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ABSTRACT
This paper studies Hamiltonian systems of ordinary differential
equations. The only assumption made on the Hamiltonian is appropriately
rapid growth at infinity. It is proved that for any given period, there
"is an unbounded sequence of periodic solutions of the system having the

given period. i
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SIGNIFICANCE AND EXPLANATION ;

* Hamiltonian systems of ordinary differential equations model the
motion of a discrete mechanical system. This paper considers a class of
such systems assuming only suitably rapid growth for the Hamiltonian
H near infinity. Minimax and comparison arguments from the calculus of
variations are then used to show that for any prescribed period, there

exist arbitrarily large solutions of the system having the given period.
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PERIODIC SOLUTIONS OF LARGE NORM OF HAMILTONIAN SYSTEMS
Paul H. Rabinowitz
Introduction
This paper concerns the existence of periodic solutions of large norm of

the Hamiltonian system

(HS) z= Ju_(2)
where z ¢ ®", z = g% s J= (g -:), I is the identity matrix on

R", H:R°" * R, and H, is its gradiant. Let (a,b)nj denote the usual inner
product in »d, The following result was presented in [1]: 1
Theorem 0.1: Let H ¢ c'(®",R) and satisfy -
(Ho) There is an r > 0 and ¥ > 2 such that

0 < u H(z)S (z.Hz(z))Rzn

} : for all |z| ? r.

Then for all T, R > 0, (HS] possesses a T periodic solution z(t) with

max |z(t)| > R.
tefo,T]

i However the proof of Theorem 0.1 given in [1] was not complete. Under
the additional assumption of power growth for H, the result was proved in
{2]. Our goal here is to show that Theorem 0.1 holds as stated. The proof we
give is in the spirit of the argument in [1]. Solutions of (HS) are obtained

4 as critical points of a corresponding functional IK(z) by minimax argqu-

4 . ments. The proof here, however, is more direct avoiding the finite dimen-

sional approximation arguments of [1j. Moreover the choice of sets with

. Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
) material is based upon work supported by the National Science Foundation under
* Grant No. MCS=-8110556. N
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respect to which we minimax IK(z) permits a multiplicity theorem for the
corresponding critical values of I (z) as well as rather sharp lower bounds

for critical values of a comparison problem. The latter estimates play a ¢
critical role in establishing the unboundedness of the set of solutions of

(HS). The lower bounds given for critical values in [1] are probably too weak

for the argument given there to succeed without a power growth assumption

for H.




§1. The proof of Theorem 0.1.
By rescaling time if necessary we can assume T = 2%, Let z(t) =
(p(t),q(t)) with p,q ¢ R® and set
A(z) = gzw (p(t”&(t”lﬁdt'
the so-called action integral. The basic idea we use in trying to find
periodic solutions of (HS) is to obtain them as critical points of the
corresponding functional
(1.1) I(z) = A(z) - gz'n(z)at

defined on the class of 27 periodic functions under a suitable norm. The

form of A(z) suggests working in E 095'2(81))2n, the space of 2n
tuples of 27 periodic functions which possess a square integrable
"derivative” of order B@ (See [3]). Unfortunately the H term in I is not
necessarily smooth enough for our later purposes nor is 1 appropriately
compact (i.e. I does not satisfy the Palais-Smale condition). Thus
following [3] or [4], we truncate H by taking xK(S) € Ca(l,k) such that
xx(s) 21 for s€< K; S0 for s ? X+1; and xi(s) <0 for s8¢ (K,K+1)
and setting
(1.2) B (z) = X (lz]) B(z) + (1 = x (1210 £ lzl®

where Iy satisfies

r, = max M

K k)zi<k+1 1z]?

With this choice of r,, it is easy to verify that Hy satisfies (ﬂol with

¥ repiaced by ¥ = min(M,4). Integrating (Hy) then shows that

u
(1.3) HK(z) > a1|zl - a

for all =z ¢ RZn with ay,a, independent of K.

2
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Let E',E",E? denote regpectively the subspaces of E on which A(z)
is positive definite, negative definite, and null. A bagis for these spaces
can be written down explicitly, e.g. if e1'...'e2n denote the usual

orthonormal basis in R2", set . Co

wjk = (sin jt)ek (cos jt)ek+n

Y. = (cos jt)ek + (sin jt)ek+n

jk
ejk = (sin jt)g + (cos jtle
;jk = (cos jt)ek - (sin jt)ek+n.
Then
- e’ = Span{wjk,wjklj e W, 1<% < n}
E = Span{ejk,cjklj c®W, 1<k¢€n}
0

- <k <
E span{¢0k,W0k|1 k € n}

and E=E" Q@ E @ E’., Thus for z ¢ E, z=2z +2z2 + 22 ce* 0 ®E" ana

we will take as norm for E

(1.4) 1202 2 a2ty - az) + 12°% = 1272 127 4 1202

It is easy to verify that this norm makes E a Hilbert space and B*, E,
0

E are orthogonal subspaces of E with respect to the inner product
associated with (1.4} as well as with the L2 inner product. Moreover
(1.5) 1.(2) T A(z) - £2"HK(z)dt
belongs to C1(E,Rl- {See {3]).

] 7 We will show that Ix(z) possesses an unbounded sequence of critical
points which for appropriately chosen X are also critical points of I. This
will be done by minimaxing I, over certain families of sets Fj. To show
the miniimax values cj(K) produced in this fashion are indeed critical values

of Iy requires sufficiently sharp lower bounds for cj(K). These lower

bounds are obtained by minimaxing a comparison functional. Rather than pause

now to introduce all of the properties required for the comparison problem, we
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will simply assume there is an M € CZ(R,R) such that
(n,) For all K > 0, M has a truncation My € Cz(l,l) such that

M (8) = M(s) for s < K,

2n
?
(my) Me(lz]) Hx(z) for all z € R
and
(1.6) 3 (2) = A(z) - IZ“MK(z)dt

0
satisfies Ig € c‘(z,n). We will make further assumptions concerning M

and My as necessary. Then we will conclude the proof of Theorem 0.1 by
constructing M and My having the desired properties. Note that (my)
and (m,) imply M(lzl} > H(z) for all =z ¢ Rzn and (1.6) and (m,) show
I (2) < I.(z) for all z ¢ E.
The minimax procedure we will use takes advantage of an s1 invariance
possessed by I, and I. For z € E and 8 € [0,27] ~ s‘, set
(1.7) (Tgz)(t) = z(t + 0).

Then for fixed =z € E, lTezl 2 IK(TGZ,' and JK(Toz) remain unchanged as
L

0 varies. We call a subset B of E an invariant set (under {TB} or

s!

) if for all z ¢ B, Tgz € B for all 9 € [0,27]. If B is an invariant
set, we say h « C(B,E} is an equivariant map if h(Tez) = Teh(z) for all

@ ¢ [0,2n] and 2z € B, Note that the fixed point set of this group of
symmetries,

(1.8)  Fix {7y} = {z ¢ EITn = 2 for a1l 9 € [0,21]} = E°.
Let [ denote the family of closed invariant sabsets of E\{0}. 1In {5], an

index theory defined on [ was introduced and we shall use it below. The

properties we need are summarized in the following result:




Lemma 1,9: There is an index theory, i.e. a mapping i:E * Wu {®} such that

if B, B, ¢ E,

1
10 i(B) € i(B,) if there is a ¢ € C(B,B;) with ¢ equivariant : ,
2¢ 1B U B)) S 1(B) + i(B)

3e 1f Bc E\E? and B is compact, i(B) < ® and there isa § 20

such that i(Ng(B)) = i(B) where Ng(B) = {x ¢ E{#x - Bl < 8},
4° 1f Sc E\E? is a 2n dimensional invariant sphere, i(S) = n.
With these preliminaries in hand, several families of sets can be
introduced. For m ¢ N, let
(1.10) v = spanly b 13 < [w/n], kx<m-nj}@E @ £’
where [a] denotes the greatest integer in a. Then 2m is an invariant

subspace of E . By (1.3) and the Holder inequality, 1

+,2 U +.2 + U=
. < - < - .
{1 11)Jt(z) < Ix(z) 1z ! a:’lzlL2 + 21Ta4 fz 1 a3lz le + 2wa4 .
1

Since Vm n gt is m dimensional and ﬁ > 2, {(1.11) shows there is an Ry 2 1

0 and independent of K such that
(1.12) IK(z) < -2mM(0)

for all z ¢ Vi such that Iz} > Rm. Let B, denote the closed ball of

R

radius R in E centered about 0. Set D, = BRm 0 Ve Then D is an
invariant set. Let P denote the orthogonal projector of E onto E .
Let G, denote the class of mappings h ¢ C(D ,E) which satisfy the

following properties:

(g4) h is equivariant
0
(g9y) h{iz) = z for =z ¢ ‘38Rm n vm) U E
(g5) P h(z) = a(z)z + Y(z) where ¢(z) is compact and

ace C(Dm'[1'a])' d@ depending on h.

Since h(z) = z ¢ G, for all me N, Gm L
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Finally for 3 ¢ W, define

(1.13) I‘:i = {h(Dm\Y)lm >3, he G Ye E, and i(Y) € mjl.

This class of sets resembles somewhat a class used in [5]. We will minimax
Ig and Jg over this class. First we briefly study Pj‘

Lemma 1.14: The classes [ possess the following properties:

3
1° (Monotonicity): Pj+1 c Pj
2° (Excision): 1If B ¢ rj and 2 ¢ E with i(2) < s ¢ 3§, then
B\2 ¢ g-s
3° (Invariance): If ¢ ¢ C(E,E) and satisfies (gq), (g3) and (g,)

for all m > j, then B ¢ Yj implies ¢(B) € Pj.

Proof: The definition of Pj implies 1°. To prove 2°, let

+« We claim

B=h(D\Y) el
m J

(1.15) B\Z = n(D_\(Y U w Yz,
Assuming this for the moment, since h ¢ G,, Y U h“1(Z) ¢ E. Hence by 2° and
1* of Lemma 1.9,
A Uh HZ)) S A(Y) + i(h"NZ)) € i(Y) + i(Z) S m - (§-8).

Thus B\Z ¢ T g® To verify (1.15), note first that be h(Dy \ (Y u
n"1(z))) implies b € KD \Y)\Z © B\Z, i.e.
(1.16) (DA (¥ v n"Nz)))c BZ.

Similarly,
(1.17) B\Z < h(D \(¥ u h™1(2)))

so combining (1.16)=(1.17) yields (1.15). Lastly to get 3%, again let

B = h(Dmiv) € I'j. It is straightforward to show that

(B} ¢ (h(Dm\‘lH c ¢(B).

Therefore

= T erT
(1.18) v(B) =¢(h(do Y ) < T,

since ¥ ° h ¢ Gm'
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The next result which is based on related intersection theorems in [6] is

crucial for our later estimates.

Proposition 1.19: ILet h ¢ Gy j€m, P« Rm, and

1 |
0 ={z ¢ D, In(z) € 3‘30 n vj_1} ‘ ;

Then © is compact and i(0) € m-j+1.

Proof: Due to the way in which it is defined, © is closed and invariant.

0

0 =¢, 9nE =¢. To see that

since h(e?) = €% c v, via (g,) ana O nv

0

0 is compact, let (zi) be a sequence in O . Since D, is bounded, by

restricting to a subsequence if necessary, we can zi converges weakly to

-~

some 2z ¢ E, i,e. 2z,

i z. Since Dm is closed and convex, it is weakly

- o _ + - 0

closed so z = z+ + 2z + zo € Dm' Writing z; = zi + zi + zi, we can assume
+ 0 + 0 . 0 + .

zi,zi * z ,z since E and Vm neg are finite dimensional subspaces of

E. Moreover by (g3)
(1.20) P h(zi) = “(zi)zi + w(zi)
where 1 ¢ a(zi) < 5, o depending on h, and ¢ is compact. Thus

- -1

z, = =a{z,.) Y(z,)

1 ) 8 1

80 z; and hence z_1 has a strongly convergent subsequence. Consequently
9 is compact and by 3° of Lemma 1.9, i(Q) < ® and there isa § > 0 such
that
(1.21) i(9) = i(Ng(O))

To estimate 1i{0), a finite Aimensional approximation argument will be

used. Let

= 0 < < < 2 <
Ek span[%i,wc,i, Ui'COi'O g k, 1 2n}

and let P, denote the orthogonal projector of E onto Ek. Thus Ek is an

invariant subspace of E, th € C(PkDm'Ek’ is equivariant, and for

, 0 -
? 1 = F ¢ J - Iy
¥ m, kasz) z a oz B ou { BRmn Vm 0 Ek) Therefore (th) (Bp n Ek’

is a closed invariant neighborhood of 0 in Va N Ek‘ Let 2 denote the

~8-
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component of (th)"1(5p n Ek) which contains 0. Then  is contained in

the interior of B N Vy N Eee Let P, denote the orthogonal projector of

Rm 3

Vg N B onto V4 4 N E. Thus f ZPPh e C(ﬂ,vj_

X 3% n Ek), is equivariant,

1
and f(z) =2z for =z € Eon Q. But then f£,? satisfy the hypotheses of

Theorem 2.3 of [6] which guarantees that
(1.22) (£ 0) 0 39) > meger.

1
At zeroes of f on 92, we have th(z) € 3Bp nv Thus (1.22) and 1°

3=1°
of Lemma 1.9 imply

1
0 = 9
X {z ¢ Dmlth €3, n vj_1}

satisfies
(1.23) i(ek) > m=j+1.

We claim Ok < NB(G) for all large k. The completion of the proof is
then immediate via 1° of Lemma 1.9, (1.23), and (1.21). Arguing indirectly,
if Gk # NG(O’ for all large k, then there is a sequence of k's * ® for

+ - 0
i 0 9). =
which zk € " but zk [4 NG( ) Writing Zy z, + zk + L as above we
+
can assume zk,zz converge and
= = P - H =
P th(zk) a(zk)zk + ka(zk) 0.

This implies z, also converges so zk * z € Dm. Moreover since

. ] - I < - ] [] - I »
(1.24) ih(z) th(zk) Th(z) th(Z) + Pk(h(Z) h(zk)) 0
1
as k ** and Ph(z) ¢ 3Bp n vj_1, it follows that z € O. On the other

hand z ¢ NG/’(OD, a contradiction. Thus O ¢ Ng(0) for large k and the

k

proposition is proved.

Corollary 1.25: Under the hypotheses of Proposition 1.19, if Y ¢ E,

i(¥) € m-j and W = O\, then
———— 1
$
(1.26) h(D\Y] 03B, n v, 2 hW) * 4

Proof: W is compact and

ey 1
h(wW) ¢ h(Dm\Y) n 3Bp n Vj_1.

UG S




Hence by 1° and 2° of Lemma 1.9 and Proposition 1.19,
(1.27) ith(o \Y)) n 38 n v;_1 > ith(w)) 2 iw) > i(9) - i(y) >
so (1.26) follows.

Having completed the above preliminaries, we can now define a sequence of

minimax values for I and JK‘ Let

(1.28) cj(K) = inf sup Ix(z),
Bel. zeB
]
(1.29) b.(K) = inf sup Jk(z).
3 Bel'.  zeB
By (1.11) we have J
P (1.30) S (K) > b (K), W, K r'

and by 1° of Lemma 1.14, we see that

(1.31) K2 e (K); b (X) > b

c
3 3 b] 3
An estimate for b1(K) will be needed later. Set

(K} 2 b, (K)

M(s) = M(s} - M(D); M(s) = Mg(s) = M(0).

We assume that

- 2
. ) (mg) M(s) =o(s') at s =0
i and
(m4) MK(S) is strictly monotonically increasing in s and tends to

® as g * *°,

% Let
3 - (2% =
, 3 (z) = A(z) - M (z)dt.
Then
(1.32) by(K) = inf sup EK(z) - 27M(0} = b_(K) ~ 27M(0).
Bel', z¢B J

3

Lemma 1.33: 51(x) > 0. ~

Proof: Since i(s) = 0(52) at s = 0, by Lemma 3.35 of [3},

(1.34) [T ik(z)dc =0 (1z8%) at z = 0.
0

-10-
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Let B . P1 so B = 575;_?) for some h e G, m2?1, YefE and
i(Y) € m-1, Since Vé =g, by Corollary 1.25 with 3 =1, for any
P ¢ R, there is a Z e D \Y such that h(2) e 3Bp nE'. Hence
sup Ex(z) > EK(h(i)) = m(z)? - 2" ﬁk(htz))dt
B 0
= 0% - [2" /_(n(z))ae.
By (1.34), p = p(K) ¢ R1 gan be chosen so that
G M (z)at < 1, 1202
for 1zl ‘op. Therefore
(1.35)  sup J (z) > 02 - 0% = 102,
Since B ¢ r1 was arbitrary, (1.35) shows S,(K) > 9592 > 0 where P = p(X).
Dur next goal is to prove that the minimax values Sj(x) are critical
values of Sk' This requires a variant of a standard "Deformation Theorem®.

Let Y ¢ C1(R2n,k) and for some constants s, a1, az >0 satisfy

4 < s
1¥(z)1 a1|z| +a,

2n

for all z ¢ R Then

[P (z)at  and ®(z) = A(z) - [2" ¥(z)at
belong to 0C1(E,R) - see [3]. We say ¢ osatisfies the Palais-Smale condition
(PS) if whenever (i) 0(zm) is uniformiy bounded and (ii) Q'(zm) * 0,
then (z) possesses a convergent subsequence. Let Kc ={z E|¥2) =c¢
and ®'(z) = 0} and Aé = {z € elt(z) € ¢}.
Lemma 1.36: Let Y be as above with ¢ « C1(E,R). If ¢ also satisfies
(PS), then for any c¢ ¢ R, € > 0, and invariant neighborhood 0 of Kc'
there is an € ¢ (O,E) and n € C([0,1] X E,E) such that

1e n{t,*) is equivariant for all t € [0,1]

20 N{t,*) is a homeomorphism of E onto E for all t ¢ [0,1]

3e n(o0,z) = z

-11=




4° n(t,z) =z if ®(z) ¢ [c-€,c+E}

50 n(1,A‘:+€ 9) c Ac_e

6° If Kc = ¢, n(1,Ab+e) c Ac_e

7° P n(1,z) satisfies (gj).
Proof: The result without assertions 1° and 7° is well known - see e.g.
[7] or [8]. Moreover given an equivariant pseudogradiant vector field V(z)
for ¢'(z), 1° also follows via the proof of [8]. The existence of such
a V(z) of the form V(z) = A'(z) + P(z) with P compact is given e.g. in
[9]. Lastly 7° follows since P-n(t,z) is determined as the solution of the

initial value problem for the ordinary differential equation:

ap n

(1.37) % =B(n) P (A'(n) + P(n))

p'n(o,z) = P-z =z

where B is a scalar function with 0 € 8 < {., Since P-A'(n) =-2P-n,

P n(t,z) = z exp ft 2B8(n(s,z))ds
0
(1.38)

+ [ (exp J* 2B(n(s,z))as)P(n(T,z))ar.
0 0

Hence P n(t,z) has the form (g;).
Remark 1.39: Due to the form of the truncation involved, IK € C1(E,R) and

- 1
as we shall see later, Jx, J, ¢ C (E,R). Moreover this form implies Ige

K
Jxr 3K satisfy (PS) - see [3j. Actually [3] only proves any sequence

(z,) satisfying (i) and (ii) (for Iy, Jg, or J, ) is bounded.

Therefore =z converges weakly in B and zg converges strongly in E

m

k

(along some subhsequence). Since PtO'(z) =t z" + Pt ﬁ(z) with P compact -

gee [3] - (ii) and the weak convergence of zi imply the strong convergence

of zi and hence (PS).

-12=~
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Now we are in a position to establish that the b.(K)'s are critical

3

values of JK'
Lemma 1.40:

1e bj+1(x) > b_(X)

3

2¢ Sj(x) is a critical value of 3!

3e Any critical points of EK corresponding to SK(K) lie in E\Eo

4° If

(39 Y0 n 3;*b), then

1‘1(, = 000 b X

bj+ ¢(K) b and K

i(k) > 2.

j+

Proof: Statement 1° follows from (1.31) and (1.32). To prove 2°, it

suffices to prove the stronger multiplicity assertion 4°., Note first that

since SK satisfies (PS), K is compact. For z ¢ Eo, Sx €0 via (my)

3 and the definition of ﬁx. Moreover by 1® of this lemma and Lemma 1.33,
0

Sj(X) > 5‘(1() >1/202(x) > 0. Hence Kn E

of Lemma 1.9 there is a 8 > 0 such that i(Ng(K)) = i(K). Suppose

= ¢ and 3° follows. Now by 3°

i(K) € 2=-1, We invoke Lemma 1.36 with ¢ = EK' c=b, € =1/402(K), and

0 = NG(K)' Thus there is an € ¢ (O,E) and N € ¢([0,1] x E,E) satisfying

1°=7° of Lemma 1.36. Choose B ¢ Pj+l such that

(1.41) sup J_ < b + €
B K

By 2°* of Lemma 1.14, B\O ¢ Fj+1. The definition of Rm - gee (1.12) -

implies that 3x(z) = Je(z) +27M(0) € 0 for z 3B N V . As was noted

R
m
above 3K €0 on Bo. Thus by 4° of Lemma 1.36, n(1,z) =z for
zZ € Eo u(3BR n Vm) for all m € ® and n(1,z) satisfies (gy)« Moreover
m

1°* and 7° of Lemma 1.36 imply n(1,z) satisfies (g,) and (g3). Hence

n(1,z) ¢ Gm for all m € N. Consequently by 3° of Lemma 1.14,

Q Z n(1,B\8) € T ,q¢ Note that Q = n(1,B\0) via 2° of Lemma 1.36. Thus

j+1

by the definition of b (),

3+

-13-
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(1.42) supJ_ > b
0 K
while by (1.41) and 5° of Lemma 1.36
(1.43) sup SK < b-g,
Q

a contradiction. Thus the Lemma is proved.

Next we will make a closer study of the critical values Sj(x) of SK'

Let 2z = (p,q) be a corresponding critical point. Then - see e.g. [3] ~ 2

is a classical solution of

S - - - -
P = —3g Mxtlzter D) = -Mptlz(e) gy
(1.44)

a g—l;ﬁx(lz(tm = mp (lzer iyl .

Condition (m3) guarantees that there are no problems with the right hand side
of (1.44) if z(ty) = 0. Since (1.44) is a Hamiltonian system, Myg(lz(t}|)

is independent of t. Therefore by (m4), {z(t)| must be constant and nonzero
since Sj(k) > 51(K) > 0. Differentiating (1.44) then yields

L Mz Mptlzl)
p=- Izl q= - (‘"T;r"') P

with g satisfying the same equation. We know exactly what all solutions of
(1.45) are and in order for them to be 27 periodic, it must be the case that
Me(lzl)
1.46 —_——— = k
for some k ¢ N. Then p,g have the form
p(t) = a cos kt + B sin kt

(1.47)
q(t) = a gin kt - B cos kt

2 + 82. Thus for each k ¢ N, we get a 2n-]1

where a,8 ¢ R® and lz(t)l2 =
dimensional sphere S, in E (or L2) of solutions of (1.44). Since S is

also an invariant set and lies in E\EO, by 4° of Lemma 1.9, 1(Sk) = n.
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Suppose that -
' (8)
(mg) A4K(s) z - is strictly monotone and tends to infinity as s > =,

Then (1.46) shows that |z(t)| is a monotone increasing function of k which

goes to infinity as k * ®. The critical value of 3x corresponding to any

z € Sk is
- 2' . -
J (2) M (p.a) L - Hlz))ae

0 R
{1.48)

- 1 ] -M
2 Uzl Mpclzly - M lzl)).
Thus if My satisfies
(mg) Yos ﬁé(s) - MK(s) is strictly monotone increasing in s

then on the set of its critical points, EK is a monotone function of |[z]

and via (msl of k.

; | Lemma 1.49: Sj(x) > JK|Sk where % = [j/n].

Proof: This follows by combining our above observationg. By 1°® of Lemma

1.40, the critical values b (X) form a nondecreasing sequence in 3j and by 47,

3

a multiple critical value of "multiplicity™ % has a corresponding set of

critical points of index at least £. All critical points of 3K are of the

form (1.47) and combine in families S, »f index n. All z € Sk have

}z{t)] = constant = Yk with Yy independent of z and by (mg), L is a
monotonically increasing function of k. Moreover by (ms) and (ms)
SK'S = Ok also is a monotonically increasing function of . Thus the jth

k
minimax value b, (X) must come from family k where k ® {3j/n] = k.

3 A




T

Remark 1.54: Since ¢, (K) ? b (K) *® as j *® via Lemma .49, (1.51) and

Corollary 1.50: 1If MK satisfies

(mg) Vos My (s) > BM (s)  where 0> 1,
then
- - =1
» -
(1.51) JKlsn 2n(9-1) MK(MK (k)) + = as kK * o,

Proof: By (1.45) and (my), for z ¢ Sk’
T (z) > 2m(8-1)M (¥ )
so the result follows from (1.46) and (mg)e
Remark 1.52: Note that from (1.51) for any k, by choosing K(k}
sufficiently large, we have ﬁK(M;1(k)) = i(M~1(k)) independently of XK.
With the aid of the lower bounds established above for b, (K) and

3

therefore bj(K), we will study the minimax values cj(K).

Lemma 1.53: 1If cj(x) > Zﬂaz,

(i) cj(K) is a critical value of 1Ig.
(ii) Any corresponding critical point lies in E\Eo.
(iii) If cj+1(x) = e0¢ = °j+l(K) e 2Wa2,
irg'cer napon > e

Proof: Note that

sup I_ = 27 sup (-HK(z)) < 27 sup (a2 - a'lzlu)

X
Eo EO Eo

via (1<3)s Thus if cj(K) > Zﬂaz, an argument paralleling that of Lemma 1.40

yields (i)=-{(iii) above. We will omit the details.

b )

the definition of Sj(x), the requirement that cj(K) > 2ma, is satisfied

for all large Jj, say 3 ? jo(K). Moreover Remark 1.52 shows j, can be

chosen independently »f X for X suitably large, say K ? Ko. For what

follows we restrict nirselves to K ? Kn.

bl ik i




The next two lemmas provide X independent bounds for cj(x) and
corresponding critical points zj(K).
Lemma 1.55: For 3§ ? jo, there is a constant dj independent of K such
that c_,(K) € 4.
) B

Proof: Choosing h(z) = z and Y = ¢ in the definition of rj we see

B = Dj € Pj. Hence by (1.28) and our choice of 3J,
(1.56) 0 ¢ c,(K) € sup I_(2).
3j K
°3

Let z € Dj such that Ix(z) > 0. Since Dj < Vj,
+

; (1.57) acz) < 1202 < 51242

3 L

On the other hand, by (1.56) and (1.3),

2° ‘

(1.58) A(z) ? fz' HK(z)dt > a, fzw |z|udt - 21ra2 > a3( fzw |z+|2)“/2 - 2%a

0 0 0 2

where a, is independent of K and u > 2. Consequently (1.57)=(1.58)

successively imply X independent bounds for Iz+l 2 and lz+|. Hence by
L

(1.3) again,
2

+
<
IK(z) fz 1° + 2wa2

! which is bounded from above by a constant dj independent of X and any such

Z € Dj. The lemma now follows from (1.56).

Lemma 1.5%: Let zj(K) be a critical point of Iy with critical value

cj(K). Then there is a constant Gj independent of X such that

] X <6, !
zj( ) o 3 i

Proof: For notational convenience we will drop the X when referring to

0, by (dg) (for Hy),

zj(K). Since I'(z, )z

K'“3'%5




= -1 ’
cj(K) IK(zj) /21K(zj)zj

2n
= 1
(1.60) It ) (z:.'.ﬂK

(z.))
0 z J 2n

- H (z );at
R K3

-9 - 2"
? (2 -} .)) dt - .
) )(; (25,8 (2 n a,

where a, is a constant independent of K. Then /1,60) and Lemma 1.55 yield
a K independent upper bound for

' :
(23hegtmg0) o

Next observe that by (H,) again and the fu~ “hat zj is a solution of a

Hamiltonian system, we have

2n =1
(1.61) 278 (z,) é He(z )ae < 'j’“xz‘zj”ngn R + ag

where ag is a K-independent constant. Thus Hx(zj) and therefore by
ao
(1.3) z; are bounded in L  independently of K. Hence the Lemma.
Modulo the construction of M and Mg, we can now complete the:

Proof of Theorem 0.1: It suffices to show that 1I{(z) has an unbounded

sequence of critical values cye Indeed if z 1is a critical value of I, as 1
in (1,60) we have
2% 1 N
(1.62) Hz) = [ (Vs (z,H_(2)) - H(z)}at
0 z R211

am
8o if the set of critical points of I were bounded in L , the

corresponding set of critical values also would be bounded via(1.62).

For each j > j,, choose K, > max(ﬁj,M-‘(j)). tet z, = zj(Kj) be a

critical point of IKj with critical value cj(Kj). 3y Lemma 1.59,

iz 1 » < § .
3= 50

Hz(zj). Consequently z4 is a solution of (HS) and a critical point of I

Hence by our choice of Kj, HKj(zj) = H(zj) and HKz(zj) =

with critical value cj H cj(Kj) via (1.62}. By (1.30), (1.32), (1.51),

Remark 1.52, and our choice of Kj,

g PO
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IK {z,) = ¢, (K

j 3 j) > bj(Kk) - 2mM(0)

(1.63)
> m@-DAM 1(§)) - 2mM(0) > = as § + =,
Hence cj *® ag J*r =,
It remains to construct the functions M(s) and My(s) satisfying (mg)-

(m9)e To begin, choose ¢(z) such that

(a) v(s) = Go + 0194 for 8 ¢ {0,1] where uo > 2° max ju(z) |
1z|<s
(b) vls| ? 2° max 11(z) 1|
1z} s+1

() v eC?® and y'(s), v"(s) >0 if s > 0.
set M(s) = ‘%), Then with the aid of (a), (b), (c) we have:
(a') M ¢ C2 and M'(s), M"(s) > 0 if s8> 0
(b') M(s) > ¢(8)
(c') s M"(s) > 3 M'(s) for s > 0.
These facts and simple computations imply:
(i) M(s) = M(s) - M(0) = o(s®) at s =0
(ii) wM({zl) > {H(z)| for all z ¢ R
(iii) M(s), Ms) = ﬂlﬁil R % M'(s) - M(s) are strictly monotonically
increasing
(iv) Yhbs M'(s) > 2M(s) for all s > O.
Define Mx(s) 2 M(s) for 8s €K and for s ? K
M (a) = M) + wk)(sR) + T ey 4 o (et
We can assume K ? 1. Then Mg ~ C2 and satisfies (my) and (m3). Moreover
(1.64) s ME (s) > 3 Mi(S)
for s ¢ [K,K + ex] for some EK >0 via (c') above. Therefore by choosing
91(K) sufficiently large, (1.64) holds for all s > K. This fact and
(iii) - (iv) quickly yield (m;)-(ms). Lastly to verify (my), i.e.
Hx(lzl) > IHK(z)I, note that this is true for |z| € X via (ii). For

lz| » K+1, comparing Mg and Hy shows the desired inequality holds if
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3
i
p
]
‘ -
3
L
!
/ 1
)
|
'

01(K) ’ RrK(1+K4). Lastly for K < |z]| < K+1, by the definition of

1, (z)] € [H(2)| + rK(K+1)4 <

HG (x+1)4

< max H(Z) ] + max
KSJC <+ RSICISk+1 ||
K+14y4
< [1+ (8 max 1w < wx) € oucizh.

18 ]€K+1

The proof of Theorem 0.1 is complete.

K’
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