AD=A110 490 WISCONSIN UNIV=MADISON MATHEMATICS RESEARCH CENTER F/6 1271
MEAN VALUE AND TAYLOR FORMS IN INTERVAL ANALYSIS.(U)
OCT 81 L B RALL DAAG29~80=C~0041
UNCLASSIFIED MRC~TSR-2286 NL




B

=12 j2

o

=5z
L

&

2 e e

MICROCOPY RESOLUTION TEST CHART | i
NATIONAL HUREAU 6 CANDARL . Lo - & |




'MRC Technical Summary Report # 2286

MEAN VALUE AND TAYLOR FORMS IN
INTERVAL ANALYSIS

L. B. Rall

ADA110490

Mathematics Research Center /
University of Wisconsin—Madison

610 Walnut Street
Madison, Wisconsin 53706

October 1981

(Received September 28, 1981)

Approved for public release
Distribution unlimited

nsored by

e B coPt

U. S. Army Research Office
P. O, Box 12211
Research Triangle Park

North Carolina 27709 £92 bz 8 07D




UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

MEAN VALUE AND TAYLOR FORMS IN INTERVAL ANALYSIS

L. B. Rall

Technical Summary Report #2286

October 1981

ABSTRACT

Basic spaces for interval analysis are constructed as Cartesian products of the
real line. The spaces obtained in this way include real finite and infinite dimen-
sional real vector spaces, and have a number of important Hilbert and Banach spaces
as subspaces in the sense of set inclusion. A Gateaux-type derivative is defined in
these spaces, and is used in the corresponding interval spaces, together with interval
arithmetic, to obtain interval versions of the mean value theorem and Taylor's theorem.
These theorems provide ways to construct accurate interval inclusions of operators,
called mean value and Taylor forms. The forms resulting from expansion about midpoints
of intervals are shown to be inclusion monotone, and the effect of outward rounding on
this class of forms is also considered. An application is made to show that interval
iteration operators for the solution of operator equations can be constructed which
have arbitrarily high order of convergence in width. Derivations of the fundamental
theorems of less generality from results in real and functional analysis are also pre-
sented. As in the case of real and functional analysis, the interval Taylor's theorem
given here provides a powerful tool for applications of interval analysis to problems

in applied mathematics.

AMS (MOS) Subject Classifications: 65J05, 65Gl0, 47A60, 26Bl2, 26El5, 26E20, 26E25
Key words and phrases: 1Interval analysis, Calculus in abstract spaces, Mean value

theorem, Taylor's theorem, Intexval inclusions, Interval
iteration, Fixed point problems, Solution of equations
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SIGNIFICANCE AND EXPLANATION

Interval analysis can be used in applications, for example, to compute an in-
terval which includes the range of responses of a physical system to a range of
input conditions. In order for this interval result to be useful, however, it should
not be unrealistically larger than the range of responses which would actually be
observed, as sometimes happens for straightforward use of simple interval arithmetic.
One way to form accurate interval inclusions of real transformations can be based
on the mean value theorem and Taylor's theorem of ordinary analysis. 1In this paper,
the basic theory and proofs of such theorems in interval analysis are given. The
interval Taylor's theorem, for example, gives computable lower and upper bounds for
the truncation error in using the Taylor polynomial in place of the corresponding
nonlinear operator. Since this technique is often used in applied mathematics, the
theory in this paper permits application of interval analysis to the same types of
problems. In particular, it is shown how to obtain interval counterparts of rapidly

convergent iteration operators for the solution of equations which inherit the same

order of convergence, and thus can be efficient in actual computation.
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MEAN VALUE AND TAYLOR FORMS IN INTERVAL ANALYSIS

L. B. Rall

1. A setting for interval analysis. In the same way that real analysis is

concerned with transformations of real numbers (or vectors) into others, {nferval
analysis [ 61, [ 7] deals with transformations of intervals (or interval vectors).
Since an ordering relationship is fundamental to the definition of intervals, a
natural abstract setting for interval analysis is a partially ordered space [1l1],
{14], or, more specifically, a lattice (1), [8]. Here, a more concrete approach
will be taken, which results in the construction of what will be called IR-spaces

by forming Cartesian products of the set IR of nonempty closed intervals

(1.1) X =

N
-
g
[}
x
[
IA

x < b, x €R},

on the real line R. Interval analysis on these IR-spaces will be called reaf in-
terval analysis; it is general enough to cover many important applications, and the
thenry obtained adapts readily to actual numerical computation, for which only a fi-
nite set of real numbers is available.

1.1. Real spaces. The spaces to be considered here are built in a natural
way from the set R of real numbers. Given a set A, one can form the Cartesian pro-

duct

(1.2) P =

of R over the (ndex set A to obtain a set of vectors f with real components £ ER,

.
n € A. Writing f = {f“ | « €a, fOl € R} for £ € P, P is a finear space for the com-
penentwise definitions of addition £ + g and multiplication by scalars (real numbers)

a*f given by

(1.3 f+g={f +gﬂ]mEA), a-f={a-fa|r\GA},

Sponsored by the (nited States Army under Contract No. DAAG29-80-C-0041.
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respectively ([12], [16].

Another way of looking at the product space P given by (1.2) is as the set of
all 6unct£cna26 (real«valued functions) f on A; one writes fu = f(n), and (1.3) gives
the natural definitions of sums and scalar multiples of functionals, which are also
functionals.

pefinition 1.1, A neal space {or R-space for short) is a linear space P con-

structed according to (1.2) and (1.3) or the Cartesian product

(1.4) P= 1 P

REB 8

of such spaces, again with addition and multiplication by scalars defined component-
wise.
Examples of R-spaces abound. The choice A = (1,2,...,n} in (1.2) gives P = Rn,

the space of n-dimensional real vectors f = (fl,f fn), while a = {1,2,3,...}, the

YRR

«
set of positive integers, gives R , which consists of the real sequential vectors f =

(fl,fz,f3,...). Going on to A = X = [a,b], a nonempty interval (l1.1), one gets P =
R(a,b], the space of all real functions f on the interval [a,b}, the components of

y i which are usually denoted by f(x) = fx' a < x < b. Similarly, if Y = (c,d] is also

an interval, then taking A = XxY = [a,blx[c,d] gives the space R([a,b]l*[c,d]) of real
functions f of two variables with components f(x,y}), a < x < b, ¢ <y < d, and so on,
Cartesian products (1.4) can be used for concise description of sets of func-
tions taking on values in R-spaces. For example, with X = [a,bl, Y = [c,d), the real
space R(X~Y)~R(XxY) consists of all functirns f: X»Y C R2 I RZ with components f(x,y)
= (fl(x,y),fz(x,y)), a~-x<b,c<y<d. More generally, if D C P and Q is a real

space, then

y

- ‘ (1.5) no={f| £: DCP ~Qf
4 D
is also a real space by Definition 1.1. In (1.5), it is not required that P be a

[ real space, but this will usually be the case in the following discussion. A simple, .

m .
but important, oxample of (1.5) is obtained for P = Rn, Q@ = R , which gives the set

X




of functions (or operatons) f: D C Rn b Rm, which are fundamental to computational
numerical analysis {10}, ([12].

The subject of functional analysis is concerned with analysis on noamed linear
spaces (usually the ones which are complefe, called Banach spaces) [12], [16]. A
number of useful spaces of this type over the real scalar field can be considered
to be subspaces of real spaces P in the sense that all their elements belong to P.

In particular, all finite-dimensional real normed linear spaces are pretty much in-
distinguishable, due to the equivalence of norms {16], and can be identified with
the real spaces Rn. The situation is different for infinite-dimensional spaces. For

example, the elements of the Banach space R: of sequential real vectors f such that

- Sup -
(1.6) el (n)(lfnl) < 4w,

form a subspace of R which is different from the one consisting of elements of R;.
for which

.7 nel, = ¢ § €312 < e

n=1
Similarly, the space C{a,b] of continuous functions f on a < x < b (with the usual
norm) can be identified with a subspace of R{a,bl which is different from the one
obtained from L2[a,b], which consists of £ € R[a,b] such that
b

(1.8) e, = (wf £ 2ax11/2 < e,
a

where (L) denotes Lebesgue integration [16]. This natural type of embedding of normed

; linear spaces into real spaces will be helpful below in connection with the deriva-
tion of interval versions of results from real and functional analysis.

1.2. Real interval spaces. The set of finite, nonempty intervals (1.1)

on the real line R will be denoted by IR. There is a natural identification of real

numbers x € R with degenenate intervals [x,x]€ IR with equal endpoints, and one writes

(1.9) x = [x,x].

- 3 -

Yh e e e e - e




Ordinary arithmetic, extended from R to IR, is called interval anithmetic (61, (71].

For example, addition of intervals X = [a,b] and Y = [c,d] is defined by

(1.10) X+Y=[abl + [c,d) = [a+c, b+d],

L]

and multiplication of X = [a,b] by a real number r {r,r] by

{ra,rb], r 20,
(1.11) rex =
[rb,ra], r < O.

Note that with these definitions, IR is nof a linear space; with subtraction
defined in the usual way by X - Y = X + (=1)°Y, (1.10) and (1l.11l) give
(1.12) fo,1} - 10,1} = [-1,1)

instead of the identity element 0 = {0,0] of interval addition.
It will be useful to associate the following real numbers with an interval X =

la,b] € IR: Its midpoint m(X) = m[a,b) = (a + b}/2, its width w(x) = wla,b] = b - a,

and its absofute value (or modufus) |x| = |(a,bl]| = max{]a|,|b|} [7].

Another important property of intervals is that the {nfersection XNY = fa,b] N

[c,d] is either the interval
(1.13) XNY = [a,b} N[c,d] = [max{a,c},min{b,d}]
or the empty set @; if b < c or a > d, then

(1.14) XNY = g,

otherwise, (1.13) holds. Furthermore, if {Xn} is a sequence of nested intervals,

that is
}
(1.15) xl 2 x2 > x3 ...,
then
(1.16) X= Nx ¢@,
n
n=l

since each xn is a clnsed, nonempty subset of R [15].

The construction (1.2), (1.4) of real spaces in °l.1 will now be used to obtain
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the corresponding interval spaces, by starting with IR in place of R.

Definition 1.2. A xeal {nterval space IP is a space of the form

(1.17) IP = 1 IR,
A

or

(1.18) P = 1 1P,
gEB

in which each real interval space IP8 is of the form (1.17). Real interval spaces
will also be referred to as IR-spaces.

There is an obvious one-to-one correspondence between interval spaces (1.17),
(1.18) and real spaces (1.2), (1.4), respectively. Furthermore, the order relation-
ships <, €, 2, >, in R can be extended componentwise to a real space P to obtain a
partial onderning [ 1) of P. In the resulting partial ordering, the corresponding

IR-space IP consists of the set of all {ntervals in P; that is, X € IP if and only

there are elements a,b € P such that a < b and X = [a,b) = {x | a<x <b, x €p},

A

which is (1.1) with R replaced by P. This leads to the embedding x = [x,x] of P into
IP, as in (1.9). Moreover, interval arithmetic is also extended componentwise from
IR to an arbitrary real interval space IP. As in the case of IR, IP will not be a
linear space, unlike its underlying R-space P. The quantities m(X), w(X), and [X]
defined previously for real intervals X € IR can also be defined componentwise for
X € 1P, with the result being that m(X), w(X), and |x| will be elements of P,

Typical examples of IR-space are the space IR" of interval vectons
(1.19) X = (xl,xz,...,xn), X, € IR, i =1,2,...,n,
and the space IR[a,b] of {nterval functions Y on [a,b] € IR defined by
(1.20) Y(x) = [c(x),d(x)], a sx b,

where c,d € Rla,b) and ¢ <d [3], [13]. For X € IR", for example, one has

n
(1.21) m(X) = (m(xl),m(xz),...,m(xn)) €R,

~—————— . ot -
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and for Y € IR{a,b], |Y| is defined by
(1.22) (Y[ ) = [Y()| = max{|c(x)|,|d(x){}, a <x <b,

and thus |YI € RrR{a,b] is a real function.

An interval X € IP is, by construction, a subset of the underlying R-space P.
One important property of intervals in IP as subsets of P is convex{ity.

Lemma 1.1. If P is a real space and X € IP, then X is a convex subset of P,

that is, for arbitrary points x,y € X,
(1.23) Mx,y) = {z | z=8y + (1 - 8)x, 08 51} CX.

Proof: It follows from Definition 1.1 that each f € P, P a real space, can be
represented as f = {fY | fY €R, vy € BxA = I}, the real numbers fy, Y € T, being the

components of £. Now, let X = [a,b], and define ¢,d € P by

(1.24) c =min{x ,y }, d = max{x , €T,
Y Yy Y (vyv}' v

For x,y € X, it follows that

1.25 a < < B + (1 - 0) <d <b, €r,
( ) Y CY YY xy Y Y Y

for 0 < 0 < 1; hence, from (1.23), A(x,y) € X. QED,

As usual, the set A(x,y) defined by (1.23) is called the l{ne segment from x
(8 =0) toy (4 =1). A useful class of intervals are the symmetindic intervals,
defined as follows:

Definition 1.3. An interval S € IP is said to be symmetric if -s € S for each
s € s.

As a consequence of this definition, each symmetric interval § contains the
onigin 0 of P; furthermore, S = {-a,a] for some element a 2 0 of P. Moreover, if
s € P, then S = [-1,1]°s will be a symmetric interval; in this case, one can write
$ = [-1,1)es = s+ [-1,1] = [-]s]|,|s|], where |s| is the absolute valuc of s defined
crmprnentwise in the usual way.

In addition to the origin 0 of a real space P (the element such that 0 = 0,
1




y € T), it is helpful to single out the element e € P defined by e = 1, YET. 1In

terms of e, the symmetric intervals Sp € IP are defined for real p 2 0 by

(1.26) Sp =p¢[-e,e] = pe*[-1,1], p €ER, p 2 0.

Definition 1.4. A set D C P is said to be bounded if

(1.27) D C Sp = pe+[-1,1]

for some real p such that 0 < p < +», in particular, if D consists of a single ele-
ment £ € P, then f is called a bounded efement of P.

2. Interval transformations. Suppose that IP, IQ are IR~spaces, and F: ID C

IP = IQ is an operator defined on a domain ID in IP which takes on values in 1Q. The

result of applying F to X € ID is symbolized by
(2.1) Y = F(X),

where Y € 10, and F is called an {nterval transformation from ID C IP into IQ. It

follows that F € NIQ. What will be called .{nterval analysis here refers to the study
ID

of interval transformations.

Definition 2.1. The interval transformation F: ID C IP - IQ, where IP, IQ are
real interval spaces, is said to have an (nterval domain ID if 2 € ID implies that
X € 1D for each subinterval X C 2 of 2.

An important class of interval transformations are the ones which are monotone
in the sense of the following definition,

Definition 2.2. an interval transformation F: ID C IP - IQ with interval domain

ID is said to be {nclusion monotone (or simply monotone) on ID if
(2.2) X Cz =F(X) CF(2)

for each 2 € 1ID.
Given a domain D C P, P a real space, the corresponding interval domain ID in
IP can be constructed from the set of intervals 2 C D (which includes all the degen-

erate intervals equivalent to points of D) by adjoining all subintervals of each

-7 -
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such Z, if necessary. In what follows, it will be assumed that domains ID for inter-
val transformations ccrresponding to domains D of real transformations are formed in
this way, and hence will be interval domains. One has also D C ID by the identifica-
tion of points of P with degenerate intervals in IP. The concept of an interval do-
main corresponding to a real leads to a fundamental relationship between real and in-
terval transformations.
Definition 2.3. The interval transformation F: ID C IP — IQ is said to be an

inclusion of the real transformation f: D C P = Q between the underlying real spaces

P and Q if
(2.3) £(X) = {E{x) | x € X} C F{X)

for each X CD. If F is monotone on ID, then it is called a monotone {nclusdicn of f.
For most of the results to be obtained below, inclusions of real transformations
are adequate. However, the property of monotonizity is highly desirable in many ap-
plications. Some interval inclusions of real transformations also have the follow-
ing property.
Definition 2.4. The interval inclusion F: ID C IP - IQ of £f: D C P —» Q is said

to have the restriction property on D if
(2.4) F(x) = F([x,x]) = £f(x)

for each x € D, in which case F is called an {nterval extension of f on D. If F is
also monotone on D, then it is called a monotone {nterval extension of £ on D.

The rules of interval arithmetic [6]), { 7) are examples of monotone interval
extensions, in this case of the real transformations f: R2 - R defined by f(x,y) =
x0y for 0O =+, -, ¢, /. (For division, D = Rz\{o), of course.} In actual computa-
tion, one ordinarily has tn forego the restriction property (2.4), since it is im=-
possible to represent arbitrary real numbers exactly with the finite set of numbers

available on a given computer. The use of interval arithmetic and déinected (or per-

haps cutward) teunding, however, allows one to censtruct monotone inclusions of ra-

tional functions automatically, even if the endpoints of intervals have to be selected




from a finite set of numbers G, provided that the computation stays within the in-
terval IG = (miniG},max{G}) (6], [7]. Along with interval arithmetic, there are
other methods for the construction of interval inclusions of real transformations.
The ones to be discussed in this paper are based on interval versions of the mean
value theorem and Taylor's theorem in ordinary real analysis [4].

3. A derivative in R-spaces. As usual, if P is a real space, then a function

f: D € R = P will be called an abstract function; for example, z: R » P defined for

X,¥y € P by
(3.1) z(6) =08y + (1 - 8)x = x + 6(y - x), O €R,
takes on values on the £{ne through x,y for x # y (see (1.23)). For £: D CR —* P,

where U contains a neighborhood of 0, it is said that

lim
(3.2) 90 £(8) =0

if there is a real-valued function p 2 0, monotone decreasing in ,6], such that

) lim _
(3.3) £(6) € ¢(8)e-[-1,1] and 00 o(8) = 0.

Definition 3.1. A function f: D C P = Q, D convex, is said to be d{f4erentiable
at x € D if a linear operator, denoted by fé(x) or simply f'(x), exists from the linear

space LD spanned by D into Q such that

lim rx y(g)
(3.4) oo o= O
where
(3.5) T, y(ﬂ) = f(x + 8(y - x)) - f£(x) - £'(x)-f(y - x).

The operator f'(x), easily seen to be unique if it exists, is of course called
the derivative of £ at x € D. (The linear space LD referred to in Definition 3.1 is
simply the set of all linear combinations of elements of D [16].) Defined in this

way, f' is a derivative of Gateaux type; in fact, if D is a Banach subspace of P such

T I b M s =0 e .
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that condition (3.4) and r
H+0" 0 x,

. n
y(ﬂ)II - I are equivalent (such as R, R , and

c(0,1]), then f'(x) is precisely the Gateaux derivative in D of f at x [4], [10].
Because of the dependence of f'{x) = fé(x) on the domain D, this derivative can also
be considered to be a type of directional derivative; for example, one can take D

to be the line through the origin of P consisting of the points defined by (3.1).

In case it is desirable to distinguish the derivative defined above from some other
derivative, it will be called the elementany real derivative, or simply the R-dendva-
tive of £ at x € D.

4. Elementary mean value forms.

Theorem 4.1. If X is an interval such that f is differentiable on X 1D, D con-

vex, and F' is an interval inclusion of £' on X, then
(4.1) fly) - f£(x) € F*(¥)+(X - x), x,y € XOD.

Proof. For x,y € XND, it follows from Definition 3.1 that given a real ¢ ~ O,

there exists a real number 1, 0 < 1 < 1, such that
(4.2) f£(x + Ay - x)) - £(x) € F'(X)+0(y - X) + rle*[-1,]1]

for 0 < v - 1, To show that (4.2) holds for ¢ = 1, the assumption that 1 < 1 is
the supremum nf the values for which it is valid will now be contradicted. Set z =

x + 1(y -~ x}). Since f'(z) exists, there is a real number 8, 1 <+ 8 < 1 such that
(4.3) f(x + nly - x)) - f(2) EF'(X)*(n - )y -~ x) + (n - 1)e+[-1,1],
f«n- . Let 8 = 1 in (4.2) and add to (4.3) to obtain

(4.4) f(x + nly = x)) = £f(x) € F'(X)en{y - x) + ene-(-1,1],

1 € n < 2, and thus (4.2) holds for 0 - 9 < B, which contradicts the assumed property

of 7, since % * 1. Hence, for " =1, ¢ = 1/n, (4.2) becomes
(4.5) £ly) = E00 € F'X) (X - %) 4 (=110,

It follows that

(4.6) fy) - £(x) € O gyt - x) ¢ %-rl.\n = FU{X)+ (X = x} + (0,0},
n=1
- 10 -
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which is nothing more nor less than (4.1). QED.
The proof of Theorem 4.1 given above is truly elementary in that only interval
arithmetic and the definitiors of interval inclusions and the derivative are used.

Replacing X by A(x,y) in the above proof leads to the conclusion
(4.7) fly) -~ £(x) € F' (A(x,y))+(y = x) CFP ' (A(x,y)) (X - x),

which is also valid. If F' is a monotone inclusion of f', then (4.7) implies (4.1).
Note that f' need not be defined on all of X; all that is required is that f'(X ND)
C F*'(X); one can take f'(x) = F'([x,x])) for x € x\{x ND}.

Definition 4.1. If F' is an interval inclusion of f£f' on X, then the interval

inclusion F of f on X defined by
(4.8) F(X) = f(x) + F'(X)* (X ~ x)

is called the (efementary) mean value form of f.

The mean value form was introduced by Moore [ 6] in Rn, and studied in Rn and
C'[a,b] by Caprani and Madsen [ 2], whose results will be returned to below. The
form (4.8) provides a method, in addition to interval arithmetic, for the construc-
tion of interval inclusions of real transformations. A useful case of the mean valuec

form is its midpoint (or centered) form, obtained for x = m(X). Since
1
(4.9) X = mix) + Swix)+(-1,1]
for an arbitrary interval X and w(X) 2 0, one has, if m(X) € D,
1 )
(4.10) F(X) = £m(X)) + Z|F (x) |w(x)+(-1,1]

in this case, which expresses F(X) as the sum of the point f(m(X)) € Q and a symmetric

interval in IG. The midpoint form (4.10) is even simpler in case y € D and

(4.11) X = X(y,n) =y + pes[-1,11
is the cube with center y € P and radius o. Then,
{(4.12) F(X(y,0)) = £Qy) + oIFP' (X{y,n))|es(-1,11,

which often can be computecd very cconomically.

- 11 -




The following theorem, which is a generalization of the fundamental result due
to Caprani and Madsen [2], shows that F defined by the midpoint mean value form
(4.10) is monotone.

Theorem 4.2. If F' is a monotone inclusion of f', then F defined by the mid-
point mean value form (4.10) is monotone on the set of intervals X such that m(X) € D,
Since F is already an inclusion of f on the set of intervals cited, all that
needs to be established is monotonicity. The following lemma is the key to the proof.

Lemma 4.1 (Caprani-Madsen [2]). If X,Z are intervals in a real space P, then
1 1

(4.13) XCz = Sw(z) 2 wix) + [m(z) - m(x)].

Proof: Suppose the inequality in (4.13) holds. Then, for x € X,
(4.14) x - m(2) = x - m(X) + {m(X) -m(2)} € {%w(x) + |m(z) - m(x)|}e[-1,11,
so that x € m(2) + %W(Z)'[-lyll = Z, and thus X C 2. oOn the other hand, suppose
that x C 2z, or

1 1

(4.15) miX) + Ew(x)ol-l,ll C m(z) + EW(Z).[—I’II'
Since w(z) z w{(X) 2z 0, this gives
(4.16) mX) - m(2) € Hw(z) - W)} [-1,11,

and the inequality in (4.13) follows from multiplication by [-1,1]. QED.

Proof of Theorem 4.2. Suppose that U C VvV, where U,V € IP are such that m(U),
m(v) € D. Set X = F(U), 2 = F(V). It follows that m(X) = f(m(U)), m(2) = f(m(V)),
%w(x) = IF'(U)IE%;L, %W(Z) = IF’(V)IE%gl. Since U C v, one has m(U) ,,m(V) € v, and,

from the proof of Theorem 4.1,

(4.17) £(m(v)) - £(m()) € F* (V) (m(V) - m(W) },
so that
(4.18) fm(V)) - £m(u)) € |[F (V)] [mV) = m@u) |+ (-1,1].

For x ¢ X, x - m(2) = x - m(X) + £(m(U)) - £(m(V)), and

(4.19) x - m(x) € %lr-w) lwew) * (-1,1) € %lr'(wlw(m-[-l.n.
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since the monotonicity of F' implies that [F'(v)| 2 |F'(U)| for U C V. Using (4.18)

and (4.19), one gets
(4.20) X - m(z) € [F'(V)I(%w(u) + |m(v) - mqu)|}e(-1,1] C%ls"(v) fwivy«(-1,1]

by the Caprani-Madsen Lemma 4.1, so that x € 2, and thus U C Vv = F(u) C F(V). QED.
Monotonicity is often crucial in numerical computation, in which only a finite
set of points G and corresponding intervals IG are available. When an interval X €
IP is approximated by an interval Z € IG C IP such that X C 2 (this process is called
outward nounding), one wants to be sure that F{X) C F(2) in order for the results
actually computed to contain the ones that would be obtained by exact computation.
In connection with approximate computation, there is also the problem that f(m(X))
ordinarily cannot be evaluated exactly. Monotonicity can be preserved in this case
on some interval Y € IG if for each x € ¥, there is an element z(x) € Q which can be

computed exactly such that

(4.21) f(x) € z(x) + ee-[~1,1], X €Y,

for some known ¢ > 0. The interval inclusion F of f defined by
(4.22) F(X) = z(m(x)) + [%F'(X)w(x) + ce}+[-1,1)

will then be monotone on jubintervafsa of Y for monotone F'; that is, F(X) C F(z) for
X €2 CY. Since actual computation is limited to some interval Y defined by the
largest and smallest available real numbers, this type of monotonicity is satisfac-
tory for practical purposes.

5. Elementary Taylor forms. It can be verified without difficulty that the

elementary derivative defined in §3 has the ordinary properties of a Giteaux deriva-
tive, for example, (f + g)' = f' + g' and the chain rule holds; proofs will be omitted
here. Furthermore, successive differentiations give rise to muftifinean operators
from P into Q in the usual way [4], [10], (12). The following result is an inter-
val version of Taylor's theorem of real analysis.

(n)

Theorem 5.1. 1f f is differentiable n times on XND, D convex, and F is an
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(n)

interval inclusion of f on X, then for x,y € X ND,

n-1
(5.1)  f£(y) - £(x) - ) k—!,— £ g -0 e e™iyx - 0t
k=1 X! n!

Proof. The proof will be carried out by mathematical induction. Theocrem 4.1
shows that (5.1) is valid for n = 1, and it will be assumed to hold forn = m -~ 1,
If ¢ is an abstract function which is differentiable on [0,1], then, given any ¢ > O,
it follows as in the proof of Theorem 4.1 that there exists a finite sequence of points

{6.}

\"]
ili=0* 0= eo < B, < ... <8 < ev = 1, such that

1 v=1
(5.2) ¢(81) - Q(Oi_l) € 0'(81-1,(9i - ei_l) + e(ei - ei_l)e-{-l,ll.

For the particular abstract function

m-1
(5.3) $00) = £x + 0ty ~ %) - £60 - § = e aekly - 0k,
k=l
one has ¢{0) = 0, and thus
m-1
(5.0 o) - 60 = o) = £n - £ - 1 =t ooty - 0k,
k=1
and
ml (k) k-1 x
(5.5) $'(8) = £'(x + Bly - X))y - x) ~ £' (%) {y - x) - ) TOT e Ty
k=2
By the induction hypothesis,
. 1 (m) vty - eyMomel
{5.6) $109) € T PN (x - 0" [0,1).
Therefore, from (5.2),
(5.7) (0, - o6, Ve~ F™ ) x - 0" L6, -0, 10,1 +
. LALSY i-1 (m-1) 1 i-1'%3 T 93 10y

+e(0, =0, der(-1,11,

i=1,2,...,v. Thus,

v v
. 1 (m) ey m-1 . _ .
(5.8)  4(1) =2(0) = § (3(0) =040, )} € fogsaf T (X) (X=x)" ] 0. (6,=0, 1) +(0,1] +
i=1 i=1
+ e+ [=1,1].
-~ 14 -
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1
However,
Vv 1
(5.9) o< § o™l -0 ) <[ o™lae =2,
- i-1l i-1
i=]l 0

since the sum is a lower Riemann sum for the integral. Since X is convex and x € X
implies 0 € (X - x), it foiiows that (X - x)°a[0,1l] = a(X - x) C (X - x)+8[0,1]) =

B(X - x) for 0 < a < B. Using this fact and

(5.10) N ce ['1'1] = [0,0],
€+0
one has
1
(5.11) s eLr™ i -0+ 10,00 = =™ x-x - 0",

m! m!
which is equivalent to (5.1) with n = m by (5.4). This completes the proof of the
theorem by mathematical induction. QED.

Once again, little more than interval arithmetic is required in the proof.

Definition 5.1, If f: D C P » Q is differentiable n times on XND, X € 1P,

then for x € x ND,

n-1 1
(5.12) FX) = £00 + ] =
. k=1

() js an interval inclusion of £ on X, is called the (elementary) Taylor

gk F(n)

)(x)'(x-x)k+n-1—, (x)e(x - x3",

where F

§orm of £ of oader n.

It follows from Theorem 5.1 that F defined by (5.12) is an interval inclusion

of f on X. For the particular choice x = m(X), one obtains the midpoint form of

(5.12),
ncloy kK. 1, (n) n

(5.13) F(X) = £mx) + { ] €7 mx))[wix)”+ [F0 ) [wix) " he(-1,1],
k=1 27k! 2 n!

and, for X = X(y,0) a cube, the cube-centered form

n~1 k n
[

k .
(5.14)  Fxey,on = £+ 1 e R e ¢ Sr ™ iy M -1,
k=1 "~
Evaluations of this latter form can often be carried out very economically, since
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operations on e ordinarily do not require multiplications, and only non-negative
operators are involved. Monotonicity of the midpoint Taylor form (5.13) also fol-
lows from monotonicity of P(n), in much the same way as for the midpoint mean value
form (4.10).

(n) (n)

Theorem 5.2. If F is a monotone inclusion of f ., then F defined by the

midpoint Taylor form (5.13) is monotone on the set of intervals X such that m(X) € D.
Proof. As before, suppose U C V, and it is to be shown that F(U) C F(V), where

the results of the transformations of U,V by F are given by (5.13). For brevity of

notation, set u = m(U), v = m(V). It follows that

(5.15) m(F(U)) = £(m(U}) = £(w), m(F(V)) = £(m(V)) = £(v),
A
and
1 . 1 1,,.. 1 2 1, (n) 1 n
(5.16)  sw(F(U) = |£'(w[3w(u) + oo|f ) [ G + Lo+ S{ETTU [ Gwun T,

with an analogous expression for %W(F(V)). In order to prove that F(U) C F(V), it
will be shown that %-W(F(U)) + |mtFO)Y - mFIVNY| < %w(l-‘lv)) , from which the desired
result follows by the Caprani-Madsen Lemma 4.1.

n
First, since F( ) is assumed to be monotone,

(5.17) 2™ | Guon® < [ )] Guion™. *

Furthermore, by Theorem 5.1,

n-1 . .
(k) k) 1 (3) j-k 1 (n) n-k 1
(5.18) K3 u)| < | £ (v)| + . X 73:;TTlf (v) |+l u=-v| + ?;:;TTIF (V) | |u-v]
j=k+1
S S T 3=k 1 () n-k
- jzk(j_k)l[f (V) |+ |u-v| + 7;:;TTIF ) |+ |u-v| ,

k = 1,2,...,n-1, using the result of multiplication of (5.1) by [-1,1]. It follows

from (5.16), (5.17), and (5.18) that

n-=1 n-1 .
1 - 1 "¢ 1 (3) ik, «
(5.2 SwF@) < Tl ] ongyle ) o emel TR Gewn
k=1 juk
1 (n) n-k 1 X
* kzlk!(n-k_)llF W) | Ju=v| 7 (w7,
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Interchanqge of order of the double summation in (5.19) results in
n=1 n-1

(3) -k 1 k
(5.20) D) ————If () |+ |u=v[? " (Gw(U))
kel jox KTGRE 2

"il § (3) ik 1
= _.___.‘f (v)[ l“‘VI (_.,,(U))
j=1 k= lkl(J k) 1

Theorem 5.1 also gives

ncly G 5, 1,.(n)
(5.21) [£(w) - £(v)] s § mk )] e|u-v|? + =iF By Jusvl®.
j=1

Addition of (5.19) and (5.21) results in the inequality

(5.22)  Zw(F@) + |£(w - £ < 2 1|f(j) W] fﬁ-g{T)T]u-vlj'k(%w(u))k

(n) k #d

1 k1
+ n_!lF v | ): m(u Vl ('Z'V(U))
n-1
= llf (v)l(-u(u) + Ju-v|}?
)=IJ
1, (n) 1 n
+ h)lF (v)l{Ew(u) + lu-v|}".
Hence, by the Caprani-Madsen Lemma 4.1, W

l! ,F(n)

1 el ) 1 j 1 n
(5.23)  Sw(F(W) + jm(FW) -mFW)| s § £ | Gwivy? + = WV | Swiv))
2 j.ljl 2 n 2

- ZwEW),

and thus F(U) C F(V). QED,

Remark S5.1. Some of the combinatorial aspects of the proof of Theorem 5.2 can

be avoided by the use of the identity

JE——

(5.24) Slw) + 8% (u) (x-u) + ... + m(“'” () (x-w) ™!
= ¢(v) + ' (V){(x=u) + (u=v)}} + ... + W(n L (v) { (x-u) + (u-v)}n-l,

in which ¢ is an (abstract) polynomial of degree n-l [12].
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As in the case of the midpoint mean value form (4.10), the corresponding Taylor
form (5.13) requires modification in actual computation. Suppose that for some inter-
val ¥ € IG, there is for each x € Y a point z(x) € Q and operators zj(x): y? - Q.

j=1,2,...,n-1, which can be computed exactly, such that

(5.25) £(x) € 2(x) + ce-[-1,1], . £ (x) € 2,00 + oo (=111,

where € > 0 is a real number and Ej 2 0 for each cj: vl s Q,i=1,2,...,n-1, Then,
the rounded Taylon operaton F defimed i
n-¢

(5.26) F(X) = z(x) + {se + ¥
5=

) ) (%w(x) Y%} (-1,1]

3 i, X
,a";.l s e ligwin) T+ arlf

is inclusion monotone on intervai. ° U i, which will usually be satisfactory for use
in actual computation.

6. Application to iteratior operators. The interval versions of the mean value

and Taylor's theorem given above, like their counterparts in real and functional analy-
sis, have numerous applications. Theorem 5.1 shows, for example, that the {nterval
nemainden tenm

(n)

(6.1) R (X) - et iy etx - 0"

n!
contains the fawuncation erron fly) - fn_l(y) resulting from the use of the Taylon
polynomial

1 -1 -1
6.2) A R O R AR

of degree n - 1 in place of f(y) for arbitrary y € X. In particular, the results
obtained by Moore [6], (7] on the numerical solution of differential equations by
interval methods fellow from this expansion.

The application to be considered here is to the solution of the equation
(6.3) f(x) =0

for x € D * P, where f: D C P * Q is a differentiable operator. Given a nonsingular
linear operator Y: Q ~ P, equation (6.3) can be transformed into the f{xed pont

problem x = g(x) for the operator g: D C P » P defined by

- 18 =




(6.4) gix) = x - ¥f(x). %

Since simple iteration is often used to solve fixed point problems, g will be called
r , , -1
an {teration operaton for £. The choice ¥ = £'(x) ~ corresponds to Mewton's method

for the solution of (6.3), Y = £'(z) )

for z # x to a method of Stinfing type (11],
and so on. Treating Y as a constant operator, one has

(6.5) g'(X) = I - YE'(x), g'(x) = YE'(X), ..., g (x) = v (),

where I denotes the identity operator in P, and thus, if f is differentiable at least

n times, then

(6.6) g(x) €z - YE(z) + {I - YE'(2)}(x = 2) ~ ... - (n_—lmf‘"‘“ (z) (x - ™1
- ﬁp("’ X x - 2)"

(n)

(n) is an interval inclusion of £ on X.

for x,z € X, where F

Now, given an arbitrary sequence YO' Yl,... of nonsingular linear operators, a

sequence of intervals X_, xl""' and points z, € X k =0,1,2,..., one can construct

k k’
» Gyoeen Of interval itenation operatons for £ defined

0

the corresponding sequence G0

by

(6.7) Gk(xk) =z - Yf(zk) + (1 - ka'(zk))'(xk - zk) - .

k

1 (n-1) . - n-1 _ 1,.(n) . -y )P
< et KE (z )= (X, = 2.) AlE X ) (x -2)) 0,

k =0,1,2,... . The following theorem is a direct consequence of (6.6).

Theorem 6.1. If x = x* € xO is a solution of (6.3), then for

(6.8) xk*l = xkﬁGk(xk), k = 0,1:21---i

one has

o

X* €E X = N xk,
k=0

(6.9)

It follows from (6.6) that x* € xk = x* € Gk(xk)' since x* = g(x*), which
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in turn implies x* € xk§1. This gives (6.9). QED.

The process (6.9) is called inteaval {iteration [14]). Since

(6.10) xo ] x1 2 Xz 2.,

this process gives improved lower and upper bounds for x* as long as xk+1 # Xk. (Of
course, if lv('U_1 = xk' then X = xk, and the interval iteration terminates in a finite

number of steps.) The contrapositive of the assertion in Theorem 6.1 is that if

= (8} =
(6.11) xk+l Xk Gk(xk) "]

for some positive integer k, where @ denotes the empty set, then x* € XO, and there
is consequently no fixed point of g or solution of (6.3) in the initial interval xo
(14].

In the case n = 1, one obtains the Krawczyk operatons (5]

(6.12) K%)=z - ka(zk) + {1 - ku'(xk)}-(xk - z)

k

from (6.7), with z, = m(xk). Suppose that F" is an interval inclusion of f" which

is consdistent with F' in the sense that

(6.13) L - F*(X) CP " (X)w(X), L€ F'(X).
Then, from (6.12), for v; € Fr(x),

1, gn 2 .
(6.14) Ky (%) €2y - Y E(z) 20 PR )W) T 1-1,10,

since xk -~z = Xk - m(xk) = %w(xk)-[-l,ll. It follows that interval iteration with the
Krawczyk operator converges quadratically as w(xk) + 0 to a degenerate interval, thus
mimicking the behavior of its real counterparts.

For n = 2, the Chebyshev-type iteration operator [12)

1 " . N 2
(6.15) Tk(xk) =2z, - ka(zk) + {1 - ka'(zk))'(xk - zk) - E¥kF (Xk) (xk zk)

results, and so on. It follows that (6.7) can be used to construct interval itera-

tion operators with arbitrarily high orders of convergence in width as w(xk) * 0.
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7. Other derivations of the mean value and Taylor's theorems. In certain

particular cases, Taylor's theorem as given above (which includes the mean value
theorem for n = 1), can be derived directly from classical results in real or func-

tional analysis. For example, with P = Q0 = R, one has

(7.1)  £(b) = £(a) + £'(a)(b - &) + ... + -m—}mf‘"'“ (a) (b - a)"?
+ n—ll'f(n) (E) (b = a)nl a < E < bl

in which the remainder term is said to be in lagrange form. For X = [a,b], one

(n) (n)

has f (£) € F (X), b - a€ X - a, which gives (5.1) at once in this special case,

Formula (7.1) also hold componentwise in RV, which leads to a similar generalization,
since f;n)(gk) € F{n)(x), k=1,2,...,v, even though (7.1) does not necessarily hold
for some £ € X C Rv. This generalization to Rv has been used by Moore [6]), {7], and
Caprani and Madsen [2]. 1In the latter paper, a version of the mean value theorem
was also derived for integral operators, but the results are not easy to interpret
without the use of interval integration [ 3], (13].

A more straightforward method of generalization of Taylor's theorem can be

based on the use of the Cauchy form of the remainder term,

a -t

BT Y (b - a)ndO,

1
(7.2) R (fia,b) = [ £ a+ 00 - a))
(o]

which holds in Banach spaces [ 4], [12). In R, the use of interval integration gives

1 n=1 1 n-1
. (n) _ayy 11-6) 3D ) oo, oy B 1-6)
(7.3) R (f;a,b) € {) F' (a + 8(b-a))=r—gy— (ba) 'dd C F " (X) - (x-a) {)————(n_l)l ae,

from which (5.1) is obtained by evaluation of the real integral. By a simple exten-
sion of the concept of the interval integral { 3], {13] to abstract functions f which
take on values in a Banach space D, D € Q, Q a real space, a corresponding generaliza-
tion of formula (7.3) will be obtained.

In order to construct the interval integral of an abstract function ¢ = ¢(8)

which takes on values in an R-space Q for 0 <0 <1, one simply partitions ¢ = {0,1]
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s 6. s ...
1

- em = 1. The set of all wuch partitions into m subintervals will be denoted by Am.

into subintervals Oi = [Oi-l'oi]' i=1,2,...,m, by means of points 0 = Oo

The abstract interval function ¢: I0 + IQ will be defined by

- inf sup
(7.4) O(Oi) [O. $(M), 0.

1 1

¢(0)].

Definition 7.1. The {nterval {ntegral of the abstract function ¢ over [0,l] is

defined to be

1 ® m
(1.5) [ea0 = n 0§ er)wio,) € 1.
0 m=l 4 i=1

This follows exactly the construction of [ 3); again, the interval integral de-
fined by (7.5) is the intersection of a nested sequence of nonempty intervals, and
hence is nonempty. -

Now, suppose that D C Q is a Banach space in which X ND is a closed set for X €
IQ. The Riemann (R) integral of abstract functions ¢ taking on values in D is defined

to be the limit of the Riemann sums

m
(7.6) Tma® = Lotr(e, -0, ), T €0,
i=1
asm -+ = and Al = "(':;‘ w(0,) » 0 [4], (12]. It follows that
1 m
(1.7 (R)] 6(0)d0 € ] #(0,)w(0,) C 8(0),
(o} i=1

since the intersection of D with the .(nterval Darboux sums [ 3] appearing in (7.5) is
closed in the topoloyy of D. Therefore, from (7.5),

1 1
{7.8) (RY] +(nra0 € [ p(man,
0 o]

if ¢ is Riemann (R) integrable over [0,1] in the sense defined by Graves [(4]. Thus,

in the special case that f is a function taking on values in a Banach space D with

i
i
f(n)(a + ?(b - a)) Riemann integrable over {0,1), (7.3) follows immediately by inter- !

{n) (n)

val integration, and gives (5.1) for interval inclusions F of £ . This deriva-

tion is also less general than the one given in 5, which holds in Re-spaces,

- 22 -




10.

11,

12,

13,

14.

15.

16.

References
G. Birkhoff: Lattice Theory, Amer. Math. Soc. Collog. Pubs., Vol. 25, Rev.
Ed., American Mathematical Society, New York, 1948.

O. Caprani and K. Madsen: Mean value forms in interval analysis, Computing 25
(1980}, 147-154.

0. Caprani, K. Madsen, and L. B. Rall: Integration of interval functions, SIAM
J. Math. anal. 12 (1981), 321-341.

L. M., Graves: Riemann integration and Taylor's theorem in general analysis,
Trans. Amer. Math. Soc. 29 (1927), 163-177.

R. Krawczyk: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehler-
schranken, Computing 4 (1969), 187-201.

R. E. Moore: 'Interval Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1966.
R. E. Moore: Methods and Applications of Interval Analysis, SIAM Studies in
Applied Mathematics, 2, Society for Industrial and Applied Mathematics,
Philadelphia, 1979.

K. Nickel: Verbandstheoretische Grundlagen der Intervall-Mathematik, (9],
pp. 251-262 (1975).

K. Nickel (Ed.): Interval Mathematics, Lecture Notes in Computer Science No.
29, Springer-Verlag, Berlin-Heidelberg-New York, 197S.

J. M. Ortega and W. C. Rheinboldt: Iterative Solution of Nonlinear Equations
in Several variables, Academic Press, New York, 1970.

L. B. Rall: Convergence of Stirling's method in Banach spaces, Aeguationes
Math. 12 (1975), 12-20.

L. B. Rall: Cnmputational Solution of Nonlinear Operator Fquations, Wiley,
New York, 1969; reprinted by Krieger, Huntington, N. Y., 1979.

L. B. Rall: Integration of interval functions II. The finite case, SIAM J.
Math. Anal. (to appear)

L. B. Rall: A theory of interval iteration, MRC Tech. Summary Rept. No. 2196,
University of Wisconsin-Madison, 1981.

W. Sierpifski: General Topology, Tr. by C. Cecilia Krieger, University of
Toronto Press, Toronto, 1952.

A. E. Taylor: Introduction to Functional Analysis, Wiley, New York, 1958,




SECURITY CLASSIFICATION OF THIS PAGE (When Data I'utered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
t. REPORY NUMBER 2. GOVT ACCESSION NOJ 3. iZCIPIENT‘S CATALOG NUMBER
TSR# 2286 m-A1710 A9
4. YITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
Summary Report - no specific
MEAN VALUE AND TAYLOR FORMS IN INTERVAL ANALYSIS reperting period
6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACYT OR GRANT NUMBER(s)
L. B. Rall DAAG29-80-C-0041
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. :gggRAAwOERLKE::EINTT.NPUTAOBJEESST' TASK
Mathematics Research Center, University of 1 and 3 (Applied Analysis &
610 Walnut Street Wisconsin | yumerical Analysis & Computer
Madison, Wisconsin 53706 Science)
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
U. S. Army Research Office October 1981
P.O. Box 12211 3. NUMBER OF PAGES
Research Triangle Park, North Carolina 27709 23
14, MONITORING “GENCY NAME & ADDRESS(iIf dilterent from Controlling Ollice) 15, SECURITY CL ASS. (of thia report)
UNCLASSIFIED
Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if ditferent {rom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side il necessary and identity by block number)

ﬁ ‘ Interval analysis, Calculus in abstract spaces, Mean value theorem, Taylor's
‘/' theorem, Interval inclusions, Interval iteration, Fixed point problems,
r/ Solution of equations

20. ABSTRACT (Continue on reverse side ({ necessary and identity by block number)

Basic spaces for interval analysis are constructed as Cartesian products of
the real line. The spaces obtained in this way include real finite and infinite
dimensional real vector spaces, and have a number of important Hilbert and Banach
4 spaces as subspaces in the sense of set inclusion. A Gateaux-type derivative is
‘ ’ defined in these spaces, and is used in the corresponding interval spaces, to-
gether with interval arithmetic, to obtain interval versions of the mean value
theorem and Taylor's theorem. These theorems provide ways to construct accurate

DD ," 3%, 1473  eoimion OF 1 NOV 6315 OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dats T ntered)

P T e ST s o - = = = - - - -
\", ’

- ————— - C eem e el tee ime eaem o——— e = = ——
e e et s e e — ——
-




20. ABSTRACT, cont.

interval inclusions of operators, called mear value and Taylor forms. The
forms resulting from expansion about midpoint: of intervals are shown to be
inclusion monotine, and the effect of outward rounding on this class of forms
is also considered. An application is made to show that interval iteration
operators for the solution of operator equations can be constructed which
have arbitrarily high order of convergence in width. Derivations of the
fundamental theorems of less generality from results in real and functional
analysis are also presented. As in the case of real and functional analysis,
the interval Taylor's theorem given here provides a powerful tool for
applications of interval analysis to problems in applied mathematics.b




