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" In this papet/vﬂ propose ;a numerical method for a degenerate var}ational
inequality arising in the axisymmetric porous flow well problems which 'h/;ve Freo oo,
been studied. in Cryexr -and Zhou [4981}%‘\;;4 the finite element method to
discretize the problem, and we’v;stablish the convergence of the solution of
the discrete problem to the solution of the degenerate variational inequality.

The solution of the physical problem depends upon the unknown discharge gq. A

rapidly convergent numerical method for finding q is obtained.
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SIGNIFICANCE AND EXPLANATION

Most steady-state porous flow free boundary problems may be reduced to
elliptic, variational or quasi-variational inequalities for which the
numerical solutions have been studied by many authors. Some axisymmetric
problems lead to another kind of variational inequality, namely degenerate
variational inequalities. We give a numerical method for a degenerate
variational inequality arising in the axisymmetric porous flow well problems,

and study the convergence of the solution of the discrete problem. Numerical
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NUMERICAL SOLUTION OF DEGENERATE VARIATIONAL INEQUALITY
ARISING IN THE PLUID FLOW THROUGH POROUS MEDIA

Ce Wo Cryer' and S. Z. mou"

1. Introduction

Most steady-state porous flow free boundary problems may be reduced to elliptic,
variational or quasi-variational inequalities for which the numerical solutions have been
studied by many authors (see, for instance, Baiocchi and Capelo [1978], Oden and Kikuchi
{1979}, and their references). 1In some axisymmetric problems there appears another kind of
variational inequalities - degenerate variational inequalities. In this paper we propose a
numerical method for a type of degenerate variational inequality arising in the
axisymmetric porous flow well problems which have been studied in Cryer and Zhou [1981].
We use the finite element method to obtain the discrete problem. The convergence of the
solution of the discrete problem to the solution of the degenerate variational inequality
is proved. The solution of the physical problem depends upon the unknown discharge gq. We
vive a numerical method for finding q which has been found to converge rapidly.

Here we recall some notations and results about weighted Sobolev spaces v‘ and Vz.
(See Chang and Jiang [1978], Zhou [1980].)

A - a bounded domain in (r,z)-plane with a locally Lipschitz boundary [, and with
r > 0.

C.(Rz) = the space of functions infinitely differentiable in (r,z)-plane.

C(R) ={v s v is defined in A and has extension in C (R%))

C;(Atr') ={vec () :v=0 in some neighborhood of ')}, where I"C T, 1f

-* - L ] -»
I =T then denote co(A,l') by Co(A).

Computer Science Department and Mathematics Research Center, University of Wisconsin=-
Madison.
*®

Hunan University (Changsha, China) and Mathematics Research Center, University of
wisconsin-Madison.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and the National
Science Poundation under Grant No. MCS77-26732.




t2(a,r) = {v : v real measurable in A, lvl 2 ¢ ®}, where Ivi 2 =
) L (A,r) L (a,r)
f riv|“ardz.
A
vO(a) = L2(a,r), Iv! =, .
v () L°(a,r)
vlia) = (v : 3% e t2(a,r), laf € 1}, vl = 1 n%a .
vin lal€ v (a)
3
v2(a) = {v : 3% e t2(a.r), la] € 2, %ﬁ e?a,n)l.
[ 1 v
vl = 2 13 vl + I= rl .
v fal<2 Y T

-
V;(A) ~ the closure of CO(A) in V1 (A).
1 - o 3 ]
vo(ml‘ ) - the closure of co(ml‘ ) in V (A).
The following propositions can be easily shown.
* L ]
Proposition 1.1. If I' N {r = 0} = § and meas(F' ) > 0 then there exists a constant C
such that
2 dv 2 dv 2 1 *
Tvl <c ]A L " + (37 Jrardz, vve vo(ml‘ ) .

v

Proposition 1.2. v'(A), V2(A) and v;(ul") are Banach spaces, where we take

vl 1 « * vl .
Vo(lir ) V (A)

- o - * 1 1 -
Proposition 1.3. C (A), co(A;P ) are respectively dense in V'(a), vo(mr )
*
Proposition 1.4. If T N {r = 0} = § then there exists a unique linear continuous
1 2,r* * ®
operator tr : V (A) * L“(T' ) such that tr v=v on I for any v ecC (R). Moreover,

tr is a compact operator.

2, Continuous Problem
let D be a L-shaped domain such as that shown in Pigure 1. Set

2 ={(r,z) :0¢r<R

. ,o<z<ho).

V]
The original variational formulation of the physical problem is as follows (Cryer and

Zhou [1981])).

Problem (PPW). Let Rge Rys hO' h‘,, H be numbers such that Ry > Ry > 0, H> hv > hy > 0.

Find functions y(r) and wu(r,z) such that

0
vec ((RO.R11). w(Ro) >h', w(n,) = H (2.1)

-2-
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¥ is strictly increasing

vevi@) ncd@, .

E(Ry M) Ty C(R ,H)
T
_;1_. G(Ry.h)
r
5
T,
Qe
P(R),h)
Ty
A(0,0
.0 Y B(R,,0)
Figure 1
u=h on fz

-z on fo V) (r‘ N Q)
- h on rs v Ps

[g v draz = 0 for a1l v e X,

where

-3

(2.2)

(2.3)

(2.4)

(2.5}
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ro = {{r,z) : z = p(r), Ry ¢ r ¢ Ri} .
Q - .
{(r,2) .0<z<w(r),R0<t<R1) ' (2.6)
1
- . UT v N R .
K, {vev@® :va0 on r, ) (l" B)Ursurs}
By using a kind of Bailocchi transform
U = u(r,z) in W
_ (2.7)
=z in D\E
z - -
wir,z) = [0 falr,t) - t]at in D . (2.8)

Cryer and Zhou [1981] have derived the following degenerate variational inequality with a

real parameter q.

L4 ]
Problem (PPW1). Finad wq e Kq such that

Vw V(v - w )O&r&z
IDr q { q)
(2.9)

Ro
> (n, ~n) Jo v -w))

L4
o lemn T ¢ Jotv = v raxae, vvex

where

-
K ={vev'(p) :v?>0 in D, v<glem) in O\, v=g on r} o, o2a0)

5
I = u o, (2.11)
D =1 1
gq(rnl) =0 ) on I"|
z
- - r
He 2 on 2
2
H ) o
W — Ln = (V)
- ta nR1 on T l“
Hz Ro (h'_')z (2.12)
-2—#qlnn—- 3 on l's .

1

For Problem (PPW1) there is a equivalent form which is more convenient with regard to

the numerical solution.

R S




Problem (PPW2). Find wq e K;' such that

J(w ) = wmin J(v)
q .
veKk
q

where

R
vy = [ clVv)%arar - 2(h, - hy) Ioo vl__, rar

zaho
-2IDvrdraz .

Cryer and Zhou [1981) have proved the following results.

Proposition 2.1. For any q with 0 < g < qq, where

2 2
H - (h'-ho)

94 = > InrR /R '
0 2 n(R1/R°)

(PPW1) has a unique solution.

Proposition 2.2. Let w, be the solution of (PPW1). Then there exist ¢, 8 and
with a, B rxeal numbers, B ¥ 0, F* a continuous bounded function, such that the
following two conditions are equivalent:

vo e '@ n P

*
F(q ~Bg-a=0 .,

We call vq a regular solution of (PPW1) if (2.16) is valid.

Proposition 2.3. If Yq is a regular solution of (PPW1) then 0 < g < 9

(2.13)

(2.14)

(2.15)

')

(2.16)

(2.16*)

Proposition 2.4. There exists at least one reqular solution w_ for Problem (PPW1).

q
Proposition 2.5. For the reqular solution wq of (PPW!) we have

v dw_

q
1> >o,5-z—g>o in D

"

;—g-h-h on T

=0 onr .

P

(2.17)

(2.18)




Proposition 2.6. If u 1is a solution of (PPW) then w defined by (2.8) is a regular

solution of (PPW1) corresponding

at .

- M 3ulr,t)
gq=q=7r 0 —3_

r
Conversely, if w_ is a regular solution of (PPW1) then the functions ¥ _» u_ defined as
q 9 4g

follows, is the solution of (PP"™:
a_ = 01 U{tr,z) eD :r > Ry w_ < g_(z,H)}
q q q

¢ _(r) = sup{z : (r,z) € 2}, Ry < r <R,
q q

¥ _Ry) = lim ¢ _(r), ¢ _(R)) = lim ¢_(r)
q r*R +0 q q r’R1-0 q

0
dw
us-g?q+z in D

u =u .

a qf_
q

Remark 2.1. Physically, 21'3 is the "discharge® while u 1s the "hydraulic head”.

3. Numerical Approximation of (PPW2)

In this section we consider the approximate problem of Problem (PPW2): Given g

and h with 0 < q < dpe h > 0, find w: e K: such that

I) = min I(v) (3.1)
1 h
veK
q

where K: is a convex closed nonempty subset of vh, and {vh} is a family of finite

e
dimensional subspaces of vl (D). It is not required that K: C Kq . So far, for space

2 2

VS there is no approximation theorem similar to that for usual Sobolev space H“. Hence
we can not prove the convergence theorem for our problem by using usual methods such as

those in Falk [1974], Brezi and Sacchi [1976], Cryer and Fetter [1977}.

-6
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Let ['l‘h) be a family of triangulations of the domain D. The set of interior
gridpoints will be denoted by D,, and the set of boundary gridpoints by 3Dh. Set

rDh = 3Dh n PD. For each T, and for each triangle T € T, we set

P (T) = diameter of T

6(T) = minimum angle of T

9h = minimum 6(T) .
mh

We assume that

lim max p(T) = 0 , (3.2)

+
homh

and that there exists a positive constant 00 independent of h such that (Zlamal [1968])
>8 ., .
9h ° (3.3)
as Vb we take the space of linear finite elements corresponding to T, in
1oy
Vo(Dl 1). Set
- » < -
K: {vev :v2>0 on D,V gq(r'll) on D 91.
We need the following basic theorem (see, for instance, Glowinski (1960, Th, 5.2 in

- r - -
veg, on Dh} (3.4)

Ch. 1]).
Theorem 3.1. lLet V be a real Hilbert space, a(*,*) - a bilinear, continuous, symmetric
and cvercive formon V x V, f(*) - a continuous, linear functional on V, K - a closed,
convex, nonempty subset of V, {f' } - a family of closed, convex, nonempty subsets of V
with KM C V0. agsume that

(1) £ {v") is bounded in V and v" @ X' then the weak cluster points of M
belong to K;

(11) There exists a set X CV with X = K such that ¥ v @ X there exists {v'}

h

sacisfying that v @ ™ ana that lm vd =y strongly in V.

h*0
Then h
lim lu" - ulv =0
h*0
7w




7

.

where uh and u are respectively the solutions of the problems
J(w) = min J(v)
vex
and

J(uh) = min J(v)
h

vex
provided that J(v) = a(v,v) - 2f(v).
In our case we will take C1 (D) N x;' as the set X in the above theorem.

From now on we aggsume that 0 < q < gg«

Lemma 3.2. C' (D) ﬂxq’ - x;' in vi(p).
Proof. Set Y = c'(®) n x;'. By Cryer and Zhou {1981, (3.28)] there exists a function
vq € Y, hence Y is nonempty.

Set

1

o
-y. N r), .
¥y = ¥y N CoiDaly)

1
- > < - -
Y vevi() :v g in D, v gq(r,ﬂ) A in D\ﬂ.', v=20 on PD}

Then by the argument similar to that of Lemma 2.4 in Glowinski (1980, Ch. II] we can prove

that

Yz -Y1 (3.5)

*h
vVve Kq we have v = v - Yq @ Yy« By (3.5) there exists a sequence "n. e Y,

L ] L ]
such that va * v strongly in v'. Thus Vo = vn' + Yq €Y and va + v strongly in
vl, So we obtain that
1 = [ "
cC« (D) NK D K .
q q
Using the well-known subsequence argument and proposition 1.4 we can easily obtain
that
1 - 3 [ 23
cC(D)N K DK .
q q
Q.E.D.

The following lemma may be easily proved.

Lemma 3.3, If TeT, and v e V' then

3
[ V" arar - Deas (D) § R,
T 7L, AT




e e

where Mn. (L = 1,2,3) are the vertices of T.
Now we can prove the convergence theorem.
Theorem 3.4. Problem (3.1) has a unique solution wz which oonverges to the solution
wq Of Proble (PPW2) in V'(D) as n+ 0.
Proof. Let V =V, a(vy,v,) = ID Vv v, ardz, and f(v) =

f rvdrdz + (h_ - h_ ) f 0 vl rdr. Then it is easy to see that V is a Hilbert space
D w 0 0 z=h0

with inner product

(v1,v2) - ID z'(viv2 + Vv,'vvz)dtdz R
that k: is a closed, convex, nonempty subset of V, that a(°*,*) is a symmetric,
continuous, coercive (by proposition 1.1), bilinear form on V x v, and that f(°*) is a
linear, continuous (by proposition 1.4) functional on V. By the well-known theorem
(Stampacchia [1964], or Lions and Stampacchia [1967] we know that Problem (3.1) has a
unique solution w:.

Now we prove the convergence of '2

by using Theorem 3.t. lLet V = V;(Dyrij,
K =~ K;.. It is sufficient to verify the conditions (i) and (ii) because it is obvious that

the rest of the conditions are satisfied.

Verification of (i): Let {v"} be a sequence such that vI e K:, and
My weakly in v;(D11'1) . (3.6)
We prove that v e K;.. First we prove that
v < qq(r,}l) in 0\91 . (3.7)

Define gq(r,z) = gq(Ro,z) in 91. Let gh be the piecewisely linear interpolation of
qq(r,H). Then it is easy to see that

g - g lr) in o . (3.8)
Por any V @ c;(o\91) with ¥ > 0 we define ¥ =0 in 91 and

el v (T)

‘l'Cl‘h

where ®(T) is the characteristic function of T, and Gp is the centroid of T. It can
be shown that

Waev i B . (3.9)

-9-
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Denote by Th The union of triangles T which are contained in D 91. Then we have

!D\01 (Vh - gh)whdrdz - f » *f

*
T, DA T, )
= 1 . fo+] _—
TeT DA uTy)
=1 v " - ghara 4 . " - gMvlaras
rer’ AT )
¥(G, )meas(T) 3
- I oot - gt ) ¢S . (by lemma 2.3)
. 3 1m1 i ir DNRUT )
TcT T7h
<f o (P - MParaz (stnce <P 1n DM -2y (3.10)
NELT )

Noting that meas(D\(ﬂ1 U 'r;)) * 0 as h * 0 we obtain by (3.6), (3.8), (3.9) and (3.10)

that

LJ
ID\Q‘(V = g (r )Y &rdz < 0, ¥ ¥ @CyAR,) with ¢ 20

which implies that (3.7) is valid.
By similar argument we obtain that
v2>0 in D . (3.11)
Finally, it is easy to see that
vh’gq(r,z) in CO(YD) .
On the other hand, it follows from proposition 1.4 that vh * v strongly in LZ(PD). Thus

we have

v =g, on PD . (3.12)

L 2]
This equation as well as (3.11) and (3.7) means that v € Kq.

- ' - o
Verification of (ii): Let X = c1(D) n Kq . By lemma 3.2 we have X = X_ . For any
h

v @ X we take piecewisely linear interpolation v of v. Then vh e Kq. By a result of

Feng [1965] we have (note that (3.2) and (3.3))

h
dy 9 ? L]
vh * v, %f— * 5%, : + sf in L (D)
~10=




A Rt Yl G S

as h * 0. Therefore we have that vh + v strongly in vi,

Q.E.D,
Remark 3.1. The condition (3.3) may be replaced by a weaker condition 9; £ n - eo, where

e; = max 6°(T). O(T)emaximum angle of T. (Cf. Peng [1965].)

're'rh

The Problea (3.1) is a quadratic programming problem which can be computed using

$.0.R. with projection (Cryer [1971], Glowinski [1971]). The iterative process is

convergent (see, for instance, Glowingki et al. {1976, p. 70)). We have used Carré's

scheme (Carré [1961)) to choose the relaxation factor w.

4. Numerical Method for Reqular Solution

Numerical experiments indicate that w: * wq as h*0 for q with 0 < q < Qe

jugt as theorem 3.4 claims. But Yy does not satisfy (2.17) if q does not correspond to
the regular solution. Here we give a method for searching for regular solution and

corresponding values of q.

The basic idea is as follows. For the solutions (PPW1), their derivatives are

continuous everywhere in ) except at the reentrant point P. The character that a
reqular solution possesses is that its derivatives are continuous even at the point P.
Hence we may use (2.18) at P to find regular solutions. By the way, equation (2.40) in

Baiocchi et al. {1973] may also be derived by the same idea. Now we turn to the concrete

ocomputation.

We choose a subset S of the family [Th} such that ¥ T, @ S there is a element
™ e T, which has a vertical edge and P is an endpoint of this edge. Denote by n*
and P*' respectively the length and the other onapoine of the edge. Thus we have the

discrete form of (2,18) at the point P:

£(q) = @' (P) ~w'(P') ~h (h -h)=0 . (4.1)
q q w (1}

This equation can be numerically solved by, for example, the secant method which is given
by

T - qn-'l
et * % T Ty -,y [l P72 “-
n n-1
-{f=
o




The initial values 14+ 9, must be subject to the conditjon 0 < g < dgp+ Then we compute

w: ' w: by using S.0.R. with projection, and f(q,), f(qz) by using (4.1), and q; by
1 2

using (4.2). This process is repeated until prescribed accuracy is reached.

5. Numerical Examples

We adopt the triangulation of D used by Cryer and Fetter [1979] (see Figure 2).
Suppose that m denotes the number of subdivisions of D in z-direction, n the number

of subdivisions of D\Q‘I in r-direction. Then the mordinates of the gridpoints are given

by
zj= (3-1)H/m, 1€4€m4+1
r = Ro expl(i-k-1)/n'ln(R1/Ro)], { = k41, 000,n+k+1
ri = (1-1)R°/k, 1= 1,.00,k

where k = [RO/A] v

A= ROI(R‘/R0)1/n - .

h
For v elt: let Uij-vh(xi,zj). vector U-(Uu}. Then

J(vh) - 2

h
J (v)
R(1,9) R(4,3)

where R(i,j) are the rectangles

R(4 - < < < < .
( 'j) ((!‘,Z) S 4 r } 4 1, ZI z z 1)
It is easy to compute

h T T
Tri1,) V) " Uihgey, )Yt Pry, )Y

The matrix AR“'” and the vector bR(i.j) are almost same as that in (7.11) and (7.12)

+ 2 .
of Cryer and Fetter (1977]. The only difference is that for j = k1 - 1 we must add
respectively (ho~hw)dx*x1/2 and (ho-hw)Ax'xU/Z, which correspond to the line integral
in J(v) now, to bRu’j)(i,jﬂ) and bRu'j)(iH,jH), where k, is the value of 3}
corresponding z = ho.

For the S.0.R. with projection we only note that there are two constraints in our

h h
- > < - .

problem = v 0 in D, and v gq(r,H) in D, 91

The equation (4.1) now becomes

-2~
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f(q) = U(kk,k1) - U(kk,k1 -1 - (hw - ho)H/l =0

where kk = k+1.

j=k2
j=k1
i=1 i=kk
j=1 =k+1

Figure 2

Example 1. Ry =~ 4.8, Ry = 76.8, hg = 9, h, = 12, H = 48;

discretization: (1) m= 8, n = 12; kk = 4
(2) m= 16, n = 24; kk = 9
(3) m= 32, n = 48 kk = 17
(4) o = 64, n = 965 kk = 35

stopping test:

L+ 1 3
max |0 1,9) - v 4,901 € 107 for inner iteration
1,3
-6
'”qs” < 10 for outer iteration .

-13=
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The results are shown in the following table.

L number of number of

discretization (Carre's Scheme)|outer iterations | inner iterations q h.
(1) 1.4993 2 40 399.26 30
(2) 1.729 4 90 371.83 | 1
(3) 1.8419 4 160 362.75 | 31.5
(4) 1.9336 4 k:1) 358.66 | 30.75

where h’ is the approximate value of w_(Ro).

q
Example 2. R, = 10, Ry = 1130, hy = 120, h, =200, H = 460;

discretization:

w= 1,939

m= 50, n= 100; kk = 21

stopping test: same as that in example 1.

The following table shows the convergence of the outer iteration process.

outer iteration q £(q) _nusber of inner iterations
0 100 25380 .14648 450
1 200 25206.47851 450
2 14714 .1875 43.04459 440
3 14739.0156 0.08933% 440
4 14739.0673 0.00000035 440

h

The sxact value of q |is

The theoretical proof that w:

>

14218.462.

. = 349.6 (compared with h‘ = 350 in Boreli [1955]).

w_ as h * 0 is still an open problem.

-14=




Appendix A: An approximation theorem (Feng Kang [1965)).

Theorem. Let T be a triangle such as in Figure 3,

the largest edge with length 0. Assume that u @ C'(;), v is the linear interpolation

of u with V(Pi) - “(Pi" i=0,1,2.

Py, Py and Py its vertices,

Y P
Let 2
w' = sup  Jug(P) - uy(P*)]
P,P'eT
[i14:14 ]
where u, is the directional derivative F‘,o ps ?1 *
1 4 .
of u. Then Figure 3
Iv 3 < o
|.,; - r;l w (A.1)
v du
- < ¢ .
l;; ;;I (1 + ctg aj)uw (A.2)
v = ul < (2 + ctg agrew’ (A.3)
where ao is the inner angle with vertex Py
1 .
Proof: Let P, bs a point such that Py @ PyPy and p2P3 P01’1 Denote by 91 the

length of P,P,. It is easy to see that for any P @ T we have
253

u(P') - u(Po)

u(Pz) - ““’3)

v(P) = u(Py) +

where

;"’3' = Gu(P,) + (1-0)u(P

g = Pol’3/9

2]

+

®

o)

Y

(A.4)

By the mean value theorem there exist Qo e 9073 and Q, e |='1l’3 such that

Fo 3u
u(Pg) = u(Py) + f,3

P,) = u(p ol’”"
u(Py) = u(Py) », %

3\:(90)

ax = “‘P3) - 09—5;—

3u(Q1)

dx = u(l’,) + (1-0)p -
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Hence
3u(Q‘ 3u(Qo

u(l’ ) = u(P ) + °("°)°[_3'_ —5—] . (A.5)

By (A.4) and (A.5) we obtain that

u(P ) - u(p )

3;:?) 1 ) S . Egigl for some Q @ P0P1
dv(p) u(Pz) - u(py) _ pg(1=9) lau(91) ) du(Qy)
dy 91 9‘ ax dx
au * 3\1(9 ) 3“(9 ) *
'—ég—L° (1-0) ctqa [—5—- —-5—] for some Q e92p3 .
Therefore

) ]
I v,(‘P) - u(P) . u( )' < w

v du(Q,) 3“(9 )
3 L] ) ]
I.g.;_Pl-_g;_Pl"'—“ée_l--gé-P-)qo-ctqa '._5.1_ —r.|<(1+ctqq)u'

P v du dv  du
Iv(®) - uerl < lv(py) - ue))| + |Il,0 75 - TP + g7 - 5 v

€ (2 + ctg ao)u'p .

QeR.D.
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Appendix B: The Computer Program

implicit double precision (a,b,c,d,e,f,h,1,0,p,q,x,8,t,u,y)
integer ub
common/rx/x(150)
common/sy/s8(65)
common/ coefo/c0(150,65)
common/coef1/¢1(150,65)
common/coef2/c2(150,65)
common/coef3/c3(150,65)
common/unk/u(150,65)
common/par/imax,n,m,modit ,omega, test ,ml, n k1,k2,kk,q
common/paxr1/y1,y2,y3,b,£2,h2,eps,iter ,testa
data m/8/,n/12/,a/4.830/,ab/72.040/,y1/48.040/,
q y2/12.080/,y3/9.080/ ,eps/1.04-6/
¢ calculate the stepsize for the discretization, uniformly for 1y,
¢ nonuniformly for x
ai=log(a/a)
b=a+ab
bi=log(b/a)
albi=bl-at
d 114 ii=1,3
c make the meshs finer
hi=atbi/n
h2sy1/m
a=a*(exp(hi)-1)
c d is the first dx in the oytside of the well
k=ifix(a/q4)
kk=k+1
di=a/k
¢ d1 is the dx for uniformly dividing the underneath of
the well
ni=n+kk
mi=m+]
d 5 i=1,k
5 r(i)=(i-t1)*d1
d 6 i=kk,n1
6 r{i)=a*exp({i-kk)*h1)
® 10 i=1,mt
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10 8{3)=(3~1)*h2
¢ r(i),s(jrare the coordinates of the mesh points
k1=dint(y3/h2)+1
k2=dint(y2/h2)+1
€ k1 corresponds the bottom of the well
¢ k2 correspond the water level
print 15,a,b,y3,y2,y1,n,m,kk,k1,k2,eps
1S format (2x,3hrw=,£12.4,2x,3hre=,£12.4,2x,2hh=,£12 .4,
2x,3hhw=,£12.4,2x,3hhe=,£12.4/
2x,3hnx=,15,2x,3hny=,15,2x,3hkk=,15,2x,3hk1=,15,2x,
q 3hk2=,15,2x,4heps=,£12.8/)
¢ d is now another constant (for saving storage)
a=al1%(y3-y2)/2
¢ calculate the term in the right side corresponding the line

2

¢ 1integral
do 50 i=1,k
c3(i,k1)= c3(i,k1)+(zx(1)+41/3)*a

50 c3(1+1,k1)=c3(i+1,k1)+(x(i)+2/3)*a

¢ calculate the ocoef's c0,c1,c2 and the right side term corres-

¢ ponding the multiple integral
d 65 i=1,n1-1
d 60 j=1,m
if (4 It. kk .and. j .gt. k1=1) go to 65
dx=r(i+t)-r(i)
dy=s(j+1)~3(3)
ti=(r(i)+dx/3.080)*dx*dy/2
t2=dx**2*dy/36 .040
r2=dx*t2+(r(i)+dx/3.040)*t1
ri=-dy*t2/2+(s(j)+dy/3.040)*¢t1
c0(4,3)=cO(d,)+t1/dx**24+t1/dy**2
ct(i,))=ct(1,d)~t1/dx**2
c2(4i,3)=c2(4,j)=~t1/dy**2
e3(1,))=c3(i,5)-t1+(r2-r(i)*t1)/dx+(r3-s(j)*t1)dy
cO(1+1,))=cO(1+41,))+L1/ax**2
c3(i+1,5)=c3(141,5)~ (r2-r(i)*¢t1)/dx
c0(4i,3+1)=c0(1,3+1)+t1/dy**2
c€3(4,341)=c3(1i,3+1)~(r3=s(§)*t1)/dy
tip=(r(i)+2*ax/3.040)*ax*dy/2

-18-




bt

pd

60
65

¢ give the first initial value for gq. calculate the optimum

r2p=ax*t2+(r(i)+2*ax/3.040)*t1p
ripm-dy*t2/2+(s(j)+2%dy/3.040)*t 1p
cO(141,341)=cO(1+1,3+1)+t1p/Ax**2+¢1p/dy**2
c3(i41,541)=c3(1+1,3+V)-t1p~-(z2p-r(i+1)*t1ip)/dx
c3(1+41,3+1)=c3(i+1,§+1)=(r3p~a(j+1)*t1p)/dy
c0(1,5+1)=cO{1,5+1)+t1p/ax**2
ct(i,5+1)=c1(i,3+1)-t1p/dAx**2
c3(i,§+1)=c3(1,)+1)+(r2p-rii+1)*tip)/ax
cO(i+1,5)=cO(i+1,5)+tip/dy**2
C2(i4+1,3)uc2(i+1,j)~tip/dy**2
€3(1+1,3)=c3(i+1,§)+(r3p-a(J+1)*t1p/dy
continue

¢ acceleration factor omega using carre's method

19

17

20

q=100.040

call init

imax=150

omega=1.040

call itera

omega=1,.4d0

do 19 iter=1,20

call itera

if (iter .eq. 17) testi7=testa

if (iter .eq. 18) testiB=testa

if (iter .eq. 19) testi19=testa

if (iter .eq. 20) testiO=testa
pl6=test18/test1?

pl19=test19/testi8

p20=test20/tast19

if ((p18~-p19)*(p19-p20) .it. 0.040) go to 20
if (dabs(p18-p19) .le. dabs(p19-p20)) go to 20
lamdagep18-(p19~p18)**2/ (p18+p20~2*p19)
print 17,lamdag

format (20x,7haitken=,£8.4)

go to 25

lamdag=p20

-19-
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25

26

30

40

45

46

c give

8q=8qrt(1.0d0- (lamdag+omega-1.0d0)**2/(lamdag*omega**2))
omegat=omegald
omega0=2.040/(1.03d0+sq)

print 26,omegad

format (/20x,7homegal=,£8.4)
domega=dabs (omegat-omegal)

if (domega/(2.0d0-omegad) .1t. 0.0140) go to 45
omegam=omegald-(2.0d0~omegal) /4
print 30,omegam

format (20x,7homegam=,£8.4)
omega=omegam

do 40 iter=1,20

call itera

if (iter .eq. 19) testi9=testa
if (iter .eq. 20) test20=testa
p20=test20/test19

go to 20

omega=omegal

print 46,omega

format (/2x,6homega=,£8.4)
teat=1.040

call iterat

£fi=£2

q2=q

the second initial value for ¢
q=200.0480

Cc outer iteration. secant method for computing gq

68

do 79 iter1=1t,10

call init

test=1.040

call iterat

qi=q2

q2=q

print 68,iter1,q1,q2,£1,£2

format (2x,6h1ter1-,l3,2x,3hq1-,t14.8,2x,3hq2-,f14.8,2x.

q 3hfi=,£14.8,2x,3hf2=,£14.8)

if (dabs(f£2) .1t. eps) go to 80
aq=q2-(q2-q1)*£2/(£2~£1)
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fi=g2

c print the final results

80

85

100

110
115
120

114

ub=0

1b=1

f=£2

q=q2

d@ 110 n0=1,n1-1,7

if(n1-1-n0)115,85,85

np=min(n1-n0+1,7)

ub=ub+np

print 90,(r(i),i=1b,ub)
format(///15x,£15.8,2x,£15.8,2x,£15.8,2x,£15.8,

q 2x,f15.8,2x,£15.8,2x,£15.8/)

do 100 =1, =m1,?

J1emi=g+1

print 95, s(31), (u(i,j1), i=1b,ud)
format(2x,f11.4,2x,£15.8,2x,£15.8,2x,£15.8,2x,£15.8,

q 2x,£15.8,2x,£15.8,2x,£15.8)

continue

ib=ub + 1

continue

print 120, iteri1,q,f,test
format(///5x,6hiter1=,13,2x,2hq=,£15.8,

q 2x,2hf=,£15.8,2x,5htest=,£15.8///)

do 113 i+1,n1
do 113 j=1,m1
u(i,j)=0.040
c0(i,3)=0.040
c1(1,3)=0.040
c2(1,§)=0.040
c3(i,3)=0.040
me2%m

n=2%n

stop

end

¢ inner iteration. s.o.r. method for computing u and ¢

subroutine iterat

implicit druble precision{c,0,t,u,v,q,y.b,f,h,e)
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70

common/ coefo/c0(9750)
common/coef1/¢1(9750)
common/coef2/c2(9750)
common/coefd/c3(9750)
common/unk/u{9750)
common/par/imax,n,m,modit ,omega,test,m1,ni,ki,k2,kk.q
common/par1/y1,y2,y3,b,f2,h2,eps,iter
iter=0

iter=iter+1

modit=mod(iter,10)

if (modit .eq. 0) test=0.0d0

do 7 j=2,m

do 7 i=1,n1-1

if (4 .le. kk .and. j .gt. k1) go to 7
it (1 .eq. kk .and. 3 .eq. k1) go to 7
ij=i+imax ¥ (3=1)

imij=g3-1

ip =i

ijmi=ij-imax

ijpi=ij+imax

¢ on boundary segment gama 7, the mesh points & not have

¢ neighbor mesh points at their left side. We uge then u({1)=0.040

¢ instead of u(im1j) in the equations

74
75

if (1 .eq. 1) im1i=1
uwoldmu(ij)
unews-{c3 (1§)+ct (13)*u(ip13)+c2 (1)) *uliipl)

q +ct(im13)*u(im?))+c2(ijm?)*u(ijm?)}/c0(1))

vints=(1.040-omega)*uold+fomega*unew
u(ij)=amax1(vint,0.040)

if (1 .gt. kk) u(ij)=dmint(u(ijj,u(i+imax*m))
if (modit.ne.0) go to 7
vabs=dabs(u(ij)-uold)
test=dmaxi(test,vabs)

continue

if (iter .ge. 500) go to 74

if (test .gt. eps) go to 70

print 75,iter,test
format(//20x,5hiter=,1i3,2x,5htest=,£15.8)
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SR DAY o0 -

fz-u(kkﬂmx'(m-!))~u(kk*1mx‘(k1-2))-(y213)'h2
return
enad
€ intitialize u. order: gama 2, gama 3, gama 4, gama 5, else-
¢ where (linear 1nterpolation, and constant on gama 6)
sukwoutine init
implicit double precision (b,1,q,t,a.u,y,o,t,t,h)
common/unk/u(150,65)
common/rx/r(150)
common/sy/s (65)
o:mon/par/max,n,n,nodit,omega,tut.m.ni,kl,kz.kk.q
oomon/pnr‘l/yl,yz,ys,b,tz,hz
do 201 j=1,m1

201 u(n, J)=y1*a(j)~s(j)**2/2
do 202 i=kk,n?

202 u(i,-1)-yl"2/24q'loq(r(1)/b)
do 203 j=k2,m

203 u(kk,j)=u(kk,m1)
do 204 j=k1,k2

204 u(kk,j)-u(kk,m)-(yz-(j))"Z/z
do 206 j=2,m

do 205 iwkk+1,n1-1
lamda=s(3)/y1
205 u(d,3)=u(i,m1)*1amda
206 continue
do 208 3=2,k1
do 207 i=1,kk

lamda=s(3)/y3
207 u(i,jreulkk,k1)*landa
208 continue

return

end

¢ iteration for carre's method
Subroutine itera
impitcit double precision (a,b,e,d,o,f,h,o,p,q,t,.,c,u,y)
common/coefo/c0 (9750)
common/coef 1/¢1(9750)
Common/coef2/c2({9750)
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aon/coef3/c3(9750)

on/unk/u(9750)

ron/par/imax,n,m,modit ,omega,test ,m1,n?,kt,k2,kk
ron/par1/y1,y2,y2,b,£1,h2,eps,iter ,testa
ta=0.0d0

1 3=2,m

7 i=t1,n1-1

Il .te. kk .and. j .gt. k1) go to 71 :
| .eq. kk .and. j .eq. k1) go to 71

Lmax® (§-1)+1

jeiy-1

p=13+1

l=ij-imax

1=ij+imax

11 .eq. 1) imt3i=1

»u(ij) !
m-(c3(13)+c1 (13)%ulipl))+c2 (1)*u(iip?) i
Im1§)*u(imty)+c2(ijm1)*u(ijm?))/c0 (1)) !
t=(1,.,040-omega)*uwold+omega*unew
j)=damax1(vint,0.040)

(1 «gt. kk) u(ij)=dmint(u(ij),u(i+imax*m))
s=dabs(u(ij)-uold)

ta=testa+vabs

»n that we choose this norm for error may be found
[1961)
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