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ABSTRACT

eport simmarizes results of 62 computations
iuded in the proceedings of the 1981 Stanfo
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1. INTRODUCTION

The objective of our participation in the 1981 Stanford Conference
on Complex Turbulent Flows has been to use a single theory to6 com-
flows included in the Conf

ry

in so doing it has been our hope that we can obj

o

pute as wide a range of

s

grence as possi

[y

ctively asséss
progress made to éate in developing a universally applicable en-

M_v, .
f:
H
o
[
| B
[1)]
e
(]
[t}
(]
3]
Q
(¢ 1
O
B
|.J
19]
oy
ot
vy
| Je
w

gineering model o objective we
have computed 20 flows with a total of 52 separate computations.
Table 1 summarizes the flows computed, incéluding the Sponsor for
each case.

Taklé 1. Summary of Flows Computed

ble

.

_Flow Number
0141/Simple

Incompressible B.L. in Ad"ané VD
142/nntry Pozzo"in* Low-Core Turb. Diffuser
0L43/Entr Pozzori .*Afigh-Cor= Turb. Diffuser

0241/ ntry Boundary Layer with Blowing
0242/Entry Boundary Layer with Suction
;244/’n*ﬂj Boundary . i
ﬁ?_l/ =ntry Mixing ia D
0371/Simple  Homogenéous Isotropic
J§?5/SLle° fomogenaous Rotating Tur
0374/Simple  Homogénéous Plane Sirain

1

1

1

1

pe)

1

3

2

0376/Simple Homogeneous Shear 2
342:/?ntry Backward Facing Step i NASA

0612/3imple Constant Pressure Boundary Layér 1

8101/Simple Mach ¥o. Effect on 3dundary L )

8201/Simple Wall Tempéerature Efféct on 3.L 6

8403/Simple Compressfblv B.L. in Advers 9

3

3

0

o

.'ﬁ

[

8411/simplé Compressible B.L. in Advers &ASA
8501/Simple  Mach No. Effect on Mixing L yé” AFOSR
8621/Entry  RAE 2822 Transonic Alrfoil 1 AFOSR
£623/Entry  DSMA 5235 Transonic_Airfoil ___AFOSR _
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program rniamed EDDYNSI for the backward-facing step (Flow 0421);
P and (c¢) 2 compréessible/incompressible boundary-layer program
- named EDDYBL for the other 53. computations.

W B

In the following Sections,
of motion and boundary conditions employed.
description of the numerical tools used followed by a discussion

of the various numericali chscks
many computations. Finally, we

outline possible future avenues

made during the course of the
summarize results obtained and
of research.
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ZQUATIONS OF MOTION

This section first présents the basic equations ol notion used in

this project. Thei norilinear stress/strain-rate constitutive

relation used for the homogeneous turbulent flows is given

we specify special modifications to the basic model neede
e

flows with significant system rotation and/or streafilin

HEY

2.1 CONSERVATION EQUATIONS

The equations of mdtion used in all of our computat
devised by Wileox and Rubésin The model is of
variety in which the Réyﬁcids stress tensor T

portional %o the méan strain rate tensor S 3

idy &if?uéivi%y, e is the turbulent mi
the mean velocity vector, x.
Kronecker delta. The mean equations of moti

steady flow) as follows.

-~

In equations (2-4) p is mean pressure, h is mean
&=

molecular viscosity, Pr: 3 Ps, are laminar and
numbers, w is turbulent dissip on rate and
sfficient which will be def ineé omentarily.




the ¢
the mean eneérgy equation (4) ap e ¢
e . L term ri Su,/SX. replaced by 3*paé. This is nct an ad hoe ¢

two turbulence model equatio

apnrox‘ma»ion, but rather a closure approximation consistsnt with
g'i‘* those made below in the turbulent enargy equatisn. The correctness
= N of Equation (4) becomes obvious when the resultant sguation for
x ’ total energy, viz, (§+%uiui+e}, is formed.

To complete our set of equations, we compute the eddy diffusivity
in terms of e and w from:

™
1}
-
i
U]
~
€
Lot
A%} |
S

where yv* is a closure coefficient given beélow in Equations (8§).

. The equations governing the evolution of e and w are:
" u, "
== 0,777 F A — _ ,l - 3 -~ - =% Qe } I's A
== (pu,8) = T;, == - B¥pus + =— Hu+S5%n 5
3x VOl ) 1 axy B¥puw sxj ( (u+o*ee) X, / b
- oJ . 4
n
-7 5 u- ~ 2
3 2 w? oYy . E] 3 4 3 3 P 1
=~ (pu,w®) = y= 1,, 5= = {8420(5==)? }ow® + £+— [(u+5pec)T)
- ’Xj 3 g i sxj Bxk ”‘5 . 9&3 4
7%
i

23/, In Squations

where 1 is furbulent leng
(5-7} thes
given

s
£3 whose values are 25
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which, for the hign Rem, incompressible cases considered becomes:

T -~
4J - oses. . - Zes.. 4 be (s + 3.0 (
o T 2%y 7 3%y * geFuteas s 7 § ) (2)

“w

where @ = 3 {Sui/axj - auj/sxi) is the mean rotation tensor.

2.3 SYSTEM ROTATION AND STREAMLINE CURVATURE

mw

|...

For rotating homogenecus turbulent flow (Case 0372) computation
include the Wile cx—Cha'noers2 rotati

on term. This term is added
to the equation for e, which becomes
de duy
3% = zijgg‘ + 9Qz~u'v'> - 3¥ye (10)

J Rotation Term
where t is time and Q is rotation rate. Finally, the transonic
airfoil Cases f 521 and 8623 use the Wi
curvature term ich yields the follow

Jrubes

H
]
o
w.

s . 2 <
lcox-Chambers® streamline
ing modified equation for &:

|.....I

3 {pi.2Y = ¢ LR au %z £ LRTAE 2 + 97
—s .= = - — e e Ganizle — i
5X; ;v*asé-.; pu'v sz; 5 ?& 7 : s ia27

J Curvaturse Ternm

where R is surface radius of curvature (pesitive for convex,
n
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4, COMPUTATIONAL TOOLS

4.1 HOMOGENEOUS TURBULENT FLOWS

Because of théir inherent simplicity, weé solved the equations of
motion for the 8 homogeneous turbulent flows with a straightforward
fourth-order accurate Runge-Xutta integration scheme and, for
obvious reasons, the program requires no further description.

4,2 ATTACHED AND FREE SHEAR FLOWS

The lion's share of our computations used the same program; namely
our two<dimensional/axisymmetric compressible/incompressible
boundary-layer/shear-layer program known as EDDYBLH. In performing
the calculations all compressible casés were done on a UNIVAC 1108
and all incompréssible cases 6n a -=7-80 Microcomputer. The latter
cases weré actually done with a vez..on of EDDYBL in whicéh all of
the comtressibility terms were eliminated. The program is a
parabolic marching code which is second=order accurate in both
streamwisé and normal directions.

4.3 BACKWARD FACING STEP

The backward-facing step case was doné with an incompressible,
elliptic program Known as EDDYNSI. The program is a modified ver=
sion of the TEACH-2E CodeS which also is second-order accurate in
streamwise and normal directions.

4,5 NUMERICAL SENSITIVITY STUDY

We performed many numerical accuracy tests on a more or less ran=-
dom sampling of the many cases we computed. In general we tested t}
effect of total mesh point number, location of mesh point nearest
the surfa e and size of streamwise steps taken. For all of the
boundary=layer cases we found 80-100 mesh points normal to the

o ) + . . -
surface with the valué of y for the point neorest the surface iess

than unity to be quite satisfactory. Except for very strong adverse
pressure gradient cases there is virtually no loss in accuracy in




taking streamwise steps up to about one boundary-layer thickness.
In some of our ¢ompressiblé boundary=layer runs we uged as many

as 280 points normal to the surface with y nearest the surface

as small as .09. The difference in computed integral propértiés
over a 100 point calculation was never found to be more than 2%.

For the backward-facing step casée we used meshes which had a
total of 196, 529, and 870 mésh points. The total number of mesh
points had very little effect on predicted reattachment léngth
although local flow properties variéd substantially with the
numbér of points used.
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RESULTS

This section presents a case-by-case description of résults
obtained including all plots submitted to the 1981 Stanford
Olympics Conference.

5.1 HOMOGENEOUS TURBULENT FLOWS

These flows have no so. 1 tc.ndaries and diffusion across stream=
lines is negligible. ™ 5 the =quations of motion simplify to
first-order ordinary dif.e entizl squations (conveéctive terms

are réplaced by time rate of change terms, c¢.f. Equation 10).

The equations of motion are trivially integrable using a standard
Runge-Kutta algorithm.

Our purpose in doing these flows was to clearly delineate one of
the bounds on the applicability range of a two=equation model of
turbulence. The assumption of an algebraic relation between the
Reynolds stress tensor and the mean strain raté ténsor iméiies
that the flow has achieved an "equilibrium" state:. Even using

a nonlinear stress/strain-rate constitutive relation (Equation 9)
accounts only for nonequipartition of energy; departures from
equilibrium still are ignored. Results for the four homogeéneous
turbulent flow cases follow.

5.1.1 Homogeneous Isotropic Turbulence

Figure 1 compares computed and measured turbulent kinetic enersgy,

q~ for decaying isotropic turbulence. As shown computed and measured
energies differ by less than 1% of scale: This close agreement

is unsurprising as the ratio of B8 to B* has been selected to match
measured decay rates for homogenesous 1sctropié turbulence.

5.1.2 Homogeneous Rotating Turbulence

Figures 2-5 compare computed and measured flow properties for
three different rotation rates, viz, 9=0, 20; 80 secsl. As shown




sl

\||!|’h,;.:x.....

!

0wl g

i

in Figure 2 (the nonrotating case), we agal' predict the decay of
homogeneous isotropic turbulence quite accurately. ZEven with Q=

20 sec'% predicted and measured decay of q2 are quite close. How-
ever, at the highest rotation speed we actually predict an eventual
increase in q2 in contrast to the monotonic decrease measured.
Figure 5 compares computed and measured ratios of vYu'? to VTE,
Clearly the measured partition of energy differs substantially

from that predicted.

5.1.3 Homogeneous Plane Sfrain

Two strain rates were considered, viz, -3v/3y = 3w’ 3z = 9.4l sec-l
(Townsend) and 4.45 sec™t (Tucker-Reynolds). Figures 6-8 compare
computed and measured normal Reynolds stresses for the higher
strain rate while Figures 9=11 correspond to the lower strain rate.
As shown, for both cases, w’2 is réasonably close while predicted

2

.2 Ny ) -
u'" and v'" are about 50% lower than measured.

5.1.4 Homogeneous Shear

Two shear rates were considered, viz, 3u/3y = 12.9 sec'l (Champagne,
ét al) and 48 secél (Harris, et al). Figures 12-15 compare computed
and measured Reynolds stress componénts for the lower shear rate
while Figures 16-19 correspond to the higher shear rate. For both
cases predicted normal and shear stress components are much lower
than measured.

5.2 CONSTANT PRESSURE BOUNDARY LAYER

Our next round of applications of the turbulence model is to flow

F
v
over a flat plate at both incompressible and compressible flow

conditions. In all computations, computation was initiated at the
leading edge of the plate from laminar profiles. The equations
of motion are integrated through transition up to Re, = 10000

3
for all of the compressible cases.
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5.2.1 Incompbressible Case

Figures 20~22 compare computed and measured velocity profile, skKin
friction and shape factor for an incompressible flat-plate

boundary layer (FPBL). The velocity profile corresponds to a plate-
length Reynolds number of 10.9 million: As shown, differences be-
tween computed and measured flow properties are well within engineer-
ing accuracy.

5.2.2 Efféct of Mach Number

Figure 23 compares computed effect of freestréam Mach number on

an adiabatic=wall FPBL. As shown for Mach number ranging from 0

to 5 and at a momentum=thickness Reynolds number, Reg, of 10000,
the model €quations prediét skin friction approximately 3-5%

lower than measured. Figure 24 shows the predicted recovery factor
as a function of Mach numbeér. The predicted variation is well
within expérimental data scatter.

5.2.3 Efféeet of Surfacée Cooling.

Figure 25 compares computed and measured effeats of surface cooling
on a Mach 5 FPBL., The adiabatic wall temperaturée determined from
the Mach 5 computation of Subsection 5.2.2 was uséd for all surface
cooling cases. Again computed skin friction is about 3-5% lower
than measured.

5.3 THE MIXING LAYER

Perhaps the most basic of all free shear flows is the mixing layer.
The mixing layer is the next of our applications. In this subsection
we first déscribe our results for the incompressible case, including
effects of velocity ratio. Then we discuss the compressible case.

5.3.1 Incompressible Case

Application of the wilccx=Rubesin1 model to this flow found the
predicted spreading rate to be .085 as compared to the measurad




(consensus) value of .115. Further in vnstigation showed that the

- o and o¥ (see Equations s=?). Flgure 25 shows the nredicted E
.- effect of o on spreading rate (the curve was constructed with o=0%*).
- As shown, selecting o = o% = 2/3 yields a spreading rate of .115:
This is the "fine tuning" of the Wilcox-Rubesin model alluded
in the Introduction.

")
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ot
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Figure 27 compares computéd and measured spreading rate as a function
P of velocity ratio ug/ui where Uy and u, are the velocities of thé
. mixing streams. As shown, predicted spreading rate virtually
1 duplicates the accepted c¢orrelation of measured values. Figure 28
compares the computed veloeity profile with the measurements of
Liepmann and Laufer.

. Finally, Figure 29 compares computed and measured development of &
. mixing layer from separation to a distance 1800 momentum thickness
downstream. The predicted asymptotic spreading rate is, as expected,

ﬂ:l

e

.115. As shown, the initial spreading rate is somewhat higher than E
measured and falls a bit bélow measured values farther downstrean.

T

5.3.2 Effect of Hach Number

il
e e

To assess effects of compressibility, we next compute the ad abatic
mixing layer, viz, the mixing of a supersonic stream with a str
o k] 2

the same fluid at rest having identical total temperatures. In order
to differentiate effacts of Mach number and density variation we first
predicted the Mach zero spreading rate for density ratios of 1/7 and

7. When the denser fluid is at rest the srreading rate is

: ) to .111; when the heavier fluid is at rest the spreading rate in-
P creases slightly to .116: Then, varying Mach number from
; t we find virtually no effect whatever on spreading rate (Figu

0y
5 o
2]
Lad

P To be certain no numerical errors are involved we reran zll comp-
ressible cases with a one=dimensional implicit time marching progran

u to solve the farfield (self-similar) squations and found precisely
the same resul:...no variztion of spreading rate with Mach number

13




s

Using the farfield eguations we alsc included (a) transverse pre-
sure gradient, (b} the Saffman—ﬁilccxs compressibility term and
{c) the Wilcox~Chambeérs streamline curvature term. None of these
modifications had any substantial (greater than 10%) effect on
redicted spreading rate.

5.4 FLOWS WITH SURFACE MASS TRANSFER

We now turn to more advanced applications, the first of which are
flows with surface mass transfer. Only incompressible cases were
done, one with surface mass injection and the other six computations
with suction. Results follow.

Ssigil

53]

Effect of Blowing

We first consider a constant pressure boundary layer with uniform
mass injection, F = v /U_ = .00375, whére U, is velocity at the
boundary layer edge. rFigures 31-34 show, respectively, skin
friction, momentum thickness, displacement thickness, and fou
loeity profiles. As shown, computed and measured flov §?é?ér$15$
are quite close. The largest differences are in momentum ané
displacement thickness where computed d¢ifferences are less than 10%.

5.4.,2 Effect of Suction

Now we turn to suction where we performed a total of six computa-
tisns. The first case had a mild adverse pressure gradient and =z
uction rate F = -.004. Figures 35-38 compare computed and measured
skin friction, momentum thickness and velocity profiles. Computed
skin friction is approximately 52 higher than measured while
computed and measursd velocity profiles differ by less than 73. Al-
: t

though larger differences are present for momentum and displacemen
thickness, computed and measured shape factors are very cless.

The other five cases are all at the same freestream {low conditions
and have zero pressuré gradient. Suction rate f h e

es from F = 0 to %:é*#ﬁ. Figure 39 compares computed and
ured veloecity pro r

el
'ﬁlw

as files for the unsucked ca
suction rate. As shown, differences are slight. Figures 40=42




e

i st sne:

display predicted and measured Reynolds stresses (as with the

a
homogeneous turbulent flow cases we used Equation 9 to compute the

normal stresses). At the three highest suction rates the shear
and streamwWwise-normal components are within 5% of their measured
counterparts. The lateral-normal component shows larger dis-
crepanciss.

5.5 BOUNDARY LAYERS WITE ADVERS

try

PRESSURE GRADIENT

Our attention now turns to effects of adverss pressure gradient,
the. long standing nemesis of turbulence modelers. Applieations
included in this subsection are one incompressible computation
and ten supersonic computations.

5.5.1 Incompressible Case

Our incompressible application is the carefully documented flow
of Samuél and Joubert. Figure 43 exhibits skin friction, Figures

44-45 show shear stress profiles and Figure 46 displays veloeity
profiles, As a general observaticn, the computed bound iayer

thickens more rapidly than measured and

ary
s rather than sporcaching
separation, tends to recover more rapidly than measured 2

v
pressure gradient is removed.

5.5.2 Compressible Cases

Our selection of compressible cases was more extensive including
a round of nine computations at Mach 2.2 with three different

Reynolﬁé numbers (Acharaya, et al). The tenth computation was
t Mach U (Zwarts).

Figures 47-49 compare computed an

nine Mach 2.2 cases. As shown, s

computed skin friction begins fc drop at about the same location

as measured, falls to drop as low as measured, and recovers much
7

more rapidly than measured as the adverse gradient is remcved.

o
wn
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Pigures 50-51 show shape factor for two of the cases. As illustrated
the measurements indicate rapid variations in shape factor while

the predicted shape factors vary much more gradually. Figures

52=57 display computed and measured velocity, turbulent energy and
shear stress profiles. As in the incompressible case, the numerical
poundary layers are thicker than measured.

Figures 58-61 compare our numerical results with measurements for
Zwarts' Mach 4 boundary layer. While computed and measured shape
factor distributions are quite close, all other flow properties
show the same general trend as the other adverse pressure gradient
cases. That is, the boundary layer tends to recover from the

adverse pressure gradient much moré rapidly than measured.

5.6 FLOW OVER TRANSONIC AIRFOILS

Continuing in our more advanced applications we turn now to transonic
flow past two airfoils, the RAE 2822 designh and the DSMA 523s.

Tor the former, computations have been made for five different sets
of flow conditions and threedifferent sets of conditions for the
latter. All computations have been done with our boundary-layer
program EDDYBL using measured pressure distributions. To account

for possible significant effects of streamline curvature, the
Wilcox=Chambers curvature term (Equation 11) is included for both
surfaces of the airfoil.

5.6.1 Airfoil RAE 2822

Tor this round of airfoil computations, freestream Mach number

*y

ranges from .676 to .730 while Reynolds number based on chord
ength ranges from 2.7 to 6.5 million. All computations are
tarted at the stagnation point and the transition point adjusted
¢ match the measured location by varying freestream furbulence
ntensity. Figures 62-6U4 compare computed and measured momentum
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hickness, shape factor and skin friction for the upper surfaces;
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computed properties on the lower surface (dashed lines) are also
displayed. As most clearly exhibited in the skin friztion
‘distributions, we again find that computed skin friction fails
to drop as low as measured and the boundary layers all end up
much farther from separation than measured. The latter
again suggests that the predicted boundary layer zapproaches an
equilibrium state much more rapidly than measured as the adverse
gradient eases.

5.6.2 Airfoil DSMA 523s

Mach number and Reynolds number range from .6 to .8 and from 2 to 4
million, respectively, for this round of airfoil computations.
Figures 65+67 compare predicted and measured skin friction dis-
tributions for both airfoil surfaces. On the one hand, theory

and experiment are reasonably c¢lose on the upper surface for all
three cases, On the other hand, the measured boundary layer nearly
separates on the lower surface for each case while the numerical
boundary layer actually shows an increase in skin friction. Thus,
we again observe a more rapid than measursd return to equilibrium
in an adverse pressure gradient. Figures 68-73 display computed
and measured velocity profiles. Except very close to the ftrailing
edge, predicted upper surface profiles differ from those measured
by less than 5%. Lower surface profiles show larger differences,
particularly in the nearly separated zone.

5.7 DIFFUSER FLOWS

Thus far all of our applications have been to external flows (with
the exception of the Samuel-Joubert case which was treated

however as an external flow). As part of our overall objective

to cover as wide a range of turbulence phenomena, we now focus

on two internal flow geometries, viz, flow through z six degre
conical diffuser. The first case has low-core turbulence while
the second is for high-core turbulence.
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5.7.1 Low=Core Turbulence

Figures TU4-76 show computed and measured skin friction, velocity
profiles and shear stress prcfiles, respectively. As illustrated
in Figure T4, computed skin friection initially falls off at about
the same rate as measured but then, in contrast to the measured
trend, begins to increase slowly rather than continuing toward
separation. The velocity and shear stress profiles (Figurss 7
show clearly that the numerical boundary layer ceases to grow as
rapidly as measured beyond the point where the computed skin friction
begins to rise. Again, numerical results suggest the numerical
boundary layer heads toward an equilibrium state differing from the
measured state.. In this case it is unclear whether we are ap-
proaching a different equilibrium state or approaching equilibrium
more rapidly than measured.

5.7.2 High-Core Turbulence

Computed results for this case are compared with corresponding meas-
urements in Figures T77-79. Although computéd and measured skin
friction differences are smaller in this case than in the low-core
turbulence case, computed skin friction variation again stands in

contrast to the measured distrivution in a similar manner. Thzat
is, rather than decreasing monotonically; the numerical c,. begins

']

to increase slowly as we approach the outlet. As with the low=
core turbulence case, vélocity and shear stress profiles indicate

the numerical boundary layer is much thinner than measured. Aaga

|53

n
we are elther numerically approaching a different equilibrium
g

[
uy '3

state than measured or approaching e uilibrium much more rapidiy

5.8 3ACKWARD FACING STEP

inal application, flow past & backward-facing stép, differs
rom all of our othér applications in a very important way. Specifical-

<

v
bty
Yoo

u

ly, this flow includes boundary-layer separation while the boundary
laysers in all of our other applications remain attached. Computa-

tionally there is also z significant differsnce between this case
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and all of our other computations, viz, we have used "surface"

!

boundary conditions based on the law of the wall {Eguation 15)

WA o |

]

rather than integrating through the viscous sublayer (Egquations

12-14). The use of so-called "wall functions™ was necessitated

i, S, R S A

by limited time and funds f¢or this project; there is no fundamental

reason, hcwever, why Equations (12-14) can't be used.

and nmeasured
ributions, maximum
nd sahear stress

reatcachment gtl 7.0 step heights.
£

éomputed ﬂaxlmum shear - 1s considerabl;

through the separated region.

of reattachment the numevrical boundary layer v
ut the same rate as ﬁéésareﬁ, although 3

n £6 which comput a?isﬁ
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FIGURES

et

A1l figures following are in the form submitted to the 1981
Stanford Olympics. All experimental data references can be
obtained from the pi1sceedings of the Conference. Unless other=
wise indicated, our computational results are indicated by
lines with heavy dots ( e—e—e—e ). Experimental data generally
are indicated by openh symbols.
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THE 1980-81 AFOSR=BTTM=STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:
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THE 1980-81 AFOSR-HTTM-STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:

COMPARISON OF COMPUTATION AND EXPERIMENT
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Figure 2. Homogeneous rotating turbulence; Q = 0.
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Figure 3. Homogeneous rotating turbulence; Q = 20 sec'ls
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PLOT 1 CASE 0372C FILE 5

THE 1980-81 AFOSR-HTTM=STANFORD CONFERENCE ON COMPLEX TURBULENT FLOWS:

COMPARISON OF COMPUTATION AND EXPERIMENT
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Figure 6, Homogéneous plane strain; strain rate
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Figure 14. Homogeneous shear; shearing rate = 12.9 sec'l.
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Figure 16, Homogeneous shear; shearing rate = 148 sec™t,
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Insulated flat plate
Free flight at 15,000 m
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Figure 30. Effect of Mach number on mixing-layer growth.
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APPENDIX
WALL FUNCTIONS

The purpose of this Appendix is to provide some insight into
the use of so-called "wall functiors" with advanced turbulence
models. In its original form, thls Appendix was submi-zted to
the Stanford Olympics C -mittee as a note and, except for minor
editorial changes needed ‘or consistency with this report, is
reproduced in its entir:i -.

1. Mathematical Meaning of Matching to the Law of the Wall .

Generally speaking, in order to solve the equations of motion for

a viscous flow over a solid surface one must specify boundary con-

ditions valid at the surface. Often, in turbulent flow computations,

it is convenient to avoid integration through the sublayer. This

can be done by assuming the law of the wall to be valid for the flow

of interest so that we write (for incompressible flow)
Ur¥o )

= liop 122
uy = u (Zlog —= + B (A1)

where u, is friction velocity, x is Karman's constant, B-~5 for smooth
walls and v 1is kinematic viscosity. The quantities U, and Yo denote

tangentlal velocity and normal distance from the surface at the first
mesh point adjacent to the surface.

The first point I wish to make 1s that in a strict mathematical

sense the boundary condition we are actually using when we invoke
Equation (Al) is:

, u.y
u - ut(%icg -%— + B) as y =+ 0 (A2)

We are in fact idealizing the flow as having (relative to the over-
all scale of the boundary layer) a zero thickness sublayer.




2. The Origin of "Wall Functic..s"

When a turbulence model is used which involves additional dif-
ferential equations describing evolution of turbulent field pro-
perties, more boundary conditions are needed. For example, using

the Wilcox—Rubesinl two-equation model of turbulence we must also

- specify the appropriate "boundary" conditions for the turbulent

s mixing energy, e, and turbulent dissipation rate per unit energy,

_. w. It is at this point that the concept of so-called "wall functions"
: is introduced. These functions generally are deduced by examining

the limiting form of the turbulence-model equations as y+0. The
equations simplify in this 1limit primarily through dropping of the
convection terms. For example, in a constant pressure boundary

layer the Wilcox~Rubesin model equations simplify in this limit

- to the following:

elm
mrm
<l
i
P
3]

T (43)

. % ( ) - B¥ye + c* (z g; = 0 (ald)
( ) - s+2(9&)2} 34 0L (& d“’2 =0 (A5)
Y u { ol\gy’ ¢ 7 Ga )=

where £ is turbulent length scale defined by 2 = e%/w and B, A%,
Y, 0, o* are closure coefflcients whose values are

-
[T

3/20, : g*
: 1/2, o¥*
R v = 10/9

= i

9/100
1/2

a w
i

i

(46)

ey

It 1s easy to show that one solution to Equations (A3-A5), which
= . we shall denote as e=e  and w = w_,, 1is:

»

) e, = ul/vE¥ (AT)
. w, = uf//ﬁa‘ Ky (A8)
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where « is the Karman constant, a fact which has been arranged by
selecting the closure corfficients to satisfy the condition

Yy = B/B* - ZGKE//??. Equations (A7 -~ A8) generally are referred
to as wall functions. In computations, Equations (A7 - A8) are
used to define €5 and w, at y=y,.

The second point I wish to make is that, as with the law-of-the-
wall velocity boundary condition, the precise mathematical state-
ment of the "wall=function" boundary conditions for e and w is

e + e

=

e as y+ 0 (A9)

3. Non=Uniqueness of Wall Functions

Now, because the equations for e and w are of second order, Equations
(A7 - A8) are not the only solutions of Equations (A3=A5). In
fact, by changing independent varlables from y to u one can show
immedlately that the e equation simplifies to

2.
G*Q:B*Eeﬁl

au

(A10)

where E = e/uf and U = u/uT. As above, one solution has dE/dU = 0
so that E = 1//B¥. There are also solutions having dE/QU # 0 which
can be obtained by multiplying both sides of Equation (Al0) by

dE/dU and integrating twice to obtain
E .

! (A11)

: _ _3-5*
U—Uc _4_:_42-51,' +13 —
Eo ‘/£3 "%{.‘E +‘A

where A is an integration constant and Eo’ Uo dencte reference values
of E, U. Equation (All) is an elliptic integral whose properties

vary widely with the value of the integration constant A. It is

not my purpose here to examine in detail the behavior of E contained
in Equation (A1l). Rather, I wish only to emphasize that more than
one solution to the model equations exists and that, without care=
ful analysis, we cannot be sure that all solutions necessarily
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are consistent with the law of the wall.

Based on this observation, the third point I wish to make is that
arbitrarily deviating from Equations (A7-A9) by using some value
other than B* and/or x may introduce unexpected surprises, many
of which may be hiding in the integrand of Equation (A11). 1In
essence, in selecting the "wall functions" defined in Equations
(A7 - A8) we are (a) demanding that our boundary conditions be
consistent with the differential equations and (b) excluding any
other asymptotic (as y + 0) behavior which might be inconsistent
with the law of the wall.

4, Effects of Pressure Gradient

All of the analysis above assumes constant pressure. As will be
shown in this section, Equations (A7 - A8) are inappropriate
unless boundary conditions are applied much closer to the surface
than is done in common practice. To see this, note that now
Equation (A3) must be replaced by

3%

y (A12)

gjlo

&
]
[

sl

+
b

(o]

where p 1s density and dp/dx is pressure gradient. Equations (A4)
and (A5) remain as before. Letting y+ = uTy/v we can rewrite
Equation (A12) as

Qu

% gu. .. uf (1 + vdp/dx y+) (A13)

y 3
puz

Order of magnitude estimates for typical attached boundary-layer
flows in pressure gradient indicate the dimensionless grouping
multiplying y+ is a small parameter. This suggests seeking a
solution of the form 2

14 )
e =5 — + pe, + ...
/B% 1 )

ur ,

W= (14 fuw, + ...) (ALL)
#Bsty 1

du , ur

ay " (l+¢u1+...)
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where, for simplicity, we have defined our small parameter ¢

as follows:

¢ = vdggdx . (A15)

pu_

For the sake of brevity, I omit details of the algebra and simply
state the final solution up to terms linear in ¢, viz,

_ 36 _+
€ =377

_ 28 _+ (A16)
Wy = 3379

_ 33 .+
Up = =317

Consequently, for flows in adverse pressure gradient Equation (A2)
must be replaced by

u_y
usu (blog-+B-3B2 Iy asya+o0 (A17)

L

while, to this order of approximation, the wall functions e, and
w, defined in Equations (A7 - A8) must be replacéd by

2 ,
u uy i
_ T 36 , 1Y
Ew—%§l+3—¢—v—-§ (A18)
u » u_y
wwir; 31-?(1&%-} (A19)
B¥xy

To show the importance of the order ¢ corrections in the wall
functions, FigureAl shows results of a computation with the Wilcox-
Rubesin model in which the order ¢ corrections were omitted. The
flow considered was the Bradshaw "Flow C" adverse pressure gradient
boundary 1ayer7. In the computation "surface" boundary conditions
were applied at values of ?* ranging between 12 and 20. The figure
compares computed turbulent mixing energy at x = 7 feet with
Equation (A18). At this position the value of y+ for the mesh point
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nearest the surface is 12. As shown, the numerical solution
rapidly approaches the analytical solution given by Equation (Al18)
and the two solutions differ by less than 2% above y+ = 30.

In a subsequent solution in which order ¢ corrections to the law
of the wall and the wall functions were included, the numerical
and analytical solutions are virtually identical up to about y+=70
beyond which point terms of order ¢2 presumably become important.

Skin friction for these two numerical computations changed by less
than 2% indicating the neglect of thé order ¢ corrections was not
terribly important in this particular computation. However, please
note that in applying the boundary conditions at y+ = 12 our error
in e was only U4%. Had we applied the boundary condition at a
value of y+ = 40 (which is typical for those who use wall functions
in their work), the error in e increases to 14% which could very
easily result in a skin friction error of 5% or more. Indeed,

I did some numerical experimentation years ago and found that Cp
would change substantially with the point of application of the
boundary conditions when the order ¢ corrections are omitted. The
fourth point I wish to make 1is that, by contrast, solutions are
virtually independent of this point of application when the order

¢ corrections are included. '

5. Other Effects

Similar perturbation analyses can be used to determine near-wall
behavior of an advanced turbulence model including effects such
as compressibllity and surface mass transfer3. In my work I
generally integrate through the sublayer so I have found no need
to derive any but the leading order solutions. I have made such
derivations only to investigate limiting behavior of the model in
order to check for consistency with physical reality. Hence, my
past work offers no further asslistance t£o those wishing to use
wall functions. However, the procedure is no more complicated

than outlined above and also in Reference 3.
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6. Summary

In conclusion I would like to summarize the points made above and
add one further comment. The key points I am making are:

1. In matching to the law of the wall we are, in a
strict mathematical sense, insisting upon specified
asymptotic behavior of the velocity/surface-stress
relationship in the limit y/§ + 0, where § is a length
characteristic of overall scale 6f the boundary layer;

2. In using "wall functions" we are likewise insisting
upon specified asymptotic behavior of turbulence-=field
properties in the limit y/§ -+ 0;

3. Wall functions are not unique. For a given turbulence
model, there generally 1s more than one asymptotic
solution as y/6 -+ 0 and only one of these solutions
can usually be said with certainty to be consistent
with the law of the wall;

4, In using wall functions for flows with pressure gradient,
surface mass transfer, ete., solution accuracy can be
impaired if proper account 1s not taken of these effects
upon the wall functions and upon their point of
application.

If proper account is taken of the points above, it 1is poséible

to eliminate at least one key area of uncertainty in numerical work
and in turbulence-model research in which advanced turbulence models
are used. For example, as noted above, solutions become independent
of the location of the mesh point nearest the surface (provided
y+<60 for that point) when Equations (Al7-Al9)are used in place

of Equations(A2) and(A9) for the Bradshaw "Flow C" case. Such an
end, I feel, more than justifies the effort involved in performing
a straightforward perturbation analysis of the asymptoetic behavior
of a given turbulence model. This behavior is, of course, unique




to each model; Equations (A16), for example, are valid only for
the Wilcox~Rubesin modei. The behavior peculiar to any other
model nevertheless can be determined once and for all using the
same kind of perturbation analysis. The modest effort involved
should greatly reduce uncertainty about numerical precedures

employed by those who make use of wall functions.
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