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ABSTRACT

An s version of the Borsuk-Ulam Theorem is proved for a situation

where Fix S1 may be nontrivial. The proof is accomplished with the aid of

a new relative index theory. Applications are given to intersection theorems

and the existence of multiple critical points is established for a class of

functionals invariant under an S1 symmetry.
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SIGNIFICANCE AND EXPLANATION

A Minimax arguments from the calculus of variations serve as an important
tool in establishing the existence of nonlinear vibrations of discrete

mechanical systems as modelled by Hamilton's equations. 1In these arguments

one obtains the solutions of the differential equations as critical points of
an associated Lagrangian by minimaxing the Lagrangian over appropriate classes
of gets. Intersection theorems such as are proved in this paper play a
crucial role 1n thil process. In addition to obtaining some intersection

theorems \n— 111\131::&1:0 Atheir use by proving an existence theorem for multiple

critical points of a functional invariant under an st symmetry group.
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BORSUK-ULAM THEOREMS FOR ARBITRARY S' ACTIONS AND APPLICATIONS

E. R. Fadell, S. Y. Husseini and P. H. Rabinowitz

Introduction.

One of the variants of the Borsuk-Ulam Theorem states that if R is a
bounded neighborhood of 0 in R" which is symmetric with respect to the
origin and is a continuous odd map of 9% into a proper subspace of R,
then f has a zero on 98 [1]. An extension of this result to an infinite
dimensional setting for a class of Fredholm maps was carried out by Granas (2}
and more quantitative versions of the result which provide lower bounds for a

Y(0) 32 both in finite and infinite

topological measure of the size of £
dimensions have beén given by Holm and Spanier [3]). (See also [4]).

Our main goal in this paper is to obtain analogous results when £ is
invariant and f equivariant with respect to an s' rather than a 82
action. For a class of such actions which are fixed point free on R2n {0},

1 version of the

available tools such as the index theory of [5) lead to an S
Borsuk-Ulam Theorem by merely repeating the arguments of [3) or [4]. However
when the action is not free, this approach fails. Nevertheless we will show
how a relative index theory related to the cohomological index theory of [5)
can be used to obtain a Borsuk-Ulam Theorem for a class of non-free S'
actions. In §1 some properties of this index theory will be developed in a
restricted setting. (A more systematic development will be carried out in a

future paper). Some s!' versions of the Borsuk-Ulam Theorem will be proved

in §2. A special case is the following analogue of the 82 result:

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MC5-8110556.
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Theorem: Let s' act linearly on R «x RZk (i.e. via a group of unitary

3
operators) so that Fix s' = R" x {0}, Suppose that A is an annulus in

L ¢
Rz x I?k and f:A * R X l;k + k' <k, is an equivariant map to a proper

invariant subspace with flAG = i4, A - (Fix S‘) n A, If R is a closed,

bounded invariant neighborhood of the origin with 38 c A, then f£-'(0) n

3N # ¢, i.e., £ has zeroes on 3,

The motivation for this paper was a study of the existence of periodic
solutions of Hamiltonian systems of ordinary differential equationa [6].
Minimax arguments from the calculus of variations furnish an important tool
for treating such questions. In these arguments one obtains solutions of the
differential equations as critical points of an associated functional by mini-
maxing the functional over appropriate classes of sets. Intersection theorems
play a crucial role in getting estimates, in particular lower bounds, on mini-
max values and in showing they are indeed critical values of the functional.
In §3 the Borsuk-Ulam results will be used to obtain some new intersection
theorems. To illustrate their use an abstract critical point theorem (see
Theorem 3.14 below) in an S1 setting related to a 32 result from (7] will

be proved.




§1. A Relative Index

Throughout this section G = S‘, the group of complex numbers of norm
1« Suppose X is a paracompact G-space, i.e. G(-S’) acts on X. As usual,
the fixed point set under this action is given by
X°={xeX:qgx=x for all g & G}.
Also, for x € X, the isotropy subgroup at x @ X is given by
G ={g8G:gx=x}.

Note, that because G = S‘, Gx is a finite cyclic group when x ¢ xG.

Pollowing [5], let n = (EG,p,BG) denote the universal G-bundle, e.g.

o -
EG =8 , BG = CP, see [5]. Set
G G
where G acts freely on BG X X and BG x xG by the action g(e,x) =
(ge,gx) and E xGx, BG x xG are the resulting orbit spaces. The projection
BG X X+ BG induces a fiber bundle pair
G
(q:qo) t E (X, X ) * B,
with fiber (x,xG). q:E xGx ad BG is, in fact, the classifying map of the
G

principal G-bundle, n : EG x X+ !GxGx and 9 ¢ BG x X * BG is simply

projection on B, Now, using Alexander-Spanier cohomology H' with rational
coefficients, we set
- G *
He(X,X0) = 0 (E(X, X))
and
L] » » x
HG(X) = H (nG(x)) = H (EG Gx).
The relative cup product
» . . G L] G
then gives H;(x,xc) a module structure over the ring A = ﬂ'(BG) =
*
HG (point) with left action given by

Aevag M)uz, AGA 28 n;(x.xc).
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We recdall also the fact that A = Q[a)}, where @Qf{a] is the polynomial
algebra on a single generator a € Hz(BG).
Definition (1.1) The relative a-index Inda(x,xc) of the pair (x,xG) is

the smallest integer s such that as annihilates H (x.xG), i.e.

* 0 »

Q

Inda(x.xG) = mén{as e x =0 for all x 6 H (x,xG)}.

Proposition (1.2). When x€ = #, the relative index coincides with the

a-index in [5], i.e.

*
Inda(x,¢) = Indexax

L]
and hence in this special situation all the basic properties of Indexa in
{5) hold for ;gga(X.¢). )

* L ]
Proof. When X% =g, HG(x.xG) = H (X) and we have a unit 16 ug(x). Then,

since

a® ¢ 1 20 ¢ a®

=0
we have the desired result.
Remark (1.3). The basic properties of the relative index Inda(x.xG) in
general require some modification and will be taken up in a future work. They
will be studied in the category of pairs (X,A) where X is a G-space. A
an invariant subspace and G - an arbitrary compact Lie group. The sequel will
not require these modified properties. However, the following one is of

G

®
interest since in [S5], X # ¢ always implies Indexax = o,

Proposition (1.4). If X is a finite dimensional separable metric spaee, then

Ind_(X,%x°) < =
a
Proof. The natural projection E x X + X induces a map
¢+ B(%,X°) + (%/G,x%)
which induces isomorphisms [(15]

o" /6, x%) o u xS




(because G = s! and coefficients are rational), When X 1is a finite
dimensional separable metric space, so is X/G and hence Hg(x,xc) vanishes

for n sufficiently large.

We now proceed to calculate an important example. Suppose that G = s!
acts linearly on R? = Rx see x R, the n-fold cartesian product of the real
line. Introduce a G-equivariant inner-product on ® (by the "unitary
trick”) and assume that G = s' is a subgroup of SO(n,R), the group of
rotations of R’. The fixed-point set ®C . {xs R'|ox = x, for all

0 6 G} is a linear subspace Rz of dimension, say 2. Then clearly the

orthogonal complement (Rz)l is G-invariant and of even-dimension, say

2n', Thus we obtain the G-equivariant decomposition
]
2 =gt x 2™
with R® x {0} = (®")C,  Note that if x ¢ &' x {0} then the isotropy

subgroup Gy < G 1is a finite cyclic subgroup of G. We wish to compute

Indu(sn-1,(sn-1)c), where S" ' is the unit sphere in ®%,

n-1,6 _ _n-1 sl-!

(s" ) S n (n‘ x {0}) =

' is the unit sphere in R x {o}.

Proposition (1.5). 1Ind (sn-1'sl-1) =n', where n =2 + 2n'.

and Sz-

Note that if £ = 0, then Proposition (1.5) is just Proposition (7.4) of

(Sl we shall prove Proposition (1.5) in stages. First, let us consider the

fibration

n-1
q: Ei(s" ) * B,

with fiber sP'.

S erEe A e A . o<

Lemma (1.6): There exists an isomorphism of H*(BG)-modules :

* * n-i * n-1
e H (B} B (ST ) * Ho(s" )

given by ¥u @ x) = q'(u) U 8(x), where S:H*(sn-1) > H;(Sn-1) is a cohomology

extension of the fiber. Let ¥ denote a generator of H" '(s"~1)

SRR . "ol A B Il Sl S+




and Y =¢(1 @Y), Then, for certain integers r and t and ¢ € Q

Yz --Y(c:1 o +c

t _ -
2“ OY)O

Proof. This is an immediate consequence of the Leray-Hirsch Theorem [15] as

soon as we establish the triviality of the (rational) spectral sequence of the

n=-1 n-1

fibration s + B XG s + B The differential operators

G.
df'q 3 BS'Q »> B£+t'q-r+1 vanish for 2 € r € n-1 and in fact the only

possible non-trivial differential operator occurs when r = n. Consider the

diagram £-1 ne-1
EG(S ) ————) EG(S )

q' q

Since EG(S"'1) = s"”" x By , (q')" and hence q" is injective. If the

differential operators
dp,n.-l . Ep,n—1 - Ep-m,o
n n n
were not trivial, then the edge homomorphism diagram
Hpm(B ) - Ep-o»n,o —3 Bpm,o - gp+n,0
G n n+l -

q

ug-m(snd)

would produce a non-trivial kernel for q'. Thus all dr's are trivial.

Remark (1.7). If (n-1) 1is odd, then Yz = 0 above,

We consider now the exact sequence of the pair

gt

BG(sn_1l )

* [ ]
cor » ag(s“".s"") L wlis™") 4, ug(s“‘) > eee,

s RV




Y Preran .

Lemma (1.8). i* is a monomorphisa,

Proof. First observe that j' ana 1" are H'(BG)-hononorphians. Suppose

» * n~-1 _L=1 .
i (x) = 0. Then, for some element u ¢ BG(S '8 ) 3 (u) = x. But since

HZ(S"“,S"") vanishes for r large, j'(cr(u)) = 0= ar(j.u) = 0. But
H'(BG) operates freely on H;(sn"‘) and hence j'(u) = 0= x,

Lenma (1.9). H;(sn-i,s,",) is generated over H'(BG) by a single element 8

'ith Qn.s = 0, i-‘o

u;(s““,sz") = {B,as.-°°.u""18|c“'8 = 0}.

Proof. Consider the short exact sequence of H'(BG)-nodules

i' ‘-1 6*

q, n=1 q 5 . an n-1 _2-1
o*nc(s ) >uc(s ) >BG (s .S

) +0
and H"(Bg)-isomorphisms .

¢ 3 u’(ac) o' (s"™") » u 8™

v n'(BG) @ u'(sz'1) » n;(sz").
Let ¥ and B denote the fundamental class of S™ ' and 32'1,

respectively, and Y = ¢(1 @ ¥), B = ¢(1 ® B). Then, we have two cases:

n-1

1t - #(ccn' @8+da? J if n-1 is even
and

" nl

i (YY) =¢¥(ca @8) if n-1 is odd.
In either case W(an' 8 B8) is in the image of 1* while the elements
waj ®8), j <n', are not. This gives the desired result.

Proof of Proposition (1.5). Apply the previous lemma. )

Proposition (1.5) is the key to the following Theorem. (cf. Proposition

(3.9) of (5]0)

L
Theorem (1.10): Suppose that G acts on R ll" x l2n as described

above, and let & be a closed, bounded invariant neighborhood of 0 in

®., Then

Ind (38, (32)%) » nv.




W T

Theorem (1.10) is an immediate consequence of the following form of the
Plercing Property [5). Notice the conclusion is ? and not equality.

Proposition (1.11) (Piercing Property). Let X denote a paracompact G-space

and X x I the corresponding G-space with action g(x,t) = (gx,t), g € G,

x 6 X, t6 I, Let Ao-xx{o},n = X x {1}, Suppose

1

X
X*xI=ByuB, A c<B), A, B

where Bo and 81 are closed invariant subsets., Then, if C = Bo n 81,

G
1na_(c,c%) > Ind_(x,x°).
Proof, The proof is essentially the same as in [5]. lLet B = By U By. Then

the inclusion maps

Kk k

0 1
A >B A > B
0 Q 1 1 lo : Cc BO
j\ i 3 i
0 0 1 1
l1 : Cc 81
B B
» n . * Gy , . G o *
induce H (BG)—homomorp isms, ko : HG(BO,BO) HG(A,AO), 3ge 10' etc.

Consider the Mayer~vVietoris sequence

see q G 4 q G q G n q G
* HG(B,B ) —— HG(BO,BO) @ HG‘B1.B1) —— HG(C,C ) *+

where { = (i ,-i]), n = t,+ %7, If £(x) =0, then n(x,0) = 0 and
i;(y) = X, i:(y) = 0 for some y. But then j:(y) = 0. Since j, :
(A',A?) * (B,BG) is an equivarianF homotopy equivalence,
j: : HG(B,BG) + HG(A1,A$) is an isomorphism and hence y = 0. Thus x =

0 and l; is a monomorphism. Now, let Y : B + AO denote projection (which

is equivariant) and YC : C* AO' Yo s Bo A Ao the corresponding

restrictions., Notice that we do not conclude that 1c implies Inda(C,CG) <

Inda(Ao,Ag). However, in the diagram

-8-

e s R i g, —- -
D R AR :
;




H

Y G S A2 T3

*
L

HG(BO,BO) > HG(C,C )

N/

q G
HG(AO'AO)

* *
YO is also a monomorphism which forces YC to be a monomorphism of H'(BG)—

modules. Thus if as

b 8 G, . G
. yc(c) = 0, then ac = 0 and since (AO,AO) Z (x,X),
G G
Indu(C,C ) » Inda(x.x )e

Proof of (1.10). ILet A denote an annulus in R" centered at the origin

with 9R < int A, Then, A = By U By where BO = A Nq, B, =AN
(®R" \ int Q) and M = By n By. Thus, applying (1.11) we have
1na (3%, (30)%) > nr.
We next consider special forms of the monotonicity and additivity

properties which will be useful in the next section.

Proposition (1.12). Let X and Y denote paracompact G-spaces and f:X * Y

an equivariant map. 1If

* * G " G
£ : HG(Y,Y ) * HG(X,X )

is surjective, then Inda(x,xG) < Inda(Y,YG).

* L ]
Proof. Suppose Inda(Y,YG) = 8. Then, £ (us y) = usf (y) = 0. Since every
hd G . . » 8 . * G
element of HG(x,x ) is of the form f (y), a annihilates HG(x,x ) and
the result follows.

Proposition (1.13). Let X denote a paracompact G-space and A and B

paracompact subgsets whose interiors cover X. Suppose further that BS = ¢

(so that all the fixed points of X are in A). Then,

G G
Indq(x,x ) < Indq(A,A ) + I"du(8'¢)‘




Proof. Suppose Indu(A.AG) - a, Inda(8,¢) = b where both a and b are

finite. Consider the diagram

Es(A)

EG(B)

where i, and 12 are induced by inclusions and f is the classifying map
for EXG* E(X). Then, if B =1 f (a) and Y =i, (a) we have B
annihilates H;(A,AG) and Yb = 0, Take any element

x € ng(x,xG)

and consider the exact sequences (xG - AG)

. L ]
34

cor s B (XA) > n;(x.xc) » ué(A.AG) -

*

Iz

s
s+ HI(X,B) > HL(X) * HI(B) + .
* a * b ® .
Then, f (a )u x and f (a ) pull back under 3, and jz, respectively.

Then the following diagram

* *® v *
HG(X,A) -] HG(X,B) — HG(X'X)
+ +

. G * Y] * G
HG(x,x ) © HG(x) —v— HG(x,x )

*
shows that £ (a"b) Ux = 0 and Inda(x,xG) < a+b.
Remark (1.14). (a) If G = sO = {31}, then uaing cohomology with
" coefficients in 82 instead of @, one proves in a similar fashion to the

above that

~10=~




Ind, (38, (M%) > n -t = ',

1]
where Rp - RF x nZn .

(b) If G = S3, the unit quaternions and Gy <G is finite for

x ¢ R? x {0}, then one can prove, using rational cohomology, that
Ind (38, (3®)°) > n',
where R" = Rl x R‘n'. The general situation is much more complicated.
(c) If G is a finite cyclic group of prime order, then using cohomology
with coefficients in zp, one can prove that
Ind (38, (%) > nr,
where R" = n* x lZn'. If G does not have prime order, the problem is more
complicated.
We close this section with the following result which was not included in

[S5] and will also prove useful.

Proposition (1.15). When X is compact and xC = ¢, then

Ind (X,$) = Index,x < =.
Proofs For x € X, the orbit Gx = G/Gx, where Gy is the isotropy group
at x. G is a finite cyclic group and Index_ (Gx) = 1 ([5], Proposition
6.12). A suitable neighborhood N(Gx) of this orbit also has
Index;N(Gx) = 1, Since X is compact, a finite number of such neighborhoods

cover X and subadditivity ([5), Proposition 6.6) completes the proof.

“jl=




2. Zeros of Egquivariant Maps,

] z L]
Suppose that G (-s’) acts on la x Rl x Rza and lp = R X RZb as a

group of rotations in such a way that (as before)

L
@)% = &' x {0}, (R®)% =Rr" x {0}.
Suppose we have an equivariant map
£: 52+ \(0}
-1

£
such that the restriction fo : S + R \{0} has the property that

£ 2 1@t \op » 1Nt

is an isomorphism. Then, in the following diagram

u:"(n‘ \ {o}h) -9> Hé(nb \ {o),n‘ \ {ohH

L] f*
(fo)G G
-1, f-1 [\ R, a=-1 2-1
HG (S ) -—> HG(S +S )

(fo); is an isomorphism and f; takes the generator (over H*(BG)) to a

L]
generator and fG is surjective. Applying the monotonicity property (1.12)
we have

1

a' = Indc(sa- ,s"") < Inda(lb\ {o},n‘ \ {o}) = b

Thus, we have the following result.

Proposition .1\ Suppose f : sa—1 + IP is an equivariant map, where ®*

and IP are as above. 1If

f; : uz"(n'\{o}) + H""(sz")

is an isomorphism, then f-1(0) #¢, i.e« f possesses at least one zero.

We will now extend this result to maps £ : 3Q » Rb where 2 is a
closed, bounded invariant subset of R®, Let A denote an annulus in R® (as
. usual, the region between two concentric spheres centered at the origin) and

let R denote a closed, bounded invariant neighborhood of the origin with

v

R




I < A, where 90 is the boundary relative to R%. We assume once and for all
that

f: A>R
is a given equivariant map.

Proposition (2.2). Suppose f(AG) c Rz \{0} and
£[a%" : w' @\ (oh) » 1 (%)

is an isomorphism. Then, if a > b, 2 = £ 1(0) n 30 # g.

Proof, Suppose £[30 : 3Q + R \ {0} and consider the diagram

Hé"‘ (n" \ {o} -§> H;(lb \ {o}.it\ {oh

gl am* glam*
y
(£]a%" af;"((amc) N ué(aﬂ.(an)"’)
N * I
i j
£-1._G [ L G
HG (A7) -_—> HG(A,A )

The G-space A is equivariantly homotopic to §2~', and 2 \ {0} to sP-!

Choose

£-1, G

£-1 2% G.*
B1 ¢ v (m \ {oh), 32 = (£]a7) (31) € H, (A7)

so that B = 631 and 82 = 8. are generators over H'(BG) of

2
H;(lb \ {O},Rz \ {0}) and H;(A,AG), respectively. Then, if 33 = i'(ﬁz) =

(fI(BQ)G)‘(B1), B. =68 generates a subalgebra isomorphic by j' to

3 3
£ G , * b!
H (A,A"). Since 53 = (£]3Q) (81) we have a 83 = 0, On the other

L]
hand, ad . 83 = 0 with a' minimal. Thus, a' < b' and a € b. Thus,
a>b implies 2 = £7'(0) n 39 # g,
We now proceed to determine the index of the zero set 2,

Theorem (2.3). Under the hypotheses of (2.2), if Z = f-1(0) n 99,

Indaz > a' - b,

-13=




2 N o

—————— — - = e e e —— et

Proof. We know 2 # ¢ by Proposition (2.2), although this fact is not

necegsary for the argument. Suppose 8 = Indaz < a' - b'., Then, Z 1is a
closed subset of 92 and hence of 35 \ (39)G. Since 2% = g, Index;z
= Ind 2, where Index; is the index theory in [5). Thus, since Index;
is continuous, we have a closed neighborhocod N of Z (in 934@) such that
NC - @, Indan =8 and a closed set M < 31 such that intM U intN = 3@,
Mnz=g and MC e (S we know that H (39,(3M) contains an " (8g)-
submodule (B, aB, 028,"'. a®'"g . c.'B = 0}. The inclusion map
y (m,u) + (m.(aﬂ)e)
induces
3 + w"m, (%) » 1" ,n%
and we set BH - j'(B). let t denote the smallest integer such that

atﬁn = 0. The diagram

né"(n" \ {o}) S w0124 (oh
* (£]M *
(£|nS) )
n;"(nc) S vt
1a
i (o) 25wt omS)

tells us that t € b'., On the other hand using the argument for the
additivity property (1.13) and the diagram

w'(30,N) @ ' (32,M) + § (30,39)

! ! }

W an) e u (am, (3m)%) + u' (24, (30)%)

| J -

. * G
H(N) @ H (MM)

. Lt
A it Ve

NN Th  rp——————
<4 B

A
HE TP = <.




Pupguegy e

we see that c'“B = 0 so that
a' € g4t ¢ (a’*=b') + b' = a°
which is a contradiction. Thus, Indaz ? a' - ht,

Corollary (2.4). If £: A + N’ is the identity map on AC and Z is as

above, then
Indaz > a' - bt

i
!
:
i
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3. Applications.

In this section some applications of Theorem 2.3 will be given. First
some finite and infinite dimensional intersection theorems will be obtained.
Then these results will be used to prove an abstract criticaihpoint theorem in
an s’ setting. In the applications below we will be dealing with situations
in which X n Fix S' = ¢. Hence X° = ¢ and inda(x,xG) = Ind_(X,9) =

Index;x ([{S5)). As a convenience we list the properties of Inda from [5)
(and (1.14)) we will require below, and at the same time suppress the a .
We also let ck(x,v) denote the set of k times continuously Frechet

differentiable mappings from X to Y.

Lemma 3.1: let E Dbe a Hilbert space and let s! act on E, Let F denote

the family of equivariant subsets of E \ Fix S'. Then Ind:E + W y (=}

possesses the following properties: For X,Y 6 E,

1°. If hGC(X,Y) is equivariant, Ind X < Ind Y.

2°. Ind(Xu Y) < Ind X+ Ind Y.

3°, If X is compact, then Ind X < ® and there exists a § > 0 such that

Ind X = Ind No(X) where Ng(X) = {x G E[lx - x# < &},
Our first intersection result is in a Buclidean space setting. Let Bg
denote the closed ball of radius R centered about 0 in R’ x R?j' where

3 =2 4+ 2j'., Whenever 3j' < k', we will consider 2%’ as a subspace of

82’ yia RE' 2 N x (o) ¢ g 'x g2(K'-3") 4 g’

1 ]
Let s! act on I? x x via a group of unitary operators such that
]
Fix 8' = % x {0} ana {0} x ¥’ is an invariant subspace of

L]
{o} x &%’ for j* < k'. Suppose h G C(B:, l’ x .;n') vwhere m' > k',

h(x) = x on (I} x {0}) n B:, and h is equivariant. lLet p < R and

consider h"(B:). This is an invariant neighborhood of 0 in lt x g%,

Let R denote the component of h"(B:) which contaings 0 ., Then 392 is an

-6~
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invariant set. For 3j' < k', let Pz+2j, denote the orthogonal projector of

£ x ‘;u'

R he Then f 6

onto I& x l?j. and consider £ P
L+230
) 2 25" L .
C(aq, R xR ), f(x) =x for x& (R x {0})) nfl, and f is
equivariant., Thus as an immediate consequence of Theorem 2.3 we have

Proposition 3.2: Ind(f—1(0) n k) > k' -3,

With a bit more structure on h we have

al
) where m® » k', h(x) = x for

Proposition 3.3: If k € C(B:. Rz x R
x 6 (l& x {o}) v BB:, and h is equivariant, then for any p < R and

i'< k',

Ind(h(B:) n aa‘: n ({0} x rR2(®'=3')), 5
(3.4)

Ind({x & a‘;lh(x) ¢ 38} n ({0} AL AR IS N R
Proof: We need only observe that h(x) =x on ang implies & is strictly
interior to B:. Hence if x ¢ 3!, h(x) @ BB: via the maximality of € .
Now (3.4) follows from 1 of Lemma 3.1 and Proposition 3.2.

Next we will prove two infinite dimensional extensions of Proposition

3.2. For what follows let E be a separable infinite dimensional Hilbert
space and suppose s! acts on E, the action being given by a group G of
unitary opetatots on E. Further assume Fix G = Eo is a finite dimensional
subspace of E with dim Eg = £ and we can choose an orthogonal basis {vj}
in E such that Ej = span{v1,"°,vl), E = span(v1,°°-,vz+2m}, E, is an
invariant subspace of E, and B -'ﬁi:. For brevity when the above are
satisfied, we say z,s' satisfy (v),

1,2

As an example, consider W (S‘) the Hilbert space of 2% periodic

functions under the norm

1? - (75312 4 |q)dae.
0

S I B

— e e o iabe an

ﬁféigé;

'. oy
gt




There is a natural S' action on "1,2(51). Indeed for q G E and 0
G [0,27) let Tyq(t) = q(t+9) and G = (Ty|® & [0,2m)}. Then G = s',
and Fix G ®*= R and consists of the constant functions. Moreover E,s1
satisfy (*).
Below B, denotes the closed ball in E of radius r centered at the

origin and PL denotes the orthogonal complement of a subspace F.

Theorem 3.5: let E,S' satisfy (*) and let ¢ 6 C(By n E,E) be G

equivariant with ¢ = id on (Eg n Bp) v (zk n aBR)‘ Then for any 0 < R,

and j <k,
Ind( (B_ n % ¢ <+ n !l) >
Rk “p 3
(3.6)

L 1
> Imnd({x € %, ° xktv(x) 3, n zj}) > k-3,

Proof: Let P, denote the orthogonal projector of E onto E,. Then for

> 4 Vi . -
m?k, an [~ Cﬁ,BR zk,k-) ard is an equivariant map. Moreover in id

on (E, n Bp) U(Ek n 3Br). Hience by Proposition 3.3,

1
3

Let K, denote the argument of Ind in (3.7) and let

(3.7) Ind({x € By N Eklap(x) 4] asp n B, n EJ) > k-j.

K={x@aB nE/leix) ¢ 3B, n z;}.

Then K is compact and X n Bo = ¢. Hence by 3° of Lemma 3.1, Ind K ¢ ®

and there exists a 6 > 0 such that 1Ind K = Ind NG(K). We claim K‘Kh < Ns(x)
Ng(K) for m large. If soby 1 of Lemma 3.1, Ind K, < Ind,N (K)= Ind K
and (3.7) and 1° of Lemma 3.1 imply (3.6). If our claim were false, for all
large m, there is an x ¢ Km \ Ng(K). Since By 0 B is compact, we can
assume x ; € (B N B) \ int Ng(K) as m~+ =, Since
|¢(;) - Ph¢(x.)l < lv(;) -Py w(;)l + IP.(v(;) -eix Nl +o0

a

as m* %, v(x) @ GBj n EL, i.e, x € K. But x § int X, a contradiction. j

The proof is complete,

18-




Remark 3.8: The above sort of situation occurs in the study of second order
Hamiltonian systems [6). Next we will study a case in which the domain of ¥
is not necessarily compact. This occurs in dealing with general Hamiltonian

systems.
Theorem 3.9: Let :,s‘ satisfy (*) with l: - E+ @ E, where Et = UE;

(resp. n: - Ul;) and !:, l; are 2m dimensional mutually orthogonal

= + -
invariant subspaces of R. Suppose r. £ 'o ® t' OE and v e C(Bn n Fk.E)

with ¢ equivariant, ¢ = 14 on (By N Bg) U (Fyn 3B,) and P v(x)

= ¥(x)P x + T(x) where P~ is the orthogonal projector of E onto E-,

vec(,(1,a]) and TEO C(E,E") is compact. Then for any P < R and

>k,
1
3

Proof: Let Q- denote the orthogonal projector of E onto E

. > k=4,
(3.10) Ind(¥(B 0 P ) N 339 nr) k-3

+ -
0 @E o Bn.
Then Q¢ satisfies the hypotheses of Theorem 3.5 with E,, sj and E Dbeing
replaced by Pk. rj and Q-. Hence by (3.6)
1
L] > o L]
(3.11) mmd({x e B, n QF IQ Ax) @ B, n rj}) x~3
Let K  denote the argument of Ind in (3.11) and let
1
xleea) @ 3B° n 'j}
Then K is compact. Indeed if (xj) is a sequence in K, xj H xg + x;

K-{xesnnr

- + -
+xjesoos OE . Since (xj) is bounded and Bp nrj is closed and

convex, we cCan assume xj converges weakly to x = BR n l'j e Since

(xg). (x;) lie in finite dimensional subspaces of E , we can assume these

sequences converge strongly., Moreover P V(x,) =0 = ¥(x,)x, + 'r(xj) or

. 3 313
(3.12) x; = -¥(x,) " T(x,)
with 1 € ""j) € o, Thus the boundedness of (xj). compactness of T, and
(3.12) allow us to assume (x;) also converges strongly. Hence
¢(xj) * ¥(x) @ 3, n r;. Since K n By = ¢, 1(K) < » by 3° of Lemma 3.1.

«19-
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Continuing as in the proof of Theorem 3.5 with the additional information
given by the form of P ¥ shows Ind -K“l € Ind K so (3.11) implies (3.10).
Remark 3.13: Results in the spirit of Theorems 3.5 and 3.9 have been obtained
by Benci [9]) for mappings ¢ which are equivariant homeomorphisms of E -
onto E of the form linear + compact.

Next a critical point theorem will be proved in which Theorem 3.5 plays
an important role. If I : E* R, we say I is a G-invariant functional
if I(gx) = I(x) for all g8G, x@E. For 1@ CYE,R), we say I
satisfies the Palais-Smale condition (PS) 4if any sequence (xy) along
which I is uniformly bounded and I'(x,) + 0 is a precompact sequence.
Here I'(x) denotes the Frechet derivative of I at x.

Suppose I satisfies
(I,) For all finite dimensional ‘subspaces E of E, there is an r(E) > 0
such that I(x) <0 for x @ E and Ixl > r(E).

Choosing E=E we see (I,) and the continuity of I imply that

o'
sup I ¢ =,

Eo

Theorem 3.14: Suppose that e,s! satisfy (*) and tecl'(e,R) isa G-

invariant functional which satisfies (PS) and (11). If further 1I

satisfies
(I) There is an my @€ ¥ and o > 0 such that
(3.14%) 14 12 max(0, ‘sup I),

399 n B"'o 'o

then I possesses an unbounded sequence of critical values.

Remark 3.15): A somewhat less general rciult: in a %, setting was provced in

2
' {71. One cannot obtain Theorem 3.14 by merely restricting to a subgroup of

1

S’ of order two and e.g. appealing to (7). 1Indeed a special free %, action




was required in (7] and furthermore due to the possible presence of finite
isotopy subgroups, restricting to 82 may produce a fixed point set. Other
22 and s! analogues of Theorem 3.14 can be found in Benci [9], [10), and
Bahri (11].

The proof of Theorem 3.14 will be accomplished in several steps. I.et
R,  r(E;) obtained via (Iy). Set Dy = Bp N E,. LetG, = {h e cto_,E) In
is equivariant and h(x) = x on (Eg U 3B ) n Dn}' Define

m

T = (h-('Dm\Y)ln >3j,nhe G,+ Y invariant, Ina(y) < m=j}.

b
Classes of sets somewhat like the T 3 were used in {5]. The sets I 3
possesses the following properties
Lemma 3.16: (1) l‘jﬂ c I‘j .
(11) If B @ l'j and Z is an invariant set with

Ind(z) < s < j, then B\Z e Tie®
(i11) If X @ C(E,E) is equivalent and X = id on

(B, v 3BRm) nD, for all m 4, then X : I'j + I'j, i.e.

Bel‘ja->x(n)cl‘.

o« ©Por (i1), let BeT, .

Proof: (i) 1is immediate by the definition of T 5

b
Therefore B = h(DmQY) with heG, and IndY € mj. Since B\Z =

h(D\Y U h"'(2)) with Inax u x"'(2)) < ma(y) + mam™'(z)

€ Ind(Y) + Ind(2) = m~i+s8 = m-(3~-8) via 2° anda 1° of Lewma 3.1,

B\zeTrl j-g® lastly (iil) follows since if BeT,, B = R{O_\¥), then

j’

X°hegGy and X(h(D \Y)) = X ¢ h(D_\ Y).

With the aid of these sets T we define a sequence of minimax values:

jl
(3.17) cj = inf sup I(u), jen
sel', ues
3
> .
Since rjﬂ cl'j. we have cj” cj

-21-




m,+1

Proof: let B @ rm

lemma 3.18: For 3j ? mo+1, cj > ¢ > sup I.

0 Eo

. B = h(D \¥) >
0_" Therefore B h(Dm Y) where heG, m mo+1 and

Ind(Y) € m- m =1, let P <R . By Theorem 3.5, if X = {x € Dmlh(x) e

1
B/_n E }, IndX>m-m,. Therefore Ind X\Y > m - m, = (m-m-1) = 1 and

P 0
()
—_— —_ 1
X\Y * ¢. Since h(X\Y) < W = h(X\Y) n 3, nE by 2° of Lemma 3.1,
0
W#* ¢, Hence if weBnw
(3.19) sup I » I(w) ? inf I > inf  I.
B w 9B nE
o'm
(]
Since (3.19) holds for all Be T ,
m, +1
(3.20) c > inf 1
no+1 B nn"
P m

0

and the lemma follows from (3.14°)
To continue we need a variant of a standard "Deformation Theorem". Let
K = {x @ ElI(x) = ¢ and I'(x) = 0} and A = {x e El1(x) € c}.

lemma 3.21: Iet I @ c! (E,R) be G-invariant and satisfy (PS). Then for

any c @ R, € > 0, and invariant neighborhood 0 of Koo there exists

€ce (0,6) and n e c([0,1] X E,E) such that:

1 n(t,x) = x if x @ 1-1((c-E,c+E])

®

2 NOA N0 ) A

[

3 pe 4 Kc = ¢, n(1,Ac+e) c Ac-c

s’ n(t,x) is G-equivariant for each t e (0,1].

Proof: The result without the G equivariance or invariance statemer.:s can
be found in {12) or [13]. To obtain 4° also we need only modify these
proofs by averaging over G to obtain a G equivariant pseudogradiant vector

field as in (9] or [14).

-22-
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Now we can show that the cj's are indeed critical values of 1I
together with a multiplicity statement:

Lemma 3.22: For each 3§ ? mo+1, ¢:j is a critical value of I. Moreover if

moeoom = > .
cj+1 cj+p c, Ind(Kc) P
Proof: It suffices to prove the stronger multiplicity assertion. Thus
suppose Ind(l(c) € p-1. BY (PS), K. is compact. It is also invariant.
Hence by 3° of Lemma 3.1, there is a & > 0 such that 1(N6(Kc)) - i(xc).

By Lemma 3.21 with 0= int Ng(Kk) and € =% (c"'o‘" - max(sup I1,0)) > 0,

E
there is an € e (0,6) and mapping n such that 0
(3.23) N(A_ \Ng (K)) <A .
Choose BeTl such that
i+
(3.24) sup I € c+€
B

By (ii) of lLemma 3.16, sins(xe) e rjﬂ. By our choice of €, n(1,*) = id

on (!0 v 3BR ) n Dm for all m & W. Hence by (iii) of Lemma 3.16,
m

ﬂ(1,B\N6(Kc)) =geT

j'H‘ Hence
(3.25) s;p T2 e,
while by (3.23)-(3.24),
(3-26) sthp I < cj.._1 - €,

a contradiction.

Remark 3.27: Note that for 3§ > m_+1, "c NE =¢ via Lemma 3.18. Hence our

0 0
)
multiplicity statement is not due to any contribution from PFixG.
To complete the proof of Theorem 3.14, we will show

Lerma 3.28: cj*.g_a_j*'.
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Proof: Since 541 > cj, if cj A as -+ =, (:j + ¢ < *®, Arquing as in
(71, let K= {xe Ele ,, < I(x) ¢ C and 1I'(x) = 0}. By (PS) K 1is
0

compact and by Remark 3.27 and 3° of Lemma 3.1 Ind(K) < ® and for some
§>0, Id(Ng(K)) =maKk. Let 3 =1Ind K. By Lemma 3.21 with ¢ = c

and E=c-c there is8 an € € (0,6-:) and equivariant

mo+1'
N(1,°):A_  \int Ng(K) * A_ . Let m be the smallest integer 2 m,+1 such
c+e c=€
that ¢ >c-€. Let BeT such that
m m+j
sup I € ¢ + €
B

As in lemma 3.22, B\NG(K) and n(1,B\N6(R)) £ Q0 belong to Pm.

Consequently

¢m<m;x1<3-e<cm,
} a contradiction.
Remark 3.29: In applications [6), one generally has I(x) « Xx) + bix}
where Q is a quadratic form with ¢ positive definite on Et for some k >
0 and b is weakly continuous with b(0) = G. Hence for any fixed

p>0, 2 1?2 Bmpz for m > k and 8, bounded away from 0 while
9B_nE
P n

S

bi 1 +0 as m * *® gince x e 3Bp nE L implies X, converges weakly
3apnzm m

to 0 and therefore b(xm) + 0 by the weak ocontinuity of b. Thus (3.15) is

satisfied. Hypotheses (I,) 1is satisfied if Db |is "superquadratic” i.e.
grows more rapidly than quadratically in an appropriate sense. See[7]. f
Remark 3.30: The novelty of Theorem 3.14 is not so much the conclusion of the

theorem, since it is close to results of {9] and {(11] but in the minimax

TR LN

characterization it provides for the critical values ¢ 3 This characterization

S

has proved to be useful in some recent perturbation results [6]).
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