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ABSTRACT

A new iterative method is presented for solvinq non-symmetric linear

systems of equations. The method requires that the symmetric part of the

matrix of the linear system be positive definite, and the method is efficient

only if the symmetric part is easily invertible. The method is modeled on the

conjuqate gradient method for symmetric positive definite systems and has the

finite termination property. The results from several numerical experiments

are presented and compared with a similar method proposed by Concus, Golub,

and Widlund.
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SIGNIFICANCE AND EXPLANATION

In this report a new method is presented for the solution of linear

systems of equations,

Ax =b

where the matrix A is a non-symmetric matrix. The matrix A can be written

as the sum of its symmetric and skew-symmetric parts

A -P+ Q

and the method requires that the symmetric part, P, be positive definite,

i.e.

(xPx) > 0

for all non-zero vectors x . The method is efficient only when the solution

of the linear system Py = c can be obtained easily. This is the case in

many problems such as the solution of elliptic equations whose hiqhest order

part is the Laplacian.

The method is modeled on the conjuqate gradient method which is a widely

used method for symmetric positive definite systems.

The responsibility for the wording and views expressed in this descriptive

summry lies with MRC, anti not with the author of this report. .
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A GENERALIZED CONJUGATE GRADIENT METHOD

FOR NON-SYMMETRIC SYSTEMS OF LINEAR EQUATIONS

John C. Strikwerda

1. Introduction

In this paper a generalized conjuqate gradient method for solving linear

systems of equations is presented. The proto-type for this method is the

system

(1.1) (1 + S)x = h

where S is a skew-symmetric matrix and I is the identity matrix. The

method is derived as an acceleration of the steepest descent method for the

system (1.1) where the norm of the residual is minimized.

Concus and Golub (1976) and Widlund (1978) have presented and discussed a

peneralized conjugate gradient method for non-symmetric linear systems which

has some similarities with the present method (see also Haqeman et al.

1980). Although both methods can he derived in several ways, the derivation

of the method of this paper is different in spirit from the method of Concus

and Golub (1976) and Widlund (1978) as given in their papers. Their method is

derived by imposing orthogonality constraints on an appropriate sequence of

vectors and the convergence properties are then deduced. The method presented

here is derived as an acceleration of a steepest descent method and the

orthogonality results then follow. As shown in section 4 the two methods have

similar rates of convergence and in the numerical experiments they behaved

similarly.

The method of this paper can he applied in Hilbert spaces as was done by

Widlund (I78), hut little would be gained by the extra generality so we will

consider the method only for finite-dimensional spaces.

Sponsored by the U1nited States Army under Contract No. DAAG29-80-C-0041. This
material is based tinon work stpported bv the National Science Poiindatinn under

Grant No. MCS-7M27062. Portions of this research were performed under NASA
Contract Noe. NAgI-15A10 and NASI-16394 while the author was in residence at
TCASP, NASA Tanalev Research Center, Hampton, VA 23665.
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2. Derivation of the Method.

Consider the system of linear equations

(2.1) Ax = b

where A is a real n x n matrix and b is a real n-vector. We decompose

A into its symmetric and skew-symmetric parts,

(2.2) A - P + Q

where P is the symmetric part of A and 0 is the skew-symmetric part,

i.e.

P (A + A T), 0 = (A - A T )
2 2

We assume that P is positive definite and hence the system (2.1) has a

unique solution.

We will begin by considering the special case of equation (1.1) where

P is the identity matrix. In section 5 we will show that the method can

treat those cases where the system

Pz = c

can be easily solved. This is the same situation considered by Concus and

Golub (1976) and Widlund (1978).

The standard conjugate gradient method (Hestenes and Stiefel (1952)) is

used to solve linear systems such as (2.1) when the matrix A is symmetric

positive definite. The method may be described as

a) x k+1= x + ykp

(2.3) b) rk + 1 = r - YkAp

c) k+1 =rk+1 
6 kpk

where the parameters Y k and 6 k-1 are determined so as to minimize

(rk+ 1, A'Irk+ 1) given rk and pk-1. The vector rk is the residual

b - Axk and so (2.3b) is a consequence of (2.3a). The values of yk and

6 k are
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2

Yk = Ir k  /(pk Apk

(2.4)

= Irk+1 12/Irk I26k

By analogy with the conjugate qradient method for positive definite

systems we consider the following iterative scheme for the system (1.1)

k+1 k k
a) w = w + Qkp

(2.5) b) rk+1 = rk - ak(I+S p
k

k+1 k+1 k
C) p = r - Skp

The parameters ak and 8k- 1 are to be chosen to minimize Irk+ 1 12

given rk  and pk-1. Exuation (2.5b) is a consequence of the definition of

the residual vector, rk = b - (I+S)wk, and (2.5a).

One obtains a steepest descent method by setting all k = 0, so

pk = r , and then ak = a' where
2 2 2

QL n = I /(I2~ r kI ISP kI
k+1 2

minimizes !rk+l 12

To derive our method we choose ak  to minimize Irk+l1 2 given pk. We

have
k+12 k2 2,aIkS kk21

(2.6) Irk+l 2 Irk2 - k(rI (I+S)Pk) +a k(I+S)p

and so

(2.7) ak = (r , (I+S)p k)/(Ipk 
2 + Ispk 21

is the optimal value of a . The first consequence of (2.7) is that

k+1 k
(2.8) (r + , (I+S)p k ) = 0

by (2.5b), and secondly, usina (2.8) with (2.5c)

k k k k k-1
(rk , (I+S)p k ) = (r , (I+S)(r k

-
8ki1T)

k k k k-I
= (r , (I+S)r k ) - k(r k , (I+S)p - )

2 -
= Irk!

Hence

(2.9) Ok = Irk, 2 /(Ipk2 + Ispki2)"

-3-



The relation (2.6) then becomes
2 2

(2.10) Irk+li 2 rkl i - N )

and since {rk 1 < Ir k, we have

From (2.S) and (2.5b) it also follows that

k+ l2 k+1 k
(2.11) Ir I = (r , r

We now determine k I qiven rk  and pk- 1. We see from (2.10) and

(2.9) that, qiven rk, Irk+l1 2  is minimized when ak is maximized and this

requires that Ipk2 + ,Sk ,  he minimized. We have

2 2
IP{+ Ispk _. ((I+S)pk (I+S)pk)

2

-. I(I+S)rkl - 2Bk1 ((I+S)r , (I+S)p
k- 1

2 )k-

and hence
(2.12) 0k I ' ((I+S)r 

k , (I+S)p k-)/(Ip k- + Ispk-Ii 2

From (2.12) and (2.5c) we have

(2.13) ((I+S)p , (I+S)p - ) 0

and by Rubtractina ak_I times (2.13) from (2.P) with k - 1 replacinq k

we obtain

k+I k-i
(2.14) (rk +  (I+S)p - ) 0

we now wish to obtain an expression for Bk  which is simpler than

(2.12). We have

k+1 k k+I k
((r+S)r 1

, (I+S)p ) = (Sr (I+S)p ) by (2.8)

I k+i k k+I
=- (Sr + , r r ) by (2.5h)

1 k+1 k
= a ( . , r )

Hence

-4-



k+1 k

2

8 k = (Sr k , r k)/Irk I

However,

k+1 k k+1 k
(Sr r) = -(rk +  Sr

-(rk+ 1, (I+S)rk) + Irk+ 12 by (2.11)

= -(r k + 1 , (I+S)(p k + 8 kpk-1 )) + Ir k+1 by (2.5c)

= Irk+11 2 by (2.8) and (2.13)

So

(2.15) 8k ' Irk+11 2/Irk 2 
= - ak by (2.10)

We now summarize the alqorithm.

k+1 k k
(2.16) a) w = w + akp

k+1 I
b) r = r - ak(I+s)pk

h) k+1 k+1 Ik
c) p = r - kp

with
2 2 2

d) a k = I k /(IpkI + Is p k

and 8k =1 -. ak"

For initial vectors we take w0 arbitrary, r0  p = b - (I+S)w0 .

-5-

- 5- .,.,



3. Orthogonality Relations.

The purpose of this section is to prove orthoqonality relations for the

vectors generated by the above alaorithm. The main result is contained in the

following theorem.

Theorem 3.1

For the algorithm (2.16)

(3.1) ((I+S)p i , (I+S)p j ) = 0

for i p j.

Proof

We begin by obtaining a three term recurrence relation for the vectors

pk . y eliminating the vectors rk from (2.16b) and (2.16c) we obtain

(32) k+1 kSpk k-1(3.2) pp -1I = 0

for k > 0 where p- 1 = 0.

First we show that (3.1) is true for i = 1, j = 0. This is immediate

from (3.2) and the skew-symmetrv of S

1 000
((I+S)p , (T+S)p) = -a 0((I+S)Sp , (I+S)p

0

Now assume that (3.1) is true for k ) i > j ) 0, we will show that it is

also true for k + 1 = i > j ) 0. If i = k+1 and j = k, (3.1) is true by

(2.13). If i = k+1 and j = k-i, we have by (3.2)

k+1 k-1
((I+S)p , (I+S)p

= (3 ((I+S)Spk, (I+S)p k - 1) + ak-1 (I+Slpk-1 2

Consider the first expression on the riqht-hand side of (3.3).

k k-i
((14S)SP , (I+S)p

k k-i
- -((I+S)p , (I+S)Sp - )

-6-



k k k-2 k-i
- -((I+S)P , (I+S)(-p + Bk 2 p )a/i

k-
2

., (I+S)pk I1 . •Q -

Thus (3.3) is equal to

k 2 k-i 2

9k-1 + k lI(I+s)p I

and by the expressions (2.16d) and (2.15) this is equal to

22 Irk 2

- r I I(++S)p-  + • I(I+S)pk - 1

Irk-11 2 k-i

Now for i - k+1 and J < k-1 the relation (3.2) follows easily.

((I+S)pk 1 (I+S)p)

k jk J- -\((I+S)Sp , (I+S)p j ) + Bk_1((T+S)p , (I+S)p

= (('+S)p k , (I+S)Spt )

((I+S)pk, (I+S)(p j
- BJpj))

S0

Thus the theorem is proved.

It follows that the vectors pk are linearly independent, as long as

they are non-zero, and thus the alqorithm must converqe in at most N steps,

where N is the dimension of the vector space.

Other orthoqonality relations are qiven in the next theorem.

Theorem 3. 2

For the alqorithm (2.16)

(3.4) (rk, (I+S)rj ) = 0 for I < k
k

(3.5) (r , (I+S)pj ) - 0 for j < k
(k+1 k

(3.6) (p p) = 0 for 0 ( k

k j k 0
(3.7) (rk , r ) - Crk , r ) for I ( k

-7-



Proof of (3.4)

00
For k = I and j = 0 (3.4) follows from (2.8) since pO = r When

j = k-I > 0, (rk , (I+S)r -1 ) = (rk, (I+S)(pk- + a k_2 pk ) = 0 by (2.8) and

(2.14). For j < k-i the result follows from Theorem 3.1 by induction, we

have

k I k-1 k-1
(r k , (I+S)r j ) (r -

, (I+S)r ) - k_((I+S)p -
, (I+S)r

k-1j i pj - 1

-a k1((I+S)pk-i, (I+S)(p + a jl)1

=0

Proof of (3.5)

By repeated use of (2.16) and (3.4)

k jjk
(r , (I+S)pj ) = (r , (I+S)rj ) - 0 ( r

k
, (I+S)p

-i

k 0

0r 0

by (3.4) since pO = r 0

Proof of (3.6).

By (3.2)

,p p - (pk-1(k+i pk) B k -i k)

k-i 1 0
= TI 81 (p 'pO)
i =0

Now by (2.16c) and (2.16b)

(p1 , pO) = Cr1, po) - 0o1pO{2

(p1p0 0rI 0 0

= (r , p ) a l((I +S )p O p ) - p0 1 2

= (r0 , p) - (ao+8o)0pO12 = 0

since p0 =r 0 and p0 +  I 0 I

_+80 i1



Proof of (3.7).

By (2.16b) for j ( k

(rk, rj) = (rk, rjl) - aj1(rk, (I+S)p j - )

k j-1
= (r , r ) by (3.5)

k 0
= (r , r ), by repetition.

This proves all the assertions of Theorem 3.2.

The relation (3.7) has the geometric interpretation that rk  is on the

sphere of radius -1 jrjI centered at +rj for each j less than k. This

again demonstrates the finite termination property of the method since N

distinct spheres through the origin in N-space can have only the origin as a

common point.



4. The Rate of Convergence

Considering the method (2.16) as an iterative method for solving (1.1),

it is natural to estimate the rate of convergence of the method in terms of

the spectral radius of S. For linear systems with a large number of

unknowns, such as arise from numerical approximations to partial differential

equations, the finite termination property is of little interest compared with

the rate of converqence.

Our first convergence results are stated in the following theorem.

Theorem 4.1

For the method (2.16) the following estimates hold.

(4.1) Irk+1 1/Irkl A

/1 +A2

(4.2) 
Irk+ 2I/Irk, A 2

where A is the spectral radius of S.

Proof

We begin with

Irk+1 12 = (rk+1 , rk) by (3.7)

k+1 k
= -(r 1

, Sr k ) by (3.4)

k k
= 0k((I+S)p k

, Srk ) by (2.16b)

k k k-i k
=a k((I+S)rk , Sr) -a kk- ((I+S)p -

, Srk ) by (2.16c)

2 aB
= Q kSrk2 - kk-i (rk- 1 - r k  Sr k by (2.16b)

kk-1

kl 2 ak 0k-I il 2
=akISr I- k r by (3.4) and (3.7)

This gives the estimate

(4.3) k-1 k k2 +A =

ak-l +k Irk12

-10-



2/ 2

since Bk -Irk+1 Irkl .

The estimate (4.1) follows from (4.3), since

Bk A2

akk
and a k = I - k . So

2 2 2

Ir k+1 2 /Irk, -Bk A21+ 2

which is (4.1).

The estimate (4.2) is obtained by finding the maximum of the product

Bk+IB k - (1 - ak+I)(I - ak) subject only to

1 1 2
(4.4) 7- + - . A + 2

k+1 k

which is equivalent to (4.3). The maximum of (1 - ak+ )(1 - ak) obviously

occurs when equality holds in (4.4). Thus

(1 a ck+1)( - = I a k+1- ak + ak+lck

(1 1
klaklk . 9 -

= 1 -ak+lak(A + 1)

and this quantity is maximized subject to (4.4) when

-1 a1 1 2ak+1 " 'k (A -+ 2). Hence

Bk+lB k (1 - (A2 + 1)/(_.A 2 + 1)2

A 2 2

2 +A 2

which is (4.2). This proves Theorem 4.1.

More qeneral results can he obtained by a method similar to that of

Wialund (1978).

Theorem 4.2

For the method (2.16), for k even or k = 1,

-11-



(4.1) irk llrO I 4 2pk( + 2k)

and for k odd

(4.6) Ir k lIr I ( 2pk/(1 - P2k)

and

(4.7) Irk J/r 0 j < 4pk/(( + p2 )(1 + P2(k-1)))

where p = A/(/1 + A2 + 1). Note that (4.6) is a better estimate than (4.7)

when A is larqe and k is larqe, (4.7) is better when A or k is

small. Note that (4.5) for k = 1 and k = 2 qives the same result as

Theorem 4.1.

Proof of Theorem 4.2

Py (3.4) and (3.7)

k kc k 0
(r , rk ) = Crk , z + r

where z is in the span of (I+S)ro,...(I+S)rk - . Now by (2.16)

z = Pk(I+S)r0  where Pk(A) is a polynomial of degree k with PO(0) = 0.

Thus
2

Irk, = (rk, Ok (I+S)r0

where pk(A) is a polynomial of deqree k and Ok(0) - 1. By the spectral

mapping theorem

Irk, < min max IQk(I + 1')I Ir 0
0k(05=1 'JGO(S)

where 0(S) is the spectrum of S. Since S is skew-symmetric C(S) is

contained in the imaginary axis with -1 • V/iA 4 I. The minimum is taken

over all polynomiAls 0k(A) of degree k with PO(0) = 1. As does Widlund

(1Q78), we take the particular polvnomial

Tk(m/iA)
C01 + rt/ JA)



-71

where Tk(A) = cosh(k cosh - 1 A). We have IT (P/iA)I =
k k

Icos(k cos- (U/iA))l ( 1 and

Tk(-1/iA)

= cosh(k cosh- (-1/iA)) = cosh(k loq(1 + A2 + 1)A- )1 ( (,/- )k / - )
7( + A2 + 1)k + (/1 + A2 - 1 )A -k
! 02k -
1-(1 +P )p-k

2

for k ode and

I 1 /1

I~(-/*)l= Iinh'k loa + A 2 + 1)A-1)I

1 + A2 + ,)k _ (/ + A2 1)k)A-k
2

1 P2k p-k=-(1 -p )
2

for k even.

This proves (4.5) for k # 1 and (4.6). Inequality (4.5) for k = 1 is

just (4.1), and (4.7) follows from (4.5) and (4.1). This proves Theorem 4.2.

The above theorems qive results on the error vectors ek since rk =

(I+S)ek and so

(4.8) lek I Irk, < 1 + A2 lekI.

-13-



5. The case with general symmetric part

In this section we discuss the more general case when P, the symmetric

part of A, is not the identity. In this case the system

(5.1) AY = (P + Q)y = c

can be transformed to one of the form (1.1) by setting

P12-1/2 c -1/2 QP /2
(5.2) x = y'2 , b =P 1'c , S =P'/Qp_ 1 2

The algorithm (2.16) can then be used on the resulting system. It is, of

course, more convenient to work with the original matrices P and 0 than

with S, thus we consider the system (2.16) in the oriqinal variables. We

have

k+1 k k
a) w = w + CAkp

(5.3) b) rk+1 = rk - akAPk

C)pk+1 -1r k+1 k

where

(5.3) d) ak = (rk, p-rk )/(Apk, p-Apk

and 0 k k

The vector w0  is arbitrary, and p0 = P-1r0 where r = c - Aw0 . The

vectors wk converqe to y the solution of (5.1). Because of the necessity

of computing p-1 rk+1 and P-1 APk the method is applicable in practice only

when the solution of

Pz = d

can be obtained easily. This restriction applies also to the method of Concus

and Golub (1976) and Widlund (1978). Note that p-k+1 can be obtained by

-lk+1 -1 k -1 k
Pr Pr - akP Ap

so only one inversion of P is required per iteration step.

-14-



The orthoqonality results for the algorithm (5.3) are easily deduced from

the results for (2.16). We state these results for completeness.

Theorem 5.1

For the algorithm (5.3) the following relations hold.

i -
(AP , p ) = 0 for i j

(P-rk, AP-Y ) = 0 for j < k

-1Ik I
(P r , Ap-) = 0 for j < k

k+I k
(p Pp) =0 for k 0

k -i k -1
(r, rJ) (r, pr) for j 4 k

Theorem 5.2

For the algorithm (5.3) the following estimates holds.

IrkI _1/IrO1l 2Pk/( 1 + P2k)
P

for k even or k = 1

Irk p- 1 /IrOI P-1 2P k/(1 " pA)

for k odd

and

Ir , /ir n (p 4P k/((I + P2)(1 + p2(k-1)
P p

for k odd

where Ir Y 1 = (r k , P -r k), p = A/(/ i + A2 + 1) and A is the spectral
P

radius of P-12p-

The proofs of these results follow from Theorems 3.1, 3.2, and 4.2.

Corresponding to (4.8) we have

(5.4) (e k , Pe ) (r k , P-r ) / + A2 (P k , Pek)

which in conjunction with Theorem 5.2 gives estimates for the error.

-15-



6. Numerical Experiments.

The performance of the qeneral algorithm (5.3) depends significantly on

the means of inverting the positive definite matrix P. Therefore, to test

the algorithm it seemed best to study only the basic algorithm (2.16) i.e.

with P being the identity. A FORTRAN computer code was written which

implemented the alqorithm (2.16). The program was run on the UNIVAC 1100

computer at the Madison Academic Computinq Center using single precision

arithmetic which has about seven digits of accuracy.

The computer code also implemented the algorithm of Concus and Golub

(1976) and Widlund (1978). We will refer to this alqorithm as the CGW

algorithm. The CGW alqorithm and (2.16) were run simultaneously but

independently.

The matrices S used in the experiments were handed skew-symmetric

matrices whose non-zero elements were generated randomly. For 0 < i -j ( m,

Sij was a randomly generated floating point number in the interval [-6,6]

for some number 6, 0 < 6 ( 1, also Sji = -Sij, otherwise Sij was zero.

0
For all the numerical experiments xi = 0, with the exact solution beint

xi = 1. The algorithm (2.16) was stopped when Ir k/Ir01 4 10- 5.

Table I displays the results from several experiments. N is the number

of unknowns, m gives the size of the band and 6 is the range of random

numbers for S as described above. A is the spectral radius for S as

computed by EISPACK routines (Smith et al. 1976). The fifth column gives

I, the number of iterations required for convergence, and the sixth and

seventh columns oive the values of e'Il/le01 for both the algorithm (2.16)

anA the CGW alqorithm. The eighth column contains the quantity appearinq on

the right-hand side of the estimate (4.5), for k I.

L -16-
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It was found that the two algorithms converged at about the same rate

with (2.16) having slightly smaller values for the norms of the error and

residual vectors. The similarity is not surprising since the error estimate

(4.5), using (4.8), is similar to that given by Widlund (1978) for the CGW

algorithm. For the algorithm (2.16) it was found in all the experiments that

the norm of the error decreased monotonically. This was different than the

CGW alqorithm for which the norm of the error usually did not decrease

monotonically for the first several iterates. However, for the CGW algorithm

the even and odd iterates do give monotonically decreasing values for the norm

of the error, Widlund (1978).

The estimate (4.5) is seen to give a good approximation of the behavior
t

of the algorithm and can be used to give a good estimate of the number of

iterations required for converqence.
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Table 1: Results from Numerical Experiments

N m 6 A I error error (CGW) estimate (4.5)

20 3 0.2 0.48 8 .62E-5 .63E-5 .14E-4

0.6 1.62 15 .40E-5 .41E-5 .32E-3

1.0 2.30 17 .60E-5 .61E-5 .15E-2

20 5 0.' 0.59 9 .74E-5 .76E-5 .16E-4

0.6 1.72 16 .14E-4 .14E-4 .29E-3

1.0 2.74 18 .87E-5 .90E-5 .32E-2

40 3 ~1 0.48 8 .90E-5 .93E-5 .14E-4

0.6 1.34 17 .80E-5 .86E-5 .16E-4

1.0 2.47 24 .78E-5 .83E-5 .15E-3

40 5 0.2 0.64 10 .34E-5 .34E-5 .89E-5

0.6 1.79 21 SS8E-5 .59E-5 .27E-4

1.0 3.12 29 .13E-4 .16E-4 .21E-3

80 3 0.2 0.54 9 .47E-5 .48E-5 .85E-5

0.6 1.43 18 .70E-5 .76F-5 .16F-4

1.0 2.45 28 .78E-5 .83E-5 .29E-4

80 5 0.2 0.64 10 .61E-5 .63E-5 .89E-5

0.6 1.86 23 .69E-5 .76E-5 .14E-4

1.0 3.64 37 .14E-4 .16E-4 .87F-4



REFERENCES

Il] P. Concus and G. H. Golub (1976), A generalized conjugate gradient method

for nonsymmetric systems of linear equations. Proc. Second Internat.

Symp. on Computing Methods in Applied Sciences and Engrao., IRIA (Paris,

Dec. 1975) Lect. Notes in Econ. and Math.Systems, vol. 134, R. Glowinski

and J. L. Lions, eds., Springer-Verlaq, Berlin.

(21 L. A. Hageman, F. T. Luk, and D. M. Young (1980), On the equivalence of

certain iterative acceleration methods, SIAM J. Numer. Anal., 17, pp.

852-873.

(31 M. R. Hestenes and E. Stiefel (1952), Method of conjugate gradients for

solving linear systems, J. Res. Nat. Bur. Standards, 49, pp. 409-436.

141 B. T. Smith, J. M. Boyle, J. J. Donqarra, B. S. Garbow, Y. Ikehe,

V. C. Klema, and C. Bo Moler (1976), Matrix Eiqensystem Routines -

EISPACK Guide, Second Edition, Lecture Notes in Computer Science 6,

Sprinqer-Verlaa, Berlin.

[5) O. Widlund (1978), A Lanczos method for a class of nonsymmetric systems

of linear equations, SIAM J. Numer. Anal., 15, pp. 801-812.

JCS/Jvs

1.1
. . . . . .. . . .. . . . . . . .. I r im . . .. . . .. . ..- 1.9 - - . . . . . . . . . . . i l . .



SECURITY CLASSIFICATION OF THIS PAGI: (Hhen Data ri.rered)

RE'Al) INS1HRUCTIONSREPORT DOCUMENTATION PAGE 11I.FORi' C0(1TIrC'I rT. I\
1. RCPOFtRT NUMDLR 12. GOVT ACCESSION NO. 3. RLCIPIENT'S CATALOG NUIIULR

#2290 .

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

A Generalized Conjugate Gradient Method for Non- Summary Report - no specific

Symmetric Systems of Linear Equations 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 4. CONTRACT OR GRANT NUMBER(S)

NASI-15810 and NASI-16394

DAAGZ9-80-C-0041,
John C. Strikwerda MCS-7927062

3. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Mathematics Re Center, University of Work Unit Number 3 -

610 Walnut Street Wisconsin Numerical Analysis .'nd

Madison, Wisconsin 53706 Computer Sciencz
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

October 1981
(see Item 18 below) 13. NUMBER OF PAGES

19
74. MONITORING 1G6NCY NAME & AODRESS(II dJl f,*trnt from Controlling Office) IS. SECURITY CLASS. (of thte report)

UNCLASSIFIED
ISa. DECL ASSI FIC ATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of tlis Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the obetrct entered in Block 20, it different from Report)

II. SUPPLEMENTARY NOTES

U. S. Army Research Office National Science Foundation National Aeronautics
P. 0. Box 12211 Washington, DC 20550 and Space
Research Triangle Park Administration
North Carolina 27709 Washington, DC 20546

19. KEY WORDS (Continue on reverse side it necessaty and Identify by block number)

Conjugate-Gradient Method, Non-symmetric Systems

20. AW RACT (Continue an reverse aide It necesaay and identify by block numbet)

A new iterative method is presented for solving non-symmetric linear systems
of equations. The method requires that the symmetric part of the matrix of the
linear system be positive definite, and the method is efficient only if the
symmetric part is easily invertible. The method is modeled on the conjugate
gradient method for symmetric positive definite systems and has the finite
termination property. The results from several numerical axperiments are pre-
sented and compared with a similar method proposed by Concus, Golub, and Widlund

DD AR73 1473 EDITION Oil IOV SSOSSO 0--ETU
-- ' Y" UNCLASSIFIEDIe
69CU1J1TY ¢I. ASSIFICATION OF

r
THIS PACE (07hen Des, nEoted)




