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EXECUTIVE SUMMARY

BACKGROUND

High reliability in flight control systems is achfeved by providing
redundancy. There are two types of redundancy: "more of the same" redundancy -
such as providing three or four flight control computers, and functional
redundancy ~ providing a different type of system to do the same job. Those of
the first kind are subject to common mode failures resulting, for example, from
their common use of electricity. While fly-by-wire systems operate
satisfactorily in known environments, some concern exists about the reliability
of electronic flight controls in hazardous enviromments caused by nuclear blasts
(EMP), lightning strikes, and energy fields associated with advanced systems.
Fluidics provides a technologically distinct and redundant flight control system
which is immune to electromagnetic interference and from loss of electric
power. The feasibility of integrating a fluidic backup control channel with an
advanced fly-by-wire fl1ight control system has been demonstrated. This

development will enhance the survivability of future aircraft.

RESULTS

The most important quality of a backup flight control system is that it
must fly the aircraft when needed. Reliability must be very high even at the
expense of flight performance capability, and the system must be insensitive to
the failure modes of the primary system. For the system design described in
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this report, it is estimated there is a 99.68% chance the backup flight controls
will operate satisfactorily when needed. This probability assumes that
prescribed standard maintenance s performed. It is estimated that the mean
time between maintenance actions will be on the order of 37,000 engine operating
hours. Half of these actions will be caused by the electric solenoid valve

failing to sw.tch fn the fluidic backup.

FINDINGS

‘A'lthough the reliability of fluidic devices constituting a fluidic
backup fl1ight control system (FBFCS) is believed to be high, very 1ittle failure
rate data exists. Much of the reliability field data is based on experience
from such fluidic systems as aircraft engine thrust reversers, approach power
compensators, overspeed controllers and temperature sensing units. The
experienced reliability of these particular devices is extremely high, but
additional application data is needed to establish the reliability of fluidic

systems in general.

Reliability Results of the reliability analysis indicate that contamination is
the predominant failure mechanism in the FBFCS. Sources of contamination
include ingestion of particles through component vents and seals, clogged
filters and particles introduced during the manufacturing and production testing
process. High reliability of fluidic devices for a FBFCS will depend upon using
state-of-the-art design practices, proper filtration and manufacturing quality

control practices comparable in effect to those of the electronics industry.
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Maintainability Review of FMEA worksheets indicates that the standard hydraulic

components of the servoactuator will require the majority of the required
maintenance actions for the total flight control system. When a failure does
occur within the FBFCS, replacement can be accomplished easily. During this
analysis a general consideration of maintenance for each fluidic component was
made and no maintenance problems were encountered except for detecting and f

Jocating a Teak if the system is pneumatic.

RECOMMENDATIONS

o A detailed maintenance analysis should be accomplished after design

details of the FBFCS are made available. The frequencies of occurrence as

compiled in this report can be used for the maintenace analysis at the !

appropriate time.

o Currently, no specification exists for a FBFCS which establishes
parameter 1imits for defining system or component failure. Another problem in
quantifying the reliability of fluidic devices is the absence of standardized
failure definitions. Additional specifications should be written to define and

establish these functional requirements and parameter limits.
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1.0 INTRODUCTION TO THE ANALYSIS

An analytical technique called a Failure Mode and Effect Analysis (FMEA)
is the usual approach to evaluating potential failure modes. There are two methods
of performing an FMEA: the functional approach and the hardware approach. The
functional approach is initiated by 1isting equipment functions at the system
level. Failure modes contributing to nonconformance of desired functions are
analyzed and failure effects determined. These effects become the failure modes at
the next lower indenture level. This procedure fs continued to lower fluidic

indenture levels until all critical items are identified.

The other FMEA method is a hardware-oriented approach which is initiated
by listing individual fluidic parts. Possible failure modes for each part are
analyzed. Failure effects of the part itself and on other FBFCS elements are then
determined. These effects become the failure modes at the next higher indenture

level. This process is continued until the system (FBFCS) level is reached.

In the early development stage when a system has been conceived but
detailed parts have not been decided upon, the functional approach is usually
preferred. In the case of this FBFCS the overall system design has not been
completed. However, considerable knowledge can be obtained and a baseline
established for future analytic efforts by analyzing components which in all
11k11hood will be used in the FBFCS design. Therefore, the hardware-oriented FMEA
approach was used for this particular analysis so that a more detailed parts

analysis could be achieved. Procedures for conducting the FMEA and evaluating the

. ™ "PVM._,.:M‘
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severity of each failure mode are included as Appendix A. Completed FMEA
worksheets containing component failure modes, their effects, and failure rates are

included as Appendix B.

This report summarizes potential failure modes of typical fluidic
components as used in a FBFCS. An example of a FBFCS was identified and is shown ;
in Figures 1 and 2. Failure rates of each failure mode are dependent upon various
environmental factors such as shock, vibration, acceleration and working fluid
temperature. They are also dependent upon design, material applications,
manufacturing processes and required performance. Detajled failure rate data on
these parameters is not available, and the typical Handbook method of assigning
failure rates could not be used. Instead, a literature search was conducted, and !
failure rates were derived from published test data for similar components.
Engineering analysis was used as necessary to complete the determination of failure
rates. On the FMEA worksheets the following codes are used to indicate the source

of the failure rate:

Calculated
Field Data
Estimated

" MmO O

Reference

Reports and documents used to identify failure modes and failure rates are listed

in Appendix C.
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2.0 FAILURE MODES OF FLUIDIC COMPONENTS

2.1 Pin Amplifier

A position-to-fluidic sensor is required on the FBFCS for transducing
control stick and rudder motion. Most fluidic position transducers require a very
small input motion although the motion they are measuring is relatively large. A
pin amplifier used as a position sensor contains a small diameter pin placed in
front of the receivers of a fluidic amplifier. With the pin located between the
two receivers, the two output pressures are equal, resulting in a differential
pressure output of zero. As the pin moves toward one receiver, interference of the
Jet occurs which reduces pressure in that receiver and increases pressure in the
other. The net result is increased differential output pressure in relation to
stick movement in one direction. When the pin is moved in the opposite direction,
the change in recefver pressure is reversed providing a differential pressure of
the opposite sense. Pin size is about the same as the receiver opening and maximum
stroke is about one pin diameter. Gain of the pin amplifier is a function of

supply pressure and loading.

Typical faflure modes of the pin amplifier include clogging of the
receiver openings with large particles, wear of the pin, and leakage. One of the
results of these malfunctions is a drift of performance parameters such as null,
1inearity or scale factor. Failure modes of the motion reduction 1inkage must also

be considered.

10
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A review of available literature revealed contamination and clogging of
fluidic elements as the predominant faflure mode. These contaminants can be
introduced into the assembly during the manufacturing process, or can enter into
the fluidic system from the environment through vents and seals, or can be

generated within the system or supply during nomal operation.

Reliability of a fluidic device such as the pin amplifier depends upon the
quantity of contaminants passing through individual elements and on the source of
contamination. In turn the quantity of contaminants is dependent upon the
enviromment, design, required performance, production techniques and the

interaction of parameters.

Parameter drift in a position sensor caused by contamination is an example
of a degradation type of failure mode. The other type of failure mode is complete
cessation of intended system functions resulting in catastrophic failure.
Catastrophic failure modes are rare in fluidic systems but were included in this

analysis to aid in the precision of failure rate predictions.

2.2 Rate Sensors

Stabitization and rate damping of a FBFCS is achieved by inertial motion
sensors. There are two basic approaches to fluidic rate sensors: the vortex rate
sensor and the jet rate sensor. Research at Harry Diamond Labs (Reference No. 12)
indicates that the jet rate sensor has better performance and lower flow
reqirements than the vortex rate sensor. Operation of the jet sensor is based on

conservation of 1inear momentum. As the body is rotated about an axis normal to

e re——
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the plane of the receivers, the jet is deflected relative to the receiver by an
amount proportional to the rate of rotation and the time it takes the jet to

traverse the distance between supply nozzle and recefver.

When using jet rate sensors for angular rotation rates, a common system
configuration is to sum the stick or rudder input signal with rate feedback. Some
of the potential failure modes of jet rate sensors include gain variations and null
shift due to changes in temperature or Reynold's number. Gain variation with
Reynold's number is an expected phenomenon of laminar devices; however, null output
and null shift are effects that arise from imperfect manufacturing processes. As
in the case of position sensors, rate sensors are sensitive to contamination
resulting in leakage, clogging of vents and drifts of linearity, null and scale

factor.

2.3 Accelerometer

A normal acceleration sensor may be used to sense statically unstable
aircraft conditions. Fluidic accelerometers are usually constructed using some
type of spring/mass system with a position pick-off. With the sensor in normal
attitude, pin position can be adjusted for zero differential pressure output.

Failure modes of an accelerometer are similar to those of position and rate sensors.

2.4 Signal Summing

In the controller of the FBFCS, inputs from pilot command, pilot trim, and
angular rate are summed and then amplified to produce the desired output signal.

The most common method of summing differential pressures uses a pair of linear

12
. w .s‘r 7.':’\'.;'-—. -




NADC 80227-60

resistors connected to the input controls of a proportional amplifier. Output
signals can exhibit droop if the sum of the input signals {is sufficient to cause
the amplifier output to saturate. Otherwise the only failure modes to be

considered include those previously mentioned for other fluidic devices.

2.5 Transmission Lines

In a FBFCS, fluidic signals from the fluidic computer must be transmitted to an
actuator at some remote location. Thin wall stainless steel tubing is generally
used up to the pressure regulator within the supply. Nylon tubing is sometimes
used for downstream supply and control pressures. Fittings, unions and elbows

often consist of a moided polycarbonate plastic body enclosing aluminum tubing.

A review of test data showed that catastrophic failure of a fluid system as a
resi'lt of ruptured supply or signal lines did not occur. This failure mode can be
essentially eliminated by using proper design and packaging techniques. No attempt
was made during this study to quantify the probability of supply line rupture as a

result of battle damage.

Control signal transmission over long lines does not appear to be a problem if
hydraulic or other o1l is used as a medium. Signal fidelity in pneumatic circuits
could be a problem, and further study of total system performance with pneumatic

circuits is needed.
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2.6 Servoactuator

Although the servoactuator contains nonfluidic devices including the spool
valve and actuator, it is part of the total flight control system and was included
in this analysis. Typical catastrophic mechanical failure modes exist for these
devices. Servoactuators for a FBFCS usually consist of a torque motor, flapper
nozzle, amplifier, spool valve, actuator, center lock mechanism and a solenoid
valve. The torque motor accepts a signal from a fluid amplifier and produces a
mechanical output which is proportional to the differental pressure from the fluid
amplifier. There is a mechanical feedback connection from the output shaft to the
nozzle end of the flapper-nozzle assembly. The other end of the flapper is driven
by the torque motor. The reverse flow flapper nozzle acts as a mecharical to

fluidic transducer for actuator position feedback.

The center lock mechanism causes the actuator shaft to center and be locked at
the servoactuator null position when no fluidic signal is present. A solenoid
valve directly mounted to the servoactuator remains closed so that when energized,

fluid power will be applied to the flapper-nozzle, spool valve and center lock

mechanism.
2.7 Power Supply

Power supplies for fluidic systems normally contain a filter assembly, pressure
reducer, moisture separator, shut off valve, reservoir or plenum chamber.
Reliability of a fluidic device and system is directly dependent upon the quantity
of contaminants passing through individual elements as well as on the source of

contamination. The designer of a f{ltration system s faced with a trade-off:
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either short intervals between filter maintenance or underdesigning the particle
size rating of the filter (thereby accepting a higher probability of component
failure). Design of a filtration system must consider a prefilter sized to remove
most of the particulate matter that normally would not pass through the smaller

final stage filter.

Filtration design directly affects component relfability. Particle sizes,
contaminant rates and filtration effectiveness must be taken into consideration

when predicting reliability.
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3.0 QUANTIFICATION OF FAILURE RATES

To calculate the effect of a failure mode on system performance, its
probability of occurrence iust be estimated. This report is intended to serve as a
baseline for future tests and reliability predictions for a FBFCS. Failure modes
as they occur during a testing program can be evaluated in terms of their expected

probability of occurrence as discussed in this report.

Fatlure rates for this study were derived from the many available test reports
and other technical papers on the subject of fluidic circuit relfability. Faflure
rates provided on the FMEA worksheets contain references to these publications
which are 1isted in Appendix C. Some of the failure rates had to be estimated when
no reference could be found, some failure rates were calculated and others were

derived from field utilization data.

A summary of failure rates as entered on the worksheets is shown in Table I.

TABLE 1
SUMMARY OF FBFCS FAILURE RATES

FAILURE RATE IN

COMPONENT FAILURES/10® HOURS
Pin Amplifier .32
Transmission Line .23
Rate Sensor .20
Engage Solenoid 13.10
16
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Amplifier (LPA), Qty = 5
Flapper Nozzle

Filter Assembly

THREE MAJOR FAILURE CAUSES
OF PURE FLUIDIC ELEMENTS

1.00
6.10

6.00

26.96

FAILURE RATE IN
FAILURES/10° HOURS

CONTAMINATION 12.81
FATIGUE 1.83
SUDDEN PLUGGING OF VENT/NOZZLE .013
SEVERITY FAILURE RATE IN
LEVEL FAILURES/105 HOURS

I CATASTROPHIC -
I1  CRITICAL .45
III MAJOR 26.51
IV MINOR -

26.96

From the above summary, the expected number of failures during a typical

design 1ife of 7000 hours can be computed as follows:

-6
27 x 10 failures/hour x 7000 hours

17
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In other words, there is a good chance that during the 7000 hour design 1ife of an
aircraft there will be no fatlures of the FBFCS. The actual reliability of the
FBFCS can be calculated by substituting fatlure rates from Tadble 1 into the

exponential failure equation.

where Ps = probability of success or reliability
A = fajlure rate in failures per hour

t = time in hours

For the entire design 1ife of an aircraft, reliability of the FBFCS is computed.

Py = e~19 = g2.7%

Therefore, there is an 82.7% chance that no maintenance would ever be required on
the FBFCS.

18
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Only some of the failure modes are critical to mission success of the
total flight control system. Using the same exponential failure law the
probability that no critical failure mode will occur during the design 1ife of the

aircraft is as follows.

-.45 x 10~ x 7000

Ps = e = 99.69%

It should be noted that wi¢ .. “%iive maintenance and flight control checks
are nomally performed. If thg ¥37:2 is verified to be operational prior to flight
then the pruoability of it being operational during a typical two hour mission is

as follows:
-6
e-27 x 10 x2

P =
S

= 99,99%

As noted in Table 1, most of the failures will be caused by contaminants.
Because contamination is a relatively slow process, changes in flight performance
are detectable prior to any catastrophic failure. The total failure rate is
dependent on the time interval between maintenance actions. For example, if the
FBFCS is cleaned and inspected every 500 engfne hours, then the probability that

the FBFCS will not be degraded by contaminants is estimated as follows:

-12.8 x 1075 x 500

P = e = ,9936
s
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Assuming other failure modes are catastrophic, the probability that the FBFCS will

not encounter a catastrophic failure is:

-6
-(27-12.8) x 10  x 7000

= e = .9054
S

Combining these probabilities provides a FBFCS reliability if the system is cleaned
and inspected every 500 engine hours

Ps = .9936 x .9054 = 89.61%

Figure 3 provides other predictions of reliability as a function of hours between

preventive maintenance.

The required frequency of corrective maintenance actions is estimated from
failure rate of the FBFCS. Mean time between maintenance actions is the reciprocal

of failure rate.

6
1 1 x 10
MTBMA = T 55— = 37,000 hours
20
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As seen from Table 1, contamination appears to be the chief concern in the
performance of fluidic systems. The effects of contamination are very difficult to
predict and even difficult to define with any precision. Some preliminary tests
have been run to demonstrate these effects, and results indicate that the buildup
of contaminants over a period of several years is sufficient to change the
effective shape of a nozzle, produce a distorted jet, and eventually result in

failure of the system.

One effect of contamination in a fluidic device is the buildup of deposits on
the inside surfaces of the device. These contaminants may be carried into the
device through the power supply or entrained from the enviromment through component
vents. As the contaminate deposition process proceeds, geometry of the passages is
changed. The contamination process is relatively slow, and the change in component
performance is gradual with time.

Another effect of contamination is a sudden failure as large pieces of foreign
matter completely block a nozzle or passage. These large particles consist of
metal slivers and other pieces of material which may have broken away from the
sharp edges of the sandwiched assemblies.

Seal erosion {s another failure mode which must be considered in the evaluation
of FBFCS relfability. Unfortunately, seal erosfon is hard to predict and is
dependent upon the basic system configuration. For example, in & low pressure
1iquid system a seal leak can be tolerated to some extent without adversely
affecting component performance. However, in a pneumatic system even minute leaks
can cause severe erosion in the seal layer which soon develops into a major leak

and ultimate component faflure.

22
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Relfabi1{ty prediction requires the consideration of performance

characteristics with time and therefore a detailed knowledge of the contamination

process. Additional work is required in this area to generate failure mode

equations for predicting the probability of a failure occurring due to

contamination. Figure 4 indicates some of the parameters to be included in such

equations.
FAILURE DUE TO
CONTAMINATION
f T T |
INERT CORROSIVE FIBERS LIQUID
SOLID CONTAMINANTS DISPERSANTS
CONTAMINANTS
--Abrasiveness --Erosion Rate --Length -=Density
--Flow Rate -=Fluid Type --Diameter --Viscosity
--Particle Size ~=Flow Rate -=Stiffness -=Bulk Modulus
~=Hardness

-=-Port Dimensions

FIGURE 4 FAILURE MODE CONSIDERATIONS FOR CONTAMINATION
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As an example of the use of these equations, the following equation for

determining output flow, QF an amplifier or other fluidic device can be

considered.

where:
Qe = Output flow, in%/sec (m3/sec)
D = Flapper fixed orifice diameter, in (m)
Cp = Hydraulic Amplifier (flapper) fixed orifice
discharge coefficient
Ps = Supply pressure, psi (Pa)
o = Fluid density, 1b/in3 (Kg/m3)

K = 61024 (1)

This equation can be used to determine flow rate.

REF 30

The density of particles in

suspension can be estimated from test results or from analysis of the filtration

system.

24
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Then Figure 5 can be used to determine the 1ife of the fluidic component.
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4.0 MAINTAINABILITY

A review of FMEA worksheets indicates the standard hydraulic components of
the servoactuator will require the majority of the maintenance actions for the
total flight control system. When a faflure does occur within the FBFCS,
replacement can be accomplished quite rapidly. During this analysis a general
consideration of maintenance for each fluidic component was made and no maintenance

problems were encountered except detecting and locating a leak if the system is

pneumatic.

Most of the fluidic failure modes are caused by contamination (which is a
slow process) and as a result performance deterioration will occur gradually.
Means of evaluating FBFCS performance must be accomplished as part of the routine
maintenance of the flight control system.

A detailed maintenance analysis should be accomplished after design
details of the FBFCS are made available. The frequencies of occurrence as compiled

in this report can be used for the maintenance analysis at the appropriate time.
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5.0 CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS
The primary mode of failure for fluidic circuits appears to be
contamination. Effects of contamination are difficult to evaluate and depend upon
the type of contaminant such as inert solid contaminants, 1iquid dispersents,
fibers, and corrosive contaminants. Further work is needed to develop failure rate
equations for each of the contaminant-related failure modes identified in this
report. These equations can be used to determine mean time between failure of a
fluidic device and must include supply pressure, nozzle area, circuit material and %

contaminant rate, size and hardness.

Contamination plays a major role in determining field reliability and
maintainability of a FBFCS. Clogging of supply nozzles and control ports, and
parameter drift are serious failure modes affecting total FBFCS reliability, but
their occurrence probability is very small. Maintainability of the FBFCS will be

determined by the capability to measure degraded performance.

The most hazardous failure modes identified are those causing an actuator
hardover position. Fortunately, the probability of these failure modes occurring

is very low.
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RECOMMENDATIONS

Specifications which define the total FBFCS and which establish functional
requirements and parameter 1imits should be developed for setting design standards

and establishing ground rules for further anaiysis.
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APPENDIX A

PROCEDURE FOR IDENTIFYING
FAILURE MODES OF A FLUIDIC SYSTEM
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FAILURE MODE IDENTIFICATION
HARDWARE APPROACH

1. SCOPE

1.1 Purpose. The basic purpose of this procedure is to determine possible
modes of failure within an equipment, the effect of each mode of failure on the
overall equipment or portion thereof and those sensitive equipment items which
mandate a stress analysis. This procedure establishes the requirement for
identifying critical failure modes using the hardware approach. A detailed
analysis using the hardware approach is initiated by 1isting individual equipment
jtems. Possible failure modes for each equipment ftem are then analyzed. Failure
effects on performance of the item itself and on other hardware system elements are

then determined and become the failure modes at the next higher indenture level.

1.2 Application. The hardware approach is a rigorous method of identifying
failure modes and is normally used whenever the hardware items can be identified
from engineering drawings. While the hardware approach is normally utilized in a
part level up fashion, it can be inftiated at aimost any indenture level and can
proceed in either direction.

2. PROCEDURE FOR COMPLETING WORKSHEETS

Each analysis will require specific worksheet forms to be designed for

information contained in the following paragraphs.
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2.1 Item identification. The first worksheet entry contains the hardware {tem

under analysis. Assembly drawing symbols, drawing numbers or other coding

designations may be used to identify the item.

2.11 ldentification number. When entering the item identification on the

worksheet, a serial number or other reference designation is assigned for
traceability and complete visibility of each failure mode in relation to the

hardware system.

2.12 Mission/operational phase. A concise statement of the mission or

equipment operational phase as defined in the equipment item description is listed.

2.2 Function. A concise statement of the function performed by the hardware
ftem is Tisted.

2.3 Failure mode. By examining the outputs of all the items and output
functions identified in the applicable relfabilfty model, all potential failure
modes are identified and described . Failure modes of the individual hardware item
are postulated on the basis of the stated requirements contained in the narrative.
The following are typical failure modes and are the minimum that shall be
considered in the analysis. Other unique failure modes are considered as

applicable.

a. Premature operation.
b. Faflure to operate at a prescribed time.

c. Failure to cease operation at a prescribed time.

d. Loss of output or failure during operation.
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e. Degraded output or operational capability.

f. Unstable output or operation.

2.4 Failure cause. The possible causes associated with each postulated
failure mode are identified and described. The causes of each failure mode are
identified in order to estimate its probability of occurrence, uncover secondary
effects and formulate recommended corrective action. A faflure mode can have more
than one cause, and all potential independent causes for each failure mode are
identified and described. The failure causes within the adjacent indenture levels

are considered when conducting a second indenture level analysis.

2.5 Failure effect. The consequences of each assumed failure mode on {tem

operation, function, or status are identified, evaluated, classified, and
recorded. Faijlure effects focus on the specific element being analyzed which is
affected by the failure under consideration. A failure effect also impacts the
next higher indenture level under analysis. Therefore, both a “local" effect and
an “end" effect should be evaluated. Failure effects analysis also considers

maintenance, personnel and mission objectives.

2.51 Local effects. Local effects concentrate specifically on the effect of
the fatlure mode on the operation and function of the item under consideration.
The consequences of each postulated failure on the output of the item are described
along with the secondary effects. The purpose of defining the local effects is to
provide a base for judgment when evaluating existing compensating provisions or
formul ating recommended corrective actions. 1t should be noted that in certain

instances there may not be a “local" effect beyond the description of the failure
mode itself.
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2.52 End effect. The end effect analysis evaluates and defines the effect of
the postulated faflure on the operation, function, and status of the next higher
indenture level. The end effect described may be the result of a double failure.
For example, failure of a safety device results in a catastrophic end effect only
in the event that both the safety device fails and the prime function goes beyond
the 1imit for which the safety device is set.

2.6 Fajlure detection method. A description of the methods by which

occurrence of the failure mode is detected by the operator is next recorded.
Failure modes other than the one being considered which present an identical
indication to the operator are analyzed and 1isted. Redundant {tems need to be

evaluated to determine failure detection during a mission.

2.7 Compensating provisions. Any internal compensating provision at any

indenture level that either circumvents or mitigates the effect of the postulated
failure {s identififed and evaluated. This step is required to record the true
behavior of the item in the presence of an internal malfunction. Compensating
provisions include: redundant {tems which allow continued and safe operation if
one or more ftems fafl, alternate modes of operation, safety or relief devices such
as a monitoring or alarm provision or any other means which permits effective
operation or 1imits damage in the presence of a failure. Evaluation of redundant

items include the loss probability of both prime and backup items.

2.8 Level of severity. The level of severity is a classification assigned to

each failure mode according to 1ts effect on the operational function of the item.

The effect on the functional condition of the item caused by the 1oss or
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degradation of output is identified so that the failure mode effect will be

properly categorized into one of the levels describe¢ iow. The level of severity

selected shall be the most severe level of an {tem regardless of whether a less

severe classification is also applicable.

2.8

2.82

2.83

Classification of level of severity is established as follows:

Level I, catastrophic. Characterized by any of the following conditions:

(M
(2)

(3)
(4)

Severe reduction in mission capability.

Complete functional output loss of the item at the highest indenture
Tevel.

Other item failure requiring depot maintenance repair.

Loss of life.

Level II, critical. Characterized by any of the following conditions:

(m
(2)

(3)

(4)

Some degradation in mission capability.

Severe reduction in functional output of the item at the highest
indenture level.

Other item failure that cannot be repaired immediately within the
capability of organizational level maintenance.

Personal injury.

Level III, major. Characterized by any of the following conditions:

(1)
(2)

(3)

Negligible effect on mission capability.
Degradation in functional output of the item at highest indenture

Tevel.

Other item failure that can be repaired immediately within the

capability of organizational level maintenance.
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2.84 Level 1V, minor. Characterized by any of the following conditions:

(1) No effect on mission capability.

(2) Negligible effect on functional output of the item at highest
indenture level.

(3) Other item degradation that can be repaired by performing “adjustment"

maintenance.

3.0 CRITICALITY ANALYSIS AND THE QUANTITATIVE APPROACH

3.1 Purpose. The basic objective of the Criticality Analysis (CA) is to rank
each potential failure according to the combined influence of failure effect
severity and loss frequency. This procedure establishes the requirements for
conducting a CA using a quantitative approach. The quantitative approach computes
loss frequency in terms of failure rate for each failure mode. The quantitative

approach also considers application and environmental factors.

3.2 Application. The quantitative approach to conducting a CA is normally
used whenever a failure rate data base is avaflable for the analysis. A
quantitative analysis 1s usually performed in conjunction with other relfability
analyses such as a reliability prediction or maintainability analysis that utilizes

the same failure rate determinations.

3.3 PROCEDURES FOR USING THE WORKSHEETS

Worksheets need to be devised for the particular equipment item being
analyzed. Recommended worksheet entries include: a) The basic failure rate of the
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hardware item or function, b) The fraction of the part fajlure rate attributable to
the critical failure mode being considered, and c) A conditional probability factor

for the failure effect occurring, given that the failure mode has occurred.

3.31 Part failure rate ( A p). The first failure rate column contains the

failure rate of the item in its operational mode and environment. Where
appropriate, application factors (K,) and environmental factors (Kg) shall

first be applied to adjust for the difference between operating stresses of the
generic failure rate data and the operating stresses under which the item is going
to be used. Values for K, and K may be 1isted on the worksheet if desirable

for future analysis use. Equipment duty cycles need to be considered 1n the

application of failure rates.

3.32 Failure rate data. If available, reliability data resulting from tests

run on the specific item shall be used with tests performed under the identical
conditions of use. If handbooks or other source material are used to determine
failure rates, KA and KE shall be considered and applied whenever possible.

When valid failure rate data cannot be obtained, failure rates shall be derived
from operational experience and tests which have been performed on similar
equipment operating under conditions similar to the expected application and
environment. When using the hardware approach to identify initial failure modes,
failure rates are listed for the {tem identified. If the functional approach is
being used to identify critical failure modes, failure mode descriptions are
expressed as functions. In this case it will be necessary to derive failure rates

for the equipment ftems 1isted as failure cause.
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3.33 Failure mode ratio ( ©). The fraction of the part failure rate (\p)

related to the particular failure mode under consideration shall be evaluated and
recorded. If all potential failure modes of a particular item are 1isted for the
hardware approach, the sum of the a values for that item will equal one.

Individual failure mode muitipliers are derived from test reports and operational
data or analysis of the item's function in the equipment. If no operational data

are available, values of acan be approximated by engineering analysis of item

functions.

3.34 Probability of failure effect (8 ). The conditional probability that the

critical failure effect occurs, given that the failure mode has occurred, are
1isted. The 8 values are based upon engineering analysis of the equipment and are

obtained using the following guidelines:

Effect Probability of Occurrence, (8 )
Actual g =1.00
Probable loss 0.10 < 8 < 1.00
Possible loss 0 <8 <0.10
No effect g=0
A-8
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3.35 Operational failure rate (A. ). The operational failure rate is the

product of Ap’ a and B . The resulting failure rate is the number of times the
listed failure effect is expected to occur per mission hour or any other time base
selected. This failure rate may be converted to probability of occurrence if
desired by using the mission time or other time interval as discussed in the
narrative section. These failure rates are used in conjunction with the severity

levels to develop a criticality matrix.
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APPENDIX B

FAILURE MODE AND EFFECT
ANALYSIS WORKSHEETS
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BIBLIOGRAPHY OF FLUIDIC RELIABILITY

1. “Fluidic Reliability", H. Ogren, E. Peterson and D. Bengston, Honeywell Inc.,
Minneapolis, Minnesota; prepared for U.S. Army Aviation Material Laboratories, Fort
Eustis, VA., USAAVLABS Technical Report 68-36, June, 1968

A feasibility-model hydraulic single-axis Stability Augmentation System (SAS)
was tested under conditions simulating UH-1B helicopter flights. A total of 15
each of the components were life tested under various environmental conditions.
The SAS test was completed with no failures. Report discusses testing procedures
and possible wearout failure modes.

2. "“Procedure for Obtaining Fluidic Amplifier Reliability Data", J. Shinn, F.
Underwood and G. Hahn. General Electric Co., Schenectady, N.Y., Report No.
65-C-118, November, 1965

A basic test procedure was established by which accurate reliability
information may be gathered for digital fluid amplifiers. Observations based on
preliminary data are as follows: (1) Failures appeared to be nonrandom; failure
rates varied with time. (2) Data from some (but not all) test vehicles suggest a
higher failure rate under increased temperature. Further, there is no clear cut
evidence that pressure or contamination lead to any changes in mean time to failure
or that residual effects from previous stress conditions exist. (3) A substantial
variability existed in the number of failures between test vehicles.

3. "Reliability Testing of Laminar Jet Fluidic Elements", W. Westerman, Jr. and R.
Wright, McDonnell Douglas Astronautics Co., Titusville, FL for Harry Diamond
Laboratories, Washington, D.C., Report No. L0266, June, 1974

An evaluation of results from testing laminar jet fluidic elements is presented
and compared to performance of turbulent elements. A comprehensive photographic
presentation of contamination buildup is included. The test program encompassed a
total of 24 elements investigated of which 16 were proportional and 8 were bistable.

c-1

TS
. e s'rvﬁfﬂ,w

e e




——

NADC 80227-60

4, "“Reliability Data for Fluidic Systems with Addendums", W. Fleming and H.
Gamble, AiResearch Manufacturing Company of Arizona, Phoenix, AZ for Harry Diamond
Laboratories, Adelphi, MD, Report No. HDL-CR-76-092-1, Dec, 1976

An analysis of fluidic control failures experienced during laboratory and
experimental testing revealed that the failure mode of greatest concern, fluidic
circuit contamination, did not represent a serfous obstacle to seeking operational
applications for fluidic controls. Production components analyzed include the G.E.
thrust reverser actuator on the DC-10 and A.300B Airbus, and other components in
various applications.

5. "Flight Control System Reliability and Maintainability Investigations", John
Zipperer, et al, Bell Helicopter company; Fort Worth, TX; prepared for U.S. Army
Air Mobility R&D Laboratory, Fort Eustis, VA, USAAMRDL-TR-74-57, March 1975,
AD-AQ12233

State of the art for fly-by-wire and fluidic flight control systems and
components is reviewed and specific recommendations are made for future R&D efforts
necessary to define quality of design and quality of conformance requirements with
emphasis on relfability and maintainability. The section on fluidic flight control
systems reviews existing documentation describing fluidic systems and comparisons
are made with similar fly-by-wire and mechanical systems and components.

6. “Static Test Performance Characteristics of Several Fluidic Control valve
Configurations”, T.A. Street, et al, Army Missile Command, Redstone Arsenal, AL,
AD-768-772, Sept 1973

Static tests were conducted on seven fluidic valve configurations. Plenum
pressures were varied from 500 to 1500 psia with the design pressure being 1200

psia. Recorded data on forces, moments, internal static pressures, and valve exit
total pressures are presented.
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7. “Roll-Axis Hydrofluidic Stability Augmentation System Development”, D.
Bengtson, et al, Honeywell, Inc., Minneapolis, MN for U.S. Army Air Mobility R&D
Laboratory, Fort Eustis, VA, USAAMRDL-TR-75-43, Sept 1975, AD-A016932

Flight test evaluations of a roll-axis Hydrofluidic Stability Augmentation
System (HYSAS) for the OH-58A helicopter are presented. The system operates in
conjunction with a previously developed yaw axis HYSAS, and when used with the yaw
axis system provided increased vehicle damping and improved handling
characteristics.

8. "“Program for the Critical Components of a Fly-By-Tube Backup Flight Control
System", W.M. Posingies, Honeywell Inc., St. Louis Park, MN for Aircraft and Crew
Systems Technology Directorate, Naval Air Development Center, Warminster, PA, NADC
Technical Report 77197-60, Jan 1979, AD-A070387

Results of a program to develop an input transducer and summing network for a
fly-by-tube system are presented. The concept using signal levels up to +400 psid
is accurate, linear, relatively fisensitive to changes in fluid viscosity and has a
stable null with adequate response.

9. "Electro/Hydraulic/Fiuidic Direct Drive Servo Valve", L. Biafore and B.
Holland, Columbus Afrcraft Div., Rockwell International, Columbus, Ohio for Naval
Air Development Center, Warminster, PA, Technical Repbrt 78033-60, March 1979,
AD-A069798

The feasibility of providing a fluidic back-up control for the Advanced Flight
Control Actuation System (AFCAS) was investigated, potential design concepts
evaluated, and technical data and supplier hardware reviewed. A design concept for
an electro/hydraulic/fluidic servo valve was selected and a preliminary
specification proposed. Fluidic back-up system general requirements are presented.

10. "Flight Test of a Honeywell, Inc. Fluidic Yaw Damper", John Kidwell, Bell

Helicopter Co., Fort Worth, TX, for U.S. Army Aviation Material Labs, Fort Eustis,
VA, USAAVLABS T«chnical Report 68-53, July 1968
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Flight tests were conducted to evaluate the performance and feasibility of a
fluidic yaw damper system which was fabricated for a UH-1C helicopter. Tests
encompassed 8.5 flight hours and 2.9 hours of ground and hanger tests. Test
results are discussed.

11. “Contamination Effects in a Laminar Proportional Amplifier", R. Comparin, H.
Moses and E. Rowell, Virginia Polytechnic Institute and State University,
Blacksburg, VA for Harry Diamond Labs, Washington D.C., HDL-TR-175-1, June 1974

A laminar proportional amplifier was tested with a contaminated power supply to
determine the nature and location of contaminant deposits and their effect upon the
performance of the device. Results show that contamination can cause changes in
gain, pressure recovery and null point. A summary of other results is presented
together with some geometrical changes to reduce the sensitivity to contamination.

12. “Fluidic Reliability Program", W.J. Westerman and R.E. Wright, McDonnell
Douglas Corp, Titusville, FL, for Harry Diamond Laboratories, Washington, D.C.
McDonnell report No. L0242, Dec 1973

This report describes work performed to develop an accelerated testing method
and a method of predicting life of fluidic systems. Experiments to determine
degrading effects of supply gas contamination on fluidic system performance were
conducted and noise, frequency, output signal amplitude and gain were monitored.
An equation was developed relating fluidic circuit 1ife to the independent
variables of contaminant rate, supply pressure, contaminant size, contaminant
hardness, nozzle area and element type.

13. “Evaluation of Electro-Fluidic Control Valve", L. Biafore and D. Magnacca,
Rockwell International, Columbus, Ohio; prepared for Naval Air Development Center,
Warminster, PA. NADC 79077-60, March 1981

The feasibility of providing fluidic backup control of a fly-by-wire actuator
was demonstrated fn the laboratory. Lab testing demonstrated that the concept will

provide satisfactory performance for flight testing in the T-2C Technology
Demonstrator aircraft.
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14. "Flight Test Evaluation of the Three-Axis Mechanical Stability Agumentation
System", G. Fosdick, U.S. Army Air Mobility Research and Development Laboratory,
Fort Eustis, VA, December, 1970

A mechanical stability augmentation system using vortex valve fluidic
servoactuator was flight tested to evaluate augmentation of stability and control
characteristic of a UH-1H helicopter.

15. “U.S. Army Helicopter Hydraulic Servocylinder Reliability and Maintainability
Investigation", James Huffman, et. al, Systems Associates, Inc., Long Beach, CA,
prepared for Army Afr Mobility R&D Laboratory, Fort Eustis, VA, AD-767243, May 1973

An investigation was carried out to identify, isolate, and verify the causes of
problems with servo controlled hydraulic actuators used on U.S. Army helicopters,
and to trace the resulting effects on helicopter availability. Design
requirements, quality assurance provisions, maintenance procedures and practices,
test requirements, and procurement practices were analyzed to assess their impact

upon the current problems.

16. "A Three-Axis Fluidic Stability Augmentation System", Harvey Ogren, Honeywell,
Inc., Minneapolis, Minn., prepared for U.S. Army Air Mobility R&D Laboratory, Fort
Eustis, Va, AD739559, Oct 1971

This report covers the analysis, design, fabrication and laborataory tests of a
three-axis hydrofluidic stability augmentation system for a UH-1 type helicopter.
The system was subjected to temperature and vibration flightworthiness tests.

Ffnal tests conducted were closed-loop performance checks using an analog computer
to simulate afrcraft dynamics.

17. “"Three-Axis Fluidfc Stability Augmentatfon System F1ight Test Report", M.
Ebson, H. Ogren and D. Sotanski, Honeywell, Inc., Minneapolis, Minn., prepared for
U.S. Army Air Mobility R&D Laboratory, Fort Eustis, VA, AD-734343, Sept 1971

c-5

- i 7
gt




NADC 80227-60

This report covers the flight test of a three-axis hydrofluidic stability
augmentation system for a UH-1 type helicopter. Flight testing results including
problems encountered and modifications incorporated during the flight test are
discussed.

18. *“Development of a Hydrofluidic Stabflization Augmentation System (HYSAS) for
an AX Class Afrcraft", H.C. Kent, Honeywell, Inc., Minneapolis, Minn., prepared for
Air force Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio, AD-A011727, Jan
1975

This report describes a system analysis which included a computer simulation of
the Fairchild A-10. From this simulation, a flufidic yaw damper system was
fabricated and close-loop tested using the analog computer aircraft dynamic
simulation coupled with the yaw damper system mounted on a servoed rate table.
Fifteen flight conditions were simulated with the use of the fluidic HYSAS.

19. “Hydroflufdic Servoactuator Development", H. Kent and J. Sjolund, Honeywell,
Inc., Minneapolis, Minn., prepared for U.S. Army Air Mobility R&D Laboratory, Fort
Eustis, VA, AD-766308, May 1973

This report covers the design and development of a hydrofluidic servoactuator.
The servoactuator utilizes a hydrofluidic amplifier cascade input stage which
replaces the bellows-flapper-nozzle of a conventional servovalve, a fluid feedback
transducer, and an actuator. Testing results are discussed.

20. "Weight Assessment of a 3 Axis Fluidic Backup Flight Control System", Robert
Dlesen, Yought Corp. Dallas Texas, Report No. 2-51700-C/IR-52688, March 1981

This report addresses the question of the weight incurred with the fluidic

backup system and makes a comparison of the weight associated with competitive
backup control system such as mechanical or analog electronic.
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21. "Development of a Control Air Supply Filtration System”, Michael Cycon,
AiResearch Manufacturing Co., Final Report NO0019-78-C-0393, October 1979, prepared
for Naval Air System Command, Washington, D.C.

This report presents the results of a program to design and fabricate a
two-stage pneumatic filter using a cyclones separator as the first stage and a
conventional wire mesh surface media filter as a second stage. Test results are
discussed.

22. "Three-Axis Fluidic/Electronic Automatic Flight Control System Flight Test
Report", L.S. Cotton, United Aircraft Corporation, AD/A-000 894, August 1974,
prepared for Army Air Mobility R&D Laboratory Fort Eustis, VA

This report covers the flight test of a three-axis hydrofluidic SAS coupled
with a completely independent parallel attitude and heading hold for a CH-54B
helicopter. Problems during the test phase are discussed.

23. "The Design, Fabrication, and Test of an Electrofluidic Servovalve", M. Funke
and L. Pecan, Tritec, Inc., Columbiz, MD, prepared for Applied Technology ;
Laboratory, AVRADCOM, Fort Eustis, VA, AD-A082443 February, 1980 J

This report includes test results of a dual input servovalve using fluidic
amplilfiers and postive derivative feedback. Components tested included torque
motor, amplifiers, spool and actuator.

24. "Reljability of Aerospace Fluidic Controls”, J.M. Mix, AirResearch
Manufacturing Co., Phoenix, Arizona, prepared for presentation at the 1972 ASME
Winter Annual Meeting, N.Y.

This report discusses various experiments on fluidic circuits and associated
problems encountered with contaminants.
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25. "Hydrofluidic Component and System Reliability", L. Banaszak, Honeywell, Inc.
Minneapolis, MN, prepared for presentation at the 1972 ASME Winter Annual Meeting,
".Y.

Tests which define drift-type failure modes are discussed.

26. "Evaluation of Electrofluidic Control Valve", L.P. Biafore and D.A. Magnacca,
Rockwell International, Columbus, Ohio and David Keyser, Naval Air Development
Center, Warminster, PA, NADC Repors 79077-60, March 1981.

27. "Fluidfic Backup Flight Controls, a Feasibility Study”, Robert Woods, Vought
Corporation, Dallas, TX, prepared for Naval Air Systems Command, Washington, D.C.,
Report No. N0OO019-78-C-0460, June 1979.

This report includes a comprehensive survey of the current state-of-the-art in
fluidic technology applicable to flight control systems, configurations of a backup
flight control system and predictions for the performance and reliability of a
fluidic system.

28. "Hydrofluidic Fly-by-Tube Primary F1ight Control System", R. F. Helfinstine
and H.C. Kent, Honeywell, Inc., St. Louis Park, MN, prepared for Naval Air Systems
Command, Washington, D.C. Fina) Report 41-2745, August 1980.

This report describes the program to test and evaluate the operational
readiness of three Air Research fluidic components. Cyclic endurance tests,
vibratfon endurance tests and performance tests were conducted on each component.
Test results are discussed and problem areas associated with long - time use of
fluidic components are discussed.

30. "Two-Stage Servovalve Development Using a First-Stage Fluidic Amplifier",

Richard Deadwyler, Harry Diamond Laboratories, Adelphi, MD, HOL-TM-80-21, July 1980.

This report describes research on two-stage hydraulic servovalves (torque
motor, flapper nozzel valve) and first-stage fluidic amplifiers.
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