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ABSTRACT

An S1 version of the Borsuk-Ulam Theorem is proved for a situation

where Fix S I may be nontrivial. The proof is accomplished with the aid of

a new relative index theory. Applications are given to intersection theorems

and the existence of multiple critical points is established for a class of

functionals invariant under an SI symmetry.
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SIGNIFICANCE AND EXPLANATION

A Minimax arguments from the calculus of variations serve as an important

tool in establishing the existence of nonlinear vibrations of discrete

mechanical systems as modelled by Hamilton's equations. In these arguments

one obtains the solutions of the differential equations as critical points of

an associated Lagrangian by minimaxing the Lagrangian over appropriate classes

of sets. Intersection theorems such as are proved in this paper play a

crucial role in this process. In addition to obtaining some intersection

theorems Ver illuatrate- heir use by proving an existence theorem for multiple

critical points of a functional invariant under an S 1 symetry group.

The responsibility for the vording and views expressed in this descriptive
suamary lies with MC, and not with the authors of this report.
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BORSUK-ULAM THEOREMS FOR ARBITRARY S I ACTIONS AND APPLICATIONS

E. R. Fadell, S. Y. Husseini and P. H. Rabinowitz

Introduction.

One of the variants of the Borsuk-Ulam Theorem states that if 9 is a

bounded neighborhood of 0 in Rn which is symmetric with respect to the

origin and is a continuous odd map of a3 into a proper subspace of Rn,

then f has a zero on 0 [I). An extension of this result to an infinite

dimensional setting for a class of Fredholm maps was carried out by Granas (2)

and more quantitative versions of the result which provide lower bounds for a

topological measure of the size of f- (0) 30 both in finite and infinite

dimensions have been given by Holm and Spanier (3). ISee also (41).

Our main goal in this paper is to obtain analogous results when 0 is

invariant and f equivariant with respect to an S1 rather than a Z2

action. For a class of such actions which are fixed point free on R2n to),

available tools such as the index theory of [51 lead to an S1 version of the

Borsuk-Ulam Theorem by merely repeating the arguments of [3) or [41. However

when the action is not free, this approach fails. Nevertheless we will show

how a relative index theory related to the cohomological index theory of [5)

can be used to obtain a Borsuk-Ulam Theorem for a class of non-free S

actions. In §1 some properties of this index theory will be developed in a

restricted setting. (A more systematic development will be carried out in a

future paper). Some SI versions of the Borsuk-Ulam Theorem will be proved

in §2. A special case is the following analogue of the Z2 result:

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS-8110556.



Theorem: Let S1 act linearly on RA x atA (i.e. via a group of unitary

operators) so that Fix S1 . R X (0). Suppose that A is an annulus in

B A x and f A + R A , k' ( k, is an equivariant map to a proper

invariant subspace with fIA' - id, AG - (Fix S1) n A. If 2 is a closed,

bounded invariant neighborhood of the origin with 3A c A, then f-1 (0) n

30 * *, i.e., f has zeroes on 30.

The motivation for this paper was a study of the existence of periodic

solutions of Hamiltonian systems of ordinary differential equations (6.

inimax arguments from the calculus of variations furnish an important tool

for treating such questions. In these arguments one obtains solutions of the

differential equations as critical points of an associated functional by mini-

maxing the functional over appropriate classes of sets. Intersection theorems

play a crucial role in getting estimates, in particular lower bounds, on mini-

max values and in showing they are indeed critical values of the functional.

In 13 the Borsuk-Ulam results will be used to obtain some new intersection

theorems. To illustrate their use an abstract critical point theorem (see f
Theorem 3.14 below) in an SI setting related to a Z2 result from (71 will

be proved.

j _____i____i -2-



lI. A Relative Index

Throughout this section G - S1 , the group of complex numbers of norm

1. Suppose X is a paracompact G-space, i.e. G(-S') acts on X. As usual,

the fixed point set under this action is given by

x w (x a X : gx - x for all g 6 G).

Also, for x 6 X, the isotropy subgroup at x 6 X is given by

G {g a G : gx -x}.x

Note, that because G - S1, Gx  is a finite cyclic group when x # XG.

Following 151, let n - (tG'PB G ) denote the universal G-bundle, e.g.

EG = -S" , see (5). Set

3G(XX
G ) . EG xG(X,XG) (BGxG XB G x XG

where G acts freely on UG x X and BG x X
G by the action g(ex) -

(gegx) and 3 xGX, BG x XG are the resulting orbit spaces. The projection

EG x X + E.3 induces a fiber bundle pair
(qGqO ) : GG(XxG B G

with fiber (XXG). qil X G  is, in fact, the classifying map of the

principal G-bundle, n : EG x X + EX GX and qo : BG x XG  BG is simply

projection on B. Now, using Alexander-Spanier cohomology H* with rational

coefficients, we set

HG(XXG) - K*(EG(XX G ))

and

H;(X) - H (CG(X)) - H (UGxGx).

The relative cup product

(X) JI(X.X) -> (XX)
* G G

then gives H CX,X G ) a module structure over the ring A - (BQ) -
G(

HG (point) with left action given by

A qC) uz AaA, zaH (xX).

1i -3-



We recdll also the fact that A - Qlal, where Q[a] is the polynomial

algebra on a single generator a G H 2(B G).

Definition (1.1) The relative a-index Ind a(X,X ) of the pair (X,XG ) is

the smallest integer s such that a8 annihilates H (XXG), i.e.
G

Ind (X,XG) min{as  x - 0 for all x G H (X,X )}.
a -S G

Proposition (1.2). When XG - @, the relative index coincides. with the

a-index in (51, i.e.

Ind (X,O) - Indexa X

and hence in this special situation all the basic properties of Index aI

15] hold for: Ind Q(X,@).

Proof. When XG O HG (X,xG) HG(X) and we have a unit 1 C H0x). Then,

since

a8 * 1 -0 as -a 0

we have the desired result.

Remark (1.3). The basic properties of the relative index Inda(XX G) in

general require some modification and will be taken up in a future work. They

will be studied in the category of pairs (XA) where X is a G-apace. A

an invariant subspace and G an arbitrary compact Lie group. The sequel will

not require these modified properties. However, the following one is of

interest since in (51, XG 0 @ always implies Index*X .

Proposition (1.4). If X is a finite dimensional separable metric spme, then

Ind(XX) <

Proof. The natural projection E x X X induces a map

p : EG(X,XG) + (X/G,X )

which induces isomorphisms [15]

t H*(X/G,X ) -- HG(XX

-4-
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(because G - S1 and coefficients are rational). When X is a finite

dimensional separable metric space, so is X/G and hence Hn(X,XG) vanishes

for n sufficiently large.

We now proceed to calculate an important example. Suppose that G - S1

acts linearly on Rn - R x -- x R, the n-fold cartesian product of the real

line. Introduce a G-equivariant inner-product on 30 (by the Ounitary

trick") and assume that G = S1 is a subgroup of SO(n,R), the group of

rotations of in. The fixed-point set (Rn) - (x Q RnIox - x, for all

a Q G) is a linear subspace R of dimension, say A. Then clearly the

orthogonal complement (Ri ) is G-invariant and of even-dimension, say

2n'. Thus we obtain the G-equivariant decomposition

An X R I R2n'

with RA X 0} - (1n)G. Note that if x 4 R x (0) then the isotropy

subgroup Gx c G is a finite cyclic subgroup of G. We wish to compute

Inda (Sn-,(Sn-1 )G ), where Sn - 1 is the unit sphere in Rn,
(sn-I) u , Sn - 1 n (i t x {b0) - sE

and S is the unit sphere in R X (0.

Proposition (1.5). Ind S n-1,S - ) - n', where n - + 2n'.

Note that if A - 0, then Proposition (1.5) is just Proposition (7.4) of

(5]. We shall prove Proposition (1.5) in stages. First, let us consider the j

fibration j
n-iq : EG(S + BG

with fiber Sn - 1.

Lemma (1.6): There exists an isomorphism of H*(BG)-modules

: H*(B )a H*(Sni) + HG(Sni)
G Q G * , -) ( n 1given by P(u S x) - q (u) u O(x), where :H +(Sni + H* is a cohomology

extension of the fiber. Let y denote a generator of Hn'I(Snl)

-5-



and Y = (1 S ). Then, for certain integers r and t and ci 6 Q,

2 ry VC Jr + C2 at

Proof. This is an immediate consequence of the Laray-Hirsch Theorem [15) as

soon as we establish the triviality of the (rational) spectral sequence of the

fibration Sn- 1 + B xG S
n  + BGO The differential operators

dp pq . Epq . pl+r,q-r+l vanish for 2 4 r 4 n-1 and in fact the only
r r r

possible non-trivial differential operator occurs when r - n. Consider the

diagram 9G(SL - 1  > EG(S n-I

BG

Since BG(S -  - 1 x B. , (q-)* and hence q* is injective. If the

differential operators

dP ,n-I : Epon - I + pE~n, 0

n n n

were not trivial, then the edge homomorphism diagram

H )n (B Ep,o > ,0 . p ,o
G n n+1-

q*

G

would produce a non-trivial kernel for q*. Thus all dr's are trivial.

2Remark (1.7). If (n-1) is odd, then Y - 0 above.

We consider now the exact sequence of the pair

Z,(sn-l,s 
'-1

.. .s-Z -  ) H,(sn - ) n-, ,-q(, 1-) q ..
00 HG (GHG A>H( e

-6-
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Lema (1.8). i* is a monomorphism.

Proof. First observe that J* and i* are H*(BG)-homomorphisms. Suppose

* * n-i 1-i
i (x) - 0. Then, for some element u 6 H (Sn ,s-) je(u) - x. But since

9(SIn-1 S 1- ) vanishes for r large, J-(OrCu)) 0 arCi u) - 0. But

H(BG) operates freely on HG(S n - ) and hence J*(u) - 0 - x.

* n-1 1-i
Lemma (1.9). HG(S , S ) is generated over H*(BG) by a single element 8

with an'1 - 0, i.e.
* (n-isA-i ) = ii,.,n'-1 in'1
H *(S n-, ) 0 a , l ).
G

Proof. Consider the short exact sequence of H*(BG)-modules0+ sn l  i ) .q(s-1 8 qi*-i L-0 + (S- I lo q ( 1-1 > Hq+1 (S n-l's -l)1 0
G G 'HG S S )-O

and H (BG )-isomorphisms

W H (B* ) 0 H*(s n ' )  (-l)

-H*(BG) 0 H*(S1 - 1  + * (S)X-).

Let j and I denote the fundamental class of Sn - 1 and sA-i

respectively, and Y - (1 j 1), 0 - ( 0 ). Then, we have two cases:

n-1

i(Y). *(c ' n 0 + d c,-2 ) if n-1 is even

and

(Y) #n(c an '  ) if n-1 is odd.

In either case ,(an  .0) is in the image of i' while the elements

(aj 6 8), j < n', are not. This gives the desired result.

Proof of Proposition (1.5). Apply the previous lemma.

Proposition (1.5) is the key to the following Theorem. (cf. Proposition

(3.9) of 5).)

Theorem (1.10): Suppose that G acts on 3n Ri x R 2 n  as described

above, and let C) be a closed, bounded invariant neighborhood of 0 in

1P. Then

Ind a(a, (SC))) ) n'.

Ba1 2 S _ _ _ _ r~ iis lm I _ _ _ _



Theorem (1.10) is an immediate consequence of the following form of the

Piercing Property (5]. Notice the conclusion is > and not equality.

Proposition (1.11) (Piercing Property). Let X denote a paracompact G-

and X x I the corresponding G-space with action g(x,t) - (gx,t), g 0 G,

x 9 X, t G 1. Let A0 - X X {0}, A, - X x {I}. Suppose

x I B 0 U B1, A0 c B0 , A I c 81

where B0 and B1  are closed invariant subsets. Then, if C - B0 n B1,

Ind a(CC G ) ), Ind a(x'xG).

Proof. The proof is essentially the same as in (5]. Let B - B0 U B. Then

the inclusion maps

0 0

A 0 > 0 A, -l> B I x0  C C B B0

O\ 0\/ 11 1C C B1

B B

* * * G * G *
induce H (BG)-homomorphisms, k 0 : HG(BO,B0) + HG(AA 0  J0, i0, etc.

Consider the Mayer-Vietoris sequence

see + (B' ) - "BG Hq(BB'Gs H q (B B,, T) H q(cOcG ) +
"G 0 G 1,1 G

where U - (i 1 -i 1 ), T - t + I If 1 (x) - 0, then r(x,0) - 0 and
0 10 0.

i0 (y) - x, it(y) - 0 for some y. But then j1 (y) - 0. Since J:

(A1, A) + (B,B G ) is an equivariant homotopy equivalence,
j; : HG(AI,AG) is an isomorphism and hence y - 0. Thus x -

0 and 10  is a monomorphism. Now, let Y : B + A0  denote projection (which

is equivariant) and C i C + A0 , '0 : B0 + A0  the corresponding

restrictions. Notice that we do not conclude that YC implies Ind (CCG)

Ind (A0IAG)° However, in the diagram

S-8-
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H (;\ 0 7,C
* *

G 0

Gq 0'0 F G

G 0

Y' is also a monomorphism which forces yC to be a monomorphism of H*(BG)-
* s XX

modules. Thus if a s 0 yc) - 0, then acc - 0 and since (A0,A G) (X,XG),
c0

Ind (CC 
G ) ) Ind (XX ).

Proof of (1.10). Let A denote an annulus in Rn  centered at the origin

with M1 c int A. Then, A - B0 U BI where B0 = A ni, B, = A n

(1n \ int 9) and 9Q = B0 n B1 . Thus, applying (1.11) we have

Ind (30, (0) G) ) n'.

We next consider special forms of the monotonicity and additivity

properties which will be useful in the next section.

Proposition (1.12). Let X and Y denote paracompact G-spaces and f:X + Y

an equivariant map. If
* * G *

f H (Y,Y ) + H (X,X
G

G G
is surjective, then Ind (X,XG ) 4 Ind (YY G

nd(,G)  *(a

Proof. Suppose Id (Yy = s. Then, f*(mi y) a cf (y) - 0. Since every
* G 5 G

element of H (XX ) is of the form f*(y), as annihilates H (X,X G ) and
G G

the result follows.

Proposition (1.13). Let X denote a paracompact G-space and A and B

paracompact subsets whose interiors cover X. Suppose further that BG 0

(so that all the fixed points of X are in A). Then,

Ind a(X,X G < Ind0(A,A G) + Inda(B,#).

-9-



Proof. Suppose Ind (AAG) a, Ind l(B,=) b where both a and b are

finite. Consider the diagram

ZG(B)

"3(3)X .-... 2.

EGI

where i1  and i2  are induced by inclusions and f is the classifying map

for E x G + EGIX), Then, if 8 - i: f*(a) and y - i2f*l() we have Ba
* G Tb

annihilates H (A,A ) and Y b 0. Take any element
G

X Hp(GX,X G )

G

and consider the exact sequences (XG a AG)

*

+ Hr-(X,A) 31 > rH(XX G) + H r(AIIA G)

G GG

Then, f (a) u x and f*l(b) pull back under jl and J2, respectively.

Then the following diagram

* *U

H (X,A) * HG(XB) U > H (X,X)
G( G G

* *U X* G

(XX)0H(X) -> H()
G G G

shows that f (a a +b ) u x - 0 and Ind a(X,X G ) 4 a+b.

Remark (1.14). (a) If G - So - (tI), then using cohomology with

coefficients in S2 instead of Q, one proves in a similar fashion to the

above that

-10-
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Ind (aG, (al)) - 2t

where RnR X R2

(b) If G - S3 , the unit quaternions and Gx c G is finite for

x 4 R x (0), then one can prove, using rational cohomology, that

lnda (a, (a0)G) ) n',

where Rn a RI x R 4n . The general situation is much more complicated.

(c) If G is a finite cyclic group of prime order, then using cohomology

with coefficients in %pV one can prove that

Indaa (a, (au)G) n',

where R x 2 . If G does not have prime order, the problem is more

complicated.

We close this section with the following result which was not included in

[5] and will also prove useful.

Proposition (1.15). When X is compact and XG - 1, then

Inda(X ) Index5 X < ap

Proof. For x Q X, the orbit Qc - G/Gx, where G. is the isotropy group

at x. Gx  is a finite cyclic group and Index,(Gx) - 1 ([51, Proposition

6.12). A suitable neighborhood N(Gx) of this orbit also has

Index N(Gx) - 1. Since X is compact, a finite number of such neighborhoods

cover X and subadditivity (51, Proposition 6.6) completes the proof.

-11-



2. Zeros of Mquivariant Haps.

Suppose that G (=S1) acts on Ra - I x R 2a  and Rb  R' x tRo as a

group of rotations in such a way that (as before)

(a)G _ R x (o), CRb)G RI x (01.

Suppose we have an equivariant map

f Sa - 1  Rb \{o

such that the restriction f 0 S + R I \{01 has the property that

f : H (itI\{O) + H (S-)
0

is an isomorphism. Then, in the following diagram

1-iA 1 )b AH C R \0)- HG CR\{'R \(0))

H1( &-1 6> X a- It-1

G G

(f ) is an isomorphism and f takes the generator Cover H*(B to a
0 G GG)*a

generator and f is surjective. Applying the monotonicity property (1.12)

we have

a' - Ind (S a-,S - 1) ( Ind Rb \ {O),RI \ (0)) - b-
a a

Thus, we have the following result.

Proposition C.14 Suppose f : Sa -1 + 4 is an equivariant map, where Ia

and Rb  are as above. If

* A-i£ A-i A-i
fo : H R \{o1 + H (S

is an isomorphism, then f-1 (0) * 0, i.e. f possesses at least one zero.

We will now extend this result to maps f : a + Rb  where Q is a

closed, bounded invariant subset of Ma. Let A denote an annulus in Ma (as

usual, the region between two concentric spheres centered at the origin) and

let denote a closed, bounded invariant neighborhood of the origin with

i -12-!( ,=



aR C A, where 80 is the boundary relative to Ra. We assume once and for all

that

f : A+R
b

is a given equivariant map.

Proposition (2.2). Suppose f(AG) c R \{0} and
*

(fjA G ) * CR*(i \ (01) + H*(A G

is an isomorphism. Then, if a > b, Z = f-1(0) n an 0.

Proof. Suppose flag : an + R \ (01 and consider the diagram

Ht-CR \ o - > ( \ (o0, ) \ 01
G

I (fi (aa)G),* (fla)*

(fA G) HX- ((0)) > H (It ,(a0) G)
G G

J£-1G6 £ G

HG (AG) -> HG(A,A )

The G-space A is equivariantly homotopic to Sa-1, and R \ (0} to Sb - I .

Choose
Q H£1 ( it \ to) (fIAG)*(B ) Q H (AG)

1 G 2 1 G

so that 01 = 63 1 and 82 = 6 2 are generators over H*(BG) of

*(Rb \ {01, \ (01) and H (A,A G), respectively. Then, if D = i(]2) =
NG G 3 2
(fil))(), 8 = 6 3  generates a subalgebra isomorphic by j* to

I(AA G). Since we have ba • 83 - 0. On the other

hand, aa '  3 8 = 0 with a' minimal. Thus, a' 4 b' and a 4 b. Thus,

a > b implies Z M f- (0) n 39 $ 0.

We now proceed to determine the index of the zero set Z.
Theorem (2.3). Under the hypotheses of (2.2), if Z - f-(0) n

Ind Z ) a' - b'.

-13-
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Proof. We know Z 0 # by Proposition (2.2), although this fact is not

necessary for the argument. Suppose s - Ind aZ < a' - b'. Then, Z is a

closed subset of an and hence of 30 \ (a) G Since ZG -, index Z
* *

Ind Z, where Index is the index theory in [5). Thus, since Index

is continuous, we have a closed neighborhood N of Z (in an) such that

NG -, I ndaN - s and a closed set 4 c 30 such that intM U intN - an,

M n Z - 0 and G .(3) We know that G(,() ) contains an H*(BG)-

submodule (, 0 , , al-I 0  a' - 0. The inclusion map

j • (a:,(aK)4)

induces

j H G + H,(M, G

and we set 0 1 j (0). rat t denote the smallest integer such that

a tB - 0. The diagram

1_ a z \ [0)) 4> if'-I \ 1ol'n \ 10))

UG 6 (
(fl114G) (f 11)/

H-1 (K) . H> (K,KG)
G

id

14 -L1((an)G) 6> L ()).
1_1 ( ) G- Hl(ag, (aa)G)HG

tells us that t 4 b'. On the other hand using the argument for the

additivity property (1.13) and the diagram

H (aG,N) 0 H (aD,M) *(aalan)

H (DO) * H (ag,(agn)) H (o,(M) )

H (N) 0 H*(N,M )

. . . .. _ mm _m mmmm ___ mmmm1m4mm m* -m



we ee that a t0-0so that

a' 4 s.t < (a'-bl) + bo a as

which is a contradiction. Thus, Ind. Z 3 a' - bl.

Corollary (2.4). if ft A * is the identity map on A0and Z isaas

above, then

IndaZ )l a' b.

-154,



3. Applications.

In this section some applications of Theorem 2.3 will be given. First

some finite and infinite dimensional intersection theorems will be obtained.

Then these results will bb used to prove an abstract critical point theorem in

an S1 setting. In the applications below we will be dealing with situations

in which X n FixS 1  
. Hence XG = and indC(xxG) = Ind QX,)

*

Index X ([51). As a convenience we list the properties of Ind a from [5)

(and (1.14)) we will require below, and at the same time suppress the a

We also let Ck(X,Y) denote the set of k times continuously Frechet

differentiable mappings from X to Y.

Lemma 3.1: Let E be a Hilbert space and let S1  act on S. Let E denote

the family of eguivariant subsets of B \ Fix S1 . Then Ind:E a U {'}

possesses the following properties: For XY 6 E,

1 .  If h G C(X,Y) is equivariant, Ind X ( Ind Y.

20. Ind(X u Y) ( Ind X + Ind Y.

3% If X is compact, then Ind X < a and there existaa > 0 such that

Ind X - Ind 6 (X) where Na(X) = {x 6 El x - X1 4 8.

Our first intersection result is in a Euclidean space setting. Let B
R

denote the closed ball of radius R centered about 0 in RI x R2j ' where

j - £ + 2Jp. Whenever J1 < k', we will consider *2J ' as a subspace of

t2k1 via it a2J' x e0} c R2JIx 1 2(k'I- j ') = 2k

Let S1  act on R X k via a group of unitary operators such that

Fix S1  R at x (0) and (0) x R2J ' is an invariant subspace of

2k' k A t(0) X a for J' < k'. Suppose h 6 C(R a X ft2 ') where m' ) k1,

h(x) - x on (it x (0)) n BR, and h is equivariant. Let p < R and

A2kconsider h-1(B). This is an invariant neighborhood of 0 in a x R
P

Let 1 denote the component of h "1 (a ) which contains 0 . Then 3 is an

i -16-
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invariant set. For j < k', let e1+2, denote the orthogonal projector of

a x R2m onto a k x R 2J ' and consider f 3 P +2jh. Then f G

C(a, I3 x R2JI), f(x) - x for x G (3 x {01) n 2, and f is

equivariant. Thus as an immediate consequence of Theorem 2.3 we have
Proposition 3.2: Ind(f'(0) n 3) ) k' - j'.

With a bit more structure on h we have

k L 2n'
Proposition 3.3: If k Q C(BR, i x RX ) where m' > k', h(x) - x for

I kx k ( X (0)) U and h is equivariant, then for any P < R and

j'< k',

Ind(h(B k) n aB n (0) x R2 lm'J)) )
R

(3.4)

Ind({x Q Bk-lh(x) Q a n ((0) x 32(m-j ))} k' - j'
R P

Proof: We need only observe that h(x) - x on a? implies 0 is strictly
P

interior to Bm. Hence if x G 3, h(x) B a via the maximality of 2
Po

Now (3.4) follows from 1 of Lemma 3.1 and Proposition 3.2.

Next we will prove two infinite dimensional extensions of Proposition

3.2. For what follows let E be a separable infinite dimensional Hilbert

space and suppose S1 acts on E, the action being given by a group G of

unitary operators on E. Further assume Fix G E R0  is a finite dimensional
0

subepace of B with dim E0 - A and we can choose an orthogonal basis (v.1

in E such that go - spaniv ,'01,v, E - spaniv ,'00 ,v is an
I +2m E sa

invariant subepace of E, and 3 - U . For brevity when the above arem

satisfied, we say Z,S1 satisfy (*)

As an example, consider W' 2 (SI ) the Hilbert space of 2w periodic

functions under the norm

iqi2 . f 2w(I 2 + iq12)dt.
0

-17-
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There is a natural S1 action on W"'2 (sl). Indeed for q 6 E and 6

6 [0,21) let T q(t) = q(t+e) and G o (TOJOG (0,21)). Then G - Si,

and Fix G a R and consists of the constant functions. Moreover ,S1

satisfy (*).

Below Br denotes the closed ball in Z of radius r centered at the

origin and F denotes the orthogonal complement of a subspace F.

Theorem 3.5:- Let ES 1 satisfy (*) and let v 0 C(BR n Bk,B) be G

eguivariant with o = id on (S0 n B U) u( k n aB). Then for any P < R,

and j < k,

Ind( (B n a"o- n A )

(3.6)
> Ind(x Is % li f(x) Q as P n z iL ) >•-j

Proof: Let P. denote th orthogonal projector of 9 onto I9. Then for

m > k, P a0 Q Cf.% . Zk,g ) arid is an equivariant map. Moreover P = v id

on (E 0 n BR ) u (k n asr). Hence by Proposition 3.3,

(3.7) Ind({x Q R n zJ.(x) 4; 3b n G En 1 ) N k-j.

Let K, denote the argument of Ind in (3.7) and let

K- (xa n BR Ik(x) a as n E).
P j

Then K is compact and K n R0  . Hence by 3 of Lemma 3.1, Ind K <

and there exists a 6 > 0 such that Ind K n Ind N 8(K). We claim KmK c N (K)

N6 (K) for m large. If so by 1 of Lema 3.1, Ind Km I Ind6 N (K)- Ind K

and (3.7) and 10 of Lemma 3.1 imply (3.6). If our claim were false, for all

large m, there is an xm 9 Km \ Na(K). Since R n zk is compact, we can

assume x *xa (BR A F) \ int N6 (K) as m - =. Since

I(x) - P 0'(x )1 (I~P(x) - P ~ (x)I + UP ( (x) - i(xn))l * 0

as m O ,(x) Q DoB nE i.e. x a K. But x int K, a contradiction.

The proof is complete.

i.
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Remark 3.8: The above sort of situation occurs in the study of second order

Hamiltonian systems (6]. Next we will study a case in which the domain of %

is not necessarily compact. This occurs in dealing with general Hamiltonian

systems.
. E+ - -'whr E+ +:

Theorem 3.9: Let 3,61 satisfy (*) with 0 - + 0 , where Z- +
- 0 a ~

Creep. *UK;) and Xm, 3_ are 2m dimensional mutually orthogonal
a -Is a

invariant subepaces of 3. suppose r B z0 z + 0 and 0 @ C(BR n Fk)
2 0 a Rk

with V equivariant, V - id on (so n D) u (rkn~ ft and P'l(x)

- *(x)P-x + T(x) where P- is the orthogonal projector of 3 onto Z-,

* C(3,(1,G]) and T 0 C(2,37) is 2M ct. Then for any P < R and

j> k,

(3.10) Ind(OlBn r ) n n AB ) ) k-j.
R k P j

Proof: Let Q. denote the orthogonal projector of I onto 300 +  Km.

Then Q,# satisfies the hypotheses of Theorem 3.5 with kO Zj and Z being

replaced by Fk' Pj and Q.. Hence by (3.6)

(3.11) Ind((x B n Qmkli%(x) 0 3% n P}) ) k-j.

Let K. denote the argment of Ind in (3.11) and let

KT- x mne n k I(x) 01 03} n

Then K is ompact. indeed if (xj) is a sequence in K, xj = x0 + X+

+ x e 3'0  0 3 0 . Since (xj) is bounded and BR  n i sn closed and

convex, we can assume xj converges weakly to x - DR n Fj. Since

(x0 ), (X ) lie in finite dimensional subapaces of Z , we can assume theseJ 3

sequences converge strongly. Moreover P ) 0 W #(x )x + T(x ) or

(3.12) x - 1O(x )-IT(x)

with 1 4 V(xC ) 0 6. Thus the boundedness of (xj), compactness of T, and

(3.12) allow us to assume (x J) also converges strongly. Hence3

ip(x j f(x) 6 3B n F . Since K n - *, i(K) < * by 3 of Lema 3.1.

-19-
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Continuing as in the proof of Theorem 3.5 with the additional iftformation

given by the form of P-' shows Ind K I Ind K so C3.11) implies (3.10).
m

Remark 3.13: Results in the spirit of Theorems 3.5 and 3.9 have been obtained

by Benci (9] for mappings V which are equivariant homeomorphisms of "

onto E of the form linear + compact.

Next a critical point theorem will be proved in which Theorem 3.5 plays

an important role. If I : Z + R, we say I is a G-invariant functional

if I(gx) - I(x) for all g 9 G, x 9 E. For I e C 1 (l,R), we say I

satisfies the Palais-bMale condition (PS) if any sequence (xm ) along

which I is uniformly bounded and I'(xm) + 0 is a precoupact sequence.

Here I'(x) denotes the Frechet derivative of I at x.

Suppose I satisfies

(i) For all finite dimensional subspaces Z of K, there is an r(S) > 0

such that I(x) 4 0 for x e Z and lx1 ) r(K).

Choosing B - K0, we see (I) and the continuity of I imply that

sup I < .
E0

Theorem 3.14: Suppose that ZS1 batisfy (*) and I 6 C1 (K,R) is a G-

invariant functional which satisfies (PS) and (II )e If further I

satisfies

(12) There is an m 0 e N and P > 0 such that

(3.14') I1 > max(Oe sup 1),

S m0  0

then I Possesses an unbounded sequence of critical values.

Remark 3.15): A somewhat les general result in a 52 setting was proved in

[7]. One cannot obtain Theorem 3.14 by merely restricting to a subgroup of

81 of order two and e.g. appealing to (7). Indeed a special free 5 action

-20-
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was required in [7] and furthermore due to the possible presence of finite

isotopy subgroups, restricting to X2 may produce a fixed point set. Other

Z and S1 analogues of Theorem 3.14 can be found in Benci [9), [101, and2

Bahri (11).

The proof of Theorem 3.14 will be accomplished in several steps. Let

Re r(Em) obtained via (I1). Set Dm - B n zm. Let Go - (h e C(D ,E)Ih

is equivariant and h(x) - x on (20 U OR ) n D,}. Define
m

r j .h( Y) ) j, h e G, Y invariant, Ind(Y) C m-J).

Classes of sets somewhat like the r were used in [51. The sets r

possesses the following properties

Lemma 3.16: (Mi rJ+1 c r .

(ii) if B r I and Z is an invariant set with

Ind(Z) s < J, then B-zer

(iii) If X 6 C(KE) is equivalent and X - id on

(z0 U 3 BR ) n D for all a ) J, then X : + ri, i.e.
a

B e r -- > 7(- c r jI
Proof (M) is immediate by the definition of r. For (ii), let B e r.

Therefore B - h( \Y) with h e G. and Ind Y C m-J. Since B\--

mmh(D \Y u h' (Z)) with Ind(Y u k-'(Z)) Ic Ind(Y) + Ind(h- I (Z)

C Ind(Y) + Ind(Z) - m-J+s m-(3-s) via 20 and 1" of Lemma 3.1,

Bz e rJ-. Lastly (iii) follows since if B e r, B - h(D,\Y), then

X 0 h 6 Gm and X(h(D \Y)) - X e h(Do \ Y).

With the aid of these sets r, we define a sequence of minimax values:

(3.17) c, - inf sup i(u), e63
. ,er ue

Since r 1 c 1 r, we have c+1 C Cj.

-21-
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Lemma 3.18: For j m0+1, c C > sup I.
0 j 03+1 0

0 0

Proof: Let B 6 Fr+ 1  Therefore B - h(D \Y) where h e G.0 m and
m0 3

Ind(Y) 4 m- m0-1. Let P < Rm . By Theorem 3.5, if X - {x e D 1h(x) e

aB 0 n I ), Ind X > m - moo Therefore Ind X7Y m - m0 - (m-m0-1) - 1 and

XY . Since h(X\Y) c W - h(X\Y) n 3B 0 n E1  by 2' of Lemma 3.1,p 0

W *. Hence if w e B n W

(3.19) sup I ) I(w) > inf I ) inf+ l.
B W aBoN mO

Since (3.19) holds for all B e r +I,

(3.20) c 1  nf+I

P m 0

and the leima follows from (3.14')

To continue we need a variant of a standard "Deformation Theorem". Let

K - (x e li(x) - c and I'(x) - 0) and A - (x e 11(x) ( c).c c

Lema 3.21: Lert I C( ,R) be G-invariant and satisfy (PS). Then for

any c 0 R, W > 0, and invariant neighborhood 0 of KcF there exists

c e (0,I) and n e C(o,1] x 1,E) such that:

10 q(t,x) - x if x e I- ([c-zc+C])

20 11(1,A c+\0 ) AcC

3 If Kc - *, T(1,A+) c A c-

4 n(t,x) is G-equivariant for each t e (0,1].

Proof: The result without the G equivariance or invariance statemer.ae can

be found in [121 or (13]. To obtain 40 also we need only modify these

proofs by averaqing over G to obtain a G equivariant pseudoqradiant vector

field as in (91 or (141.
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Now we can show that the c 's are indeed critical values of I

together with a multiplicity statement:

Lemma 3.22: For each j ) m0+1, c is a critical value of I. Moreover if

cj+1 ='OO=Cj+p C c IndlKc ) > p .

Proof: It suffices to prove the stronger multiplicity assertion. Thus

suppose Ind(K c ) ( p-1. BY (PS), Kc  is compact. It is also invariant.

Hence by 3* of Lemma 3.1, there is a > > 0 such that i(N (K )) - i(K ).

By Lemma 3.21 with 0- int NS(Kc) and .1/2 (cm +1 _ max(sup 1,0)) > 0,
0 E0

there is an e e (0,Z) and mapping n such that 0

(3.23) (1,Ac+e \N 8 (K0)) c A.C

Choose B e r such that
J+p

(3.24) sup I IC C+
B

By (ii) of Lemma 3.16, B\Na(K c ) e rj+*• By our choice of E, q(,O) - id

on (U0 U UB ) n D for all m 0 N. Hence by (iii) of Lemna 3.16,0 R m
m

n(I,B\N8(Kl) - e r J+ Hence

(3.25) sup I ) c J+1Q J

while by (3.23)-(3.24),

(3-26) sup I ( C -

Q

a contradiction.

Remark 3.27: Note that for J ) m0+1, .C 0 - * via [Amsa 3.18. Hence our

multiplicity statement is not due to any contribution from Fi3G.

?b complete the proof of Theorem 3.14, we will show

Lemma 3.28: c + as j t
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Proof: Since cJ+ 1 ; c, if c ?4e as j , c c <. Arguing as in

(71, let K - (x e Im0 +1 4 1(x) < and Z'(x) = 0}. By (PS) K is

compact and by Remark 3.27 and 30 of Lemma 3.1 Ind(K) < - and for some

> O, Ind(N6 (K)) =Ind K . Let j -Ind K . By Lenma 3.21 with c -

and C - c - c +1' there is an 6 e (0,C) and equivariant

?(1,.):A \int N8(K) 
+ A . Let m be the smallest integer • m0+1 such

that cm > c-e. Let B e r such that

sup I ( + 6
B

As in Lemma 3.22, B\NK(K) and n(1,B\N M) E Q belong to rM.

Consequently

c (max c- < c
Q

a contradiction.

Remark 3.29: in applications 161, one generally has I(x) - Z x) + bA;

where Q is a quadratic form with Q positive definite on for some k >

0 and b is weakly continuous with b(0) - 0. Hance for any fixed

p>0, Q 0 P 2 for m ) k and B bounded away from 0 while
asBI nz EM

bi 0 as m * since x 0 as ni I implies x. converges weakly

P m

to 0 and therefore b(x ) 0 by the weak continuity of b. Thus (3.15) is

satisfied. Hypotheses (1I is satisfied if b is "superquadratic" i.e.

grown more rapidly than quadratically in an appropriate sense. see[7].

Remark 3.30: The novelty of Theorem 3.14 is not so much the conclusion of the

theorem, since it is close to results of [91 and (11] but in the minimax

characterization it provides for the critical values cj. This characterization

has proved to be useful in some recent perturbation results (6].
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