintenance trainer shall be designed to be operated by ______ of instructors."

Enter the minimum number of instructors who will be required to operate the trainer during any one session. Specify the worst possible case.

Lessons Learned: None.

3.3.2 UTILIZATION

Rationale and Guidance: Typically trainers are used in two ways; they are used by the instructor to demonstrate a procedure and they are used by the student to practice and/or acquire specific...
skills. This subparagraph requests the instructor-to-student ratio in both of these situations, as well as the percent of student time spent on the trainer in practice with and without instructor assistance.

Parameters: There are five blanks to be completed by the ISD analyst.

a. "A classroom demonstration situation having an instructor to student ratio of _________________."

Enter the instructor to student ratio expected in the demonstration situation; e.g., 1 to 10 or 2 to 20. The first number entered should be consistent with subparagraph 3.3.1, Item a. If the maintenance trainer is not going to be used in a demonstration situation enter "Not Applicable." You should specify the worst possible case.

b. "A practice situation involving no more than ___ students."

Enter the number of students who will be using the trainer during any given exercise (practice situation); e.g., 2. Again you should specify the worst possible case.

c. "Approximately ___ % of the time spent on the trainer by the student in a practice situation will be without instructor assistance."

Enter the percent of time spent on the trainer by the student in a practice situation which will require instructor assistance (other than initialization). The intent here is to specify the amount of time the student will be practicing on his own without instructor assistance. If the percent of time requested is unknown, enter "Unknown."

d. "Approximately ___ % of the time spent on the trainer by the student in a practice situation will require instructor assistance."

Enter the percent of time spent on the trainer by the student which will require instructor assistance (e.g., requires the instructor to observe the student, give guidance to the student, etc.). If the percent of time requested is unknown, enter "Unknown."

e. "Approximately ___ % of the total instruction time will be spent by the student on the trainer."
Enter the percent of the total instruction time that the student will spend on the trainer. If unknown, enter "Unknown." Notice that items c and d above only make sense in terms of item e.

Lessons learned: Instructor to student ratio during a demonstration situation, as a rule of thumb, should not exceed 1 to 10 or 1/10.

3.3.3 SUPPORT EQUIPMENT, TOOLS, AND JOB MATERIALS.

Rationale and Guidance: The design of the trainer is influenced by the support equipment, tools, and job materials the student uses during the exercises specified in subparagraph 3.2. For example, the trainer might have to interface with support equipment (e.g., test equipment). In addition, the use of job materials might permit the trainer to be less sophisticated than if the job materials were not permitted; i.e., less instructional features might be built into the trainer when job aids are permitted.

Parameters: List all the support equipment, tools, and job materials that the student will be permitted to use during the exercises. Do not specify standard tools and do not specify T,0,5 (since T,0.5 are specified in subparagraph 2.4.1). For ease of presentation consider presenting this information in table form.

<table>
<thead>
<tr>
<th>EXERCISE</th>
<th>SUPPORT EQUIPMENT, TOOLS, JOB MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lessons Learned: None.

3.3.4 OTHER INSTRUCTIONAL EQUIPMENT AND MATERIALS.

Rationale and Guidance: The purpose of this subparagraph is to specify the instructional equipment that must interface with the trainer during the exercises specified in subparagraph 3.2.

Parameters: Enter a list of the instructional equipment and materials that must interface with the trainer; e.g., slide projector, video tape machine, video disc machines, etc. Do not include media or instructional equipment which are not going to interface with the trainer. If possible specify any special
requirements of the instructional equipment; e.g., random access slide projector, with access less than 0.05 seconds.

Lessons Learned: None.

4.0 SIMULATION CHARACTERISTICS.

Rationale and Guidance: This is a header paragraph.

Parameters: No blanks to be completed by the ISD analyst.

Lessons Learned: None.

4.1 SIMULATION CHARACTERISTICS, DESCRIPTION.

Rationale and Guidance: This subparagraph describes the content of the subparagraphs within this major paragraph.

Parameters: No blanks to be completed by the ISD analyst.

Lessons Learned: None.

4.2 PICTURES (SKETCHES AND/OR PHOTOGRAPHS) OF SIMULATED SYSTEM(S)/SUBSYSTEM(S).

Rationale and Guidance: The purpose of this subparagraph is to provide the vendor with an idea of what actual components look like. These are to be pictures or sketches of the actual equipment being represented by the trainer. These are not to be pictures or sketches of what the representation should look like. There should be a sketch and/or photograph of each component that is to be represented (e.g., each panel). The sketches can be hand drawn and should show all the necessary displays and controls. Also, if necessary, sketches of the inside of the component should be provided if internal components are to be represented on the trainer. Be sure all drawings are properly labeled. Also label each control/display, indicator, etc., illustrated on the sketches/drawings.

Parameters: Insert sketches or pictures of the actual components (SRUs, LRU's, parts, etc.) which are to be represented on the trainer.

Lessons Learned: None.
4.2.1 SIMULATED COMPONENT LIST.

Rationale and Guidance: This subparagraph should contain a list of the major components to be simulated (e.g., panels, drawers, etc.). Only list the major components, do not list the display controls, indicators, etc. located on the major components. The display, controls, indicators, etc. are requested in another subparagraph.

Parameters: Enter list of major components. This list should be coordinated with the pictures and/or sketches provided in subparagraph 4.2. Use FORM 3a as your source document when compiling this list. The contents of this subparagraph, subparagraph 4.2.2 and subparagraph 4.3.1 can be combined into one subparagraph. If this is done, then subparagraphs 4.2.2 and 4.3.1 can be deleted.

Lessons Learned: None.

4.2.2 SIMULATED DISPLAYS, CONTROLS, INDICATORS, SRUs, LRUs, AND PARTS.

Rationale and Guidance: For each major component listed in subparagraph 4.2.1 list all the displays, controls, indicators, etc. that are to be simulated. For convenience you may combine subparagraph 4.2.1 and this subparagraph. If the subparagraphs are combined, the provided list should be hierarchically presented; i.e., the major component should be listed first and an indented list of the displays, controls, and indicators should follow each major component.

Parameters: Enter list of displays, controls, and indicators to be simulated. Use FORM 3a as the primary source document.

Lessons Learned: None.

4.3.1 SIMULATED SUPPORT EQUIPMENT.

Rationale and Guidance: The purpose of this subparagraph is to provide a list of all the support equipment which is to be simulated; e.g., test equipment. Do not list the support equipment which is not to be simulated. For each piece of support equipment to be simulated, also list the displays, controls, and indicators on that support equipment which are to be simulated.

The contents of this subparagraph can be combined with the content of subparagraph 4.3.1.1; if the two subparagraphs are combined into one subparagraph, subparagraph 4.3.1.1 can be deleted.
Parameters: Enter list of support equipment to be simulated. Also enter list of displays, controls, indicators, etc. which are contained on the support equipment that are to be simulated. Use as your primary source FORM 3a. Also recall that all support equipment, tools, and job materials are listed in subparagraph 3.3.4.

Lessons Learned: None.

4.3 FIDELITY LEVELS.

Rationale and Guidance: This subparagraph explains that the trainer must simulate the display and controls of the actual equipment to the degree necessary for the students to practice and/or acquire the tasks specified, to identify and/or correct the malfunctions specified, and to achieve the objectives specified. This subparagraph also points out that there are two aspects of the job situation which can be simulated; the equipment itself (operational equipment), and the job environment. The degree of fidelity required in each of these aspects is further specified in the subparagraphs below.

Parameters: No blanks to be completed by the ISD analyst.

Lessons Learned: None.

4.3.1 CHARACTERISTICS OF DISPLAYS AND CONTROLS.

Rationale and Guidance: The purpose of this subparagraph is to describe the physical and functional characteristics of each of the items being simulated. When describing the physical characteristics include a description of such aspects as:

- Shape.
- Color.
- Size.
- Texture.
- Weight.
- Center of gravity.

These physical features are identified from the procedures provided in the Handbook of ISD Procedures for Design and Documentation. Recall that these features should be described only when they serve as stimuli to the student, provide a response mechanism for the student, or provide feedback to the student.

When describing the functional characteristics include such things as:
. Interaction with other displays/controls.
. Reaction time.
. Degree of resistance to movement.
. Control/display ratio.
. Direction and range of response.

These functional features are also identified from the procedures provided in the Maintenance Training Simulator Design and Acquisition - Handbook of ISD Procedures for Design and Documentation.

Parameters: Enter the physical and functional characteristics of the items being simulated. Everything listed in subparagraphs 4.2.1 and 4.2.2 should be described in this subparagraph. For convenience, include FORM 3a, providing FORM 3a is correctly completed and contains an adequate description of characteristics of the components.

Lessons Learned: This is one of the most critical parts of the training equipment design. This subparagraph must fully describe how the simulated equipment is to look and behave. If the descriptions provided are inadequate or incomplete it is highly unlikely that the training equipment, when fabricated, will function the way you want it to. Inadequate descriptions will result in the fabrication of a trainer that cannot be used to achieve the training objectives specified herein.

4.3.1.1 CHARACTERISTICS OF SUPPORT EQUIPMENT AND TOOLS.

Rationale and Guidance: The purpose of this subparagraph is to describe the physical and functional characteristics of the support equipment and tools that are to be simulated; i.e., those listed in subparagraph 4.2.3. The support equipment and tools should be described in the same manner as the displays and controls (see subparagraph 4.3.1 of this Appendix).

Parameters: Enter description of the simulated support equipment and tools. FORM 3a and the procedures used to construct FORM 3a can be used to identify the stimulus, response, and feedback characteristics of the support equipment and tools.

Lessons Learned: It is critical, when describing the support equipment and tools, to describe the interface that is required between the simulated equipment and the simulated support equipment. NOTE: interface is also discussed in subparagraph 6.2 of the model.

4.4. ENVIRONMENTAL FIDELITY.

Rationale and Guidance: The purpose of this subparagraph is to provide information concerning the aspects of the job environment.
that need to be simulated. This subparagraph should contain a description of the job environment that needs to be simulated, such as the ambient noise levels and/or air conditions critical to the job (e.g., a noise level of 94 dBA, a temperature of 0° C). If teams are involved you should also consider specifying the location of the students to each other.

Parameters: Enter any environmental conditions that need to be simulated. Use FORM 3a, FORM 4, and any other information that specify the conditions of student performance. Specify any student-to-student communication requirements if the trainer is being used by two or more students as a team.

Lessons Learned: None.

4.1.1 PROBABLE ENGINEERING CHANGES.

Rationale and Guidance: Since maintenance trainers are designed early in the weapon systems acquisition cycle, many engineering changes in the actual equipment can be expected. If these engineering changes can be predicted then it might be possible to design the trainer in such a way as to accommodate these changes easily. For example, if the location of a display or control is expected to change then this information might allow the vendor to consider designing the display and control so that it can easily be relocated or at least easily removed. Functional changes may be more difficult to predict. At any rate, any information which you can give to the vendor concerning probable engineering changes of the equipment being simulated would be helpful.

Parameters: Enter any engineering changes your experience indicates might occur. Also discuss the implication of the predicted engineering change; for example, location of display/control, addition of new displays and controls, new functions of displays and controls, new control/display ratios, etc. If you expect a new location, try to anticipate where the new location might be.

Lessons Learned: This is a new requirement.

4.5 OFF-THE-SHELF DISPLAYS, CONTROLS, INDICATORS, LRU'S, SRU'S, AND PARTS.

Rationale and Guidance: Items a and b in this subparagraph are explanatory in nature and require no input or modification by the ISO analyst. The other subparagraphs in this section refer to the equipment and/or displays and controls that are to be simulated.
This subparagraph describes those displays, controls, indicators, LRU's, SRUs, and parts which can be off-the-shelf and as such do not need to be simulated or modified. Such a list is contained in the specification to assure that the vendor knows that the specified off-the-shelf equipment must be included and interfaced with the controls, display, etc. that are to be simulated.

Parameters: Enter list of off-the-shelf equipment to be included or used on the trainer. FORM 3a can be used as a source. If any part, SRU, LRU, etc., indicated on FORM 3a must appear exactly as the actual equipment and function as the actual equipment consider using an off-the-shelf item. Any item listed in subparagraph 4.2.2 must not appear in this subparagraph.

Lessons Learned: The procedures specified in the ISD Handbook provide a means for indicating the degree of fidelity required of each simulated item. In most cases, only certain aspects of the item are critical to the learning process and the whole item need not be physically and functionally like the actual equipment. However, there may be times when either the actual item must be used or it is more economical to use the actual item. This subparagraph is reversed for these occasions. You should also consider the cost associated with using a standard off-the-shelf item. Often, because of the trainer design, it becomes difficult (and expensive) to interface actual items with the trainer.

5.0 INSTRUCTIONAL FEATURES.

Rationale and Guidance: This is only a header paragraph used to identify the Instructional Features section of the model.

Parameters: No blanks to be completed by the ISD analyst.

Lessons Learned: None.

5.1 INSTRUCTIONAL FEATURES, DESCRIPTION.

Rationale and Guidance: This subparagraph explains the contents of the subparagraphs within the major paragraph.

Parameters: No blanks to be completed by the ISD analyst.

Lessons Learned: None.
5.2 INSTRUCTIONAL CAPABILITIES.

Rationale and Guidance: This subparagraph contains the instructional features and/or capabilities the trainer must have to facilitate attainment of the specified objectives. It should be pointed out that each objective might require a different set of instructional capabilities; i.e., instructional features and/or capabilities are training objective specific. Thus it is important to identify which objectives require which capabilities. This identification and determination is made following the procedures in the Handbook of ISD Procedures for Design and Documentation.

Instructional features are those features on the trainer which control certain aspects of the learning environment; the presentation of the stimulus, the monitoring of student responses, the provision of augmented feedback to the student concerning the correctness of his response, and the selection of the next activity the student is directed to. The Handbook of ISD Procedures for Design and Documentation makes a determination of 17 possible instructional features. Those instructional features which are required are to be listed in this subparagraph and are further clarified in the subparagraphs which follow.

Parameters: Enter the instructional features required to complete each specific training objective or insert FORM 4 and the Instructional Feature Worksheet as Table 5.0 and Table 5.1, respectively.

Lessons Learned: Instructional features are a new area and not much has been learned about their specifications.

5.2.1 FREEZE CAPABILITY.

Rationale and Guidance: If a freeze capability is indicated, it needs to be further described in this section. If no freeze capability is required, enter a check beside "No" in the space provided.

In this subparagraph you are to describe:

- when the trainer shall freeze;
- how the freeze shall be deactivated;
- what the trainer shall do when the controls/display is unfrozen.

This information can be recorded on FORM 4 (Table 5.0 of the model) instead of in a separate subparagraph.

Parameters: There are three blanks to be completed by the ISD analyst.

60
a. "The maintenance trainer shall freeze under the following conditions: ____________________________ ."

Enter the conditions that must exist to cause the trainer to freeze. These conditions might be different for each training objective; if this is the case, associate each condition with a particular objective. Possible conditions are:

. on the procedural error; (e.g., the trainer shall freeze when the third procedural error is committed by the student).

. when a dangerous situation is created by the student's actions; dangerous is defined as a situation which might cause harm to the student or harm to the equipment.

. or on demand of the instructor (i.e., the freeze is not pre-programmed).

b. No entry to be made by the ISD analyst.

c. "The freeze shall be deactivated by ____________________________ ."

Enter how the freeze shall be deactivated. Possible activation strategies are:

. a control located on the instructor station.

. by the correction of the error(s) that caused the freeze (if this method is selected, provisions must be made for identifying which errors must be corrected; e.g., errors to be corrected are displayed on the CRT at the time of the freeze).

d. "When unfrozen (deactivated) the maintenance trainer shall ____________________________ ."

Enter what occurs after deactivation of the freeze. Possible options are:

. to have the problem or exercise start from the beginning.

. to have the problem or exercise continue as if the error was not committed and the freeze did not occur.
to have the trainer back-up to the error (first error) and have the student continue from there.

Also consider the possibility of displaying the errors on a CRT or a printer along with the correction procedure. If possible communicate to the student why the error was critical.

Lessons Learned: Not much information has been gathered about the freeze feature.

5.2.2 MALFUNCTION SELECTION.

Rationale and Guidance: This subparagraph shall only be included if malfunctions are to be identified and/or corrected by the students. If malfunctions are not to be identified and/or corrected place a check beside "No" in the space provided.

Parameters: There are two blanks to be completed by the ISD analyst.

a. "Simulated malfunctions shall be selected in the following manner: ____________________________ ."

Enter how the malfunctions for a particular exercise are to be selected. Malfunctions can be selected in three different ways.

- mechanically - e.g., by having the instructor activate certain switches or mechanical devices or by having the instructor insert defective LRUs, SRUs, parts, or components.

- electronically - e.g., pre-programmed (if the trainer is computer driven). In this case a malfunction menu can appear on a CRT and be selected by the instructor either using a light/sonic pencil or by entering a menu number on a keyboard.

- electronically - e.g., by having the instructor insert special parameter values which would create a given malfunction (insertion of values must be made via a keyboard).

FORM 4 specifies if the malfunction is to be pre-programmed or if parameter values are to be set. If not all malfunctions are to be selected/created the same way then specify how each is to be selected or created. Consider specifying this in table form.
MALFUNCTION SELECTION METHOD

If the selection method is through a parameter set control, specify which parameters and values need to be set to select/create the specific malfunctions; i.e., specify the parameter and the value that parameter must have to create a specific malfunction.

b. "Once selected a malfunction's effect shall remain in effect until ________________________ ."

Enter when a malfunction's effect is cancelled, usually two methods are used.

. a malfunction's effect is cancelled when the student performs the proper corrective action or has correctly identified the correct malfunction.

. a malfunction's effect can be cancelled by the instructor using a control on the instructor station. Activation of the control returns the equipment to a normal state.

Lessons Learned: None.

5.2.3 SIGN-IN CAPABILITY.

Rationale and Guidance: This subparagraph should only be completed if a sign-in is required (i.e., indicated on FORM 4). If a sign-in is required then the vendor will need to know what information is to be requested during the sign-in activities.

Parameters: Enter the information the trainer should request during the sign-in activity. Consider the following:

. student's name (or team name).
. student's ID number (or team ID number).
. exercise number or designation.
5.2.4 NUMBER OF RESPONSES.

Rationale and Guidance: This subparagraph should only be completed if a storage device is required. If a storage device is required, some estimate of the capacity of the storage device needs to be given. This is difficult to determine, but it would be helpful in determining the capacity of the storage device if the engineer knew how many responses per student need to be stored, as well as the length of time they need to be stored.

Parameters: Enter the number of responses per student which must be stored and enter how long the responses must be stored in weeks. This information will help the Acquisition Manager to determine the capacity of the needed storage device.

Lessons Learned: This is a new requirement.

5.2.5 MONITORING INSTRUCTIONAL FEATURES.

Rationale and Guidance: Each training objective/exercise presented by the trainer requires that certain student responses be sensed, recorded, scored, and/or reported. It is essential to communicate to the vendor what responses and variables are sensed, recorded, scored, and reported by the trainer. It is also important for the vendor to know what system parameters are to be monitored.

Parameters: There are three blanks to be completed by the ISD analyst.

a. "The following variables and/or responses shall be sensed/recorded/scored/reported by the trainer __________."

Enter for each objective the variables or responses the trainer must keep track of. The information can be presented in table form.
b. "The following system values shall be monitored by the trainer ________________.

Enter the system values to be monitored per objective or exercise (e.g., the reading on display XYZ). Only include those objective/exercises where the trainer has the responsibility to monitor the simulated system. This information can be presented in table form.

<table>
<thead>
<tr>
<th>OBJECTIVE NUMBER</th>
<th>SYSTEM VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This information can be obtained directly from the Instructional Features Worksheet.

c. "The following criteria shall be pre-programmed and/or entered or adjusted by the instructor: ________________.

For each objective/exercise enter the criteria the student's performance will be compared against. Only enter the criteria for those objectives/exercises where the trainer will have responsibility for scoring the student's performance. Do not include those objectives/exercises where the instructor is given the responsibility for scoring the student's performance. This information can be presented in table form.
If an objective requires adjustable criteria (variable input criteria) specify the possible range of criteria values.

This information is directly obtainable from the Instructional Features Worksheet.

Lessons Learned: This is a new requirement.

5.2.6 AUGMENTED FEEDBACK INSTRUCTIONAL FEATURES.

Rationale and Guidance: This subparagraph should only be completed if feedback is being controlled by the trainer. If this is the case place a check beside "Yes" in the space provided.

Two aspects of augmented feedback need to be clarified; the content of augmented feedback message and the feedback schedule. Since augmented feedback is objective/exercise specific, the content of the message and the schedule must be specified for each objective/exercise.

Parameters: There are two blanks to be completed by the ISD analyst.

a. "The following information shall be provided in the augmented feedback message presented by the trainer: ____________.

Enter the content of the augmented feedback message presented by the trainer. If part of the message is provided by the instructor indicate which part. Also indicate if the instructor needs the capability to adjust the augmented feedback message. This information is directly obtainable from the Instructional Features Worksheet and FORM 4. The required information can be presented in table form.
b. "The feedback schedule for each objective/exercise shall be the following: _________________."

Enter the feedback schedule for each objective/exercise where augmented feedback is controlled by the trainer. The feedback schedule can either be immediate or delayed. Also specify if the schedule is to be pre-programmed or set by the instructor before the objective/exercise begins. This information is obtainable from the Instructional Features Worksheet and FORM 4 and can be presented in table form.

<table>
<thead>
<tr>
<th>OBJECTIVE NUMBER</th>
<th>CONTENT</th>
<th>ADJUST CAPABILITY</th>
<th>PRE-PROGRAMMED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INCORRECT RESPONSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCORE</td>
<td>REASON</td>
<td></td>
</tr>
</tbody>
</table>

Lessons Learned: This is a new requirement.

5.2.7 NEXT ACTIVITY FEATURES.

Rationale and Guidance: This subparagraph should only be completed if the next activity is controlled by the trainer. If the next activity is controlled by the trainer for any objective/exercise place a check beside the "Yes" in the space provided.

If the next activity is controlled by the trainer then the vendor will need to know what the next activity is to be. In addition the vendor will need to know if the instructor wants the capability to alter the next activity if it is pre-programmed or to select the next activity from a menu of possible next activities.

Parameters: For each objective/exercise enter the next activity to be introduced to the student. Also indicate if the next activity is pre-programmed and if the instructor wants the capability to change that next activity to another activity. If there is more
than one possible next activity then allow the instructor to select the next activity from a menu. This information is obtainable from the Instructional Features Worksheet and FORM 4. This information can be presented in table form.

<table>
<thead>
<tr>
<th>OBJECTIVE NUMBER</th>
<th>NEXT ACTIVITY (ACTIVITIES)</th>
<th>PRE-PROGRAMMED</th>
<th>MENU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NO CHANGE</td>
<td>FUTURE CHANGE</td>
</tr>
</tbody>
</table>

Lessons Learned: This is a new requirement.

5.2.8 STIMULUS INSTRUCTIONAL FEATURES.

Rationale and Guidance: This subparagraph should only be completed if the trainer is controlling either or both the rate of stimulus presentation and the ratio of signal to noise. If the trainer is controlling these aspects of the learning environment place a check beside "Yes" in the space provided.

If the trainer is controlling the rate of stimulus presentation, the vendor must be informed of the rate(s) you intend to have the stimulus presented. The rate(s) may vary from objective/exercise to objective/exercise; thus they must be specified for each objective/exercise.

If the trainer is controlling the signal-to-noise ratio then the vendor must be informed of the ratio(s) you desire for each objective/exercise.

Parameters:

a. "The trainer shall present the stimuli for the objective/exercises specified below at the rates specified below: ____________________________"

Enter, for each objective where the trainer has control over the rate, the rate of stimulus presentation; e.g., 2 stimuli/minute. If the rate is to be entered by the instructor, instead of pre-programmed, indicate the possible range of rates. This information can be presented in table form.
b. "The trainer shall present the stimulus for each objective/exercise below with the ratio of signal to noise specified below: ____________________________.

Enter the ratio of signal-to-noise for each objective/exercise where the trainer has control of the ratio of signal to noise. This can be entered as a specific ratio if known (e.g., 10-to-1) or as an intensity (e.g., high signal to low noise). Also specify if the ratio is pre-programmed or if it is to be entered by the instructor before the objective/exercise is presented to the student. This information can be presented in table form.

<table>
<thead>
<tr>
<th>OBJECTIVE NUMBER</th>
<th>PRE-PROGRAMMED RATIO(S)</th>
<th>VARIABLE RATIO RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lessons Learned: This is a new requirement.

5.2.9 CUE ENHANCEMENT FEATURES.

Rationale and Guidance: This subparagraph should only be completed if cue enhancement is going to be provided by the trainer; if it is, place a check beside the "Yes" in the space provided.

If cue enhancement is going to be provided by the trainer, the vendor must know which objectives/exercises require cue enhancement as well as what cues are to be enhanced.

Parameters: Enter a list of the objectives that require cue-enhancement and enter the cues which are to be enhanced. Also specify if the enhancement of a particular cue is pre-programmed or to be entered by the instructor. This information can be presented in table form.
Lessons Learned: This is a new requirement.

5.3 STUDENT STATION(S).

Rationale and Guidance: This subparagraph should only be completed if there is going to be a student station. Most trainers have a student station and an instructor station. However there is a trend to combine the student station and instructor station into one station, from which both the instructor and student conduct and participate in the training. It is not the intent of this paragraph to force a particular configuration on the ISD analyst. If the analyst decides to have only one station, then paragraph 5.3 should be relabeled “STATION(S)” and subparagraph 5.3.1, subparagraph 5.3.2, paragraph 5.4, subparagraph 5.4.1, and subparagraph 5.4.2 should be deleted. The relabeled paragraph 5.3 should then describe how the station is to look by listing the controls that are to be located on that station.

Parameters: No blanks to be completed by ISD analyst.

Lessons Learned: None.

5.3.1 STUDENT STATION(S), NUMBER AND KIND.

Rationale and Guidance: The purpose of this subparagraph is to inform the vendor of the different kinds of student stations that are required as well as the number of each kind that is required.

Most maintenance trainers have only one type or kind of student station. However there may be instances when more than one kind is required, e.g., when teams are required to complete a given task each team member might have a different kind of student station.

Parameters: There are two blanks to be completed by the ISD analyst.
a. "There shall be ___ kind(s) of student station(s)."

Enter the number of kinds or types of student station(s).

b. "There shall be ___ of kind one, ___ of kind two."

Enter the number of each kind; if more than two, continue the sentence; e.g., "___ of kind three," etc.

Lessons Learned: None.

5.3.2 STUDENT STATION: DISPLAYS, CONTROLS, AND INSTRUCTIONAL EQUIPMENT.

Rationale and Guidance: The purpose of this subparagraph is to list the displays, controls, etc. located on the student station. If only one kind of student station is indicated in subparagraph 5.3.1, there is no need to list the same controls and displays specified in subparagraph 4.2.2. However, if more than one type or kind of student station is indicated you must list the displays and controls that are to be on each individually.

If only one type or kind of student station is indicated, then list only the instructional equipment that is to be part of the student station.

Parameters: Enter display, controls, etc. located on each kind of student station. Also enter any instructional equipment located on the student station. Consider the following instructional equipment:

- Slide projector (specify if random access is required).
- Instructional communication system (e.g., student-to-student or instructor-to-student. A communication system will be needed if there is a high noise level generated by the trainer).
- CRT (cathode ray tube) to receive instruction or to receive augmented feedback.
- Keyboard (to enter responses).
- Video playback unit (video disk or tape).

Lessons Learned: None.

71
5.4 INSTRUCTOR STATION(S).

Rationale and Guidance: This paragraph should only be completed if there is going to be an instructor station.

Parameters: None, header paragraph only.

Lessons Learned: None.

5.4.1 INSTRUCTOR STATION(S), NUMBER AND KIND.

Rationale and Guidance: The purpose of this subparagraph is to communicate to the vendor the number and kind of instructor stations required. Usually only one kind of instructor station is required.

Parameters: There are two blanks to be completed by the ISD analyst.

a. "There shall be ___ kind(s) of instructor station(s)"

Enter the number of kinds of instructor stations.

b. "There shall be ___ of kind one, ___ of kind two."

Enter the number of each kind required; if more than two continue the sentence; i.e., "___ of kind three," etc.

Lessons Learned: None.

5.4.2 INSTRUCTOR STATION(S), DISPLAYS AND CONTROLS.

Rationale and Guidance: The purpose of this subparagraph is to communicate to the vendor the displays and controls to be located on the instructor station(s). If more than one instructor station is specified in subparagraph 5.4.1a, then separately list the displays and controls on each kind.

Parameters: Enter the displays and controls to be located on the instructor station. Possible items on the instructor station are:

- Printer (specify speed and type; e.g., 30 characters per second, impact, printer).
- CRT (cathode ray tube).
• Keyboard.

• Computer/Processor.

• Slave displays and controls (displays and controls which appear on the student station).

• Instructional feature controls (for a list of possible controls see subparagraph 1.4, Definitions).

Lessons Learned: None.

6.0 TRAINER CONFIGURATION.

Rationale and Guidance: This is a header paragraph used only to permit the user to locate the trainer configuration section of the TEDR specification.

Parameters: None.

Lessons Learned: None.

6.1 TRAINER CONFIGURATION, DESCRIPTION.

Rationale and Guidance: The purpose of this subparagraph is to specify the content of the subparagraphs within this major paragraph heading.

Parameters: None.

Lessons Learned: None.

6.2 STUDENT STATION, INSTRUCTOR STATION RELATIONSHIPS.

Rationale and Guidance: The purpose of this subparagraph is to specify the external and internal interfaces that are required to interconnect the various stations with each other and/or the facility. This subparagraph should only be completed if such interfaces are known; i.e., if you have a certain configuration in mind. There is also an "Other" category which should be used to specify unique relationships between the various components on the trainer.

Parameters: There are three blanks to be completed.

a. "External Interface ________________________________ ."
b. "Internal Interface"

When specifying the interfaces, consider the following:

- power interface with facility (just specify if needed, not type).
- hydraulic interface with facility (just specify if needed, not type).
- interface between instructor station and student station (if known; i.e., interface between possible computer and student station).
- interface between student station and instructional equipment such as a slide projector.
- interface with test equipment and other support equipment or tools.
- mechanical interface with facility.
- computer equipment interface (e.g., interface with printer, CRT, storage device, etc.).

c. "Other"

Enter any other component relationships; e.g., the need to have the student station be visible from the instructor station so students can be observed; the need to have a barrier between two student stations; the need to have the instructor station out of student view so ancillary cues are not easily detected by the student.

Lessons Learned: Once the training equipment is designed any interfaces affecting the facility must be communicated to the facility manager so that he can assure that such interfaces are ready when the training equipment is ready.

6.3 OTHER CONFIGURATION CONSIDERATIONS.

Rationale and Guidance: This subparagraph is reserved for any other information concerning the configuration of the trainer which the ISD analyst wants to communicate to the vendor or Acquisition Manager. This subparagraph should only be completed if the ISD analyst can derive any environmental restriction from the specified design.

- Physical size and dimensions.
Suggested drawings of the maintenance trainer indicating specific design or configuration requirements.

Parameters: Enter any other configuration information you want to communicate to the vendor or contractor and to the facility manager.

Lessons Learned: If suggested drawings are included it should be made clear that the drawings provided are only suggestions to the vendor and as such do not represent a requirement or a set of requirements.
END
DATE
FILMED
3-82
DTIC