FINAL TECHNICAL SUMMARY REPORT
for the period
1 October 1980 - 30 September 1981

THERMODYNAMICS OF ORGANIC COMPOUNDS

Bartlesville Energy Technology Center
Department of Energy
Bartlesville, Oklahoma

Research sponsored by:
Air Force Office of Scientific Research (NA)
Department of the Air Force
Contract No. AFOSR-ISSA 81-00013
Project No. 2388/91

Approved for public release; distribution unlimited.
FINAL TECHNICAL SUMMARY REPORT
for the period
1 October 1980 - 30 September 1981

THERMODYNAMICS OF ORGANIC COMPOUNDS

Bartlesville Energy Technology Center
Department of Energy
Bartlesville, Oklahoma

Research sponsored by:

Air Force Office of Scientific Research (NA)
Department of the Air Force

Contract No. AFOSR-ISSA 81-00013
Project No. 2308/B1

Approved for public release; distribution unlimited.
Title: Thermodynamics of Organic Compounds

Performing Organization: Bartlesville Energy Technology Center, Department of Energy, Bartlesville, OK 74005-1398

Contract or Grant Number: AFOSR-ISSA 81-00013

Abstract:
The research effort continues to be focused on high density/high energy hydrocarbons. In cooperation with researchers at Wright-Patterson Air Force Base, heats of combustion are measured for constituents of current ramjet fuels and for finished fuels; meanwhile, pure hydrocarbons are synthesized for heat-of-combustion measurement whose unusual steric or strain energies may contribute to design of high energy/high density fuels of the future.
Four pure hydrocarbons were studied during the current reporting period that were selected among the alkynaphthalenes and indans that may exhibit unusual steric energies. One unusual hydrocarbon, with very high density and a "cage-like" molecular structure, was also studied during this period. This substance is undergoing preliminary testing as an experimental fuel. Synthesis and purification of hydrocarbons for future study are in progress at Oklahoma State University. New equipment and procedures were developed for application of the differential scanning calorimeter on measurements of heat capacity of fuels and their constituents.

Preparation is underway to study the heat of combustion of several special liquid hydrocarbon fuels in cooperation with researchers at Wright-Patterson Air Force Base.

Results of past and present research done under AFOSR sponsorship were prepared for publication, and two journal articles were published.
THERMODYNAMICS OF ORGANIC COMPOUNDS

* : * : * : * : * : * : * : *

Bartlesville Energy Technology Center
Department of Energy
Bartlesville, Oklahoma

Project Director: W. D. Good Report* prepared by:

N. K. Smith
B. E. Gammon
W. D. Good

W. D. Good, Division Director
H. R. Johnson, Director

* Synthesis and purification of research samples were provided by Professor E. J. Eisenbraun, Oklahoma State University. Samples were produced by purchase agreement for this project.

Qualified requestors may obtain additional copies from the Defense Documentation Center, all others should apply to the National Technical Information Service.

Approved for public release; distribution unlimited.

Conditions of Reproduction

Reproduction, translation, publication, use and disposal in whole or in part by or for the United States Government is permitted.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>RESEARCH PROGRESS</td>
<td>1</td>
</tr>
<tr>
<td>1. ENTHALPY OF COMBUSTION</td>
<td>1</td>
</tr>
<tr>
<td>Alkynaphthalenes and Indans</td>
<td>1</td>
</tr>
<tr>
<td>High Density/High Energy Hydrocarbons</td>
<td>10</td>
</tr>
<tr>
<td>2. DIFFERENTIAL SCANNING CALORIMETRY</td>
<td>13</td>
</tr>
<tr>
<td>4. PUBLICATIONS</td>
<td>14</td>
</tr>
</tbody>
</table>
FOREWORD

This research program consists of an integrated and interrelated effort of basic and applied research in chemical thermodynamics and thermochemistry. Knowledge of variation of physical and thermodynamic properties with molecular structure is used to select compounds for study that because of high ring strain or unusual steric effects may have good energy characteristics per unit volume or per unit mass and thus be useful in the synthesis of high energy fuels. These materials are synthesized, and their thermodynamic properties are evaluated. In cooperation with researchers at Wright-Patterson Air Force Base, ramjet fuels currently in use are subjected to careful thermodynamic evaluation by measurements of heat capacity, enthalpy of combustion and vapor pressure.
ABSTRACT

The research effort continues to be focused on high density/high energy hydrocarbons. In cooperation with researchers at Wright-Patterson Air Force Base, heats of combustion are measured for constituents of current ramjet fuels and for finished fuels; meanwhile, pure hydrocarbons are synthesized for heat-of-combustion measurement whose unusual steric or strain energies may contribute to design of high energy/high density fuels of the future.

Four pure hydrocarbons were studied during the current reporting period that were selected among the alkynaphthalenes and indans that may exhibit unusual steric energies. One unusual hydrocarbon, with very high density and a "cage-like" molecular structure, was also studied during this period. This substance is undergoing preliminary testing as an experimental fuel. Synthesis and purification of hydrocarbons for future study are in progress at Oklahoma State University. New equipment and procedures were developed for application of the differential scanning calorimeter on measurements of heat capacity of fuels and their constituents.

Preparation is underway to study the heat of combustion of several special liquid hydrocarbon fuels in cooperation with researchers at Wright-Patterson Air Force Base.

Results of past and present research done under AFOSR sponsorship were prepared for publication, and two journal articles were published.
RESEARCH PROGRESS

1. ENTHALPY OF COMBUSTION

a. Alkynaphthalenes and Indans

Enthalpies of combustion were measured for four compounds. Summaries of combustion experiments, pictorial formulas, combustion reactions, and molar values of enthalpy of combustion and formation are given for 1-ethyl-8-methylnaphthalene (Tables 1 and 2), 1-isopropyl-8-methylnaphthalene (Tables 3 and 4), and 1,6-dimethylindan (Tables 7 and 8). Similar measurements have been reported for 2-ethyl-6-methylnaphthalene,¹ a series of dimethylnaphthalenes,² and 1,7-dimethylindan.³

Synthesis of 2-isopropyl-6-methylnaphthalene and 1-isopropyl-7-methylindan are in progress in the laboratories of Professor E. J. Eisenbraun at Oklahoma State University. It is not yet possible to make all of the gaseous state comparisons desirable, but qualitatively it can be said that the 1,8-substituted naphthalenes are showing the expected high steric energies and that the 1,7-substituted indans are showing little or no steric effect. This may yet be found with more alkyl group substitution in the 1-position.

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>m'(compound)/g</td>
<td>0.729397</td>
<td>0.731212</td>
<td>0.741948</td>
<td>0.752954</td>
<td>0.742284</td>
<td>0.743978</td>
<td>0.743330</td>
<td>0.744220</td>
</tr>
<tr>
<td>m''(auxiliary oil)/g</td>
<td>0.067386</td>
<td>0.063239</td>
<td>0.055567</td>
<td>0.043203</td>
<td>0.053257</td>
<td>0.051743</td>
<td>0.052305</td>
<td>0.050792</td>
</tr>
<tr>
<td>m'''(fuse)/g</td>
<td>0.001003</td>
<td>0.000980</td>
<td>0.000936</td>
<td>0.000959</td>
<td>0.000959</td>
<td>0.000918</td>
<td>0.000963</td>
<td>0.001001</td>
</tr>
<tr>
<td>n(H$_2$O)/mol</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
</tr>
<tr>
<td>$\Delta t_C/k = (t_f - t_l + \Delta t_{corr})/K$</td>
<td>2.00793</td>
<td>2.00084</td>
<td>2.00059</td>
<td>2.00024</td>
<td>2.00075</td>
<td>2.00132</td>
<td>2.00100</td>
<td>2.00022</td>
</tr>
<tr>
<td>c(color)($-\Delta t_C$)/cal$_{th}$</td>
<td>-8046.27</td>
<td>-8017.85</td>
<td>-8016.86</td>
<td>-8015.43</td>
<td>-8017.50</td>
<td>-8019.80</td>
<td>-8018.50</td>
<td>-8015.36</td>
</tr>
<tr>
<td>ϵ(cont)($-\Delta t_C$)/cal$_{th}$</td>
<td>-8.94</td>
<td>-8.74</td>
<td>-8.82</td>
<td>-8.68</td>
<td>-8.62</td>
<td>-8.67</td>
<td>-8.75</td>
<td>-8.76</td>
</tr>
<tr>
<td>ΔE_{ign}/cal$_{th}$</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>$\Delta E_{(corr to std states)}$/cal$_{th}$</td>
<td>3.95</td>
<td>3.94</td>
<td>3.97</td>
<td>3.99</td>
<td>3.97</td>
<td>3.97</td>
<td>3.97</td>
<td>3.97</td>
</tr>
<tr>
<td>(-m'$(\Delta E/m$)(auxiliary oil))/cal$_{th}$</td>
<td>741.95</td>
<td>695.91</td>
<td>588.81</td>
<td>475.42</td>
<td>586.06</td>
<td>569.40</td>
<td>575.59</td>
<td>558.93</td>
</tr>
<tr>
<td>(-m'''$(\Delta E/m$)(fuse))/cal$_{th}$</td>
<td>4.06</td>
<td>3.97</td>
<td>3.79</td>
<td>3.88</td>
<td>3.88</td>
<td>3.72</td>
<td>3.90</td>
<td>4.06</td>
</tr>
<tr>
<td>$(m'$(\Delta E/m$(compound))$/cal$_{th}$</td>
<td>-7305.47</td>
<td>-7322.58</td>
<td>-7428.93</td>
<td>-7540.83</td>
<td>-7432.24</td>
<td>-7451.39</td>
<td>-7443.62</td>
<td>-7456.99</td>
</tr>
<tr>
<td>$(\Delta E/m$(compound))$/cal$_{th}$ per g</td>
<td>-10015.77</td>
<td>-10014.31</td>
<td>-10012.74</td>
<td>-10015.00</td>
<td>-10012.66</td>
<td>-10015.60</td>
<td>-10013.88</td>
<td>-10013.14</td>
</tr>
<tr>
<td>$(\Delta E/m$(compound))$/cal$_{th}$ per g</td>
<td>-10013.84 ± 0.49 (mean and standard deviation of the mean)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* TABLE 1. Summary of Calorimetric Experiments with 1-Ethyl-8-methylanthracene

(cal$_{th}$ = 4.184 J)

b ϵ(cont)($t_f - 298.15$ K) + ϵ(cont)(298.15 K - $t_f + \Delta t_{corr}$).

c Items 81 to 85, 87 to 90, 93 and 94 of the computation form of Hubbard et al (footnote a).
TABLE 2. Derived Molar Thermochemical Values for 1-Ethyl-8-methylnaphthalene at 298.15 K

\[\text{cal}_{10} = 4.184 \text{ J} \]

\[
\begin{align*}
\text{C}_{13}\text{H}_{14}(l) + \frac{33}{2} \text{O}_2(g) &= 13 \text{CO}_2(g) + 7 \text{H}_2\text{O}(l) \\
\Delta E^\circ/N &= -10015.77 \text{ CAL g}^{-1} \\
&\quad -10014.31 \\
&\quad -10012.74 \\
&\quad -10015.00 \\
&\quad -10012.66 \\
&\quad -10015.60 \\
&\quad -10013.88 \\
&\quad -10013.14 \\
&\quad -10011.43 \\
\text{MEAN} &= -10013.84 \\
\text{STD. DEV. OF MEAN} &= 0.49 \\
\Delta E^\circ &= -1704.92 \pm 0.26 \text{ KCAL MOL}^{-1} \\
\Delta H^\circ &= -1707.00 \pm 0.26 \text{ KCAL MOL}^{-1} \\
\Delta H_f^\circ &= +6.13 \pm 0.30 \text{ KCAL MOL}^{-1} \\
\Delta H_f^\circ(g) &= +23.45 \pm 0.35 \text{ KCAL MOL}^{-1} \\
\text{CO}_2 \text{ RECOVERY} &= 99.991 \pm 0.005\% \text{ (MEAN AND SDM)}
\end{align*}
\]
TABLE 3. Summary of Calorimetric Experiments with 1-Isopropyl-8-methylnaphthalene*
\((\text{cal}_{th} = 4.184 \text{ J}) \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m') (compound)/g</td>
<td>0.688767</td>
<td>0.703508</td>
<td>0.708668</td>
<td>0.704550</td>
<td>0.729591</td>
<td>0.716324</td>
<td>0.724230</td>
<td>0.690375</td>
</tr>
<tr>
<td>(m'') (auxiliary oil)/g</td>
<td>0.096079</td>
<td>0.083049</td>
<td>0.078671</td>
<td>0.082190</td>
<td>0.059492</td>
<td>0.071274</td>
<td>0.063638</td>
<td>0.095237</td>
</tr>
<tr>
<td>(m''') (fuse)/g</td>
<td>0.000963</td>
<td>0.000918</td>
<td>0.000868</td>
<td>0.000920</td>
<td>0.001033</td>
<td>0.001053</td>
<td>0.001173</td>
<td>0.001008</td>
</tr>
<tr>
<td>(n_1^2) (H_2O)/mol</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
</tr>
<tr>
<td>(\Delta C/K = (t_f - t_i + \Delta t_{corr})/K)</td>
<td>1.99968</td>
<td>2.00115</td>
<td>2.00205</td>
<td>2.00142</td>
<td>2.00219</td>
<td>2.00119</td>
<td>2.00037</td>
<td>2.00164</td>
</tr>
<tr>
<td>(\epsilon(\text{calor}) (\Delta C)/\text{cal}_{th})</td>
<td>-8013.69</td>
<td>-8019.56</td>
<td>-8023.17</td>
<td>-8020.65</td>
<td>-8023.75</td>
<td>-8019.72</td>
<td>-8016.43</td>
<td>-8021.51</td>
</tr>
<tr>
<td>(\epsilon(\text{cont}) (\Delta C)/\text{cal}_{th})</td>
<td>-8.71</td>
<td>-8.70</td>
<td>-8.69</td>
<td>-8.75</td>
<td>-8.74</td>
<td>-8.70</td>
<td>-8.69</td>
<td>-8.71</td>
</tr>
<tr>
<td>(\Delta E(\text{ign})/\text{cal}_{th})</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>(\Delta E(\text{corr to std states})/\text{cal}_{th})</td>
<td>0.065</td>
<td>0.067</td>
<td>0.065</td>
<td>0.065</td>
<td>0.065</td>
<td>0.065</td>
<td>0.065</td>
<td>0.065</td>
</tr>
<tr>
<td>([(-m''(\Delta E/m)(auxiliary oil))/\text{cal}_{th}])</td>
<td>1057.29</td>
<td>913.90</td>
<td>865.73</td>
<td>904.45</td>
<td>654.67</td>
<td>784.33</td>
<td>700.30</td>
<td>1040.22</td>
</tr>
<tr>
<td>([(-m'''(\Delta E/m)(fuse))/\text{cal}_{th}])</td>
<td>3.90</td>
<td>3.72</td>
<td>3.51</td>
<td>3.72</td>
<td>3.72</td>
<td>4.18</td>
<td>4.26</td>
<td>4.75</td>
</tr>
<tr>
<td>(\Delta E(\text{m})/\text{cal}_{th})</td>
<td>-6957.29</td>
<td>-7196.67</td>
<td>-7158.65</td>
<td>-7117.26</td>
<td>-7369.63</td>
<td>-7235.84</td>
<td>-7316.07</td>
<td>-6974.19</td>
</tr>
<tr>
<td>(\Delta E(\text{m})/\text{cal}_{th}) per g</td>
<td>-10101.08</td>
<td>-10101.76</td>
<td>-10101.56</td>
<td>-10101.86</td>
<td>-10101.04</td>
<td>-10101.36</td>
<td>-10101.66</td>
<td>-10102.02</td>
</tr>
<tr>
<td>(\Delta E(\text{m})/\text{cal}_{th}) per g</td>
<td>-10101.57 ± 9.13 (mean and standard deviation of the mean)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The symbols and abbreviations of this table are those of W. M. Hubbard et al, Experimental Thermochemistry, Chap. 5, pp. 75-128. F. D. Rossini, editor. Interscience: 1956.

b \(\epsilon^t(\text{cont})(t_f - 298.15 K) + \epsilon^t(\text{cont})(298.15 K - t_f + \Delta t_{corr}) \).

c Items 81 to 85, 87 to 90, 93 and 94 of the computation form of Hubbard et al (footnote a).
TABLE 4. Derived Molar Thermochemical Values for
1-Isopropyl-8-methylnaphthalene at 298.15 K
(cal_{th} = 4.184 J)

\[
\begin{align*}
C_{14}H_{16}(l) + 18 \text{O}_2(g) &= 14 \text{CO}_2(g) + 8 \text{H}_2\text{O}(l) \\
\Delta E_c^o/M &= -10101.08 \text{ CAL G}^{-1} \\
&= -10101.76 \\
&= -10101.56 \\
&= -10101.86 \\
&= -10101.04 \\
&= -10101.36 \\
&= -10101.86 \\
&= -10102.02 \\
\text{MEAN} &= -10101.57 \\
\text{STD. DEV. OF MEAN} &= \pm 0.13 \\
\Delta E_c^o &= -1861.55 \pm 0.24 \text{ KCAL MOL}^{-1} \\
\Delta H_c^o &= -1863.92 \pm 0.24 \text{ KCAL MOL}^{-1} \\
\Delta H_f^o &= +0.69 \pm 0.30 \text{ KCAL MOL}^{-1} \\
\text{CO}_2 \text{ RECOVERY} &= 99.96 \pm 0.01\% \text{ (MEAN AND SDM)}
\end{align*}
\]
TABLE 5. Summary of Calorimetric Experiments with 1-Isopropyl-6-methylindan

(cal_th = 4.184 J)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>m'(compound)/g</td>
<td>0.70383</td>
<td>0.70973</td>
<td>0.698597</td>
<td>0.747474</td>
<td>0.754828</td>
<td>0.742998</td>
</tr>
<tr>
<td>m''(auxiliary oil)/g</td>
<td>0.063037</td>
<td>0.056848</td>
<td>0.070093</td>
<td>0.036883</td>
<td>0.026612</td>
<td>0.029290</td>
</tr>
<tr>
<td>m'''(fusel)/g</td>
<td>0.001245</td>
<td>0.001006</td>
<td>0.001271</td>
<td>0.001196</td>
<td>0.001036</td>
<td>0.001101</td>
</tr>
<tr>
<td>n(H_2O)/mol</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
</tr>
<tr>
<td>A\textsubscript{C}/K = (t_f - t_i + \Delta t_{corr})/K</td>
<td>1.99461</td>
<td>1.99280</td>
<td>2.00063</td>
<td>2.03585</td>
<td>2.02654</td>
<td>2.00320</td>
</tr>
<tr>
<td>C(calor)(-A\textsubscript{C})/cal_th</td>
<td>-7993.36</td>
<td>-7986.10</td>
<td>-8017.49</td>
<td>-8158.64</td>
<td>-8121.30</td>
<td>-8027.70</td>
</tr>
<tr>
<td>AE\textsubscript{ign}/cal_th</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>AE(corr to std states)/cal_th</td>
<td>3.38</td>
<td>3.38</td>
<td>3.38</td>
<td>3.50</td>
<td>3.50</td>
<td>3.40</td>
</tr>
<tr>
<td></td>
<td>693.68</td>
<td>625.57</td>
<td>771.33</td>
<td>405.87</td>
<td>292.85</td>
<td>322.32</td>
</tr>
<tr>
<td></td>
<td>5.04</td>
<td>4.07</td>
<td>5.15</td>
<td>4.84</td>
<td>4.19</td>
<td>4.45</td>
</tr>
<tr>
<td></td>
<td>-7299.76</td>
<td>-7361.56</td>
<td>-7246.12</td>
<td>-7753.92</td>
<td>-7830.18</td>
<td>-7706.87</td>
</tr>
<tr>
<td></td>
<td>-10371.44</td>
<td>-10372.34</td>
<td>-10372.39</td>
<td>-10373.50</td>
<td>-10373.46</td>
<td>-10372.66</td>
</tr>
<tr>
<td></td>
<td>-10372.63 ± 0.32 (mean and standard deviation of the mean)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a The symbols and abbreviations of this table are those of W. N. Hubbard et al, \textit{Experimental Thermochemistry}, Chap. 5, pp. 75-128. F. D. Rossini, editor. Interscience: 1956.

b \epsilon_i^f(cont)(t_i - 298.15 K) + \epsilon_i^f(cont)(298.15 K - t_f + \Delta t_{corr}).

c Items 81 to 85, 87 to 90, 93 and 94 of the computation form at Hubbard et al (footnote a).
TABLE 6. Derived Molar Thermochemical Values for 1-Isopropyl-6-methylindan at 298.15 K

\[(\text{cal}_{\text{th}} = 4.184 \, \text{J})\]

\[
\begin{align*}
\text{C}_{13}\text{H}_{18}(l) + \frac{35}{2} \, \text{O}_2(g) & = 13 \, \text{CO}_2(g) + 9 \, \text{H}_2\text{O}(l) \\
\Delta E^*/M & = -10371.44 \, \text{CAL} \, \text{G}^{-1} \\
& -10372.34 \\
& -10372.39 \\
& -10373.50 \\
& -10373.46 \\
& -10372.66 \\
\text{MEAN} & = -10372.63 \\
\text{STD. DEV. OF MEAN} & = \pm 0.32 \\
\Delta E^* & = -1807.83 \pm 0.26 \, \text{KCAL} \, \text{MOL}^{-1} \\
\Delta H^* & = -1810.50 \pm 0.26 \, \text{KCAL} \, \text{MOL}^{-1} \\
\Delta H^f & = -27.00 \pm 0.30 \, \text{KCAL} \, \text{MOL}^{-1} \\
\text{CO}_2 \text{ RECOVERY} & = 99.98 \pm 0.03 \% \, (\text{MEAN AND SDM})
\end{align*}
\]
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>m' (compound)/g</td>
<td>0.703631</td>
<td>0.712170</td>
<td>0.718148</td>
<td>0.732350</td>
<td>0.711815</td>
<td>0.714155</td>
<td>0.701059</td>
<td>0.691078</td>
</tr>
<tr>
<td>m'' (auxiliary oil)/g</td>
<td>0.072266</td>
<td>0.065313</td>
<td>0.060040</td>
<td>0.047014</td>
<td>0.066093</td>
<td>0.063630</td>
<td>0.076300</td>
<td>0.080669</td>
</tr>
<tr>
<td>m''' (fused)/g</td>
<td>0.001150</td>
<td>0.000970</td>
<td>0.001068</td>
<td>0.001201</td>
<td>0.000888</td>
<td>0.000972</td>
<td>0.000936</td>
<td>0.001006</td>
</tr>
<tr>
<td>nH2O/mol</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
</tr>
<tr>
<td>(\Delta t_c/K)</td>
<td>1.99688</td>
<td>1.99940</td>
<td>2.00004</td>
<td>2.00129</td>
<td>2.00030</td>
<td>1.99987</td>
<td>2.00127</td>
<td>1.58779</td>
</tr>
<tr>
<td>(\varepsilon_{\text{cal}} (\Delta t_c)/\text{cal}_{th})</td>
<td>-8001.99</td>
<td>-8012.08</td>
<td>-8014.66</td>
<td>-8015.65</td>
<td>-8015.71</td>
<td>-8013.98</td>
<td>-8019.56</td>
<td>-7965.56</td>
</tr>
<tr>
<td>(\varepsilon_{\text{cont}} (\Delta t_c)/\text{cal}_{th})</td>
<td>-8.82</td>
<td>-8.69</td>
<td>-8.71</td>
<td>-8.81</td>
<td>-8.86</td>
<td>-8.89</td>
<td>-8.83</td>
<td>-8.72</td>
</tr>
<tr>
<td>(\Delta E_{\text{ign}}/\text{cal}_{th})</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>(\Delta E_{\text{corr to std states}}/\text{cal}_{th})</td>
<td>3.56</td>
<td>3.58</td>
<td>3.59</td>
<td>3.61</td>
<td>3.58</td>
<td>3.56</td>
<td>3.56</td>
<td>3.52</td>
</tr>
<tr>
<td>(1-m'' (\Delta E_{th}/m) (auxiliary oil)/\text{cal}_{th})</td>
<td>795.24</td>
<td>718.74</td>
<td>660.71</td>
<td>517.36</td>
<td>727.32</td>
<td>700.21</td>
<td>839.64</td>
<td>887.71</td>
</tr>
<tr>
<td>(-m''' (\Delta E_{th}/m) (fused)/\text{cal}_{th})</td>
<td>4.66</td>
<td>3.93</td>
<td>4.32</td>
<td>4.86</td>
<td>3.56</td>
<td>3.94</td>
<td>3.79</td>
<td>4.37</td>
</tr>
<tr>
<td>(m' (\Delta E_{th}/m) (compound)/\text{cal}_{th})</td>
<td>-7207.17</td>
<td>-7294.35</td>
<td>-7354.74</td>
<td>-7502.45</td>
<td>-7289.93</td>
<td>-7314.96</td>
<td>-7181.23</td>
<td>-7078.79</td>
</tr>
<tr>
<td>((\Delta E_{th}/m) (compound)/\text{cal}_{th})</td>
<td>-10242.83</td>
<td>-10242.42</td>
<td>-10241.26</td>
<td>-10244.35</td>
<td>-10241.33</td>
<td>-10242.82</td>
<td>-10243.40</td>
<td>-10243.11</td>
</tr>
<tr>
<td>((\Delta E_{th}/m) (compound)/\text{cal}_{th}) per g</td>
<td>-10242.69 ± 0.36 (mean and standard deviation of the mean)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b $\varepsilon^i(\text{cont}) (t_f - 298.15\ K) + \varepsilon^i(\text{cont}) (298.15\ K - t_f + \Delta t_{corr})$.

c Items 81 to 85, 87 to 90, 93 and 94 of the computation form of Hubbard et al (footnote a).
TABLE 8. Derived Molar Thermochemical Values for 1,6-Dimethyldian at 298.15 K
(cal_th = 4.184 J)

C_{11}H_{14}(l) + 29/2 O_2(g) = 11 CO_2(g) + 7 H_2O(l)

\[\Delta E^0/M = -10242.83 \text{ CAL G}^{-1} \]

-10242.42
-10244.26
-10244.35
-10244.33
-10242.82
-10243.40
-10243.11

MEAN: -10242.69

STD. DEV. OF MEAN: ±0.36

\[\Delta H^0 = -1497.83 \pm 0.20 \text{ KCAL MOL}^{-1} \]

\[\Delta H^0 = -1499.91 \pm 0.20 \text{ KCAL MOL}^{-1} \]

\[\Delta H^0 = -12.86 \pm 0.25 \text{ KCAL MOL}^{-1} \]

CO_2 RECOVERY: 99.96 ± 0.01% (MEAN AND SDM)
b. High Density/High Energy Hydrocarbons

An unusual hydrocarbon with cage-like molecular structure, heptacyclotetradecane, was prepared and purified in the laboratories of Professor Alan Marchand at the University of Oklahoma. This crystalline material of high density should have excellent characteristics as a solid fuel or in slurry or solution applications. Summaries of its combustion experiments, its pictorial formula, the combustion reaction, and molar values of enthalpy of combustion and formation are given in Tables 9 and 10.
TABLE 9. Summary of Calorimetric Experiments with Keptacyclotetradecane\(^a\)
\((\text{cal}_{\text{th}} = 4.184 \text{ J})\)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m'(\text{compound})/g)</td>
<td>0.754177</td>
<td>0.797711</td>
<td>0.795936</td>
<td>0.800069</td>
<td>0.802865</td>
<td>0.803835</td>
<td>0.800235</td>
<td>0.801337</td>
</tr>
<tr>
<td>(m''''(\text{fuse})/g)</td>
<td>0.001743</td>
<td>0.001925</td>
<td>0.001883</td>
<td>0.001811</td>
<td>0.001593</td>
<td>0.001935</td>
<td>0.001811</td>
<td>0.001964</td>
</tr>
<tr>
<td>(n^1(\text{H}_2\text{O})/\text{mol})</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
<td>0.05535</td>
</tr>
<tr>
<td>(\Delta t_c/K = (t_f - t_i + \Delta t_{\text{corr}})/K)</td>
<td>1.88629</td>
<td>1.9537</td>
<td>1.99098</td>
<td>2.00102</td>
<td>2.00785</td>
<td>2.01057</td>
<td>2.00139</td>
<td>2.00442</td>
</tr>
<tr>
<td>(\varepsilon(\text{calor}) (-\Delta t_{C})/\text{cal}_{\text{th}})</td>
<td>-7559.28</td>
<td>-7996.39</td>
<td>-7978.82</td>
<td>-8019.04</td>
<td>-8046.41</td>
<td>-8057.32</td>
<td>-8020.54</td>
<td>-8032.68</td>
</tr>
<tr>
<td>(\varepsilon(\text{cont}) (-\Delta t_{C})/\text{cal}_{\text{th}})(^b)</td>
<td>-8.11</td>
<td>-8.63</td>
<td>-8.61</td>
<td>-8.65</td>
<td>-8.68</td>
<td>-8.74</td>
<td>-8.68</td>
<td>-8.69</td>
</tr>
<tr>
<td>(\Delta E_{\text{ign}}/\text{cal}_{\text{th}})</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>(\Delta E(\text{corr to std states})/\text{cal}_{\text{th}})(^c)</td>
<td>3.73</td>
<td>3.98</td>
<td>3.97</td>
<td>4.00</td>
<td>4.01</td>
<td>4.02</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td>([-m'/(\Delta E/m)(\text{fuse})]/\text{cal}_{\text{th}})</td>
<td>7.06</td>
<td>7.80</td>
<td>7.63</td>
<td>7.34</td>
<td>6.45</td>
<td>7.84</td>
<td>7.34</td>
<td>7.96</td>
</tr>
<tr>
<td>([-m'(\Delta E/m)(\text{compound})]/\text{cal}_{\text{th}})</td>
<td>-7556.42</td>
<td>-7993.07</td>
<td>-7975.65</td>
<td>-8016.17</td>
<td>-8044.45</td>
<td>-8054.03</td>
<td>-8017.71</td>
<td>-8029.23</td>
</tr>
<tr>
<td>([-(\Delta E/m)(\text{compound})]/\text{cal}_{\text{th}} \text{ per g})</td>
<td>-10019.42</td>
<td>-10020.00</td>
<td>-10020.47</td>
<td>-10019.35</td>
<td>-10019.68</td>
<td>-10019.50</td>
<td>-10019.24</td>
<td>-10019.79</td>
</tr>
<tr>
<td>([(\Delta E/m)(\text{compound})]/\text{cal}_{\text{th}} \text{ per g})</td>
<td>-10019.68 ± 0.14 (mean and standard deviation of the mean)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) The symbols and abbreviations of this table are those of W. N. Hubbard et al., Experimental Thermochemistry, Chap. 5, pp. 75-120. F. D. Rossini, editor. Interscience: 1956.

\(^b\) \(\varepsilon^1(\text{cont})(t_f - 298.15 \text{ K}) + \varepsilon^f(\text{cont})(298.15 \text{ K} - t_f + \Delta t_{\text{corr}})\).

\(^c\) Items 81 to 85, 87 to 90, 93 and 94 of the computation form of Hubbard et al (footnote a).
TABLE 10. Derived Molar Thermochemical Values for Heptacyclotetradecane at 298.15 K
(cal$_{th}$ = 4.184 J)

\[\text{C}_{14}\text{H}_{16}(c) + 18 \text{O}_2(g) = 14 \text{CO}_2(g) + 8 \text{H}_2\text{O}(l) \]

\[\Delta \overline{E}^\circ/M = -10019.42 \text{ CAL/G} \]

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-10020.00</td>
<td>-10020.47</td>
<td>-10019.35</td>
<td>-10019.68</td>
</tr>
<tr>
<td></td>
<td>-10019.50</td>
<td>-10019.20</td>
<td>-10019.79</td>
<td></td>
</tr>
<tr>
<td>MEAN</td>
<td>-10019.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STD. DEV. OF MEAN</td>
<td>±0.15 CAL/G</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\Delta E_c^\circ = -1846.46 \pm 0.24 \text{ KCAL/MOL} \]
\[\Delta H_c^\circ = -1848.83 \pm 0.24 \text{ KCAL/MOL} \]
\[\Delta H_f^\circ = -14.40 \pm 0.30 \text{ KCAL/MOL} \]

CO$_2$ RECOVERY \(99.90 \pm 0.01\)% (MEAN AND SDM)
Measurements were not made on materials for this project during the past year; however, new equipment and procedures were developed for applications of the DSC to measurements on such materials. The commercial cells used for DSC have three severe limitations: (1) they cannot be filled to more than 15%, usually less, of the volume available for the sample; (2) they cannot withstand more than 2 atmospheres of internal pressure; and (3) they do not make good thermal contact with the DSC head during measurements. For these reasons, reusable screw-cap cells were designed and built to obviate these problems. These cells were used to determine results reported last year on JP-10 and RJ-6. The cells still had one deficiency which has been eliminated by a new design. In the previous version, a sheet gasket was required for sealing the cells. Upon sealing the sheet gasket was extruded to form a wrinkle into the interior volume of the cell; this led to an uncertainty in the volume available to the sample. Equation 1 shows how the observed heat capacity, \(C_v^{II} \), along the saturation line designated by \(\sigma \), depends on the total volume, \(V_T \), available to the total number of moles of the sample, \(n_T \), of a pure substance.

\[
n C_v^{II} = n^l C_\sigma^l + n^g C_\sigma^g - \gamma_\sigma \left(\frac{n^l}{\rho^l} \alpha_\sigma + \frac{n^g}{\rho^g} \alpha_\sigma \right)
\]

\[
c_v^{II} = \left(C_\sigma^l - \gamma_\sigma \rho^l \alpha_\sigma \right) + \left(\frac{V_T}{n_T} - \frac{1}{\rho^l} \right) \left(\frac{d\rho}{dT} \right)_\sigma
\]

\[
c_p = C_\sigma^l + \gamma_\sigma \rho^l
\]

\[
\gamma_\sigma = \left(\frac{d\rho}{dT} \right)_\sigma
\]

\[
\alpha_\sigma = -\left(\frac{d\ln(p^l)}{dT} \right)_\sigma
\]
If the vapor pressure is small, the volume dependence is not significant, but for pressures even near or above boiling, this term can be a significant fraction of the measured value. For this reason, the cells were redesigned with a cone-shaped seal so that only a ring gasket was required for sealing, and thereby the internal volume of the sealed cells can be determined by a simple measurement with a micrometer. Thus, appropriate corrections can be determined and made with measurements from these cells.

4. PUBLICATIONS

DISTRIBUTION LIST

CONTRACTORS

Aerospace Corporation
The Ivan L Gitting Laboratories
Attn: Dr Charles M Randall
P O Box 95085
Los Angeles, CA 90045

National Bureau of Standards
Thermophysics Division
Attn: Dr Ared Cezairliyan
Washington, DC 20234

CINDAS
Purdue University Research Park
Attn: Dr H H Li
2595 Yeager Road
West Lafayette, IN 47907

Attn: Dr Stan Abramowitz
Attn: Dr H H Li Mr David Ditmars
Washington, DC 20234

Department of Energy
Bartlesville Energy Technology Center
Attn: Mr William D Good
Bartlesville, OK 74003

University of Nevada
Mackay School of Mines
Attn: Prof Eugene Miller
Reno, NV 89507

Dow Chemical Company
Thermal Laboratory, Bldg 1707
Attn: Dr Malcolm Chase
Midland, MI 48640

Purdue University
School of Mechanical Engineering
Properties Research Laboratory
Attn: Dr R F Taylor
2595 Yeager Road
West Lafayette, IN 47907

University of Manchester/UMIST
Department of Metallurgy
Attn: Dr Roy Taylor
Grosvenor Street
Manchester M1 7HS, ENGLAND

Space Sciences, Inc
Attn: Mr Milton Farber
135 W Maple
Monrovia, CA 91016

Department of Energy
Pittsburgh Energy Technology Center
Attn: Dr Francis E Spencer, Jr
P. O. Box 10940
Pittsburgh, PA 15236

SRI International
Physical Sciences Division
Attn: Dr D L Hildenbrand
Menlo Park, CA 94025

NON-CONTRACTORS

AFML/MXE (L Scott Theibert)
Wright-Patterson AFB, OH 45433

Jet Propulsion Laboratory
Attn: Mr. Theodore W Price
4800 Oak Grove Drive
Pasadena, CA 91103

AFML/LP (Dr Merrill L Minges)
Wright-Patterson AFB, OH 45433

Johns Hopkins University
Applied Physics Laboratory
Attn: Dr Robert Fristrom
Johns Hopkins Road
Laurel, MD 20810

AFML/MBC (Dr W C Kessler)
Wright-Patterson AFB, OH 45433
AFRPL/LKCB (Mr Curtis C Selph)
Edwards AFB, CA 93523

AFRPL/PACP (Dr David Mann)
Edwards AFB, CA 93523

AFWL/ALD (Dr Leroy Wilson)
Kirtland AFB, NM 87117

AFWL/ALD (Major David S Olson)
Kirtland AFB, NM 87117

AFAOL/RJT (Dr F D Stull)
Wright-Patterson AFB, OH 45433

U.S. Army Research Office
Attn: Dr David R Squire
P O Box 12211
Research Triangle Park, NC 27709

Atlantic Research Corporation
Attn: Dr Charles Henderson
5390 Cherokee Avenue
Alexandria, VA 22314

University of California
Department of Chemistry
Attn: Dr Leo Brewer
Berkeley, CA 94700

Cornell University
Department of Chemistry
Attn: Dr S H Bauer
Ithica, NY 14850

NSSC
Department of the Navy
Code NSEA-0331
Attn: Mr John W Murrin
Washington, DC 20360

Naval Ordnance Station
Attn: Mr Al Camp
Indian Head, MD 20640

NASA
Lewis Laboratories (Mail Stop 6-1)
Attn: Mr Sanford Gordon
Cleveland, OH 44135

NAS-NRC
Numerical Data Advisory Board
2101 Constitution Avenue, NW
Washington, DC 20418

National Bureau of Standards
OSRD
Attn: Dr David Lide
Washington, DC 20234

National Bureau of Standards
Chemical Thermodynamics Division
Attn: Mr Donald D Wagman
Washington, DC 20234

National Bureau of Standards
Office of Standard Reference
Materials
Attn: Dr Richard Kirby
Washington, DC 20234

National Bureau of Standards
Thermophysical Properties Division
Attn: Dr Jerry Hust
Boulder, CO 80302

Office of Naval Research
Attn: Mr Rudolph Marcus
1030 E Green Street
Pasadena, CA 91101

Office of Naval Research
Power Program, Code 473
Attn: Dr Richard Miller
800 North Quincy Street
Arlington, VA 22217

Rice University
Department of Chemistry
Attn: Dr John Margrave
Houston, TX 77001

United Technologies Corporation
Chemical Systems Division
Attn: Dr R O MacLaren
Sunnyvale, CA 94086

Chemical Propulsion Information
Agency
APL/JHU (2 copies)
Johns Hopkins Road
Laurel, MD 20810