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ABSTRACT

Basic spaces for interval analysis are constructed as Cartesian products of the

real line. The spaces obtained in this way include real finite and infinite dimen-

sional real vector spaces, and have a number of important Hilbert and Banach spaces

as subspaces in the sense of set inclusion. A G~teaux-type derivative is defined in

these spaces, and is used in the corresponding interval spaces, together with interval

arithmetic, to obtain interval versions of the mean value theorem and Taylor's theorem.

These theorems provide ways to construct accurate interval inclusions of operators,

called mean value and Taylor forms. The forms resulting from expansion about midpoints

of intervals are shown to be inclusion monotone, and the effect of outward rounding on

this class of forms is also considered. An application is made to show that interval

iteration operators for the solution of operator equations can be constructed which

have arbitrarily high order of convergence in width. Derivations of the fundamental

theorems of less generality from results in real and functional analysis are also pre-

sented. As in the case of real and functional analysis, the interval Taylor' s theorem

given here provides a powerful tool for applications of interval analysis to problems

in applied mathematics.

AMS (MOS) Subject Classifications: 65J05, 65G10, 47A60, 26B12, 26E15, 26E20, 26E25
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SIGNIFICANCE AND EXPLANATION

Interval analysis can be used in applications, for example, to compute an in-

terval which includes the range of responses of a physical system to a range of

input conditions. In order for this interval result to be useful, however, it should

not be unrealistically larger than the range of responses which would actually be

observed, as sometimes happens for straightforward use of simple interval arithmetic.

One way to form accurate interval inclusions of real transformations can be based

on the mean value theorem and Taylor's theorem of ordinary analysis. In this paper,

the basic theory and proofs of such theorems in interval analysis are given. The

interval Taylor's theorem, for example, gives computable lower and upper bounds for

the truncation error in using the Taylor polynomial in place of the corresponding

nonlinear operator. Since this technique is often used in applied mathematics, the

theory in this paper permits application of interval analysis to the same types of

problems. In particular, it is shown how to obtain interval counterparts of rapidly

convergent iteration operators for the solution of equations which inherit the same

order of convergence, and thus can be efficient in actual computation.
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MEAN VALUE AND TAYLOR FORMS IN INTERVAL ANALYSIS

L. B. Rall

1. A setting for interval analysis. In the same way that real analysis is

concerned with transformations of real numbers (or vectors) into others, titejva

anatyqyt [ 6 ], [ 7 ] deals with transformations of intervals (or interval vectors).

Since an ordering relationship is fundamental to the definition of intervals, a

natural abstract setting for interval analysis is a partially ordered space [ 1],

(141, or, more specifically, a lattice [ 1 1, [ 8]. Here, a more concrete approach

will be taken, which results in the construction of what will be called IP-6pace_

by forming Cartesian products of the set IR of nonempty closed intervals

(1.1) X = [a,b] = fx I a S x - b, x E R),

on the real line R. Interval analysis on these IR-spaces will be called teat in-

terval analysis; it is general enough to cover many important applications, and the

theory obtained adapts readily to actual numerical computation, for which only a fi-

nite set of real numbers is available.

1.1. Real spaces. The spaces to be considered here are built in a natural

way from the set R of real numbers. Given a set A, one can form the Caitesian pk0-

duct

(1.2) P = R R
A

of R over the index 6et A to obtain a set of vecto6 f with real component f E R,

x C A- Writing f = ff A, fa E RI for f E P, p is a titnea space for the com-

pi.nntW.i€ definitions of addition f + g and multiplication by Scae)at6 (real numbers)

a'f given by

(1.1) f + g = f, + g a E Al, a-f = fa-f 1 E* Al,
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respectively (12], [161.

Another way ot looking at the product space P given by (1.2) is as the set of

all 6uiict4;,na1 (real-valued functions) f on A; one writes f = f(a), and (1.3) gives

the natural definitions of sums and scalar multiples of functionals, which are also

functionals.

Definition 1.1. A eat 6pace (or ! -6pace for short) is a linear space P con-

structed according to (1.2) and (1.3) or the Cartesian product

(1.4) P= ii P
BED

of such spaces, again with addition and multiplication by scalars defined component-

wise.

Examples of R-spaces abound. The choice A = (1,2_.,n) in (1.2) gives P - R
n ,

the space of n-dimensional real vectors f = (fl,f2 ,. fn
)
, while A = {1,2,3,...}. the

set of positive integers, gives R , which consists of the real sequential vectors f =

(filf2,f 3,.... Going on to A - X - [a,b], a nonempty interval (1.1), one gets P

R(a,b], the space of all real functions f on the interval [a,b], the components of

which are usually denoted by f(x) = f x a < x - b. Similarly, if Y = [c,d] is also

an interval, then taking A = X-Y (a,b]'[c,dj gives the space R(fa,b).ic,d)) of real

functions f of two variables with components f(x,y), a 5 x s b, c y 5 d, and so on.

Cartesian products (1.4) can be used fnr concise description of sets of func-

tions taking on values in R-spaces. Fnr example, with X = la,b], Y w [c,d), the real

space R(XY) R(X'Y) consists of all functinns f: XY C R
2 

-
2 
with components f(x,y)

= (f1 (x.y),f 2 (x,y)), a x < b, c , y - d. More generally, if D C P and Q is a real

space, then

(1.5) 1 Q f I f: D C P
D

is also a real space by Definition i.i. In (1.5), it is not required that P be a

rual space, but this will usually be the case in the following discussion. A simple,

but important, example of (1.5) is obtained for P = R
n
, Q = R

m
, which gives the set

-2-



of functions (or opeAato4,) f: D C Rn Rm, which are fundamental to computational

numerical analysis 10], 112].

The subject of duncaonat anaty6L6 is concerned with analysis on noamed linear

spaces (usually the ones which are Comptete, called &tnach spaces) (12], [16]. A

number of useful spaces of this type over the real scalar field can be considered

to be subspaces of real spaces P in the sense that all their elements belong to P.

In particular, all finite-dimensional real normed linear spaces are pretty much in-

distinguishable, due to the equivalence of norms [16], and can be identified with

the real spaces R 
n
. The situation is different for infinite-dimensional spaces. For

example, the elements of the Banach space R_ of sequential real vectors f such that

(1.6) I fil sup f
n) n

form a subspace of R which is different from the one consisting of elements of R2'

for which

(1.7) If f2 - 1 f2nl/2 ( 4--

n=l

Similarly, the space C[a,b] of ContinUOU6 functions f on a 5 x S b (with the usual

norm) can be identified with a subspace of R(a,b] which is different from the one

obtained from L 2[a,b] , which consists of f E R[a,b] such that

2b

(1.8) IlfIl 2 = f(L)f f(x)
2
dxl 1/2

a

where (L) denotes Lebesgue integration [16). This natural type of embedding of normed

linear spaces into real spaces will be helpful below in connection with the deriva-

tion of interval versions of results from real and functional analysis.

1.2. Real interval spaces. The set of finite, nonempty intervals (1.1)

on the real line R will be denoted by IR. There is a natural identification of real

numbers xE R with degene'at' intervals Ix,x]EIR with equal endpoints, and one writes

(1.9) x = {x,x[.

-3-



ordinary arithmetic, extended from R to IR, is called inteAva anhrnetic ( 6], [7 .

For example, addition of intervals X = [a,b] and Y = 1c,d] is defined by

(1.10) X + Y = [a,b] + [c,d] - [a + c, b + d],

and mutpicaton of X [a,b] by a real number r = [r,r] by

J [ra,rb], r -> 0,
(1.11) r.X=

[rb,ral, r < 0.

Note that with these definitions, IR is not a linear space; with subtraction

defined in the usual way by X - Y = X + (-I).Y, (1.10) and (1.11) give

(1.12) [0,1] - toli - [-1,1]

instead of the identity element 0 = 10,0] of interval addition.

It will be useful to associate the following real numbers with an interval X =

[a,b] E IR: Its miudpoint m(X) = m[a,b] = (a + b)/2, its width w(X) = w(a,b] = b - a,

and its ab6otute vatue (or modu.tus) lxi = I[ab]l = max{Ial,lbl) [ 7].

Another important property of intervals is that the intmuection x nY = ,b] o

[c,dl is either the interval

(1.13) XrIY = [a,b] r)jc,d] = [max{a,c1,min~b,d)]

or the empty 6et 0; if b < c or a > d, then

(1.14) X ny . 0,

otherwise, (1.13) holds. Furthermore, if {X I is a sequence of neted intervals,n

that is

(15) X1  D X D ...

then

(1.16) X . r) X n 0,
nlnn-,l

sincu each X is a closed, nonempty subset of R [15].n

The construction (1.2), (1.4) of real spaces in 51.1 will now be used to obtain

4-
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the corresponding interval spaces, by starting with IR in place of R.

Definition 1.2. A Aeat intevat pace IP is a space of the farm

(1.17) IP = n IR,
A

or

(1.18) IP = n IP8,
8EB

in which each real interval space IP8 is of the form (1.17). Real interval spaces

will also be referred to as IR-zpaceu.

There is an obvious one-to-one correspondence between interval spaces (1.17),

(1.18) and real spaces (1.2), (1.4), respectively. Furthermore, the order relation-

ships <, , _, >, in R can be extended componentwise to a real space P to obtain a

patiat oidebing 1 1 ] of P. In the resulting partial ordering, the corresponding

IR-space IP consists of the set of all flteAvatA in P; that is, X E IP if and only

there are elements a,b E P such that a 5 b and X - [a,b] - {x I a - x b, x E P),

which is (1.1) with R replaced by P. This leads to the embedding x = [x,x] of P into

IP, as in (1.9). Moreover, interval arithmetic is also extended componentwise from

IR to an arbitrary real interval space IP. As in the case of IR, IP will not be a

linear space, unlike its underlying R-space P. The quantities m(X), w(X), and XIx

defined previously for real intervals X E IR can also be defined componentwise for

X E IP, with the result being that m(X), w(X), and lxI will be elements of P.

Typical examples of IR-space are the space IRn of inteAvae vecto0u

(1.19) X = (XX 2.. ,Xn), Xi E IR, i = 1,2,...,n,

and the space IR[a,b] of inteAvat 6unctons Y on [a,b] E IR defined by

(1.20) Y(x) = [c(x),d(x)], a s x b,

where c,d E R[a,b] and c < d [ 3], (13]. For X E IR n , for example, one has

(1.21) m(X) = (m(X1),m(X 2 ) ,...,m(X)) E Rn,

-5-



and for Y E IR(a,bJ, IYI is defined by

(1.22) IYJ(x) = JY(x) = max{ic(x) I,jd(x) 1, a <- x b,

and thus IYI E R(a,b] is a real function.

An interval X E IP is, by construction, a subset of the underlying R-space P.

One important property of intervals in IP as subsets of P is convexaqy.

Lemma 1.1. If P is a real space and X G IP, then X is a conux subset of P.

that is, for arbitrary points x,y E X,

(1.23) A(x,y) = [z I z = Oy + (1 - e)x, 0 ! C < i} C X.

Proof: It follows from Definition 1.1 that each f E P, P a real space, can be

represented as f = {fy I fy E R, y E BxA = N1, the real numbers f , y E P, being the
.y y Y

component6 of f. Now, let X - [a,bj, and define c,d E P by

(1.24) cy = minfx fy , d = maxfxy,y }, y S P.

For x,y E X, it follows that

(1.25) a < c < Syy + (1 - O)x < d by, y E P,

for 0 < ; hence, from (1.23), (x,y) C X. QED.

As usual, the set A(x,y) defined by (1.23) is called the fine eegment 6'rom x

(0 = 0) to y ( = 1). A useful class of intervals are the 6yme..ttc intervals,

defined as follows:

Definition 1.3. An interval S C IP is said to be 6fmmetAc if -s E S for each

s5E S.

As a consequence of this definition, each symmetric interval S contains the

oa qni 0 of P; furthermore, S = (-a,aj for some element a -e 0 of P. Moreover, if

s E P, then S = [-l,l].s will be a symmetric interval; in this case, one can write

S = (-l,11s = -'[-1,ll = I-jsj,Isj], where Isi is the ab6ofute vaeu, of s defined

compnnentwise in the usual way.

In addition to the origin 0 of a real space P (the element such that 0 = 0,

-6-
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y E r), it is helpful to single out the element e E P defined by e. i, y e r. InV

terms of e, the symmetric intervals S E IP are defined for real p a 0 byP

(1.26) S = p.(-e,e] = pe*[-l,i], p E R, p ? 0.

Definition 1.4. A set D C P is said to be bounded if

(1.27) D C S = pe.[-1,1]

P

for some real p such that 0 < p < +-, in particular, if D consists of a single ele-

ment f E P, then f is called a bounded etement of P.

2. Interval transformations. Suppose that IP, IQ are IR-spaces, and F: ID C

IP - IQ is an operator defined on a domain ID in IP which takes on values in IQ. The

result of applying F to X E ID is symbolized by

(2.1) Y = FM,

where Y E IQ, and F is called an inteAva . tuAn.6oAmation from ID C IP into IQ. It

follows that F E 11IQ. What will be called interiat anatyi.6 here refers to the study
ID

of interval transformations.

Definition 2.1. The interval transformation F: ID C IP - IQ, where IP, IQ are

real interval spaces, is said to have an inteAval domain ID if Z E ID implies that

x E ID for each subinterval X C Z of Z.

An important class of interval transformations are the ones which are monotone

in the sense of the following definition.

Definition 2.2. An interval transformation F: ID C IP - IQ with interval domain

ID is said to be incu6jon monotone (or simply monotone) on ID if

(2.2) X C Z - F(X) C F(Z)

for each Z E ID.

Given a domain D C P, p a real space, the corresponding interval domain ID in

IP can be constructed from the set of intervals Z C D (which includes all the degen-

erate intervals equivalent to points of D) by adjoining all subintervals of each

-7-
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such Z, if necessary. In what follows, it will be assumed that domains ID for inter-

val transformations ccrresponding to domains D of real transformations are formed in

this way, and hence will be interval domains. One has also D C ID by the identifica-

tion of points of P with degenerate intervals in IP. The concept of an interval do-

main corresponding to a real leads to a fundamental relationship between real and in-

terval transformations.

Definition 2.3. The interval transformation F: ID C IP - IQ is said to be an

incuL .on of the real transformation f: D C p - Q between the underlying real spaces

P and Q if

(2.3) f(x) -{f(x) I x E x) C F(X)

for each X C D. If F is monotone on ID, then it is called a monotone ijnctu.on of f.

For most of the results to be obtained below, inclusions of real transformations

are adequate. However, the property of monotonicity is highly desirable in many ap-

plications. Some interval inclusions of real transformations also have the follow-

ing property.

Definition 2.4. The interval inclusion F: ID C IP - IQ of f: D C p - Q is said

to have the 4e6-tCitt0f popeAty on D if

(2.4) F(x) - F([x,x]) = f(x)

for each x E D, in which case F is called an inteAvat exten6ion of f on D. If F is

also monotone on D, then it is called a monotone intewual xtn,.n of f on D.

The rules of interval arithmetic f 6 1, ( 7 ) are examples of monotone interval

extensions, in this case of the real transformations f: R
2 

_ R defined by f(x,y) =

xOy for 0 = +, -,., /. (For division, D = R2 \0), of course.) In actual computa-

tion, one ordinarily has to forego the restriction property (2.4), since it is im-

possible to represent arbitrary real numbers exactly with the finite set of numbers

available on a given computer. The use of interval arithmetic and di'rcted (or per-

haps oPut ni'd) iounding, however, allows one to construct monotone inclusions of ra-

tional functions automatically, even if the endpoints of intervals have to be selected



from a finite set of numbers G, provided that the computation stays within the in-

terval IG = [min{G ,maxfG)] [6 ], [ 7]. Along with interval arithmetic, there are

other methods for the construction of interval inclusions of real transformations.

The ones to be discussed in this paper are based on interval versions of the mean

value theorem and Taylor's theorem in ordinary real analysis [ 4].

3. A derivative in R-spaces. As usual, if P is a real space, then a function

f: D C R -. P will be called an abh.ttact fuwction; for example, Z: R -. P defined for

x,y E P by

(3.1) z(O) = Oy + (1 - O)x = x + e(y - x), e E R,

takes on values on the ine through x,y for x # y (see (1.23)). For f: D C R - P,

where D contains a neighborhood of 0, it is said that

lim 
0

(3.2) 8 0 f(H9) =
0

if there is a real-valued function p - 0, monotone decreasing in jel, such that

(3*3) f() E ,()e--l,l] and lim0+0 '()= 0.

Definition 3.1. A function f: D C P - Q, D convex, is said to be difelctenbabte

at x E D if a linear operator, denoted by fD(x) or simply f (x) , exists from the linear

space LD spanned by D into Q such that

r (0)
(3.4) im = 0,

().0 '

where

(3.5) r (() = f(x + A(y - x)) - f(x) - f'(x).O(y - x).
x,y

The operator f(x), easily seen to be unique if it exists, is of course called

the deiivative of f at x E D. (The linear space LD referred to in Definition 3.1 is

simply the set of all linear combinations of elements of D [16].) Defined in this

way, F' is a derivative of G-teaux type; in fact, if D is a Banach subspace of P such

-9-
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that condition (3.4) and i 111 (t )-r 091 are equivalent (such as R, R , and
O .o 0 x.YR-

C(0,11), then f'(x) is precisely the GAteaux derivative in D of f at x [41, [101.

Because of the dependence of f' (x) = f ;(x) on the domain D, this derivative can also

be considered to be a type of dijectiona derivative; for example, one can take D

to be the line through the origin of P consisting of the points defined by (3.1).

In case it is desirable to distinguish the derivative defined above from some other

derivative, it will be called the etemen& yt real derivative, or simply the R-del-ivn-

tive of f at x E D.

4. Elementary mean value forms.

Theorem 4.1. If X is an interval such that f is differentiable on X D, D con-

vex, and F' is an interval inclusion of f' on X, then

(4.1) f(y) - f(x) E F'(X})(X - x), x,y E XnD.

Proof. For x,y C XrD, it follows from Definition 3.1 that given a real - 0,

there exists a real number T, 0 < !; I, such that

(4.2) f(x + A(y - x)) - f(x) C F'(X).0(y - x) - FOe.[-l,l]

for 0 T. To show that (4.2) holds for 0 = 1, the assumption that 1 < I is

the supremum nf the values for which it is valid will now be contradicted. Set z

x + T(y - x). Since f'(z) exists, there is a real number 3, T ' 0 < 1 such that

(4.3) f(x + n(y - x)) - f(z) E F'(X)-(n - i)(y - x) + (n - r)e'[-l,l],

Ti ri . Let 0 = I in (4.2) and add to (4.3) to obtain

(4.4) f(x + n(y - x)) - f(x) E F'(X)-n(y - x) + crne--l,l],

n r< q, and thus (4.2) holds for 0 , - < 9, which contradicts the assumed property

of T, since 3 - T. Hence, for = 1, r = I/n, (4.2) becomes

(4.5) f(y) - fx) C F' (X - x) 4 e
n

It follows that

(4.6) f('() - f(x) ' '('I F, M ( F' (X)(X - x) * n F.M.,X X
)

,
n

- 1lo -



which is nothing more nor less than (4.1). QED.

The proof of Theorem 4.1 given above is truly elementary in that only interval

arithmetic and the definitio-s of interval inclusions and the derivative are used.

Replacing X by A(x,y) in the above proof leads to the conclusion

(4.7) f(y) - f(x) C F'(A(x,y)).(y - x) C F'(A(x,y)).(X - x),

which is also valid. If F' is a monotone inclusion of f, then (4.7) implies (4.1).

Note that f need not be defined on all of X; all that is required is that f'(X nD)

C F'(X); one can take f'(x) = F'([x,x]) for x E X\{X nD}.

Definition 4.1. If F' is an interval inclusion of V on X, then the interval

inclusion F of f on X defined by

(4.8) F(X) = f(x) + F'(X).(X - x)

is called the (eetmentaqlA mean vatue 6om of f.

The mean value form was introduced by Moore 1 6 ] in R 
n , and studied in R

n and

C' a,b] by Caprani and Madsen 1 2], whose results will be returned to below. The

form (4.8) provides a method, in addition to interval arithmetic, for the construc-

tion of interval inclusions of real transformations. A useful case of the mean value

form is its m.(dpoimn (or centeud) form, obtained for x 
= 
m(X). Since

1
(4.9) X = (X) w(x).[-1,11

for an arbitrary interval X and w(X) a 0, one has, if m(X) E D,

(4.10) F(X) = f(m(X)) + 1JF'(X)lw(X).[-I,L]

in this case, which expresses F(X) as the sum of the point f(m(X)) E Q and a symmetric

interval in IQ. The midpoint form (4.10) is even simpler in case y E D and

(4.11) X = X(y, ) = y + pe*[-1,11

is the cabe with center y E P and radius . Then,

(4.12) F(X(y,,)) = f(y) + i,F' (X(y,p) ) e- -1,]I ,

which often can be computed vry economically.

- 11 -
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The following theorem, which is a generalization of the fundamental rcsult due

to Caprani and Madsen [2 ], shows that F defined by the midpoint mean value form

(4.10) is monotone.

Theorem 4.2. If F' is a monotone inclusion of f, then F defined by the mid-

point mean value form (4.10) is monotone on the set of intervals X such that m(X) E D.

Since F is already an inclusion of f on the set of intervals cited, all that

needs to be established is monotonicity. The following lemma is the key to the proof.

Lemma 4.1 (Caprani-Madsen [2]). If X,Z are intervals in a real space P, then

1 1(4.13) x CZ - w (z) > -(X) + jm(z) - m(X)I.

Proof: Suppose the inequality in (4.13) holds. Then, for x E X,

1

(4.14) x - m(Z) - x - m(X) + {m(X) -m(Z)} E {-w(X) + Im(Z) - m(X)I}.[-li],

1
so that x E m(Z) + -w(Z)-[-1,1] = Z, and thus X C Z. On the other hand, suppose

that X C Z, or

1 1
(4.15) mX) + -w(X) [-1,11 C m(Z) + -w(Z). [-,1].

Since w(Z) >- w(X) > 0, this gives

(4.16) m(X) - m(Z) r 2w(Z) -

and the inequality in (4.13) follows from multiplication by [-1,1]. QED.

Proof of Theorem 4.2. Suppose that U C V, where U,V E IP are such that m(U),

m(V) E D. Set X = F(U), Z = F(V). It follows that m(X) = f(m(U)), m(Z) = f(m(V)),

-w(X) = IF' jw(
- )

, 1w(Z) - IF' (V)I w )
. Since U C V, one has m(U) ,m(V) E V, and,

2 w2 2

from the proof of Theorem 4.1,

(4.17) f(m(V)) - f(m(U)) E F'(V)(m(V) - m(U)),

so that

(4.18) f(m(V)) - f(m(u)) E iF'(V) Im(V) - m(u) .'[-1,11.

For x X X, x - m(Z) = x - m(X) + f(m(U)) - f(m(V)), and

12

x - m(X ' .--. 1 '(v) Iw(U).(-l~l,.

- 12 -



since the monotonicity of F' implies that IF' (V) ? F' (U) for U C V. Using (4.18)

and (4.19), one gets

(4.20) x - m(Z) E IF'(V) I{-w(U) + Im(V) - m(U)}'[-1,1] C {iF'(V) Iw(V) [-1,1)

by the Caprani-Madsen Lemma 4.1, so that x E Z, and thus U C V * F(U) C F(V). QED.

Monotonicity is often crucial in numerical computation, in which only a finite

set of points G and corresponding intervals IG are available. When an interval X E

IP is approximated by an interval Z G IG C IP such that X C Z (this process is called

Out=4d 4towitdng), one wants to be sure that FX) C F(Z) in order for the results

actually computed to contain the ones that would be obtained by exact computation.

In connection with approximate computation, there is also the problem that f(m(X))

ordinarily cannot be evaluated exactly. Monotonicity can be preserved in this case

on some interval Y E IG if for each x E Y, there is an element z(x) E Q which can be

computed exactly such that

(4.21) f(x) E z(x) + cee1-l,l, x E Y,

for some known c > 0. The interval inclusion F of f defined by

(4.22) F(X) = z(m(x)) + 1(X)w(X) cel[-,

will then be monotone on bubinteAvat6 of Y for monotone F'; that is, F(X) C F(Z) for

X C Z C Y. Since actual computation is limited to some interval Y defined by the

largest and smallest available real numbers, this type of monotonicity is satisfac-

tory for practical purposes.

5. Elementary Taylor forms. It can be verified without difficulty that the

elementary derivative defined in §3 has the ordinary properties of a GAteaux deriva-

tive, for example, (f + g)' = f' + g' and the chain rule holds; proofs will be omitted

here. Furthermore, successive differentiations give rise to muttitfltO. operators

from P into Q in the usual way [ 4], 1101, (121. The following result is an inter-

val version of Taylor's theorem of real analysis.

Theorem 5.1. If f is differentiable n times on XrOD, D convex, and F (n ) is an

- 13-
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interval inclusion of f(n) on X, then for x,y E X nD,

n-I

(5.1) f(y) - f(x) _ f(k) (x)(y - x) E F (n)(X)' (X  x)n .

L~J k ! n1kil

Proof. The proof will be carried out by mathematical induction. Theorem 4.1

shows that (5.1) is valid for n = 1, and it will be assumed to hold for n - m - 1.

If 0 is an abstract function which is differentiable on [0,1], then, given any F > 0,

it follows as in the proof of Theorem 4.1 that there exists a finite sequence of points

{a)V.O  0 
= 00 < 8 < < ... <0 <0 , such that

(5.2) *(61) - E() 0 ( 8i11 1i - ei1) + C(1i - 6iie.[-l,1].

For the particular abstract function

M-1 1 00 k k
(5.3) 0(0) = f(x + O(y - x)) - f(x) - - " f (x)o (y - x)

k=l

one has 0(0) = 0, and thus

M-1
_-l f (k) x) )k'

(5.4) O(l) - 0(0) - 4(1) - f(y) - f(x) - f (x)(y - x)
k-l

and

m-1 (k) k-I k
(5.5) 0'(0) - f'(x + 8(y - x))(y - x) - f'(x)(y - X) k f O(x) y-x)k-2 (k-i) !

By the induction hypothesis,

(5.6) 0'(f) E 1 F (X) ( - x)M0m' [0,1].

Therefore, from (5.2),

1 (i)m M-i
(5.7) 0(011 - E(8iI ) E i F (X).(X - x) _(6 - )_11) +

+ C(Oi - 0 ille'(-l,l1,

i - 1,2,...,v. Thus,

V1 (in) m V -(5.8) ¢(1) - (0) - .(oi  - ni-l) (M- ) (X) (X-x m ) - (H .-O .- • 10,11 +

i-l i-I (ni -

+ .e" [-1,1].

- 14 -
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However,

rn-i1 1

(5.9) 0 < ei~ce i - i1) <f -1 d -

i.1 0

since the sum is a lower Riemann sum for the integral. Since X is convex and x E X

implies 0 E (X - x), it fo..Lws that (X - x)*i[0,l] = c(X - x) C (X - x).8[0,l =

B(X - x) for 0 < a < B. Using this fact and

(5.10) nEe.[-1,1] = [0,01,
C-0

one has

(5.11) F ( m) ( X ) . ( x - x)
m + [0,01 F (m) (X(x - x)

m ,

(5.11)ml

which is equivalent to (5.1) with n = m by (5.4). This completes the proof of the

theorem by mathematical induction. QED.

Once again, little more than interval arithmetic is required in the proof.

Definition 5.1. If f: D C p I Q is differentiable n times on X nD, X E IP,

then for x E X OD.

n-lI W k 1 (n) n
(5.12) F(X) f(x) + y -I f(k) (x)-(X - x + F (X).X - x)

k=l

(n) .(n)
where F is an interval inclusion of f on X, is called the (etmntaj) Ta.o.

do.m of f of o~deA n.

It follows from Theorem 5.1 that F defined by (5.12) is an interval inclusion

of f on X. For the particular choice x = m(X), one obtains the midpoint form of

(5.12),

n-Ik I (n

(5.13) F(X) = f(m(X)) + { n k 1- Ifk)(m(X)) w(x)k+-- - IF (n) x)lw(x)nlo[-,l],
k-I 2 k! 2 ni

and, for X = X(y,p) a cube, the cube-cente'd form
/

n-i k n

(5.14) F(X(y,p)f = f(y) + ( Y l-Iflk) lY)ek + IF (n) (X (y,)) Ien}..-l .
k nk=l'

Evaluations of this latter form can often be carried out very economically, since
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operations on e ordinarily do not require multiplications, and only non-negative

operators are involved. Monotonicity of the midpoint Taylor form (5.13) also fol-

Co)
lows from monotonicity of F n

, in much the same way as for the midpoint mean value

form (4.10).

Theorem 5.2. If F
(n ) 

is a monotone inclusion of f (n), then F defined by the

midpoint Taylor form (5.13) is monotone on the set of intervals X such that m(X) E D.

Proof. As before, suppose U C V, and it is to be shown that F(U) C F(V), where

the results of the transformations of U,V by F are given by (5.13). For brevity of

notation, set u = m(U), v m r(V). It follows that

(5.15) m(F(U)) - f(m(U)) = f(u), m(F(V)) = f(m(V)) - f(v),

and

(5.16) -w(F(U)) = If+(u) 1 2 1 ()

1 1 21 -I (U

1
with an analogous expression for -w(F(V)). In order to prove that F(U) C F(V), it

1 1
will be shown that iw (F(U)) + Im(FlU)) - m(F(V))j -w(F(V)), from which the desired

result follows by the Caprani-Madsen Lemma 4.1.

First, since F
(n ) 

is assumed to be monotone,

(5.17) IF 
(n ) 

(U) I (w U) ) n < F n (V)I( (lU)) .

2)n

Furthermore, by Theorem 5.1,

(k.18)k (l+n-1 1 If(I)(v)I.Iu vj-k 1 (n) n k
(5.18) If(u) Ifk) + (J-k) Il(n-k),IF (v) l)u-v -

j-k+l

n-I l -
- 1 I vH(j) u -k + (n) (V)I-iu-vn

- (v)l.lu-vl 
(nk)IF

k - 1,2,...,n-l, using the result of multiplication of (5.1) by [-1,11. It follows

from (5.16), (5.17), and (5.18) that

(51) 1n-l In-l 1 1j(~~~vjk~ (lk

251) F U V '1~ i(kl-k) I Ifw(f

+ I F (n) (V) I uvln-kl (U)) k"

k kl (n-k)! !W
k.1

- 16 -



Interchanqe of order of the double susmmation in (5.19) results in

n-i n-1
(52)7 7 1If) (v11u j-kl' U)k

,_ k1(j -k)!2

= ~ k I~~f(V)IIuvI-(l(U))k.

ill k Ikl j

Theorem 5.1 also gives

(5.21) If(u) _ f(v)I Y -Lfj(~jj j +- -IF (n)CV)I.juvjn.

Addition of (5.19) and (5.21) results in the inequality

(5.22) 1 (F(U)) + Iu)- f ~~ n I L~f(i) (Vl ~l-~ ()k

+ F(n) MIn n! i v n-kl1M k
T-f k!f kOk(n-k)! ( wu

j! L 1f() Cv)If(U) + lu-vll

+ i-1F(V) I U -

Hence, by the Caprani-tMadsen Lemmna 4.1,

(5.23) 1 (F(U)) + lm(F(U)) - m(F(V))I n-1l1jIf CV))M + -LIF (n CV)I ('V)) n

and thus F(U) C F(V). QED.

Remark 5.1. Some of the combinatorial aspects of the proof of Theorem 5.2 can

be avoided by the use of the identity

(5.24) 4(u) + ( u) (x-u) + + Fn-i) (n-1 ) - 1

I (n-i) n-1M (v + 0 1vM)((x-u) + (u-v) ) + *+ (nl( v)fC(x-u) + (u-v) I

in which is an (abstract) polynomial of degree n-1 [121.
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As in the case of the midpoint mean value form (4.10), the corresponding Taylor

form (5.13) requires modification in actual computation. Suppose that for some inter-

val Y E IG, there is for each x E Y a point z(x) E Q and operators z.(x: YJ -*Q,

j 1,2,...,n-1, which can be computed exactly, such that

(5.25) f(x) E z(x) + ce-(-l,l], f(J)(x) E z.(x) + jo[-ll],

where c ? 0 is a real number and E. Z 0 for each E.: Yj * Q, i = 1,2,...,n-1. Then,
I I

the 4ounded Taqjot opea tO4 F defined.

1 j I (n)
(5.26) F(X) = z(x) + (Fe +i + : I (,(X)) + nIF (X)I(i-w(x))n}- -l,lI

is inclusion monotone on interva;,, - , wihich will usually be satisfactory for use

in actual computation.

6. Application to iterativos operators. The interval versions of the mean value

and Taylor's theorem given above, like their counterparts in real and functional analy-

sis, have numerous applications. Theorem 5.1 shows, for example, that the .nteAvat

umaindeA te m

(6.1) R n(X) - (n) (X)*(x - X)n

contains the tuncatton euol f(y) - f (y) resulting from the use of the Tayto'O
n-I

pot qnomiaoI
(6.2) f (y) - f(x) + f'(x)(y - x) + ... + -- 1 (n-l)x)(y - x) n-l

n -l (n-l)t (x(

of degree n - I in place of f(y) for arbitrary y E X. In particular, the results

obtained by Moore 1 6 ), ( 7) on the numerical solution of differential equations by

interval methods follow from this expansion.

The application to be considered here is to the solution of the equation

(6.3) f(x) - 0

for x E D -" P, where f: D C p - Q is a differentiable operator. Given a nonsingular

linear operator Y: Q - P, equation (6.3) can be transformed into the 6ixed point

paobte x - g(x) for the operator g: D C P -- P defined by

- 18 -
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(6.4) g(x) - x - Yf(x).

Since simple iteration is often used to solve fixed point problems, g will be called
-l

an .te6at.on opeAa..to.t for f. The choice Y = f' (x) corresponds to Newton'6 method

for the solution of (6.3), Y = f'(z) -i for z Y' x to a method of Stai~ing type (11,

and so on. Treating Y as a constant operator, one has

(n) yfn)
(6.5) g'(x) = I - Yf'(x), g'(x) = -Yf"(x), ... , g (x) = -Yf (x),

where I denotes the identity operator in P, and thus, if f is differentiable at least

n times, then

(6.6) g(x) E z - Yf(z) + [I - Yfl(z)}(x - z) - ... -nl (n-i) (z)(x - z) n-i
(n-i) I

-1 (n) - )n
-Fn (X)-(X - Z)n!

for x,z E X, where F(n ) is an interval inclusion of f(n) on X.

Now, given an arbitrary sequence Y0' YJ''"" of nonsingular linear operators, a

sequence of intervals X0 , XI,... , and points zk G Xk, k = 0,1,2,..., one can construct

the corresponding sequence Go, Gi,... of iiteAvat de).&tiOn Opmatou6 for f defined

by

(6.7) G k(X) = z k - Yf(z k ) + (I - Yk f(zk )1(Xk - z) -

1 f(n-l) (z ).1(X nl F(n) n
(n-l)I k k k k nI (Xk -Zk)

k - 0,1,2,.... The following theorem is a direct consequence of (6.6).

Theorem 6.1. If x = x* E x0 is a solution of (6.3), then for

(6.8) Xk+ 1 = XknGk(Xk) , k = 0,1,2,...,

one has

(6.9) X* E X . r Xk
k-o

Proof: It follows from (6.6) that x* E Xk  x* E Gk(Xk), since x* = g(x*), which

- 19 -
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in turn implies x* E X k+. This gives (6.9). QED.

The process (6.9) is called inte4vat iteAation [14]. Since

(6.10) X0 D X1 D X2 D ....

this process gives improved lower and upper bounds for x* as long as X k+1  Xk ' (of

course, if Xk+ 1 = Xk' then X = x k  and the interval iteration terminates in a finite

number of steps.) The contrapositive of the assertion in Theorem 6.1 is that if

(6.11) Xk+l = Xk  Gk(X k ) =0

for some positive integer k, where 0 denotes the empty set, then x* X0 , and there

is consequently no fixed point of g or solution of (6.3) in the initial interval X0

[14).

In the case n = 1, one obtains the KAauzzyk opeuOao4 [ 5 1

(6.12) KX(Xk) - Zk - Ykf(zX) + {I - YkF'(Xk))-(Xk - zk)

from (6.7), with z k = m(Xk). Suppose that F" is an interval inclusion of f" which

is Con6 tent with F' in the sense that

(6.13) L - FIX) C F"(X)w(X), L E FI(X).

Then, from (6.12), for -l I F' (Xk k

(6.14) Kk(Xk) C z - Ykf(zk) +IykF(Xk) (X k) 2-1,1),

since Xk - z - X - m(X -W(X )• -llJ. It follows that interval iteration with the
k-k -k k) 2 i(k)

Krawczyk operator converges quadratically as w(Xk) 0 to a degenerate interval, thus

mimicking the behavior of its real counterparts.

For n - 2, the Chebyshev-type iteration operator 112)

(6.15) Tk (Xk) =z - Ykf(zk) + {I - Ykf'(zk) "(Xk zk) - 1 F (X ) (x - z)2

k k k kk k k kF"(k)*k Zk

results, and so on. It follows that (6.7) can be used to construct interval itera-

tion operators with arbitrarily high orders of convergence in width as w(X k 0.

- 20 -
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7. Other derivations of the mean value and Taylor's theorems. In certain

particular cases, Taylor's theorem as given above (which includes the mean value

theorem for n - 1), can be derived directly from classical results in real or func-

tional analysis. For example, with P = Q = R, one has

(7.1) f(b) - f(a) + f'(a)(b - a) + .. + 1 (n-l) (a)(b - a) n-l

1 (n) n,
+ j-f (E)(b - a) b,

in which the remainder term is said to be in Lg Apnge form. For X t [a,b), one

has f (n)(E) E F (n ) (X), b - a E X - a, which gives (5.1) at once in this special case.

Formula (7.1) also hold componentwise in RV, which leads to a similar generalization,

since f k(nk (X), k = 1,2,...,v, even though (7.1) does not necessarily hold

for some E E X C RY. This generalization to RV has been used by Moore [ 6 ], [ 7] , and

Caprani and Madsen [ 2]. In the latter paper, a version of the mean value theorem

was also derived for integral operators, but the results are not easy to interpret

without the use of interval integration [ 3], [131.

A more straightforward method of generalization of Taylor's theorem can be

based on the use of the Cauchy form of the remainder term,

1f(n) (1 - 1 n
(7.2) R n(f;a,b) = f (a + e(b - a)) ((b - a) dO,n(n-l) ! .b-an

0

which holds inBanach spaces [ 41, [12]. In R, the use of interval integration gives

iFh~ (ba) (-ln' (ban (CFn) ()•(-)nf l  - 8 n-ld

(7.3) R (f;a,b) E f (a + (b-a)) (n- (ba)nd C F (X)(X-a (1_-1
0 0 (n-l11

from which (5.1) is obtained by evaluation of the real integral. By a simple exten-

sion of the concept of the interval integral [ 3], (13] to abstract functions f which

take on values in a Banach space D, D C Q, Q a real space, a corresponding generaliza-

tion of formula (7.3) will be obtained.

In order to construct the interval integral of an abstract function * 410)

which takes on values in an R-space Q for 0 50 sl, one simply partitions = (0,1]
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into subintervals 0. = [0 i,0i 1, i = 1,2,...,m, by means of points 0 = 0 0 1 .

0 = 1. The set of all zuch partitions into m subintervals will be denoted by A.m m

The abtAact ntvat 6unction e: if - IQ will be defined by

(7.4) D0.) = inf () sup
0. ' 0.
1 1

Definition 7.1. The inteAvat int eat of the abstract function 0 over [0,1] is

defined to be

1 m
(7.5) f O(0)dO = n r I (0.)w(0.) E IQ.

0 mul a i=l
m

This follows exactly the construction of C 3]; again, the interval integral de-

fined by (7.5) is the intersection of a nested sequence of nonempty intervals, and

hence is nonempty.

Now, suppose that D C Q is a Banach space in which X OD is a closed set for X E

IQ. The Riemann (R) integral of abstract functions 0 taking on values in D is defined

to be the limit of the R.iempn 6=m4

m
(7.6) m'A -i=l H 1 

i - 0 i -1- Ti E oil

max

as m - and HAII = m w(0i) - 0 [4], [121. It follows that

I m
(7.7) (R)f $(O)d0 E I $(Oi)w(Oi) C *(O)

0 i=l

since the intersection of D with the inteAvt VoAboux 6wm6 [ 3] appearing in (7.5) is

closed in the topoloYgy of D. Therefore, from (7.5),

1 1

(7.8) (R)J (~f)) d0 E f3 f)df
0 0

if t is Riemann (R) integrable over [0,1] in the sense defined by Graves [ 4]. Thus,

in the special case that f is a function taking on values in a Banach space D with

f(n) (a * 'b - a)) Riemann integrable over [0,1], (7.3) follows immediately by inter-

~(n) (nC)
val integration, and gives (5.1) for interval inclusions F 

)
of f . This deriva-

tion is also less general than the one given in :5, which holds in R-spaces.
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