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ABSTRACT

In this paper/qw propose a numerical method for a degenerate variational

inequality arising in the axisymmetric porous flow well problems which have r-, i

been studied rya--and zeu [498'r~,uselthe finite element method to

discretize the problem, and we' establish the convergence of the solution of

the discrete problem to the solution of the degenerate variational inequality.

The solution of the physical problem depends upon the unknown discharge q. A

rapidly convergent numerical method for finding q is obtained.
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SIGNIFICANCE AND EXPLANATION

Most steady-state porous flow free boundary problems may be reduced to

elliptic, variational or quasi-variational inequalities for which the

numerical solutions have been studied by many authors. Some axisymaetric

problems lead to another kind of variational inequality, namely degenerate

variational inequalities. We give a numerical method for a degenerate

variational inequality arising in the axisymmetric porous flow well problems,

and study the convergence of the solution of the discrete problem. Numerical

examples show that the method is efficient.
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NUMERICAL SOLUTION OF DEGENCRATE VARIATIONAL INEQUALITY
ARISING IN THE FLUID FLOW THROUGH POROUS MEDIA

C. W. Cryor and S. Z. Zhou

1. Introduction

Moast steady-state porous flow free boundary problems may be reduced to elliptic,

variational or quasi-variational inequalities for which the numerical solutions have been

studied by many authors (see*, for instance, Baiocchi and Capelo (1978], Oden and Kikuchi

E1979], and their references). 'In some axisymmetric problems there appears another kind of

variational inequalities - degenerate variational inequalities. In this paper we propose a

numerical method for a type of degenerate variational inequality arising in the

axisymmetric porous flow well problems which have been studied in Cryer and Zhou 11981].

Ws use the finite element method to obtain the discrete problem. The convergence of the

solution of the discrete problem to the solution of the degenerate variational inequality

is proved. The solution of the physical problem depends upon the unknown discharge q. we

-ive a numerical method for finding q which has been found to converge rapidly.

Here we recall some notations and results about weighted Sobolev spaces V
1 

and V
2

.

(See Chang and Jiang [1978], Zhou (1980].)

A - a bounded domain in (r,z)-plane with a locally Lipechitz boundary r, and with

r > 0.

C (R2 ) - the space of functions infinitely differentiable in (r,z)-plane.

C7(3) = {v : v is defined in A and ham extension in C (R2
))

Co"(Ar*) - v : v - 0 in some neighborhood of r , where F c r. If

* -" r S then note 4 (Air*) by C(A).

Computer Science Deparment and Mathematics Research Center, University of Wisconsin-
Madison.

Hunan University (Changsha, China) and Mathematics Research Center, University of
Wisconsin-Madison.
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L
2
(A,r) - (v : v real measurable in A, lvi < } where IvI =

fA rlv 2 drdz. L (A,r) L (A,r)

V
0
(A) - L

2
(A,r), lY, 0 =vI 2

V
0
(A) L

2
(A,r)

VI(A) = {v :av 0 L
2
(A,r}, lal IC I, lvI - 0V m al~l vOA)

V
2
(A) {v :av L

2
(Ar), I(1 C 21 1 L 2 1(,r).

Ivl IaUvl 1.1 ')Vl

lv a~ 0  +~ .- ! L(i)
V (A) Ia42 V (A) r Tr VA)

V (A) - the closure of (A) in V A .
0 4

Vo(A;r*) - the closure of (AIr*) in v (A).

The following propositions can be easily shown.

Proposition 1.1. If r* n {r - 0) = 9 and meas*( ) > o then there exists a constant C

such that

'A v2 Ov 2 1
IVI2 1 -CC fA HTV + (-v ]rdrdz, V v e6 V0(A~r*

V (A)

Proposition 1.2. VI(A), V
2
(A) and VI(Air*) are Banach spaces, where we take

V0(A F.|  V (Alll)

Proposition 1.3. c (A), C0(,r ) are respectively dense in V1 (A), V0(A,r*).

Proposition 1.4. If en (r - 0} = 0 then there exists a unique linear continuous

operator tr s VI(A) + L
2
(r*) such that tr v - v on r* for any v e C"(X). Moreover,

tr is a compact operator.

2. Continuous Problem

Let D be a L-shaped domain such as that shown in Figure 1. Set

= (r,z) : 0 < r 4 Ro, 0 < z < h0).

The original variational formulation of the physical problem is as follows (Cryer and

Zhou [1981]).

Problem (PPW). Let R0 , RI, h0 , hw, H be numbers such that RI > R0 > 0, H > hw > h0 > 0.

Find functions p(r) and u(r,z) such that

106 C 0(R 0 ,RI]), O(R0 ) hw O(R1) H (2.1)

-2-



0 is strictly increasing 
(2.2)

u 9 V (9) n CO( J) . (2.3)

(R H)r

3 
C(RIH)

r4

5

Q P(R 0 ,h0 )

A(10 
B(R 1.O)

R on 2

S on(2.4)

h o n r u r

rvuv ards - 0 for all v K (2.S)

where

-3-
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r' 1(r,z) z -p(r), R 9 r < R1 }

=(rz) 0 < z < O(r), R0 < r c R , (2.6)

K1  {V S V
1 () : v - 0 on r 2 u r3 u(r 4 fa) r5 ur 6

By using a kind of Bajocchi transform

- u(r,z) in
(2.7)

. Z in

w(rz) - fZ (i(r,t) - tjdt in D • (2.8)

Cryer and Zhou [1981] have derived the following 4generate variational inequality with a

real parameter q.

Problem (PPWI). Find w e K such that
q q

fD rVwq.V(v - wq)dk

(2.9)

( b " ho) o (v - q)lz.trd + f cv - wq)rdrd.
" 

V v 6 Kq*

where

K v {V e Vi(D) • v ) 0 in D, v 4 gq(xtH) in D o1& v - g on rD  t * 2.10)
qq DI

5
r.ur (2.11)

i-1

gq(r.z) - 0 2on n

r--on r

R+qtn 3 4

2  R0 (hw-z)
2  (2.12)

- -- + q tnon rS
2 1 2

For Problem (PPW1) there is a equivalent form which is more onvenient with regard to

the numerical solution.

-4-
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Problem (PPW2). Find w e K such that
q q

J(w ) min J(v) (2.131
q

veK
q

where

J(v) rlVvl
2 drdz - 2(hw - h0 ) f10 v h rdr

(2.14)

- 2 f v rdrdzI,

Cryer and Zhou [1gei] have proved the following results.

Proposition 2.1. For any q with 0 < q < q0. where

R
2 

_ (h w - ho12

q0 - 2 0n(R (2.15)

(PPW1) has a unique solution.

Proposition 2.2. Let wq be the solution of (PPWI). Then there exist a, 0 and F*(q)

with a, B real numbers, B 0 0, F* a continuous bounded function, such that the

following two conditions are equivalent:

w 6 C1 () n V
2

(D) (2.16)
q

F (q) - Bq - 0 • (2.16')

we call wq a regular solution of (PPWI) if (2.16) is valid.

PrOeOsition 2.3. If wq is a regular solution of (PPWI) then 0 < q <

Proposition 2.4. There exists at least one regular solution wq for Problem (PPWI).

Proposition 2.5. For the regular solution Wq of (PPWI) we have

ar ;)"- 0 z, 0 in D 
(2.17)

aw

n 0 on 6 (2.18)

-0 onT
7
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Proposition 2.6. If u is a solution of (PPW) then w defined by (2.8) is a regular

solution of (PPW1) corresponding
fHa-(r,t) d

Conversely, if w is a regular solution of (PPW1) then the functions i _, u defined as

q q q
follows, is the solution of (PP-1:

a- - l U {(r,z) e D : r > R0 , w_ < g_(r,H)}
q q q

S_(r) = suplz : (r,z) e Q_}, R0 < r < RI
q q

_(R) lir _(r), _(R) lir _(r)

q rR 0 + 0 q q r R 1 - 0 q
aw-

u - += in F

q

q

Remark 2.1. Physically, 2Wq is the "discharge" while u is the 'hydraulic head".

3. Numerical Approximation of (PPW2)

In this section we consider the approximate problem of Problem (PPW2): Given q

and h with 0 < q < q0 , h > 0, find w
h 

e K
h  

such that
q q

J(wh) - Min J(v) (3.1)

q
h h~

where K
h  

is a convex closed nonempty subset of Vh, and V 
h }  

is a family of finite
q

dimensional subspaces of VI(D). It is not required that K
h 

C K* So far, for space
q q

V
2  

there is no approximation theorem similar to that for usual Sobolev space H
2
. Hence

we can not prove the convergence theorem for our problem by using usual methods such as

those in Falk (1974], Brezi and Sacchi [1976], Cryer and Fetter (1977].

-6-
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Let (Th) be a family of triangulations of the domain D. The set of interior

gridpoints will be denoted by Dh, and the set of boundary gridpoints by 3Dh. Set

r O Dh ) r D er each Th and for each triangle T e Th we set

P(T) - diameter of T

O(T) = minimum angle of T

O - minimum O(T)h
TreTh

We assume that

lim max P(T) - 0 , (3.2)
h-0 T h

and that there exists a positive constant 0  independent of h such that (Zanal [1968])

0

eh N a0  (3.3)

As Vh we take the space of linear finite elements corresponding to Th  in

v1(D;r ). Set

- (v :v )°0 on Dh , v C gq (r,) on Dh -( l, -g on rI (3.4)
q q h I q Oh

We need the following basic theorem (see, for instance, Glowinaki [190, Th. 5.2 in

Ch. 1]).

TheOrem 3.1. Let V be a real filkrt space, a(*,) - a bilinear, continuous, symetric

and coercive form on V x V, f() - a ontinuous, linear functional on V, K - a closed,

convex, nonempty subeet of V, - a family of closed, convex, nonempty subsets of V

with Kh C vh. Assume that

i) If ( vh}  is bounded in V and vh e Kh  then the weak cluster points of {vh

belong to K;

(ii) There exists a set X C V with X - K such that V v e x there exists (v
h

satisfying that v
h 

9 K
h  

and that lm v
h 

= v strongly in V.

Then lm _ uhulV -0

h+0

-7-



where uh and u are respectively the solutions of the problems

3(u) " min J(v)
vek

and

J(u 
h
) - min J(v)

vex h

provided that J(v) - a(v,v) - 2f(v).

In our case we will take C' (C) n K
*
* as the set X in the above theorem.

q
From now on we assume that 0 < q < q0 .

Leama 3.2. C 1 (D) nK = K in V l (D).q q

Proof. Set Y - C ( D ) n K q. By Cryer and Zhou (1991, (3.28)] there exists a functionq

vq e Y, hence Y is nonempty.

Set

Y (V 6 V ( (D) : v -v in D, v 4 gq(r,H) - v in D\QI, v - 0 on F }Iq q q D
Y2 YI r) C0 (DIFrD)

Then by the argument similar to that of Lema 2.4 in Glowinski [1980, Ch. III we can prove

that

2 Y1 (3.5)

v K* we have v* - v - Vq 6 Y1 . By (3.5) there exists a sequence vn* e Y2q
such that v n + v strongly in V

I . 
Thus vn - Vn* + v. 8 Y and v + v strongly in

V. So we obtain that
c1-( CC K **.

q q

Using the well-known subsequence argument and proposition 1 .4 we can easily obtain

that

C(-D) n 
K K**

q q

Q.E.D.

The following lemma may be easily proved.

LeAmma 3.3. If T Th and vh e V
h  

then

f h mea (T) h iIT v dr" " 3 V h(MiT )

-8-
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where M IT (1 1,2,3) are the vertices of T.

Nov we can prove the convergence theorem~.

Theorem 3.4. Problem (3.1) has a unique solution whwhich converges to the solution
q

wq of Problem (PPW2) in V
1

(D) as h +0.

Proof. L.et V _ vh. a(vj ,v2 ) ' fD rvVv 2 drdz, and f(v)

rvddz (h- h) f v rdr. Then it is easy to see that V is a Hilbert spacefD vddz+ hw h0 f0 Vz~h 0
with inner product

(v ,v2) f D r(v v2 + Vv1Vyv2 )drdz

that k his a closed, convex, nonempty subset of V, that a(-,-) is a symmetric,
q

ontinuous, coercive (by proposition 1.1), bilinear form on V x vo and that f(o) is a

linear, continuous (by proposition 1.4) functional on V. By the well-known theorem

(Staiepacchia (1964]f or Lions and Stampacchia [1967] we know that Problem (3.1.) has a

hh

Now we prove the convergence of Wh by using Theorem 3.1. Let V - VDF
q 0 1

K - K q It is sufficient to verify the conditions (i) and (ii) because it is obvious that

the rest of the conditions are satisfied.

Verification of i): Let fv)be asequence such that eh S y, and
q

v h vweakly in V I(Dir) (3.6)

ls prove that v e x q First we prove that

v 4 g (r,H) in D\a . (3.7)

Define g q(r~z) - gq(R0.z) in Q2,. Let g h be the piecewisely linear interpolation of

gq(r,H). Then it is easy to see that

9h . g (r,H) in C 0 
( (3.8)

q

For any * 8C0 O(\Q I) with * 0 we dfine *0 in and

h

where O(T) is the characteristic function of T, and G T is the centroid of T. it can

be shown that

in C'(3) *(3.9)

-9-



Denote by Tb The union of triangles T which are ontained in D " Then we have

f Dv a (vh - gh)Vh dr ft _ f f D\•
T D\ ( 1uT * )

hC I h

- I *(GT) f (vh _ gh)drdz + f 
(v
h gh )b/drd

TcT T D\(Qp Th

3 (GT)meas(T) (vh(MiT) - gh(M iT)) + f (by lemma 3.3)

TcT D\(Qp h)

Iltngtpa D(f b (? - gh)O'drdz (since vh -C gh in -h 0 (3.10)

Noting that meas(D\(I U Th)) + 0 as h 
+ 

0 we obtain by (3.6), (3.8), (3.9) and (3.10)

that

f,\,,(v - gq(r,H))* drdz 4 0, V * e c C(Dt\ 1 ) with V > 0

which implies that (3.7) is valid.

By similar argument we obtain that

v ) 0 in D * (3.11)

Finally, it is easy to see that

vh . q(r,z) in C
0
( D

On the other hand, it follows from proposition 1.4 that vh 
+ 

v strongly in L
2
( D) Thus

we have

v - g on r (3.12)

This equation as well as (3.11) and (3.7) means that v 6 Kq.
Iq 1- **

Verification of (ii): Let X = C (0) n K ** By lemma 3.2 we have T - K For any
q q

v e X we take piecewisely linear interpolation vh of v. Then vh h a result of

Feng [1965] we have (note that (3.2) and (3.3))

h 3v
h  

av avh av (

-10-
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as h 0. Therefore we have that v h v strongly in V
1
.

Q.E.D.

Remark 3.1. The condition (3.3) may be replaced by a weaker condition 0* 6 X - where

8 - max 8*(T). O(T)-maximum angle of T. (Cf. Peng [1965].)
h TT h

The Problem (3.1) is a quadratic programing problem which can be computed using

S.O.R. with projection (Cryer [1971], Glowinski [1971]). The iterative process is

convergent (see, for instance, Glowinski at al. [1976, p. 70]). We have used Carrg's

scheme (Carr (1961]) to choose the relaxation factor w.

4. Numerical Method for Regular Solution hm

Numerical experiments indicate that wh 
+ w as h 

+ 0 for q with 0 < q < q0 ,q q

just as theorem 3.4 claims. But wq does not satisfy (2.17) if q does not correspond to

the regular solution. Here we give a method for searching for regular solution and

corresponding values of q.

The basic idea is as follows. For the solutions (PPWI), their derivativee are

continuous everywhere in 0 except at the reentrant point P. The character that a

regular solution possesses is that its derivatives are continuous even at the point P.

Hence we may use (2.18) at P to find regular solutions. By the way, equation (2.40) in

Baiocchi et al. [1973] may also be derived by the same idea. Now we turn to the concrete

computation.

We choose a subset S of the family (Th) such that V Th 0 S there is a element

T* e Th which has a vertical edge and P is an endpoint of this edge. Denote by h*

and PI respectively the length and the other endpoint of the edge. Thus we have the

discrete form of (2.18) at the point P;

f(q) . w h (P) - v (P) - h *(h w - ho) - 0 • (4.1)
q q

This equation can be numerically solved by, for example, the secant method which is given

by

S- f(qn - f(q ) f(
)  

n - 2,3,... . (4.2)

-11-
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The initial values q,, q2 must be subject to the condition 0 < q < q0 . Then we compute

h h
w , w by using S.O.R. with projection, and f(ql

), 
f(q2 ) by using (4.1), and q3 by

ql q2

using (4.2). This process is repeated until prescribed accuracy is reached.

S. Numerical Examples

We adpt the triangulation of D used by Cryer and Fetter [1979] (see Figure 2).

Suppose that m denotes the number of subdivisions of D in z-direction, n the number

of subdivisions of DI 1 in r-direction. Then the coordinates of the gridpoints are given

by

z =(J-1)H/m, 1 4 j j m + 1

= R0 exp[(i-k-1)/n.tn(R 1/R0)], i - k+l,...,n+k+l

r i - (i-1)R0/k, i , 1,...,k

where k = IR0 /A)]

A R0 [(RI/R 0) 1/n - VhA

For vh 
La K let Uij - vh(ri,zj), vector U 1-h .j Then

J( h) 1(,J) 1 j)(Vh

R(i~j

where R(i,j) are the rectangles

R(i,j) - ((r,z) : r1 4 r 4 ri+ 1 , zi 4 Z 4 zi+ 1

It is easy to compute

h) _T T
R(i,j) - AR(i,j)U + R(i,j)U

The matrix AR(i,j) and the vector bR(ij) are almost same as that in (7.11) and (7.12)

of Cryer and Fetter [1977]. The only difference is that for j - ki - 1 we must add

respectively (ho-hw)Axxl/2 and (ho-hw)%x'x&2, which correspond to the line integral

in J(v) now, to bR(i,j)(ij+l) and bR(i,j)(i+1J+1) , where kI is the value of j

corresponding z - ho.

For the S.O.R. with projection we only note that there are two constraints in our

problem v h ) 0 in Oh and vh 4 g(r,H) in D - 1

The equation (4.1) now becomes

-12-
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f~q) U~kkk I U(kk,k 1 -1) -(h - h 0)H/U- 0

where kk -k+1.

j-1 -k+1

Figure 2

Example 1. R- 4.8, R, 76.8, ho 9, hW, - 12, H -48,

discretization: (1) m - 0, n - 12; kk - 4

(2) mu- 16,n -241 kk -9

(3) m - 32, n - 481 kk - 17

(4) a - 64. n - 96# kk - 35

stopping taut:

mnaxlU (" I) , J) - U (1)(i,jI 4 lo - for inner iteration
i~j

If(q )I < 10 6  for outer iteration

-13-
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The results are shown in the following table.

number of number of
discretization (Carr-'s Scheme) outer iterations inner iterations q h*

(1) 1.4993 2 40 399.26 30

(2) 1.7291 4 90 371.03 33

(3) 1.8419 4 160 362.75 31.5

(4) 1.9336 4 380 358.66 30.75

where ha is the approximate value of V JR0

q
Example 2. R0 - 10, R1 - 1130, h0 - 120, hw -200, H - 4601

discretization: m - 50, n - 100; kk = 21

wi - 1.939

stopping test: same as that in example 1.

The following table shows the convergence of the outer iteration process.

outer iteration Q f(g) number of inner iterations

0 100 25380.14648 450

1 200 25206.47851 450

2 14714.1875 43.04459 440

3 14739.0156 0.089335 440

4 14739.0673 0.00000035 440

h, 349.6 (compared with he - 350 in Boreli [1955]).

The exact value of q is 14218.462.

The theoretical proof that w h w as h * 0 is still an open problem.
q -q

-14-
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Appendix A: An approximation theorem (Fong Kang [1965]).

Theorem, Let T be a triangle such as in Figure 3, P0 P, and P 2  its vertices, PoP1

the largest edge with length P. Assume that u 6 C (f), v is the linear interpolation

of u with v(Pj) - u(Pj), i - 0,1,2.

t a tP 2

UP- sup I%(P) - u(P')l

P,P ei

where u is the directional derivative P P i

of u. Then Figure 3

Fgx- ue 3

IrY r- 0y + ctg %0)W' (A.2)

Iv - ul 4 (2 + ctg %O}OI (A.3)

where a0 is the inner angle with vertex P..

Proofs Lot P3 be a point such that P3 6 POP, and p2P3 1 P0 P1  Denote by P the

length of P2P3. It is easy to see that for any P 6 T we have

U(P1 ) - u(P 0 ) u(P2 ) - 4(13)

w e eV (P ) - U (P O  
P ) x + 0 1P y (A .4 )

where p0

UCI 3 OU(P I ) + (1-)u(P0

" 0 - P O P 3 / 0 .

By the mean value theorem there exist Q6 e PoP3 and 0, 0 PIP3  such that

5~
P0 au Ou(Q 0)

u(P 0) "u(P3) + fP dx - u(P 3 ) - O0P 9

3 u(

U(P - P + Ip3 au dx - UP 3 + (I-) u1 3 r

_____________--

34



Hence

11P)-i( 3  (1...O)P[!r - a11rQ) (h.5)

By (A.4) and (A.5) we obtain that

av(P) 1- (p0  auQ for some Q ePOP1

av(P) U(p 2  -U(p3) PO(1-0) au(Q) u(Q 0

au y au(Q,) uCQ 0 f r s m(-)ctq a1(. - Q e 2p3

Therefore

1av(p) - D 1(p)1  1a11() au(P)l 0
ax- -lax - ax -p

____ ____ a1 *au(Q ) au(Q
1av(p) a1(p)1 a.Q -up +1tg0 0

Ty- i.y- -( j- ) -t 10  1 - (1 + ctg a0 )We

Iv(p) -U(P)I Iv(p0 -~ )I + ) . av au )K av a11 dy
0 p0 rx - x -y T-)I

((2 + ctq m0)I



Appendix B: The Computer Program

implicit double precision (alb,c,d,*,f,h,lop~qlr,U,t,U,y)

integer iab

oiinon/rx/r(I50)

oomn/y/e (65)

oimn/o~fo/c0 (150,6)

wmon/coefl/c1 (150,65)

oo=nn/mf2/c2 (150,65)

oommn/ef3/c (150,65)

oovmn/unk/u( 150 ,65)

comn/par/imax,n,u,nodit,omega,test,3i ,ni ,kl ,k2,kk,q

c-n/par/y1 ,y2,y3,b~f2,h2,eps,iter,testa

data m/8/,n/12/,a/4.SdO/,ab/72.OdO/,yi/4S.OdO/,

q y2/12 .03/,y3/9.0dD/,opS/l .Od-6/

" calculate the atepui2e for the discretizatiol, uniformly for y,

" nonuniforaly for x

al..loq(a/*)

bp-a~ab

bl-log( We)

at bi-bi -al

do 114 ii-1,3

" make the meeha finer

hi-albi/n

h2-y /m

ia' (exp (hi )-I)

" d ie the first dx in the outside of the well

k-if ix(a/d)

kk-k+l

dl -s/k

" di is the dx for uniformly dividing the underneath of

c the well

n1-nkk

do 5 iml,k

5 r(i)-(i-t)*dl

do 6 i-kk,nl

6 r(I)-aeexp(i-Ick)*hI)

do 10 J-I,sI
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10 n(j)-(J-1)*h2

" r(i),s(j~are the coordinates of the mesh points

kl-dint(y3/h2 )41

k2-dint (y2/h2 ) +

" kI corresponds the bottom of the vell

" k2 correspond the water level

print 15,a,b,y3,y2,y1,n,m,kkc~kl,k2,eps

15 formt(2x,3hrw-,f12.4,2x,3hre-,f12.4,2x,2hh..,f12.4,

q 2x,3hhw-,fl2.4,2x,3hhe..,f12.4/

q 2x,3hnx-,i5,2x,3hny.,i5,2x,3hkk.,ig,2x,3hkl.,ig,2x,

q 3hk2-,i5,2x,4hops-,fl2.8/)

" d in now another constant (for saving storage)
d-dI' (y3-y2)/2

c calculate the term in the right side corresponding the line
" integral

do 50 i-bk

c3(i,kl)- c3(i~kI)+(r(i)+dl/3)*d

s0 c3(i+1,kl)-c3(i4 ,kl)+(r(i)+2'3)*d

" calculate the coef's cO,cI,c2 and the right side term cortes-
c ponding the multiple integral

do 65 i-i ,nI-I

do 60 j I,m

if (i Ilt. kk *and. j .gt. ki-1) go to 65

dx-r(i+t)-rMi

dy-s(j+1)-s(J)

tl-(r(i)4dxc/3.0dD)*dx*dy/2

t2..dx**2*dy/36 .0d0

r2-dx~t2+(r(i)+dx/3 .OdO)*t1

r3--dyt2/2+Cs(j)+dy/3 .OdO)*tl

co (i,j )cO(i,j )+t /dx**2+tl/dy**2

cI (i,j)-cl (i.j)-tI/dx**2

c0(i+,)*cO(i+,jl)+t/d*2

c3(i,J+11-c3(i,j.1)-(r3-s(J)*tl )/dy

tlrw(r M)+2*dx/3 AMd) *dx~dy/2



r2p-dj't2.(r i) +2*dx/3 .OdO 'tlp

rr-tdy*t2/24(s(j).2*dy/3 .Od)tlp

CO(i+1 ,J+ )-c0(i+1,J+1)+tlp/dx**2+tlp/dy**2

c3(i.I,J+1)-c3(i+1,J+1)-(r3p-s(j+l)*tlp)/dy

ci (i~j+1 )-cI (i.j+1 )-tlp/dx*
0
2

c3(i.J+1)-03(i,j+l )4(r2p-rti+1)'tlp)/dx

cO (i~t .j)-cO(i+1 ,j)+tlp/dy**2

c2 (i4..)-c2Ci~l~j)-tlp/dy*"2

60 c3(i.1.j)-c3(i+1.j)+Cr3p-u(j+l)'tlp/dy

65 continue

c give the firat initial value for q. calculate the optimum

" acceleration factor omega using carrels m~ethod

q-100 .OdO

call init

imax- 150

owega-i1 .0 dO

call itera

omega-i .d0

call itera

if (iter .iq. 17) tostl7-testa

if (iter e.q. 18) testIO-testa

if (iter .eq. 19) tost19.testa

19 if (iter .eq. 20) tentIO-tenta

PIG-testls/tesWt

pl 9"testl 9/testle

p20-test2O/t6StI 9

if ((plS-pI
9
)*(p

1 9
-p

2
O) A1t. O.OdO) go to 20

if (dabs(pI8-pI9) I1.. dabe(pI9-p20)) go to 20

lamdaq-plS-(pI 9-plS)'*
2
/(p184p20-

2
'p1 9)

print 17,lemdsg

17 format (20x,7haitken-,fS.4)

20 lamdag-p20



25 uq-sqrt(1 .OdO-(lazndaq4.omega-l .OdO)**2/(lamdaq*ofega**2))

omegal-omeqaO

oifegaO=2 .0d0/(l1.OdO+sq)

print 26,omegaO

26 format (/20x,7homega0-,fB.4)

domega-daba (omegal-omeqaO)

if (domega/(2.0dD-onega0) Alt. O.OldO) go to 45

omegamF-omegaO- (2 .Od-omega0 )/4

print 30,oategam

30 format (20x,Thomegau-,fS.4)

Omega-omegam,

do~ 40 iter-1,20

call itera

if (iter .eq. 19) teutl:9.taata

40 if (iter .eq. 20) test2O-testa

p20-test2O/testl 9

go to 20

4S omega-oaeaO

print 46,omega

46 format (/2x,Ghofega-,fB.4)

teat-i .0cm

call iterat

f I f2

q2-q

" give th. second initial value for q

cq200 .0.D

" outer iteration. secant methiod for computing q

do 79 iteri-1,10

call init

test-i .OdO

call iteret

q I-q2

q2-q

print 68,iterI,qI,q2,fI,f2

68 format (2x,6hiterls,i3,2x,3hqls,f14.8,2x,3hq2-,f14.8,2x,

q 3hfl-,f14.8,2x,3hf2-,f14.8)

if (dabs(f2) Alt. ape) go to 80

qrq2-(q2-qI )*f2/(f2-flj
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79 fl-f2

c print the final results

80 ubwo

f-f 2

q-q2

if (ni-I-nO) 115,85.85

85 np-incnI-nO+l,7)

ub-ub~np

print 90,(r(i),i-lb,ub)

90 foruat(///lSx,flS.8,2x,flS.8,2x,f15.8,2x,f15.8,

q 2x,flS.8,2x,f15.8,2x,f15.8/)

do 100 J-1, .1,1

jl-MI-,+l

print 95, *(Jl), (u(i,ji), i-lb,ub)

95 formatC2x,fll.4,2x,f15.8,2x,f15.8,2x,fl5.8,2x,f15.8,

q 2x,f15.8,2x,flS.8,2x,fI5.8)

100 continue

Ib-ub + I

110 continue

115 print 120, iterl,q,f,test

120 foruat(///SxEhiterl-,i3,2x,2hq-,f15.8,

q 2x,2hf-,f15.8,2x,Shtest-,flS.8///)

do 113 i+1,nI

do 113 J-1,.l

U(i~j)-0.Odo

cl(i,j)-O.0d0

c2 (i~j)-0.OdO

114 n-2*n

stop

end

c inner iteration. s o .r * method for computing u and f

subroutine iterat

implicit *3uble precimion(cotouovoqoytbtf,e)
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oommon/coofo/c0 (9750)

oommon/coefl/c1 (9750)

oommon/ooof2/c2 (9750)

common/oef3/c3(9750)

common/unk/u( 9750)

coumon/par/imax,n,m,modit,omega,tetflhl,nl ,kl,k2,kk~q

oounon/parl/y1 ,y2,y3,b,f2,h2,epa,iter

iter-0

70 iter-iter+1

nOditno d( iter. 10)

if (modit .eq. 0) test-O.OdO

do 7 J-2,m

do 7 i-1,nl-1

if (i Ila. ck *and. j .gt. ki) go to 7

if Ui eq. kk -and. j .eq. ki) go to 7

ij-i+imax (-)

" on boundary Regment game 7, the mesh points do not have

c neighbor mash points at their left aids. We use then uM(10.0d0

" instead of u(imlj) in the equations

if (1 .eq. 1) imlj-1

uold-u(ij)

ume--(c3(ij)+c1 (ij)*u(iplj)+c2(ij)'u(ijpl)

q +c1(imlj)*u(imlj)+C2(ijIt)0(ijmil))/cO(ii)

vint. (1.OdO -omega)*uo ldomegaaunew

u(ij)-dmaxl (vint,0 .0d0)

if (i .gt. kk) u(ij)-dsuinI(u(ij),u(i+ima2Cm))

if (.mdit.ne.0) go to 7

vabs-dabs(u(ij )-uold)

test..dsaxl (tast,vaba)

7 continue

if (itar .go. 500) go to 14

if (test .9t. spa) go to 70

74 print 75,iter,test

75 formt(//205hiter,i3,2xShtst-,flS.8)
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f2-~~~~u(kk+imax*k-1) ckk a* (kl-2) )(y2-y3)*h2
return

end
" intitialjze u. orders game 2, gama 3, game 4, game 5, else-
c where (linear interpolation, and constant on game 6)

subroutine init

implicit cbuble precision (b,1,q,re,u,y,o,tfh

oomuon/unk/uC 150,65)

onmlon/rx/r (150)

oommon/sy/e (65)

coan/par/max,n,m,mdit,omega 
teat ml .n1~kl,k2.kk~q

oommon/parl/yl ,y2,y3,b, f2,h2

do 201 1=1,31

201 u(n1,j)-yIea(j)..s(j)**
2/2

(b 202 i-kk,ni

202 uUi,m1)=yI**2/24qe1og(r(j)/b)

(b 203 J-k2,m

203 u(kk,J)=Ij(kk,mi)

cb 204 J-kI,k2
204 u(kkli)-u(kk,1)-(y

2..s(j))** 2/2

do 206 J-2,m

do 205 i-kk+I,nI-I

lamda-s Cj )/yl

20S u(i,J)=u(i,mI)*lamde

206 continue

do 200 J-2,kI

de 207 i=1,kr

lamda-g (j )/y3
207 u(i,J)-u(kk~kIl*e-d&

208 continue

return

end

c iteretion for carrels method

subroutine itea

implicit double precision (a~b'c'dO,ef,h,o~p,q,rstuy)

coeson/coefo/cO (9750)

commn/cer1/c1 (9750)

co~mn/coef2/c2 (9750)

-23-
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ton/ooef3VO (9750)

ion/unk/u (9750)

mon/par/imax,n,m,modit~omega,tet,i,nl,kl,k2,kk

mon/parl/yl,y2,y2,b,fl ,h2,epa,iter,testa

.a0 .OdO

VI J-2,m

L Ite. kk *and. j .qt. kdi go to 71

L.eq. kk *and. j .eq. kl) go to 71

Lax(J-1)+i

1-ij-1

1-ij+1

I-ij -imax

1-i j+iMax

li .eq. 1) imij-1

2-u( ij)

"--(c3(ij)+cl (ij)*u(iplj)+c2(ij)*u(ijpl)

t- (1 .0d-onega)uold~omegaunev

(i .9t. kk) u(ij)..dnint(u(ij),u(i+inax**))

P-daba(u(ij)-uold)

:a-testa+vabe

)n that we choose this norm for error may be found

[19611

irm
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