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POLYPHASE PULSE COMPRESSION WAVEFORMS

INTRODUCTION

Pulse-compression techniques have been recognized for some time as a means of obtaining
sufficient average power on targets for detection, while retaining a desired range resolution with
veak-power limited radars. In radar practice, waveforms having a constant amplitude are usually
senerated to obtain maximum trunsmitted signal power. Under these conditions, a constant-ampli-
tude pulse of length T can be compressed to a pulse of length r by phase modulating the signal so
tha* the spectral bandwidth is approximately equal to 1/7. The resultant pulse compression ratio p
is then equal to T/7 or TB, where B is the bandwidth which is equal to 1/r. This phase modulation
is commonly achieved by a linear fm, or chirp waveform where the phase varies quadratically with:
time so that the instantaneous frequency varies linearly with time. The frequency spectrum of the
chirp signal is nearly rectangular with a width B, and the compressed pulse is approximately equal
to the Fourier transform of the frequency spectrum.

The resultant sin ¢/t pulse has large time sidelobes which are capable of masking a nearby
weak target and therefore a weighting, such as the Taylor weighting, is generally applied to reduce
the side’obe levels [1,2]. These weights symmetrically reduce the amplitude of the rectangular
spectrum at the edges of the band and result in lower sidelobes. A weighting applied to the received
waveform results in a mismatch which causes a loss typically on the order of 1 to 2 dB in the cutput
peak-signal to noise ratio. Alse the pulsewidth of the compressed pulse is widened.

Another common pulse-compression waveform is the binary-phase.coded waveform where the
carrier is modulated by 0° and 180° phases. Pseudo-random binary sequences may be generated by
using shift registers and, in general, the best binary pseudo-random sequences have a peak sideiobe
level which s down from the main response by a factor of p. These codes are useful where a thumb-
tack ambiguity surface is desired. The doppler response of these codes is generally peor, and mul-
tiple doppler channels are required aver the range of expected doppler retums.

Complementary codes generally consist of two binary sequences which are combined after
pulse compresvion and result in low sidelobes. However, these codes likewise have a poor doppler
response and are not generally useful in radar because of the need to separate the two codes in
frequency, time, or polarization to permit them to be compressed separately. This separation can
cause decorreiation by radar targets or distributed clutler and prevent cancellation of the side-
lobes o1 the combined comprossed pulses,

POLYPHASE CODES AND DIGITAL PULSE COMPRESSION
Advantages

The polyphase.coded waveforms discuse o in this feparnt offer many advantages over analog
pulse.compresston waveforms. These advantages include the ahility to achieve low sidelobes witho at

weghting, although weighting can be apphed eastly Lo achieve sull lower sidelobes. Also, the poly-
phase coded waveforms are. {a) refatively doppler tolerant: (bl casly implemented: (c) have no
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KRETSCHMER AND LEWIS

reflections, as there may be in acoustic delay lines; (d) relatively ingensitive to phase errors; and
(e) enjoy the advantages of digital processin;1. These advantages include reliability, reproducibility
and compatibility with other digital signal-processing functions, such as moving-target indicator
(MT1) and pulse doppler. The use of digital pulse compression allows the digital MTI to precede
the digital pulse compressor without requiring multiple A/D and D/A conversions. Also, placing
the MTI before the pulse compressor reduces the dynamic range requirements of the MTI,

Equivalance to Analog Processing

In this section we denote by a; the complex (I,Q) baseband samples of a received uncom-
pressed pulse having an intermediate frequency (IF) bandwidth B. The compiex video bandwidth
is B/2 and it is assumed that samples are taken every 1/B s. Recalling that the optimization criterion
leading to the matched filter maximizes the output peak signal to average noise power ratio S, /N,
which is given by 2E/N,, [2] it will be shown that digital processing achieves the same value for
S,/IN.

For the digital case, the peak signal output power at the matchpoint is given by

s, ( Za,a,-‘)2 & (Zlailz)z a

where k is a constant. In the above and following summations, the index ranges from 1 to p. The
output noise voltage of the matched filter is

n=k Za:n‘. (2}

where n_is equal to the complex value of the ith noise sample. The average roise power in the signal
envelope is then

ini-") = k ZZ a:;In.n; . (3)
: J

For complex, zero-mean, band-limited white noise, the coefficients are uncorrelated for a
sampling interval 7, equal to 1/8 and Eq. (3) bacomes

it kT Y e @

The notse powers of interest may he computed by considenng the narrowhand representation
for the IF noise wavelorm x(§) given by

XU} = i) cos wyt ¢ npltsn w, i
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where n; and ng are slowly varying independent Gaussian noise processes; n; and ng have 0 means
and equal variances o7 and o%, which are also denoted by 02. The average noise power is

%= (o,2+o(22>/2=02
=KToFB=N,B, (5)

where K is the Boltzman constant, T, is the standard noise temperature, and F is the noise figure.
Also,

n;|? = of + 0% =20% = 2N B. (6)

Substituting Eq. (6) in Eq. (4), the average envelope noise power is

ni? = k2NGBY Jja |2, (7)

and using the relation that N is equal to one half of the envelope noise power computed 1n Eq. (7),

we have
.2
Sp E lai!

D m e e (8)
N NyB

From Reference 3,

50 that
(9

1s in ggreement with theane . . s

Nose that zithough the mtio S, ‘Nas the same for the anale 2 and digital compressed pribses,
th~ sidejobes are generally diffeient,

THE FRANK-POLYPHASE-CODFD WAVEFORM AND A COMPARISON
WITH OTHER WAVEFORMS {4.5]

1wl be shown that the phases of the Frank coded waveforms are the same as the appropn.
ately sampled phases of a step-chirp wavelorm, These phases are shown to be the same as the
sterring phases of a discrete Foutier transform (DFT), which means that this code can be generated
efficiently or compressed by using a fast Founer transform (FFT),

s iy




KRETSCH!{ER AND LEWIS

The doppler properties of the Frank code are similar to those of a step-chirp waveform and the
Frank-coded waveform is more tolerant of doppler than the pseudo-random binary codes or the
nonlinear chirp waveforms [1]. The doppler response of the compressed Frank-coded waveform is
down approximately 4 dB, like the binary code, when the total accumulated phase shift due to
doppler across the uncompressed pulse is 7. The binary-code response continues to decrease with
increasing doppler shift, while the Frank-code response increases to nearly full amplitude for a
phase shift of 2m. The Frank-code response is cyclic with troughs occurring at odd muitiples of 7
and with peaks occurring at multiples of 27 phase shift acvoss the uncompressed pulse. This was not
recognized in the publisher literature [1,6] since the doppler cuts were taken at much larger dop-
pler intervals. The cyclic nature of the Frank code doppler response can be easily compensated to
further improve the doppler response.

it is later shown that for a Frank cod consisting of N2 = p phases, the peak sidelobe is down
from the main response by a factor of (pm2). The best pseudo-random shift-register binary codes
have peak sidelobes that are down by a factor which approaches p so that the Frapk-code wave-
forms nave lower peak and rms sidelobes than the binary codes, This means that, in a distributed
clutter environment, the clutter received via the Frank-code-waveform sidelobes is less than that
reczived via the binary-waveform sidelobes.

The sidelobe level of the Frank codz decreases with increasing pulse-compression ratio and low
sidelobes are achieved without weighting. However, a further reduction in the sidelobe level can be
achieved easily by weighting. In contrast, the chirp signal is generally weighted and there is an atten-
dant loss in S/N and widening of the pulsewidth. This section of this report concludes with a dis-
cussion of polyphase-code sidelobe reduction techniques and the sensitivity of polyphase codes to
phuse errors.

Frank- Polyphase-Coded Waveform

The Frank-polyphase-coded waveform may be described and generalized by considering a
hypothetically sampled stepchirp waveform {4}. The Frank code was not originally described in
this manner, but was given in terms of the elements of a matnx [ 7). As an example, consider a
four-frequency step-chirp waveform as shown in Fig. 1(b) where the F’s denote frequency tones. In
this waveform, the frequency steps are equal to the reciprocal of the tone duration 4r,, where 7,
denotes the compressed pulse width, Assuming this waveform has been beat to baseband [ and Q
using a synchronous oscillator having a frequency the same as the first tone frequency, the resultant
phase.vs-time characteristic consists of four hinear sections as shown on Fig. 1{a). The corresponding
baseband frequencies are the subharmonics of the frequency 17, 1f the baseband phases of the
step-chirp waveforms are sampled every r_ s and held for r_ s, the phase sequence shown in
Fig. 1(c} 15 obtammed. This sequence of phases constitutes the phases of a Frank code for N = 4, cor-
responding to the four baseband frequencies of the hypothetical step-chirp waveform. The actual
transmitied Frank-coded-wavefonm conddsts of 2 carrier whose phase is modulated according to the
indicated bhaseband waveform sequence. For each frequency, or section, of the stepchirp phase
charactenstic, a phase group consisting of N phase samples 12 obtained and the total number of code
phases 15 N? which is equal (o the pulse-compression ratio. Note that the phase increments within
the four phase groups are 0°, 807, 180" and 270°. However, the phases of the last group are ambig-
uous £ 21807) and appear as - 80" phase sieps or as the ronjugate of the F, group of phases, which
correspands ta the lower sideband of £ . The last group of phases appears, because of the aming-
uity, to completr one 360° counterclockwite rotztion rather than the (N - 1) rotations of ihe end
frequency of the stepcump waveform.
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Fig. 1 — Stepchirp and Frank-polyphase-cods relationships

The Frank-code phases may be stated mathematically as follows. The phase of the ith code
element in the jth phase group, or t aseband frequancy, is

(28/NKi - 1) - 1) (10)

where the index i ranges frem 1 o N (o each of the values of / ranging from 1 to N. An example of
a Frank-code pulse generation for N = 3 is shown in Fig. 2. The Frenkcode phases ure the saame a5
the negative of the steering phases of an N point DFT where the jth frequency coefficient is:

N ~;=:~(,~ 1R~ 1)
Foo ) ae . (1l
eS|

where @, 1s the ith complex input tme samole. This means that 2 vonsdetable savings 1n hardware
c2n be achieved by using the effictency of an FFT.

The matched filter output for an N = 10 or 100-elvment Frank code is shown in Fig. 3. This
figuure a - the followmg figures showing the compressed puise were ohtained by sampling the input
baschand waveform once per e cloment ar per reciproval bandwidth unless stated otherwise.
Using 2 discrete-time matched fiiter the outpit signal s also 2 dhisrrete-Lume samplod sighal.

5
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However, for ease of plotting and viewing, the points were connected by straight lines, The four
sidelobe peaks on each half of the match point (peak response) are of equal magnitude. The first
peal sidelobe at sample number 5 in Fig. 3 occuts as the last phase group having - 36° phase incre-
ments indexes halfway into the first phase group of zero phase vectors in the autocorrelation
process. In general, at sample number N/2, there are N/2 vectors adding to complete a half circle.
The end phase group indexing into the first phase group of 0° vectors makes an appreximate circle
since the phases of the last phase group make only one rotation as stated previously. The peak
sidelobe amplitude may be approximated by the diameter D of the circle from the relation,

Perimeter = N = 5D (13)

or D=N|nx. (14)

At the match pcint the amplitude is N2 so that the peak-sidelobe to peak-response power ratio R is

N4
R=-"— aNZg2 = pa’ | (15)

(Nf)2
For a 100-element Frank code, this ratio is approximately 30 d as shown in Fig. 3.

Had the phases of the polyphese-coded waveform been generated by using the phases of step-
chirp phase characteristics sampled at 1/5 of the interval used for the Frank code, the vompressed
code would appear as shown in Fig. 4. In this figure, five samaples are equal in time to one sample
in Fig. 3. Note in Fig. 4 that the near-in sidelobes are approximately 13 dB and that the envelope
of the sidelobe peaks is approximately that of a sin x/x pulse. The 13-dB sidelobe also appear for
an oversampling of 2:1. Also note that the compressed pulsewidth in Fig. 4 has not decreased since
it 1s detenined by the underlying handwidth of the step-chirp waveform.

A companson between the Frank code and a “"good” binary code may be made by referring to
Figs. b and 6 which have similar pulsecompression ratios. Fig. 7 shows a companson of the
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mean-square sidelobe power of the two codes From this, one can see that betler performance i3
achieved with the Frank code in 2 distnibuted clutter environment where clutter s introduced vi
the sidelobes of the compressed pulse. Also shown in Fig. 7 is 4 point, for the sake of comparisarn,

for an unweighted chirp signal. The relatively lugh mean square sidelobe level is due to the high
nearan sidelabes,

Sidelobe Reductuon Technigues

Vatious methaods have been snvestigated o cause a further resiuction of the Frank code ude
Inbe levels. One method v bated on 3 legat sqiares technique [ 8] whereby, for 4 givaitmp wave.
farm, the filier cocfficirnts are found such that the output of the compresston {ilier best apprown.
maler an wdealized smpubee funchion This technigue can also be apphied 1o biary waveforms, It was
found that ths lechmigue did nut produce 3 symmeincal cutpa waveform for a Frank-polyphase.
caded itpul waveform However, for the new P coded warefonn, to be dacussexd in the seport. a
wnzli sdelobe reductiaon was achieved

Anather method far reducing the swiq-tobes wasy mveigatsd by Somate and Ackreyd | 2]
Thew approach was {6 perturh the phases of 2 Frank code by warch metbeads unisl an improvedd
autocotrelaiion funchon was achoevedd Ussng thew respltant perturbed wavef wm, the pr udelabes
for 3 100 clement cade were reduced from 30 (2 approxemately 38 dR
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KRFETSCHMER AND LEWIS

The shortcomings of the preceding techniques are that the doppler responses are not quite as
good as the Frank code and that the filter cannot be implemented using FFT efficiency. The most
effective method that has been found for reducing the sidelobes is achieved by simply weighting the
output frequency ports of the FFT compression filter. Any of the recognized weightings can be
used in this manner. Fig. 8 shows the results or using a cosine-on-a pedestal (of 0.4) weighting on
a 100-element Frank-coded waveform. The peak signal is reduced as shown but the loss in signal-to-
noise ratio {(S/N) is small.

Doppler Response of Frank Code

A partial ambiguity function for a 100-element Frank code is shown in Fig. 9 which shows the
amplitvde in dB of a matched-filter output for given doppler shifts of the input. The doppler is
normalized io the signal bandwidth and the delay axis is normalized to the uncompressed pulse
length. The vertical scale ranges from 0 dB to -6 dB, and the - 30-dB sidelobes for 0 doppler are
evident. A front view is shown in Fig. 10 where the sidelobes are plotted down to the - 30-dB level.
The normalized doppler shift of ~-0.05 shown in this figure corresponds to a mach-50 target for an
L-band radar having a signal bandwidth of Z MHz. The first doppler cut shown in the literature {6]
is tak=n at this normalized doppler and the resultant high-peak sidelobes have perhaps discouraged
usage of the Frank code. The region shown between 0 and mach-5 dappler and a delay interval of
+0.3 is of intevest, and it is shown on an expanded scale in Fig. 11. In this region the doppler
response is good in terms of the sidelobe levels. At the doppler shift of ~0.005, or more generally
1:(2p), the total phase shift across the uncompressed pulse is 7 and the peak response drops approx-
hinately 4 dB. At this doppler, there is a range-doppler coupling of 1/2 of a range cell with the
result that the signai splits between two range cells. At a normalized doppler shift of -0.01, or in
general 1/p, there is a range-doppler couplitg of cne range cell resulting from a total phase shift of
27 radians across the uncompress2d pulse, and the main peak response is nearly restored to full
amplitude as shown in Fig. 9. This effect is ¢yclic and an approximate loss of nearly 4 dB is en-
countered when the total phase shift due to doppler is an odd multiple of 180°. This also occurs
for the binary code except thai the response is not cyclic and it monotonically decreases with fre-
quency. Morecver, the troughs in the doppler response of the Frank code can be easily compensated
by using an additional channel having s phase compensation of 180°. Also, it has been found that

Fig. 8 -- Compressed pulse of weighted Frank code
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Fig. 11 — Megnified smbiguity diagrum of 200-element Frank code

that the use of weighting improves the sidelobes and raducves the variaiion in the mainiobe peak in
the presence of doppler.

Figure 12 shows the output pulse for a 190-element-Frank-coded waveform having a doppler
shift of - 0.005 or a totai phase shift of 7 across the uncompressed pulse. Figure 13 shows the effect
of waighting on receive. In addition to the reduction of the end sidelobes, the mainlobe width has
becn reduced. These aspects of doppler compensation techniques are discussed in more detail in
Ref. 10

Error Analysis

Computer simulations were performed to determine the sensitivity of the polyphase codes to
phase and amplitude ersurs. The two types of errors considered were random errors in f and Q ana
guantization errots in [ and @ which are encountered in A/D conversions.

Random Errors

Two types of random errors were considered as shown in Fig. 14. In each case independent,
uniformly distribute  errors in | and @ were generated over an interval tx. For the {irst type shown
in Fig. 14¢a), the error ¢ was determined by letting x be a given percentage of the nomined / or Q
value for each code element phasor. The resultant vector is denoted as E . The other type of erro
¢, shown in Fig. 14(b} was genaated as explained above, except that x was specified as a fixod
error rather then a percentage of [ or Q. In this case, the resultant vector is denoted by &, . in deter-
mining £y and £, the nomindd signal amplitude s assumad to be unity.

Monte Carlo simulations were performed to determine the effect of the relative and absolute
errors on the peak and average sidalobes of Frank cordes with prilse compression ratios of 256 and
G4. The results for p = 256 are shown in Fig. 15 with similar results obtaining for p » 64. Each
point, other than for zero e1lor, wis obtaned by taking an average of 100 compressed pulses to
comj ute the indicated peak sidelobe and average sidelobe levels. The errors were assumed to occur
o either transmission of Teception but not Luth. The results of this simulati n indwate thal the

12
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sidelobes are not sensitive to the errors. For example, for the absolute error case, an error distribu-
tion of +0.10 results in approximately & 2-dB average degradation in the peak sidelobe and a 1.2-dB
degradation in the average sidelobe power.

Quantization Errors

The results of the Monte Carlo simulations previously described indicate the robustness of the
polyphase codes to random errors. To gquantify the effects of quantization errors, computer simula-
tions were performed. The average and peak sidelobes were determined for a symmetric A/D
characteristic having the phase and amplitude specified within the accuracy of the quantization
levels determined by the number of bits (including sign). Compression ratios of 144 and 36 were
considered in the simulations, which did not include noise. It was assumed that the errors were due
only to the A/D converters and that the matched-filter phases and amplitude were perfect. The
results are shown in Fig. 16 where each curve exhibits a knee. The knee location is seen to vary
the most between the p = 36 and p = 144 peak sidelobes. The general conclusion reached from these
results is that the polyphase code is relatively insensitive to the number of bits beyond a certain
number. Other considerations, such as dynamic range, may dictate the use of more bits than indi-
cated in Fig. 16.

NEW POLYPHASE CODES [4,5]
Effects of Bandlimiting Prior to Pulse Compression

A Frank-coded waveform is depicted in Fig. 17(a) where the G ’s denote the phase groups
corresponding to the sampled phases of a step-chirp waveform as previously discussed. Each group
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consists of N vectors beginning with a vector at a phase angle of 0°. The phase increments within
the Kth group sre

360°
ag, = K*&‘*— . (16)

Thus G consists of N vectors at 0°, Gy has vectors separated by 360° /N until at the center of the
coded waveforin the phase increments approach ot become 180° depending on whether N is odd or
even. For phase increments greater than 180°, the phases are ambiguous with the result that the
phasors of phase group G . x are the conjugates of the phasors of phase group Gg so that the vec.
tors have the same increments but rotate in opposite directions. The result is that the phase incre-
ments are small at the ends of the code and become progressively larger toward the center of the
code where the increments approach 180° from opposite directions.

If a receiver is designed so that it has an approsimate rectangular bandwidth corresponding to
the 3.dB bandwidth of the received waveform, the received waveform becomes bandlimited and a
mismatch occurs with the compressor. This bandlimiting would normally occur prior to sampling
in the A/1) conversian pracess in order to prevent noise foldover and aliasing. The result of any
bandlimiting 1s to average (or smooth) the vectors constituting the coded waveform, and for the
Frank code, 3 weighting W({) such asillustrated in Fig. 17(a) takes place due to the larger phase
increments toward the middle of the code. This weighting causes an uafavorable mismatch with the
compressor which results in a degradation of the sidelobes relative t. the peak response.
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New symmetrical codes have been found which have the common property that the phase
groups with the small phase increments are at the center of the code and the larger increment
groups progress symmetrically toward the ends of the code. This is illustrated in Fig. 17(b) where
a favorable amplitude weighting resulting from pre-pulse compression bandlimiting is shown.

P1 and P2 Polyphase Co:' -

The two new polyphase codes which tolerate bandlimiting are referred to as the P1 and P2
codes. The P1 code was derived from use of the previously described relacionship between the
Frank-code phases and those of a sampled step-chirp waveform. The desired symmetry, having the
dc or small incremental phase group at the center of the code, can be achieved by determining the
phases wiich result from placing the hypothetical synchronous oscillator at the center frequency
of the step-chirp waveform. For an odd number of frequencies, the synchronous oscillator fre-
quency corresponds to one of the waveform frequencises and the resultant phases are the sam= as the
Frank code except the phase groups are rearranged as indicated in Fig. 17. If there is an even
number of frequencies, the synchronous oscillator fiequency placed at the center frequency does
not correspond to one of the frequencies in the step-chirp signal. The phase of the ith element of
the jth group is

8, ==(@NN- (2 - DIG- BN +@- D], 3%)
where i and j are integers ranging from 1 to N.

An N = 3, P1, code is given by the sequence

0 -2r/3  -4u/3 0 0 0 0 2n/3  4n/3
which can be seen to be a rearranged Frank code with the zeto frequency group in the middle.

The P2 code, which also has the desired features, is simiiar to the Butler matrix steering phases
used in antennas to form orthogonal beams. The P2 code is valid for N even, and each group of the
code is syrametric about 0 phase, The usual Butler matrix phase groups are not symmetric about 0
phase and result in higher sidelobes. For N even, the P1 code has the sume phase increments, within
each phase group, as the P2 code except that the starting phases are different. The ith element of
the jth group of the P2 code is

N-1

6, [(ﬁlzl f“"v m (RN 1)] [N +1- ?J] , (18)
" &

where [ and 7 are integers ranging from 1 to N as before. The requirement for N to he even in this

code stems from the desire for low autocorrelation sidelobes. An odd value for N results in high

autocarvelttion sidelobes.
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An N = 4, P2, code example is given by the sequence

b11 %21 93 a1 P12 P20 P32 b4 P13 G

' *

+97/8 +37/8 ~-3x/86 -9w/8 +3w/8 +w/8 -nw/8 -3w/8 -3m/8 -w/8

¢33 43 D14 P24 P34 Pug

+7/8 +37/8 -97/8 -3n/8 +3w/8 +97/8

This code has the frequency symmetry of the P1 code and also has the property of being a palin-
dromic code which is defined as a code having symmetry about the center.

The ambiguity diagram of the P1 code for N odd is identical to that of the Frank code. For N
even, the ambiguity diagrams of the P1 and P2 codes are similar to each other and to that of the
Frank code.

Simulation of Precompression Bandwidth Limitations

The effect of a restricted bandwidth in the [F amplifiers and the /,Q detectors preceding
analog-to-digital conversion and compression of the phase codes was simulated on a digital com-
puter. The various codes to be compressed were over-sampled by 5 to 1 and sliding-window-averaged
by 5, 7, and 10 to simulate the precompression bandwidth limitation. Only the results for the
sliding-window average of 5 samples are presented here. Similar results were obtzined for the other
cases. The compressor phases were matched to the input phases which existed prior to over-
sampling. The resultant oversampled and averaged waveform was then sampled every {ifth sample
beginning with the first sample and sent to the compressor. To account for take time-¢f-arrival
variations, the sliding-window average for the fivesample case was taken starting 4,3, 2,1, and 0
oversample-periods ahead of the first received code element and sample correlation functions were
developed for each case. Note that a match condition oceurs for the latter case and otherwise a
mismatch occurs.

The results of this study revealed that precompression bandwidth limitations were similar to
amplitude weighting the frequency output ports of the digital filters in the compressor when the

symmetrical P1 and P2 codes were employed and time-of-arrival variations were taken into consider-

ation (Fig. 18), However, this was not the case when the Frank code was processed (Fig. 19). For
the Frank coded waveform, the bandwidth limitation did not affect the de group and had little
effect on the highest frequency code group sinee it is the conjugate of the frequency cade group
closest to the de term. As a consequence, precompression bandwidth himitation did not drop the
far-out sidelobe caused by the de moup indexing into the highest frequency filter and vice versa,

Comparison of the sidelobes between the - 30 and  40<B hines of Figs. 18 and {9 shows that,
for each corresponding time-of-amival case, with the exception of the mateh condition shown in
Part {e¥ of each figure, the sidelobes of the P2 code are lower than the Frank code, while the cor.
responding pezk values are the zame.

We meation at th s point that although a sliding- window average was used to simulate the band

Lmitation eifects in thic report, siniiar results would be expected for any other bandhimiting filter
since the sidelobe reduction ts due to the smoothing effect of the filter.
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The average loss of the peak signal values shown in Figs. 18 and 19 is the same for both the
Frank and P2 codes. Some of {his loss can be attributec - ) the passband limitation while the remain-
ing loss represents the loss due to time-of-arrival variation or range cusping. The passband limitation
loss is due to the loss of the signal power contaired in the sidelobes of the signal spectrum. The
thermal-noise contribution is alsc reduced by the bandlimiting and is the same for each code in
Figs. 138 and 19 which accournt for signal only. It is important to note, however, that the symmetrical
Pl and ['2 code sidelobes drop mure than the peak due to precompression bandwidth limitation
the sidelobes of the Frank code dn not arop at all. This results in lower sidelobes in the new codes for
the same signal-tg-noise ratio loss due to the precompression bandwidth limitation.

APPLICATION OF POLYPHASE CODES

The polyphase codes discussed in this report may be used wherever pulse compression is needed
and where the anticipated doppler-to-bandwidth ratio is less than approximately 1/(%p) corre-
sponding to a range-doppler coupling of 1/2 of s range cell. This doppler extent would appiv to
many search-radar and radar-mapping applications. These polyphase codes have much better do;.-
pler tolerance than the binary cedes and have lower sidelobe levels.

The polyphase codes may be efficiently implemen*ad to provide large pulse compression
ratios, with normalized peak sidelobes given by 1/(pm?2). The achievable compression rativ is pri-
marily limited by the signal bandwidth, which impacts on the A/D sampling rates and th> digital
circuit speeds. The polyphase pulse compressor does not become less efficient for long-duration
waveforms as the analog acoustic delay-line compressors do.

For odd N, the P1 code, which is tolerant of precompression bandlimiting, can be i:iple-
mented using FFT technology. This results in a considerzble hardware savings for large p and allows
the compression of different pulsewidths using the same processor.

The use of digital processing o compress the polyphase codes s compatible with digital MT1
and pulse-doppler proressing. As mentioned previously, the digital MTI can precede the digital pulse
campressor to reduce the dynamic range requirements of the MTI without the need for multiple
A/D and Dy A conversions.

SUMMARY

The praperties of Frank polyphase codes have been investigated in deail and extended. It was
shown how the Frunk code can be conceptually derived by appropriately sampling a step-chirp wave.
form and how the Frank and new polyphase codes are usefu! for doppler-to-bandwidth ratios less
than approxumately 1/12p). Doppler compensation techniques were presented to improve the per-
formance ¢f the poiyphase codes. Also 1 was found that the polyphase vodes are not very sensitive
to amplitude and phase errors.

New polyphase covdes were deseribed which have more tolerance to precompression band.
Limating than the Frank codes. The precompression bandlimiting acts as a weighting on the Frank
cades, which increases the sidelobe levels relative to the peak. The tommalized sidelobe levels of the
new codes are reduced by the offective weighting caused by precompression bandhimiting.
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