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OSCILLATORY SUBSONIC POTENTIAL FLOWS AROUND THREE-DIMENSIONAL
BODIES AND ITS APPLICATION TO THE CALCULATION OF DYNAMIC
STABILITY DERIVATIVES OF THE AIRCRAFT

Liu Qiangang, Wu Changlin and Jian Then
(Northwestern Polytechnical University)

Abstract

This article introduces a unified method for processing

the oscillatory subsonic potential flows around three-dimen-

sional bodies of various configurations. The major feature of

this method is the employment of the finite element method

to directly explain the use of the integro-differential

equation for the velocity potential on the surface of the body

derived from the Green theorem to obtain the velocity poten-

tial distribution on the surface of the body. Later, we further

used the finite difference method for the differential of the

velocity potential so as to obtain the pressure distribution

on the surface of the body.

* Due to the fact that theoretically this method is rela-

tively stringent, when used for the calculation of flows

around bodies with complex configurations the obtained results'I were relatively accurate. Because of this, in the last several

years its application has become more and more widespread

abroad. Similar basic equations from related reference [3]

were utilized, yet there were dissimilarities in the calcula-

tion of the aerodynamic influence coefficient. This article

also applies this method for the calculation of dynamic sta-

bility derivatives of the aircraft and the obtained results

are in agreement with the experimental results.



I. Perturbation Velocity Potential and Boundary Conditions

If we take a right angle coordinate system such as the

one shown in fig. 1 (in the figure the OX axis direction is

identical to the undisturbed air flow speed of the y direc-

tion) under small perturbation, there is the following per-

turbation velocity potential equation:
"5

Fig. 1,

-+ g - - (u .- +zuZ+-a (1)
aX . aZ 2.Ua

In the formula.' is the perturbation velocity potential, C00

is the speed of sound in the undisturbed air flow and t is

the time.

If we can use the following equation to show the surface

of the body:

s (x,Y,z,t) =0 (2)

then the boundary conditions of the surface of the body is:

In the formula, n is the outer normal line of the s.

The following transformation is carried out for the var-

iables x,y,z,t and velocity potential 1:

X-x/OL, Y-Y/L, Zz/t(4

T- .Rt/L, *-q /UL

In the formula, B=vi1-'t4 is the Mach number of the undis-

turbed air flow and L is the characteristic length of the body.
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By applying the Green function method for the subsonic

perturbation flow we obtained the following formula:

a$E4p T) I~- 1 dSa~f + +-m ~ (I)_ra+±EV 1 eWX+P rN 1J 70' jjW aNARLT Rj
So SS

+; { A ) a' ) -11 l y  1 (#A R
ff (o), R I aaT JdS (5)

SW

In the formula, SB and SW separately indicate the surface of

* the body and the vortex surface of the body's trailing edge;

d+ is the difference of the velocity potential on the top and

bottom of the vortex surface; p(X,Y,Z) are points in the flow

field; q(X1 ,Y1 ,Z1 ) are points on the surface of the body or

vortex surface; X1 ,Y1 ,Z1 are integral variables; N,,is the

outer normal line of point q; R is the distance between two

points of p and q.

R-V(X,-X)+(Y,-Y) (Z-Z)" (6)

r is the required time that the perturbation is emitted from

point q and is transmitted to point p.

-R+K.(X,-X) ( 7)

When the functions indicated in the brackets takes TI=T-T; E

is the parameter and when point p is above S BE=1/2. When

point p is outside SB and not above SW then E=1.

When point p is above S formula (5) takes * as the

integro-differential equation of the unknown function. It can

be used to calculate the velocity potential distribution of

the surface of the body.

It is worthy to note that in formula (5) the velocity

potential difference 0 on the top and bottom of the vortex

surface is actually not another unknown quantity. It can be

determined by the difference on the top and bottom of the

3



trailing edge of the surface of the body:

In the formula, qTE and q separately indicate points on the

trailing edge of the surface of the body and the vortex sur-

face. Moreover, when they are on the same vortex line; Ad)

is the required time of the vortex point flowing from point

q TE to point q:
~(9)

In the formula, XTE is the X coordinate of point qTE.

The above integro-differential equation can use the finite

element method to seek a solution. In order to solve this

equation, we divided the surface of the body into NB quadri-

lateral elements and took the(2# f.t Or in each of

the elements to be constants and be equal to their values

in the figure centers of each of the elements. At the same

time, all of the vortex lines are divided on the vortex surface

and each of the vortex lines and series of elements on the sur-

face of the body are joined. The length of the vortex line can
E6]take any effective length. Each vortex line is further div-

ided into many quadrilateral elements and the value of

(4 A) in each element are also assumed to be constants

and be equal to their values in the figure centers of each of

the elements. At the same time, we also considered the Kutta

conditions and the trailing edge's A+ of the surface of the

body could be considered to be approximately equal to the

value of the trailing edge's joined element figure centers.

Therefore, formula (8) can be written as:

A+ T - ,) =KA'j(T - ra- ()

* In ,the formula, i and J=l and 2---N is the serial number of the
element on the surface of the body; h=l and 2-.. NW is the
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serial number of the element on the vortex surface (Nw is the
total of elements on the vortex surface); Kh is the coeffi-

cient, and when the element j is joined with the trailing

edge of the surface of the body and the element h is on the

trailing edge vortex line of the element j, Kjh=1 (when the

element j is on the top surface it takes a "4" and when on

the bottom surface it takes a "-") otherwise K jh=O;

indicates the 4 0 of the h element's figure center on the

vortex surface; indicates the + of the j element's figure

center on the surface of the bodyt; is the time required for

the perturbation to be transmitted from the h element's

figure center on the vortex surface to the i element's figure

center on the surface of the body;I(,is the time required for

the vortex point to flow from theE point to the h elements

figure center. In considering the use of the above approxima-

tion, when calculating t h' the trailing edge's coordinate XTE

of the surface of the body and the trailing edge's joined X

coordinates of the surface body element figure center can

substitute so that the Wh in formula (10) can be written as:

In the formula, Xh and X. separately indicate the h element3I
on the vortex surface and the X coordinate of the j element

figure center on the surface of the body.

After undergoing the above process, when the p point was

on the SB, formula (5) changed into a constant differential

equation with a constant coefficient and linear time dif-

ference variable:

+ K bKaCa(T-+ h)*,

+ KKD,4,(T-.,--L) .i1, 2...N. (12)
, A

II I I I, &I, J j--5



In the formula, T;J is the time required for the perturbation

to be transmittd from the j element's figure center of the sur-

face of the body to the i element's figure center; - .).
f'Nb# k . C.',,.y C., are the aerodynamic influence

coefficients:

2 x JJ dS2

Sol

Sol

Df= - 51 aR d Sy
SD,C,.-2ij -XN- R - -iN

Sw&

D~-jfJ- -~S 8 (13)it aR,

In the formula, SBJ indicates the surface of the j element on

the surface of the body; SWh indicates the surface of the h

element on the vortex surface; b and C can use analytic

formula calculation - the formula for calculating Cih is the

same as for Cih only it is necessary to change the j into an

h in the formula. For approximate calculation, we could also

use Dij=RijCij and Dih=R C In these formulas R. and Rih ih ih: ih
are separately the j element on the surface of the body and

distance from the-h element's figure center on the vortex

surface to the i element's figure center on the surface of

the body.

Equation (12) can be used to calculate the indeterminate

constant flow around bodies.

II. Calulation Formula for Harmonic Oscillatory Flows Around
Bodies

6



When a body revolves around its fixed constant reference

state and creates harmonic oscillation, its additional per-

turbation velocity potential can be shown as:

4(N, Y, Z, T) =$(X, Y, Z)eiQ(?+u-x) (14)

In the formula:

0 -£/a- K M./ (15)

In this formula, w is the oscillation frequency; K is the con-

version frequency; andSO is the conversion frequency computed

in the compressibility effect.

After the surface of the body is d4vided into a finite

element, formula (14) can be written as:

+,(T) /$e..(.-x (16)

When formula (16 is substituted into formula (12), after arrange-

ment, we obtained:

(61,- e*i- *1i) {,} = (9,1) {1"J)} (17)

In the formula,8 ij is the Kronecker function, when ikj

theng ij= , and when i=j then Eij=l.

,n=e'"( 1 +:OR,,)C, (18)

btf.=e " bi (19)

= KM.'I ,i~xI'0F'x)/O( I +iQRI.)C, (20)

When the body creates harmonic oscillation, the equation

for the surface of the body can be written as:

8(X, Y, Z, r)=-z-..,(X, Y)T." (X,y)e"v  (2 i)

In the formula, "-" corresponds to the upper surface; M" cor-

responds to the lower surface; footnote indicates the upper

7



surface, I indicates the lower surface, and . (x, y)is the

model of vibration. Therefore, the boundary condition of the

oscillitory flow around the surface of the body can be

written as:

$(N).1 QK-+ a (22)

In the formula, N is the cosine of the constant reference
z

state of the outer normal line N on the surface of the body

and the oZ axis included angle.

In general, for indeterminate motion, the pressure coef-

ficient can be calculated according to the following formula:

C' 11T- (2 3
M9Zij aT 5 aX]

and for the harmonic oscillatory flow around the body:

C,= VC p (24)

From formulas (23), (24) and (14) we obtained:

2 e1XPX a

When calculating the numerical value, the finite differ-

ence method could be used for the differential in the above

formula.

After ascertaining the geometric parameters of the surface

of the body and the boundary conditions, we could explain

equation group (17) and obtain the ;j value (j=1,2 - -N )of

the N B dispersion points on the surface of the body. Further,

we could also obtain the pressure distribution from formula

(25).

III. Its Application to the Calculation of Dynamic Stability
Derivatives of the Aircraft

Equation (17) has been applied for the calculation of a

8
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great many types of oscillatory flows around bodies. It can

be used to calculate aircraft fluttering, the effects of

gusts and the indeterminate aerodynamic forces when the air-

craft makes other various oscillatory movements. In this

section, we will present calculations for the pressure dis-

tribution and dynamic stability derivatives when an aircraft

creates pitch oscillation as concrete applications of this

method.

If after the aircraft has perturbation at a certain equil-

ibrium and ths revolves around its center of gravity creating

pitch oscillation, its model of vibration can be indicated as:

5, = X,)(26)

In the formula, X is the x coordinate of the aircraft's center&
of gravity.

Based on the method introduced in the above section, we

can obtain, at this time, the variable pressure coefficient

Cpo of the aircraft's surface and carrying out the integral

of this variable pressure coefficient obtain:

CLCL~iCL(27)

ff +(28)

In the formula, letters R and I separately indicate the real

part and imaginary part. At this time, the aircraft's lift

and pitching-moment coefficient are separately:
C,= RL(ZLe'*)' (29)

C.- RL(Z.,") (30)

In the formula, "RL" indicates the real part.

On the other hand, after the aircraft has perturbation

and creates pitch oscillation, its lift and pitching-moment

coefficient can be indicated as:

9
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7.CL + C + .') (31)

In the formula, . - , - v

In the above two formulas, the small amounts above the

second order are omitted. 
(5 )

When the aircraft has pitch harmonic oscillation, the

increment of its attack angle and pitch angle is:

= e =a.RL(e') (33)

From formulas (29)-(33) we obtain:

C&L= a,(C.+iK (C j +cjo) (34)

V. = ,[cC.+iK (C.Z +C.r)) (35)

In comparing the imaginary parts of formulas (27) and (34)

and formulas (28)and (35) we obtain:

CL- C (36)

C'. C (37)

Therefore, C and C can be obtained under fixed constant
* Le MO

hypothetical conditions, The value of the dissimilar con-

version frequency times of C and C can be obtained from
La ma

formulas (36) and (37).

IV. Calculation Examples

We applied the above method in a TQ-6 electron computer

at the Optical Machine Institute of the Chinese Academy of

10



Sciences in Xian for the calculation of aircraft wings,

ellipsoids, the left distribution of the pitch harmonic oscil-

lation created by a certain aircraft (aircraft wing, fuselage,

tail assembly) and the dynamic stability derivatives CL and

C of an aircraft. The results were as follows

1. Aircraft Wings

The form of the plane's aircraft wing was rectangular, the

aspect ratio wash =2, the relative thickness was c=0.001, it

revolved on a x=c/2 axis to create harmonic oscillation and

when in M. =0 and K=2 its lift distribution was as shown in

figure 2.

0414t2) (2)

0.
0,2 0.4 0. .

-I..

Fig. 2. The Lift Distribution of the Rectangular Wing Root
Chord Area When a Rotating x=c/2 Axis Creates
Harmonic Oscillation

1. Results of this article's calculations
2. Reference work [2]

It can be seen from figure 2 that the results of this

article's calculations are identical to those of reference

work (2]. Because the divisions into pieces were relatively

few, the lift distribution of the trailing edge section near

the aircraft wing was not given accurate calculation values by

reference work [2]. They only used a curve to indicate its

distribution tendency. Yet, in this article, because we used

the already known conditions of the4+ value on the vortexsurface, although the division into pieces were few, accurate
calculation results were still obtained for the trailing edge

section near the aircraft wing.

11



2. Ellipsoids

The ratio of the major axis and minor axis of the ellip-

soid was 8. It revolved around the center to create pitch

harmonic oscillation. Its pressure distribution is shown in

chart 3.

*xinifa% (2)

Chart 3 The Pressure Distribution When an a/b=8 Ellipsoid
Creates Pitch Harmonic Oscillation

1. Results of this article's calculations
2. Reference work [4]

In the chart, the results shown by the symbol "A " are

the analytically interpreted calculations obtained by refer-

ence work [41 based on Helmholtz's wave motion equation. It

can be seen from the chart that given the situation of few

divisions into pieces (only 54 pieces were divided on half

an ellipsoid), the results of this article's calculations

* were still relatively the same as the analytical interpreta-

tions.

3. Aircraft Wings, Fuselage and Tail Assembly

Below we will give the test results of a certain aircraft

(aircraft wings, fuselage, tail assembly) when it uses dif-

ferent frequencies to revolve around its center of gravity

and create pitch harmonic oscillation. The outer qeometrical

12



form of the aircraft is generally as is shown in figure 4.

Fig. 4.

Strictly speaking, the dynamic stability derivative should

have the oscillation frequency be close to zero. Because of

this, we took a relatively small numerical value in the cal-

culation yet this did not cause any apparent calculation

errors in frequency when calculating the frequency. Figures

5,6 and 7 separately show the lift on certain sections of

the aircraft wings and tail surface, and the pressure distri-

bution on a certain meridian along the fuselage when the air-

craft used these frequencies to create pitch harmonic oscil-

lation.

6  0.10.6
15 M_=0.6 K .0l

K 0. cu5, 0.01

0.05 0.o0r

0.5 1o 0 0.5 1.0

(a) M

Fig. 5. The Lift Distribution on a Certain Section of the
Aircraft Wing When a Certain Aircraft Revolves
Around Its Center of Gravity and Creates Pitch
Harmonic Oscillation

13



K - 0.00S,0. 1 0.4 U0

. 1. !. 0. 1.0 *.

(a) (0)

Fig. 6. The Lift Distribution on a Certain Section of a Flat
Wing When a Certain Aircraft Revolves Around Its
Center of Gravity and Creates Pitch Harmonic
Oscillation

3 "K= 0.005.. 0.04)4-0.6

I .02 K= 0.005

04 .a o. ° 4 0.8 1.0 1
- 0.02 "

(a) (6)

Fig. 7. The Pressure Distribution on a Certain Meridian Along
the Fuselage When a Certain Aircraft Revolves Around
Its Center of Gravity and Creates Pitch Harmonic
Oscillation

See table 1 for the calculation results of the aircraft's

C /. and dynamic stability derivative C& when M. =0.6.

14



K C;

0.005 -0.0545 f -1.787

0.0! ; -0.109 - 1.787

Table 1

In the calculations, the aircraft's Cm4  uses -9,119(I

It can be seen from table 1 that when Mach. = 0.6, the air-

craft's Cm. can use - 1.787.

Therefore, in recently published works, we still have not

seen theoretical calculations or experiment results for the

indeterminate aerodynamic force of aircraft wings, fuselage

and tail assembly. The above calculations in this article are

still not suitable material to offer for comparison. Yet, at

present, we already have test results for the dynamic stab-

ility derivatives of the aircraft. See table 2 for the dynamic

stability derivative test values of the aircraft when at

Mach.- 0.6.

-1.864-9.529

(2)-t1 1.797 -,.119

Table 2
1. Test value
2. Calculated value

It can be seen from table 2 that the test values of theis



aircraft's dynamic stability derivatives are'quite close to

the calculated values of reference work (1). This also ex-

plains in one sense, this article's calculated results of

the indeterminate aerodynamic force of the aircraft wings,

fuselage and tail assembly.

V Conclusion

This article introduced a unified method for processing

the oscillatory subsonic potential flows around three dimen-

sional bodies of various configuration. It also presented

calculation results for the indeterminate aerodynamic force

and dynamic stability derivatives of a single wing, ellip-

soids, aircraft wings and tail assemblies when different

frequencies were used to create pitch harmonic oscillation.

Actual calculations showed that the application range of

this method is quite wide and can be used for the calculation

of the oscillatory flows around bodies of various different

and complex configurations. Moreover, the amount of calcula-

tion work is relatively small and the results are relatively

accurate. At present, then, this is a good method for cal-

culating oscillatory subsonic flows.
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OSCILLATORY SUBSONIC POTENTIAL FLOWS
AROUND THREE-DIMENSIONAL BODIES AND ITS

APPLICATION TO THE CALCULATION OF DYNAMIC
STABILITY DERIVATIVES OF THE AIRCRAFT

Liu Qiangang, Wu Changlin and Jian Zheng
(Northwestern Polyechdcal Univerdt y)

Abstract

A general formulation for oscillatory subsonic potential flows around three-

dimensional bodies of various configuration and its application to the cal-

culation of dynamic stability derivatives of the aircraft are presented. By
applying the Green function method, we obtained an integro-differential equa-

tion relating the perturbation velocity potential to its normal derivatives on

the surface of the body. In order to solve this equation, the surface of the

body and its wave are divided into small quadrilateral elements. The unknown

and its derivatives are assumed to be constant within each element. Thus the

integro-differential equation reduces to a set of differential-delay equations in

time. This set of equations can be used as the basis of a general method for

the fully unsteady flow calculation. For oscillatory subsonic potential flow, this

set of equations further reduces to a set of linear algebraic equations which is

solved numerically to yield the values of +1 at the centroid of each element.

The pressure coefficient is evaluated by the finite difference method. The lift

and the moment coefficients are determined by numerical integration of the

pressure coefficient. The dynamic stability derivatives are obtained from the

imaginary parts of the lift and the moment coefficients.

The formulations in this paper are embedded into a general computer pro-

gram. Several typical numerical results have been obtained by means of this

program. Figure 2 shows the distribution of lift coefficient Z, along the middle

section for a rectangular wing oscillating in pitch with X .-2, T =0.001, M-.=,0,

K - 2 .The result is identical to the original calculation by MorinoC". Figure 3

shows the distribution of pressure coefficient Z, for a harmonically oscillating

spheroid withf- 8, M.-0.5, K- 2 . The result is in good agreement

with the analytical solution of wave equation1 3 
.Figures 5, 6, 7 show the di-

stributions of lift coefficient -, at various stations of an aircraft (wing-body-

* , tail combination) oscillating in pitch with M.= 0.6, K =0.005,0.01. Table2 shows
the dynamic stability derivatives Ct.d. C.8 of the aircraft. The results are

in good agreement with the experimental data.
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AN INTERPOLATION MIXED DIFFERENTIAL METHOD FOR TRANSONIC LARGE
DISTURBED SYMMETRICAL POTENTIAL FLOW AROUND AIRFOIL

by Ling Heyao

(Design Department of Hongai Aircraft Company)

Abstract

By extending an interpolation mixed differential methodil]

for transonic small disturbed steady potential flow to the tran-

sonic large disturbed steady potential flow, we proposed an

interpolation mixed differential method for solution of the ex-

act equation for transonic potential flows in the local speed

coordinate system. In numerical illustration of this method, the

pressure distributions of the double arc airfoil and NACA0015

airfoil in symmetrical state are computed and compared with the

data of the experiments [2,31 and the results of the computa-

tion for the double arc airfoil by the small disturbed mixed

differential method. The results were close. The computations

proved that the interpolation mixed differential scheme is

stable and convergent. This paper has solved the difficulty of
computing the Mach . number which near 1.

I. Preface

Since 1970 when Murman and Cole[41 proposed the use of an

interpolation mixed differential method for solving the tran-

sonic small disturbed potential flow equation, various different

methods have continued to appear for the solution of transonic

flow and development has been very fast. Beginning from the end

of 1973, using reference [41 as a basis, Professor Luo Shijun

further developed and extended the computation and application

18



of transonic steady disturbed potential flow and obtained a

great many results~l]. in order to extend the application range

of the mixed differential method, reference [61 extended the

mixed differential scheme for the transonic small disturbed

potential flow to the transonic large disturbed potential flow.

The revolving mixed differential scheme was proposed whereupon

computation results were obtained for the obtuse flow around

the body yet the amount of computation work was relatively

large. Because of this, this article proposes a new computation

method which is an interpolation mixed differential method for

the local speed coordinate system.

11. Speed Potential Equation in the Local Speed Coordinate
System

In a plane flow, the exact speed potential equation is:

0- l .+(a-us u+ -0()

In the formula, a indicates the speed of sound; u and v

separately indicate the speed component along the x and y

coordinate axes; and 0 (x, y) indicates the speed potential.

In the son local speed coordinate system, s is the tangent

of the 0 point on the flow line and n is the normal line of the

o point on the flow line (see fig. 1) . In the local speed

coordinate system, the local speed q is identical to the s axis.

Because of this, there is no division of speed in the n axis

* direction.
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Fig. 1. The Local Speed Coordinate System

Key: 1. Flow line

Based on this, when equation (1) is converted to the local speed

coordinate system, it possesses the following equation form:

(a+,a4 0 (2 )

When the two sides of formula (2) are divided by a2 we obtain:

(1 -2)4,+4,,.-=0 (3

In the formula, M=q/a is the local Mach number.

Equation (3) is a non-linear partial differential equation.

Given that the 1-M 2item can be positive,negative or zero, it

is also an equation which can be an equational form in a flow

line for an elliptical form, hyperbolic form or parabolic

form. Because of this, equation (3) is a mixed form and the

* solution of the flow field is a mixed problem.

In the supersonic or sonic range, equation (3) is a hyper-

$ bolic form or parabolic form with an existing group of char-

acteristic lines. In the local coordinate system, the charact-

eristic line is symmuietrical to the local speed axis and further-

more the characteristic line makes a local Mach angle A4 with
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the included angle of the local speed. Thus, the character-

istic line is exactly the local Mach angle. In the small dis-

turbed plane potential flow, the characteristic line is sym-

metrical to the basic coordinate axis, and the two situations of

the characteristic line equation forms in each coordinate

system are completely identical. Because of this, in the same

way we conclude that the stability of the differential scheme

in the small disturbed potential flow is appropriate for the

large disturbed plane potential flow in the local speed coordin-

ate system.

III. The Fitting and Interpolation of the Speed Potential
Surface

The speed potential surface in the binary flow is a complex

surface. It is necessary to use a single function to express

the formula exactly and this is actually impossible. We should

use, based on the network's nodal point distribution, any

"speed potential surface piece" to describe it. Within each

speed potential surface piece the smoothness requirements in

the speed potential curved surface piece should be guaranteed.

In this way, after joining with a suitable form of a speed

potential surface piece, nearly any form of speed potential

surface piece can express it and thus the required accuracy can

be attained.

Based on reference work [71, we can find the boundary line

for the ruled surface interpolation formula of the line. The

angular point of the already known ruled surface is 00,01,10,11

(see figure 2). We can form a set of boundary lines:

on -COO 01F
IF: (4)

1t -(10 11)rF.1
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018

Fig. 2. The Position Information of the Ruled Surface Angular
Points

After attaining these two lines, the identical parameter

value n points on their surface are viewed as corresponding

points and lines are drawn in each of the pairs of correspond-

ing points in the same manner. When this type of line becomes

the m line on the ruled surface, we obtain the m line

formula:

When we make this type of m line the "generating line" and

the slip on the two "base lines" of formulas (4) and (5)

causes the n to change from 0 to 1, we obtain the total m line

of the ruled surface. This is also the scanning of the entire

ruled surface. Thus, formula (6) is an equatii: [c the ru.ed

surface.

Using formulas (4) and (5), we can write formula (6) as:

(m)(F9 00 01 F, (7)

The entire element in the divalent square matrix on the

right side of the formula is the constant vector and they are
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all position information of the angular points on the ruled

surface angular points. Therefore, this square matrix is

called the angular point information square matrix. The inform-

ation in the square matrix is easily provided by actual pro-

blems and formula (7) is also convenient for numerical com-

putations.

j+2

Fig. 3. Double Cubic Surface

If the known surface boundary lines are cubic functions,

then they accordingly form a ruled surface equation which in
turn can form a double cubic surface interpolation formula

(see fig. 3). Without undergoing deductions, an equation is

given similar to formula (7):

(m)-(F, F, G, G,3 00 01 00. 01. F,

10 11 10. 11. F, (8)

. 00. 01. 00.. 01.. G,
,10. 11. 10.. 11.. G,

Functions FoFIG and G in formulas (7) and (8) are called

mixed functions[7]. The complete elements in the tetravalent

square matrix of formula (8) are constant vectors. They are all
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position vector, tangent vector and torsional vector informa-

tion on the angular points.

The tangent vectors and torsional vectors on the surface's

(mn) four angular points can use the differential method com-

putation (see fig. 3). The tangent vector differential form-

ula on the ij nodal point is:

0j.(_+1,. j)-(Q -_LJ)--+o(A) (9)
nAmt. ,i + Amt,,

(i, j+)-(i, j-1) +0(A) (10)
At.,/. +An#,

Lm and An are the nodal points of the two parametric change

directions.

The torsion vector differential formula on the ij nodal

point is:

,+ (i+i, j-)-0-1 i-1)
+At.. , I Am-,,I., + AM,., 1

(0+11 j+0)-(0-1, j+1)]+O(A)
Amt-I,+ I + Amt.i. L

The tangent vectors and torsion vectors on the other three

angular points can be computed in a similar manner.

The differential formula for the tangent vector and torsion

vector on the boundary can be formed according to the imbed-

ding boundary condition and exterior extent topological methods

mentioned in reference ( 1]. We will not go into greater detail

here.
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The interpolation accuracy of interpolation formula (8)

is higher than that of formula (7). Formula (7) only guarantees

the continuance of the positions on the adjacent surface

boundaries; the boundary slope is not continuous and shows a

surface bending; the adjacent curved surface boundary line is

also not continuous in the tangent vector on the angular point

and shows a curved surface inflection thus forming a space

broken line. However, formula (8) not only guarantees the con-

tinuance of the position on the adjacent curved surface bound-

ary but also ensures the tangent vector continuance of the

boundary slope and boundary line on the angular points.

IV. The Differential Scheme and Boundary Conditions

The differential scheme explained by the mixed differen-

tial of a non-linear mixed partial differential equation must

be based on the flow field at subsonic, sonic and supersonic

speeds. Then equation (3) can separately choose the different

patterns of an ellipsoid, paraboloid and hyperbolic. In order

for the differential scheme of the linear hyperbolic type

equation to satisfy the Courant-Friedrichs-Lewy stability con-

ditions in the local speed coordinate system, the dependent

area of the difference equation must be greater than the

dependent area of the differential equation. If we use the

center difference on the n axis and use the upstream one side

difference on the s axis, then the dependent area of the

difference equation is necessarily greater than or equal to

the dependent area of the differential equation. Also, the

stability conditions are always satisfied. The perturbation in

the subsonic flow field can be disseminated in every direction

and conversely it is also dependent on the points all around

the flow field. Therefore, both the n axis and s axis use the

center difference scheme and are able to exactly describe the

physical characteristics of subsonic perturbation.
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Taking the ij nodal point as the basic point, they sep-

arately interpolate the step length on the local speed coord-

inate system as the corresponding speed potential values of
1i' 02' 3 and 4P4 of

The center difference form is used for the tangent flow

field (see fig. 4).

2+11 + + (W) (12)

The upstream one side difference form is used for the inner

points of the supersonic tangent flow field (see chart 4).

+".,- +1; + 0 -+(A) (13)

The center difference form is always used for the normal

flow field (see fig. 4).

*2+r.~ + 0 (A)(14)

(,(2)
-+13

Fig. 4.
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Fig. 4. The Difference Scheme for the Inner Points of the Flow
Field

Key: 1. Center form
2. One side form

f4

td -t (2)

Fig. 5. The Difference Scheme on the Surface of the Body

Key: 1. Center formul 'a
2. One side formula

The boundary condition for the surface of the body in

formula (3) is:

(05

Because the boundary line for the surface of the body is a

flow line, the speed on the normal surface of the body is

naturally 0 and the local speed q must be in contact tangent

with the surface of the body. When the boundary conditions

F of the surface of the body are imbedded into the normal diva-

lent partial derivative we obtain the difference formula on

the surface of the body:
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The tangent divalent partial derivatives separately use

formulas (12) or (13) based on whether they are subsonic or

supersonic.

When this article concretely processed the boundary but

had not yet satisfactorily obtained the actual surface of

the body, the position was shifted on to the chord line. The

tangent direction was still identical to the tangent direction

on the surface of the body. That is vector s on the chord line
1was parallel to vector s on the surface of the body (see

Fig. 6).

Fig. 6. Simplified Schematic of the Boundary

The local speed q in the Mach number square represented

form always uses the center difference scheme:

$2 (AoC&) (17)2 A

In the flow field, each point of the local speed q and the

basic coordinate axis included angle 9 is different. Based on

* speed components u and v in the basic coordinate system we can

obtain:

0-tg~' V(18)

IiIn the formula, both u and v use the center difference form:
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r+ 0

= , + o (A)(u Ax,. .1 AxD 1

V 4g,;,,-a.i-, + 0 (A)
AY1- + AY1

V. The Difference Equation and Its Analytical Method

Given that the flow field is subsonic or sonic and super-

sonic, separating composite formulas (12)-(17), we obtained

the mixed difference equation of the flow field.

For the inner points and points on the surface of the body

in the subsonic flow field, I-M2 0.

I(,, 0 WN (1)
(1 -u A(4-4.+4.) (2)

Key: 1. Points on the surface of the body
2. Inner points

For the inner points and points on the surface of the body

in the supersonic flow field (including the sonic points),

1-M2 < 0

(10',-*,,) - 0 ())
,2*t + 0 NAI, (2)

Key: 1. Points on the surface of the body
2. Inner points
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The equation cf sonic discriminate difference is:

-M - - /[ 4A'-. /Y- 1.. _Y-(22

In the formula, qw =1 andy=1.4.

Besides Oij, difference equations (20) and (21) were

both obtained by previous field speed potential interpolation.

Because of this, we used the point relaxation simple iteration

solution. Its formula is differentiated as:

For 1-M 2 > 0,

, - 2$4) O (i) (2 
(6 +4,) FkjA (2)

Key: 1. Points on the surface of the body

2. Inner points

For 1-M2  0,

- I ( -M')(4 1 ,-24,)+1244) Cl (24)

- + .% (( 4 + ) V 3A ( 2 )

Key: 1. Points on the surface of the body
2. Inner points

In order to quicken the computation convergence speed,

the relaxation operation formula was applied in the relaxation

iteration computation process:

*4~ .'.i -h ' +44 ( 1 - ) (25)

In the formula,#;j is the iteration computation result of the n
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sequence having not undergone relaxation processing, (nad

0(n-i ) are the iteration computation results of the n sequence

and n-i sequence after having gone through relaxation process-

ing; Wi is the relaxation factor, its value is determined by

requirements and it generally uses ~ ~but this paper's

computations generally takes it as 1.

The computation of the initial field uses the undisturbed

homogeneous flow field or the computation result field near the

Mach. number. The formula for the undisturbed homogeneous flow

field is:

*gj =qx(26)

The distant field boundary speed potential value without ex-

ception uses the undisturbed homogeneous flow field value.

* The pressure coefficient formula is:

1 j 2 { l Y ) ~ q2.. q ) Y 1 .. (27)

In the formula, local speed q uses the center difference formula.

VI. Numerical Illustrations and Their Analysis
This article writes on two numerical illustrations. One is

the sharp nosed double arc airfoil and the other is the blunt

nosed NACA0015 airfoil. Their relative thicknesses are 0.06 and

0.15 respectively.

The computation was done on the TQ-6 computer which has

close to a 1 million time operational speed. Two types of
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computation networks were used: the 42x25 and the 82x40 were

used to test the effects of different network densities on the

computation results and iteration convergences. The computa-

tions showed that the different network densities had no effects

on computation stability. The figure results of these computa-

tions all used the 42x25 network.

The computation results uniformly used two similar wing

surfaces with pressure coefficient errors of Ap 0.0001.

See figs. 7 and 8 for the computation results.

" " (2)
-0.4 • 4, (3)

-0.2
1.0947 0

1.006 0 ' /

0.961

0.•920O

0.8041 0

0.707 a

0.2-

0.4,

Fig. 7. The Pressure Distribution of the Double Arc Airfoil

Key: 1. Our method
2. Test values[31
3. Small disturbed difference method

Fig. 7 appends the test values and small disturbed dif-

ference method computation values from reference 13). The
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results in this paper coincide very well with the test values

and are actually closer to the test values than the small dis-

turbed difference method.

0 Omif"r (2)
-0.4

1.001
0.999

0.837

0.777 _ _ _ _ _ _I

0.30 4

Fig. 8. The Pressure Distribution of the NACA0015 Airfoil

Key: 1. Our method
2. Test values [2]

Fig. 8 appends the test values from reference 121. When

in a subcritical state, the results of this article coincide

very well with the test values. Yet, in a supercritical state,

the pressure coefficient computation values are higher than the

test values. When at a supercritical state, the airfoil's

boundary layer is even larger. This article did not consider

the effects of the increased thickness of the boundary layer

and therefore the computations tend to be high.
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Due to the fact that in the computation process of this

paper the stability was very stable there was no acute oscil-

lation divergence. Therefore the computation initial values

were uniform for the flow field.

In reference [11 the computation of the Macho number was

close to 1 and therefore the oscillation divergence which used

the computation of the initial field was the result field of

the above computed Mach,, 0 number. Moreover the computed Macho,
number increment was very small and 4~ M. =0.001. That is,

with the use of these types of strict measures the computed

Mach., number only reached 0.953. Zheng Youwen, one of the writers

of recently composed article (1), utilized the zero initial

field as well as the control relaxation factor method and com-

puted the NACA0012 blunt nosed airfoil whereupon he only

reached MO =0.95. He also pointed out that up until the present,

when using a precise potential flow equation to compute the

NACA0012 airfoil, after M. > 0.9, the computations were diver-

gent and no convergent computation results were obtained.

Nevertheless, this article obtained convergent computation re-

sults for the NACA0015 and double arc airfoil when Mach. 0 was

close to 1 as well as corresponding Macho, numbers of 0.999 and

1.001 (the results for the double arc airfoil are not shown in

* - chart 7). Numerically, the two Machj, computation results

are almost identical and thus we have overcome the difficulty

of computing the Mach. near 1

VII. Conclusion

This method is applicable for subsonic, transonic and

supersonic flows.

The computation accuracy of this method is higher than the

mixed differential method for transonic small disturbed poten-

tial flow. Because the equation is a hypothesis for small un-

disturbed perturbation, with the expansion of the computation's
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application range, we can compute the large perturbation fiow

field of a blunt nosed body.
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AN INTERPOLATION MIXED DIFFERENTIAL

METHOD FOR TRANSONIC LARGE DISTURBED

SYMMETRICAL POTENTIAI FLOW AROUND

AIRFOIL

Ling Hleyao

(Desgn Departmet of Hong An Aircraft Company)

Abstract

By extending an interpolation mixed differential method for transonic
4

small disturbed steady potential flow to the transonic large disturbed steady

potential flow, we proposed an interpolation mixed differential method for

solution of the exact equation for transonic potential flows in the local

speed coodinate system. In numerical illustration of this method the pressure

distributions of double arc airfoil and NACA0015 airfoil in symmetrical

state are computed and compared with the data of experiments" '  and

the results of the computation for the double arc airfoil by the small

disturbed mixed differential method. The comparisons are shown in a good

approximation, therefore it is proved that the interpolation mixed differential

scheme is stable and convergent. This paper has found a way out of the diffi-

culty at Mach number near 1.
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THE CALCULATION OF LIFT AND DRAG CHARACTERISTICS OF SUBSONIC
WINGS WITH WINGLETS
by Zhou Renliang
(Nanjing Aeronautical Institute)

Abstract

This paper uses the finite fundamental solution to divide

the spanwise lattice and determine the spanwise locations of

control points by means of the constant roll-angle method. We

calculated the lifts of rectangular wings with different winglets

at subsonic speeds and calculated the induced drags by using the

combined flow field method. From the calculations of various

configurations of a winglet, we have found out some rules

affecting the lift and drag characteristics of wings and picked

out a favorable configuration from them. The mechanism of

winglets is also analyzed.

Symbols

60 Degree of constant roll-angle
E The included angle of the roll-angle ray and y axis
1 Total number of lines of the lattice

N Total number of rows of the lattice
S Line series number of the lattice
6 Wing chord length
I Wing semispan length
8 Winglet angle
4 Wing attack angle
S Wing area
A Wing aspect ratio
45 Lattice area
Y Circulation coefficient
Cp Load coefficient
D Normal induced speed on wing
Yw Overtaking flow speed
Cy Wing lift coefficient
; Wing induced drag coefficient

* 4 Induced drag factor
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I. Preface

A winglet is an aerodynamic plan with a simple and effect-

ive structure as well as a new technology for improved aircraft

performance. The winglet which is fitted on the wing can raise

the lift coefficient and lower the induced drag coefficient of

a subsonic aircraft, thus raising the climbing rate and econ-

omizing on cruise fuel consumption. Therefore, at present, the

winglet has already been given serious attention in aerodynamic

research and by aircraft designers.

Although some articles and test results have been published

on winglet research still there have not been very many. Further-

more, there has not been ample theoretical research and aero-

dynamic mechanism analysis on the winglet.

This paper which employed the finite fundamental solution

method recommended in reference [1l, the constant roll-angle

method to divide the spanwise lattice and to determine the

spanwise locations of control points, and the combined flow field

method to calculate the induced drag, obtained satisfactory lift

and induced drag values. On this foundation, we calculated and

compared the lift and drag characteristics for wings with winglets

of various configurations. In this way, we found out some rules

affecting the aerodynamic layout of the winglet and picked out

a favorable configuration from them. We also analyzed the aero-

dynamic mechanism of the wing's vortex elimination action and

reduction of reduced drag by means of the circulation distribu-

tion chart and distribution chart for the circulation change

rate.

II. Computation Methods

1. Calculation of the wing lift coefficient

We used the constant roll-angle method to divide the span-

wise lattice and to determine the spanwise locations of control

points. The principle of the constant roll-angle method is as

follows:
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Taking the semispan length I as the radius, the center of

the circle is placed on the coordinate origin to create a 1/4

circle and beginning from the y axis each d6 angle is a meri-

dional ray and thus we can obtain a group of meridional rays.

The & angle is determined by the following formula:

The included angle of each ray and y axis is O:

9=KA9 K=1, 2-..2N (2)

When the point of intersection of these rays and the arc

are projected on the y axis, K is the projection of the odd

numbered ray point of intersection on the y axis. This becomes

the spanwise location of control points and K is the even

numbered ray point of intersection on the y axis which becomes

the lattice dividing line. For the chordwise, we used the

partitioned lattice and chordwise location of control points

taken on the 1/2 chord line of the lattice. On the half wing, the

common M X N lattice becomes a winglet section beginning from

a certain row to the wing tip causing it to have the required

warp angle and thus forming the unflat surface of a winq tip

with a winglet.

On each lattice there is arranged a compressible horse shoe

vortex, there is added a chordwise location placed on the ad-

vancing edge of the lattice and two free vortex separately fol-

low the overtaking flow from the two ends of the lattice's

advancing edge and extend out towards infinity. Each control

point satisfies the flow boundary conditions. It can solve the

linear algebraic equation and obtain the wing's circulation

coefficient yj distribution. With the circulation coefficient

38



distribution, we can obtain the circulation coefficient rate

of change of the circulation coefficient along the wingspan.

At the same time, we can obtain the (a Cp )j from-the Yj and
after summation we obtain the wing's Cylift coefficient.

2. Calculation of the Wing's Induced Drag Coefficient

If the wing is in V00 , then the definite load distribution

on the wing can be produced. This type of flow field is called

the forward flow field. When similar plane form wings are further

located in -V00 , if it is able to produce a similar load dis-

tribution to the normal flow field then it is called the reverse

flow field corresponding to the above mentioned forward flow

field. From reference [3] we know that the wing's induced drag

of the forward flow field and reverse flow field are equal.

Fig. I. Lattice Division and Location of Control Point

(1) zm (2) MKIS (3)

* Fig. 2.
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Fig. 2. The Forward Flow Field, Reverse Flow Field and Combined
Flow Field

Key: 1. Forward Flow Field
2. Reverse Flow Field
3. Combined Flow Field

The combined flow field is the superposition of the forward

flow field and reverse flow field. In the combined flow field,

because the directions of the forward flow field and reverse flow

field appended horse shoe vortex in the lattice are opposite,

they counteract each other. Only the two free vortex extending

into infinity are left in front and in back. At this time, the

calculation of the wing's downwash speed only requires the cal-

culation of the produced effects of the free vortex. The in-

duced drag of the wing in the combined flow field is twice that

when it is either in forward, flow or reverse flow. Therefore,

the calculated induced drag must be decreased by half.

In the combined flow field, the circulation coefficient of

each lattice free vortex is a known value which is the yj in

the advancing forward flow field. With the circulation coef-

ficient distribution, we can obtain the normal wash Dj of the

entire free vortex in each control point location. After the

summation of each lattice, we obtained the induced drag coef-

ficient of the wing:

MxN

(C p) j is the load coefficient in the positive flow field and

is a known value.

If the relative value of A is taken to indicate the cx
the induced drag form factor is:
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C.1 (4)
(-Cz

3. Analysis of the Calculation Method

In order to test the applicability of the calculation

method, we calculated the 4 values of four types of rectangular

wings with different aspect ratios and compared them with the

values of reference [4]. The comparative values are listed in

table 1.

2A 6 A =10

1A (*X) 1.000SS 1.00623 1.01642 1.04218
.2) A (10C 4 0) .000? 1.0070 1.0160 1.0420

Table 1
Key: 1. This paper

2. Reference [42

It can be.seen from the comparison in table 1 that the

relative accuracy of the theoretical values found in reference

[4 are extremely close to the calculation results of this

method and that the accuracy is effective and satisfactory.

Furthermore, the use of a constant roll-angle to divide the

spanwise lattice and a relatively dense wing tip lattice can

better reveal the circulation change of the wing tip area. There
is not a great change in the wing tip form and the reaction of

the 4 value is relatively acute. Therefore, when making a

comparison we can use this method to calculate the lift and

drag characteristics of wings with different winglets.
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III. Discussion of the Calculation Results

In order to economize on calculation time, we calculated

50 lattices on half wings and M X N was 5x10. On 709 aircraft,

each calculation of the conditions of a winglet took about 5-6

minutes.

At first, we took the measured wings with winglets shown in

fig. 3 as calculation examples and calculated the aspect ratio

as7L= 6.375. The wing area used was S=2x8x25.5 and in an a=0.1

(arc degree) situation the lift and drag characteristics of

rectangular wings with different winglets were calculated.

.8

Fig. 3. The Measurements of a Rectangular Wing With a Winalet

1. The Lift and Drag Characteristics of Rectangular Wings
With Upward Turning Winglets

When the upward turned angle4? on the winglet is 00, 300,

45° 75 and 90° the calculated wing lift and drag character-

istics are as listed in table 2.

b C, C. 1  A
0. 0. 129549 0.009385 1.01966

30* 0.411652 0.009117 1.077522

45*' 0.366130 0.008574 1.151774

75' 0.328177 0.007243 1.346800

90 0.329244 0.007601 1.401237

Table 2
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Table 2 The Various 6 Values of the Lift and Drag Character-
istic of Rectangular Wings

It can be seen from table 2 that the larger the 8 the larger the

value. A represents the ratio value of the induced drag and
the minimum induced drag. The smaller this value the better the

induced drag characteristic and the closer to the minimum in-
duced drag. Therefore, the comparison of the 00 rectangular

0clo
wing and &=0 condition not only causes the block type winglet
upward turning to be able to decrease the actual span length of

the rectangular wing but the induced drag characteristic can also
have some advantages. The greater the upward turning angle the

* greater the difference of the induced drag characteristic.

I.order to analyze the reasons, we drew fig. 4 with the

y and dy of two rectangular wings being 8 =00 and = 750 for

0.0204
P.02 .006 -- -0

--- b-7S"

! 0.02-0. 004

0.01-0.002

:, 10 is 20 26

Fig. 4. The yoand Distribution of Rectangular Wings of
=0 and = 75
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It can be seen from fig. 4 that the Y distribution of

=00 is relatively close to elliptical distribution and the

yvalue of the ydistribution of 6' =75 0 in the vicinity of the

of the wing and winglet boundary line has a sudden drop. More-

over, the y values in each location were all smaller than the

value when 67=00. Therefore, the Cy value of the 6 =750 was

smaller than when the value was e =00. Because the y distribu-

tions are different, their value the stronger the exerted

vortex. When 4?=0° , there is a strong exerted vortex on the

wing tip and when Y =75 there is not only a strong exerted

vortex on the wing tip of the winglet but there is also a

swelling of the dy in the vicinity of the winglet's and wing's
boundary line. There is also a relatively strong exerted vortex

at this location. This then increases the induced downwash on

the wing and furthermore causes the spoilage of the induced

drag characteristics.

2. The Lift and Drag of Rectangular Wings With Patterned
Winglets

As regards the lift and drag characteristics of rectangular

wings with upward turned winglets discussed above, the winglet

is a whole flat plate. If we equally divide the winglet into

five horizontal narrow lines chordwise, when each line has a

different upward turned angle, then a type of patterned winglet

is formed. Starting calculation from the leading edge the upward
turned angle of each narrow line on the winglet is ' 2'

__ and 65 The results of the calculations of the lift3' 4' 5and drag characteristics of rectangular wings with various

patterned winglets are listed in table 3.
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El I
N,, (t,b&, a, b,, s) C, i C~t

) (0" 0% 0,0,0,) 0.429548 0.00645 1.036L65

(00, 5 0, 70O"7 ,7
") 0.45310 0.011075 1.174282

*) (700,700,70 , -50), -SO-) 0.447306 0.011373 1.1383 1

S (0,20',40*60' ,80*) 0.521052 0.015675 1.156515
) (80", 60",40", 20%, 1" 0.429515 0.008649 0.938963

(60",4",30",15", 0 ) 0.445285 0.009315 0.940870

(0',15",30,.45 ,0") 0.41092 0.011530 0.957503
11) (0*, 4S*, 30",15", 04) 0.455304 0.009211 0. 889995

) (0'. 60', 40% 20', 0*) 0.4-52066 0.009135 0.895231

S (0*
, 
75*

,
50'.25*, 0*) 0.448295 0. 015583 1.552973

1 (0', 30', 20"', 10 ', 0) 1O. 453312 0. 009279 0. 904366

(0*,45*,35*.25",15* 0.445599 0.008798 0.887387

(0", 30, 0% 30. 0) 0.455909 0.009768 0.941150

(30*,15*,0*,30*,15') 0.449585 0.009848 0.975789

(20*,0',20*,0*,20*) 0.449668 1 0.009740 1 0.964855

Table 3 The Lift and Drag Characteristics of Rectangular Wings
With Various Patterned Winglets

From table 3 we can conclude the following few points:

(1) Plane is a rectangular wing of & =00 and we took it as

the criterion state-.for comparison. If the wing tip section is

divided into a patterned wing tip, although this can fundament-

ally raise the C value, yet some of the 4 values have large
y

changes while some change only slightly.

(2) Yet there is the possibility of the patterned winglet
causing,4< for the rectangular wing and the winglet can also

cause its induced drag to be smaller than the minimum induced

drag value of the rectangular wing with an aspect ratio of

A =6.375.

Therefore, the rectangular wings with patterned winglets
are different from rectangular wings with upward turned winqlets.

we can clearly improve the induced drag characteristics of the

rectangular wings by manifesting the superiority of rectangular

45



wings with patterned winglets.

(3) By comparing the 15 plane listed in table 3 we can see

that the4 in plan(- (00, 450, 300, 150 and 00) and plana
(00, 450, 350, 250, 150) are relatively small and their C values

are larger than those of plane. Therefore, as for improving

the lift and drag characteristics, they are good plans worthy of

recommendation. In order to analyze the mechanism of the

patterned winglet being able to improve the lift and drag char-

acteristics of the wing, each line of the y distribution for

plans and oare drawn in fig. 5 and each line of the 41 dis-

tribution for plan~is drawn in fig. 6.

-Iy

25 Y

Fig. 5. The ~y Distribution fg Each Line of the Rectangular

Wing in Plans qand
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dY
77

0.005

0.004

0.003

0.0021 -
o.oo4

-0.000*2sS 8

Fig. 6. The dj- Distribution for Each Line of the Rectangular
Wing Yn Plan

It can be seen from fig. 5 that each line of the y distri-

bution in plans j and 0 are noticeably different. For the y

values in planQ, besides the winglet section having a sudden

drop smaller than plane, the y values of s=2,3,4,5 are all

greater than plan a There is relatively large swelling in the

winglet section and therefore the C value of plan@ is-greater
Y

than the value of plane. Each line of the ydistribution in

planTis progressively decreasing and therefore each line only

has the !,2maximum value in the wing tip area. However, there
dydy

is a relatively strong exerted vortex on the wing tip. The dy

of plan@ are all negative values in the four lines of s=2,3,4,5

and moreover the minimum value point of the existing dydy is

shown at these points to have a relatively strong reverse ex-

erted vortex. The reverse exerted vortex produced induced upwash
on the wing and thus causes a decrease of the induced drag.

It can clearly be seen from fig. 6 that plan® still has a
positive -- maximum value in each line of the pointed end of thedy
winglet yet because the s=2,3,4 lines of the winglet turn up-

wards one degree these forward exerted vortex are not again in

the x-y plane but shift a distance in the z direction. This
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also decreased the z direction induced downwash weight on the

wing and was partially favorable to decreasing the induced drag.

In order to further observe the wing tip exerted vortex of

plane we drew schematicz fig. 7.

Fig. 7. Schematic Chart of the Wing's Wing Tip Exerted Vortex
of Plan

It can be seen from the chart that in the wing's wing tip

and its vicinity there not only appears a relatively strong

forward exerted vortex but there also appears a relatively

strong reverse exerted vortex. At the same time, the winglet

has dispersion and upwards shift of the vortex. Therefore, the

winglet in planJhas noticeable vortex elimination and is able

to improve the induced drag characteristics of the wing.

3. The Lift and Drag Characteristic of Upward Turning
and Downward Turning Winglets

In order to compare the effects of the upward turning and

downward turning of winglets on the lift and drag character-

istics of wings we made the following few group plan comparative

calculations (see table 4).
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(bi. bt, b3, b., bs) (61, 62, 63 641 b5)

(30* , 30*, 30'
, 30 °, 30) 30, - 30°, - 30°. - 30", - 30 )

(75*,75* "75*45*,75*) (-75, - 75, - 5, - 75, - 75')

(so0*,t0 . 20, 0) (-80'. - 60, - 40 °, - 2% 0)

1 (0*,20*,40',600.8 ) (' - 20". - 40', - 60", - SO-)

(0', 15', 30% 45, 0
°
) (0', - 15', - 30, - 45, 0')

(0", -45", -35',25' IS-) V r5". * .n, - Ii)'

Table 4 Comparative Plan of the Upward Turning and Downward
Turning of the Winglet

Results showed that the calculated Cy, Cx . and A values of
the upward turning plan and downward turning plan were totally

identical. This explained that only if there was symmetrical

upward turning then the lift and drag characteristics would be

identical to the upward turning. It can be seen from table 4

that the combined upward and downward turning of the wing tip

only needed an unchanging turning angle increase or decrease.

At the same time, the included angle adjacent to the winglet

does not change so that its lift and drag characteristics also

do not change.

4. The Induced Drag Characteristics of Different Sized
Winglets

The previously calculated lift and drag characteristic

values were all concerned with the reference area as the wing

area after the winglet was flattened for the a=O.1 (arc degree).

Now we will discuss another situation, that is, using the

X =4.5 rectangular wing of plan as the basic wing. When

without a winglet the wing's reference area is S=2x8xl8. If

different sized and different patterned winglets are added on
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to this basic wing and use plans , and although the

lengths of each of the added winglets of these four plans is

different yet their actual projections on the half wingspan

length on the y axis are all close to 20.8 (see fig. 8).

II

Fig. 8. The Plan of Different Sized Winglets

If plansa, 0, 0and Sall use the reference area of plane, their

aspect ratios all use A =4.5 and the same C values of plan are
y

comparable to their Cxj values. This then requires that the orig-

inal lift and drag values of plans, , GandSbe converted

into conversion values. The conversion values of each plan are

listed in table 5.

( 0 *,,0, 0",0) 0 0.1 0.379347 0.0102 85 1.001454 0

(0", 0,0",0",0") 22 0.085214 0.379347 0 008172 0.802918 20.3818r I (0",4S',30",15',) 2.2 0.011428 0.379347 0.007865 0.77273 23.3719

) (58.S',58.S',58.S',58.',8 .5) 4.2 0.081335 0.379347 0.007675 0.75404 25.-22

M (73",73*,73",73' ,73' ) 7.5 0.08332 ' 0.379347 0.006755 0.663623 34.1941

Table 5 The Conversion Values of Each Plan

Key: 1. Winglet length (centimeters)
2. a (arc degree)
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It can be seen from the comparison in table 5 that:

(1) The added 2.2 length of patterned winglet plane has a

23.37% decrease in induced drag as compared to planpwhich does

not add a winglet. This is better than the aspect ratio of

plannwhich has an induced drag decrease of 20.38%.

(2) The 7.5 added length simple upward turning winglet planC

reduced the induced drag by 34.19% more than plan( and is better

than plansl, andD Although these plans have the most de-

creases in induced drag yet the winglets' measurements are large,

are heavy in weight and the winglets' y direction lateral force

can greater enlarge the bending moment of the wing root. When

selecting plans, we should synthesize each aspect's good and bad

points and make the choice by means of an overall comparison.
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THE CALCULATION OF LIFT AND DRAG

CHARACTERISTICS OF SUBSONIC WINGS WITH

WINGLETS

Zhou Renliong

(Nanjing Aeronautical Inatitue)

Abstract

In order to calculate the lifts of rectangular wings with different
winglets at subsonic speeds, we have adopted the finite element method

which divides spanwise lattice and determines spanwise locations of control

points by means of a constant roll-angle method. The induced drags are also

calculated by using combined flow field method.

As the results of calculating various configuration of a winglet, we have
found out some rules affecting the lift and drag characteristics of wings with
winglets and picked out a favourable configuration from them. The aerodyna-

mic mechanism of winglets is also discussed.

51a



A NEW MODEL FOR PREDICTING OVERLOAD RETARDATION EFFECT IN

FATIGUE CRACK PROPAGATION

by He Qingzhi

(Beijing Institute of Aeronautics and Astronautics)

Abstract

Based on the concept of effective residual compressive

stress and considering the residual compressive stress relax-

ation in basic circulation, we calculated a formula for the

propagation speed of cracks after overload:

( o do
(da)

In the formula,(dn) is the propagation speed of cracks without

the effects of overload; u = 1 + (1-a) A. - (1-a) x 4KbT the

stress relaxation coefficient is:

AK,,

Ye-

The method in this paper was used to calculate some specimens

of LY12, 2024, 7075 aluminum alloys, Ti-6AI-4V titanium alloy and

a stiffened plate under different loading conditions. By putting

in the coefficient n=4, we discovered that the calculated re-

sults were in good agreement with the test results.
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I. Preface

Given an alternating circulation loading component, after

* exerting single or multiple high peak loads (overload), the

crack propagation speed decreases noticeably, after a period

of circulation, the crack propagation speed then gradually

returns to normal. Fig. 1 (a) shows loading conditions and

fig. 1 (b) is a schematic chart showing the crack propagation

characteristic points after overloading. The above mentioned

phenomenon was previously given attention and a great

deal of research work was carried out. E1-61 Many theories were

proposed to clarify the physical quality of this phenomenon.

Among them, the most notable are the theory of the residual com-

pressive stress in the plastic zonetl,3]and the crack closure

theory[ 91. Wheeler( 7 ]and Wlllenborg [8] separately proposed models

for calculating the retardation period. These models which were

used to estimate the load spectrum of the retardation period

under loading were relatively successful, yet they did not

predict the retardation effects of single overload very satis-

factor ily.

This paper uses the concept of effective residual compres-

sive stress to propose a new model which can accurately predict

the retardation effects after a single elongated overload.

ap

Fig. 1.
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Fig. 1.

Key: (a) Loading conditions of overload
(b) Schematic chart of the crack propagation

characteristic points after overloading

II. Model and Calculation Formula

After a single elongated overload, there is residual com-

pressive stress in the plastic zone produced by the overload.

Based on the hypothesis found in reference [81, this compres-

sive stress is equivalent to an externally added compressive

stress 3' on the specimen:
r

In the formula, (f is the circulation stress peak value requiredap
for this instantaneously caused retardation effect loss. Its

value is:

a,,vCa VR,,-Aa (2)
y(a)

See the.appendix for the deduction of formula (2) and for the de-

finitions of each of the symbols.

Taking the hypothesis a step further, in basic circulation

(low load circulation) when the stress drops from the peak value

%,max to the valley (Y there are changes in the stress field

of the crack tips. At the same time, the crack propagates forward

a micro- 8 a and there is local relaxation of the residual com-

pressive stress in the overload plastic zone; because of this,

the equivalent externally added compressive stress also decreases,
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that is, it drops from a to ao . It is
r r

( .a~- Oi

. .,- .) (3 )

In the formula, a is the compressive stress relaxation coef-

ficient whose value will be determined below.

Because of the action of an equivalent residual compressive

stress, the peak value load and valley load effective values of

the basic circulation (see chart l(a)) are separately:

We can obtain the effective-stress amplitude value from formulas

(3) and (4):

( 0,.,,= (a i),,- (cb ,)),,%AO.-(1 - a ) (a.,-0,.. ) ( 5 )

In the formula, 4 ob - cba- bn Formula (5) can also be

bbmax bmin.

written as:
(AK).,,- AK- (1- a) (K.,- K..) (6)

In the formula: (AKb).,,-Y(a)(A.,,

AK&- Y ( a )A, o

K.,- Y (a )a.,

Kb,,., - Y ( a ) ...
Y (a) is the coefficient of the crack's characteristic length

a and the geometrical shape of the component.
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When the two ends of formula (6) are divided by AKb, we

obtain:
U--~ I-1+(I1-a) X--I-)K (7)

A~b AK6

In the formula:

K,,= R= (1)
AK& R (and) " K,. 4.

1. is the stress ratio

It is very easy to prove that when L4 1, u is the reduced

coefficient of the stress strength factor amplitude value after

overload.

Formula (7) can be written as:

(AKb),,t=u \K )

If the crack propagation rate is expressed by the Paris formula,

then

da C1 ( K)nSdM-1

It can be seen that the effective value (W Kb)eff= u( Kb)<AKb

of the crack propagation's stress strength factor amplitude is

caused after overload and therefore the cracking propagation

speed will decrease after overload.

Below we will seek the compressive stress relaxation coef-

ficient a.

It can be seen from formula (22) that when LI a = 0 (that is,

just after overload), K has a maximum value.ap

(K.,)_.vVca/ R,, K, (9)
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We know from formula (6) that at this time (I Kb)ff has a

minimum value

( .AK,-( - a(K, Kb)
.AK,[I ( -a)( r - )]( 0

4d, 441-- sth vela rai F 'N '

In the formula, r is the overload ratio

Many tests have proved that when overload ratio r is greater

than a certain critical value r (the r value is related to thec
data and stress ratio R; further, it increases in accordance with

the increases of R), crack propagation will be completely re-

tarded[17,18](FN ' ) At this time,

(AK.).,,..=aK&[ 1 - (1 - a) (r.- 1))

.1i F.N.l: In references [171 and [181 the overload ratio is

defined as r' Klmax . Naturally, between r and r
tt Kbma r -R
there is the following relationship, r

r
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Naturally, if

(AK) ,, AK,1  ()

crack propagation will be completely retarded; LKth is the

"threshold value" of the fatigue crack propagation. Using the

conditions expressed in formula (11), we can obtain:

- AK,
AK 6 (12)

When formula (12) is substituted into formulas (7) and (8), we

obtain:

AK, K.)(.% ).- 1 r- 1r.- 1 AK.] A<'bu(,AKb) (13)

During the retardation period following overload, the crack pro-

pagation speed is:

Ida\

(d . -N (2)g (AK,)..'K.

(da u CIAK"" da (14), " ~(3) d-,

Key: 1. If
2. If
3. Or
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(,8

In the formula, (da) is the crack propagation speed corres-In th forula,(dN)°

ponding to 4 Kb without being affected by overload and n is a

coefficient.

Integral formula (14) can obtain the circulation nu-,Pber

N* required to penetrate the overload retardation zonc.

( dAa15)

A ac is the length of the overload retardation zone and its

value can be obtained by putting in u = 1 from formula (7):

Aa-- -(KI.. - KI..) (16)

The comparison of retardation zone length ac and crack

characteristic length a is very small and when 4 Tb is the
b

constant, we can consider the 4K and (da) as the constants.
b (dN)oAt this time, formula (15) can be written as:

Na. d1 rAda (17)
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Below we will study the changes of the crack speed after

overload. It can be seen from formulas (7) and (22) that the u

value increases in accordance with the increases of the AI a and

when it reaches 4 a = 4 ac , u = 1. The minimum values of u and
(da)
(dN) are:

I i=-0 --!-)( r- 1)()
(18) U

and

(da da (9
dN) -dN

III. Results and Discussion of Calculations

Applying the previously deduced formulas, we separately

calculated the overload retardation period of some specimens of

LYl2, 2024-T3, 2024-T351, 7075-T6, 7075-T73 aluminum alloys,

Ti-6AI-AV titanium alloy and a stiffened plate under different

loading conditions. The A Kth and rc data are separately taken

r from references (12,13,18,19,20).

In the calculations, we used the coefficient n = 4. The

calculation results of N* are listed in table 1 and the calcula-(da) (da)
tion results of (d-) are listed in table 2. Both

0

tables list the corresponding test values.
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N -X) , _9 1
() MN R 1(3) 4 )'dN/ (5), ' o(it r4)

C53~ 1 1 r (7jw ) 9

LYi2 9.4 0.1 2.0 16.5x10 -
(

o1 ) 1.0 30 32000 (11)

(4) 10.2 j 0.1 2.0 1S.0x10 - 3
) 1.0 33000 360000 1) 0.2

9.0 0.1 1.5 S.0x 10 -6 1) 1.0 3600 7000oCI( 0.51I1 8q00

2024-T3 9.0 0.1 2.0 S.0x 10I
-
C4' 1.0 42000 4000008) 0.99

' 45000

(1.6) 15.0 0.1 1.S 15.0 x10C
1

o 1.0 5400 5000c10) 1.08

15.0 0.1 2.0 I.Ox 10- s c lo ) 1.0 124000 120000(10) 1.03

'-. 0.05 1.S 15. 0x 10- '" °  1.0 6700 700O(') 0.96

15.0 0.05 1.5 29.Sx 10-5 ( 6)  
1.0 6300 6500(s) 0.97

16.5 0.286 1.5 53.0x 10- 5(63  1.0 4600 5000(s) 0.92

16.5 0.286 2.0 53.0 x 10--l-) 1.0 50000 46000(63 1.09

2024-T3 16.5 0.5 2.0 80, x IO-S 1.0 43000 47000(63 0,92

(3.2) 19.8 0 1.5 41.0x 10
-
6C

4
, 1.0 4500 8000(103 0.57

19.8 0.05 2.0 41.0x 10- 5(6) 1.0 87000 10400041°3 0.74
133000

23.1 0 1.5 5.0 X10 - 5C 43  1.0 9100 000003 1.01

23.1 0 2.0 56.0x 10- 5c4 ) 1.0 210000 1 45000€
(') 0.86

13.1 0.01 2.0 37.7x10-"- 43  1.5 22800 -0600,1
4
3 1.11

14.9 0.01 2.0 40.0) 10
"
-60

4
) 1.2 47500 4100O

14  
1.15

18.0 0.01 2.0 62 x10-S
C143  

1.0 52900 53800'
14
) 0.98

(10) 13.5 0.1 2.0 32.0x10'c" 
4
) 1.3 38800 1000

14
) 2.4

15.7 0.1 2.0 53.2x 10- 1 43  1.1 40600 41600C143 0.98

20.2 0.1 2.0 118x105( 1) 4  
1.0 39000 320001 4) 1.2

14 0 2.0 .6x10- 1.0 18000 15000c(1) 1.2

14 0 2.36 7.6x10 " l :l :) 1.0 24000 30500CII , 0.8

14 0 2.40 7.6 x 10-6c is) 1.0 28000 30000(1) 0.93
Ti-6AI-4V 16.7 0.1 2.11 17.8 x 10- 5c 16) 1.0 10300 11200(14) 0.92

(1.6) 16.7 0.1 1.78 17.&x 10 "s( 16) 1.0 8260 8200063 1.01

17.4 0.1 2.11 22.8x10 - 5C 16) 1.0 8800 10100(162 0.88

25.2 0.1 1.55 63.0x10- SC1 ) 1.0 1650 24004( 0.70

25.8 0.1 Me6 63.5 x 10- 1S 3 1.0 1500 2500
C
16

)  
0.62

( ) A a : 111 Iti
9.6.) 9.8 43 ..8 20.0x1o-,4" 1.0 73000 6800 1.07

7oms-Ts 7.32 0.1 I2.11 a.$9 x 10 - s o)  
1.0 12900 12 500E0) 1.03

I(1.6) 10.0 0.1 2.11 20. sx 10
-
:

c 
2

o
, 1 . 13000 100000%t) 1.3

77-T73 i7.61 I 01 2.11 6.6 x1003 1.0 24000 25000(203 0.96

(1.6) I 100 0.1 I 2.11 13.72 xo10-°Co 1.0 2690 20000(o) 1.34

[X(1) t5o3lAk*.

Table 1
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F1

Table 1

Key: 1. Material (thickness in millimeters)

2. A model stiffened plate
3. Overload ratio
4. Millimeters/cycle
5. (Cycles)
6. (Calculation)
7. Calculated value
8. Test value
9. Test

10. Q Calculation based on data from reference [10]

11. 0 Data of 503 tests at the Beijing Institute of

Aeronautics and Astronautics

& da do ad
kY IaTJ dN Ka.n/d. dN fX)(5)

(1) R (2) -(d-MUM MNM31) (3) qtx) (4) (r:)(D J ,=-(e(

13.1 0.01 2.9 2.56% 1.65% 1.55

14., 0.01 2.0 2.20% 1.9% 1.38

2024-"351 18.0 0.01 2.0 1.83% 1.45N 1.26

(10) 13.5 0.1 2.0 2.45% 1.55%/ 1.55

15.7 0.1 2.0 2.09% 1.32% 1.58

20.2 0.1 2.0 1.604 2.54% 0.66

2024-T3 19.8 0.05 2.0 1.67% 1.5 T 1.11

Table 2

Key: 1. Material (thickness in millimeters)
2. Overload ratio
3. (Calculation)
4. (Test)
5. (Calculation)
6. Test)
7. IfData taken from references [141 and (4]
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The comparison of N* (calculation) and N* (test) 
is shown

D D
in fig. 2.

Jos

1)

0 LYl2
V202!

Fig. 2.

Key: 1. (Calculation)
2. (Test)
3. Stiffened plate

After the above analysis and calculations, 
we can make the

following conclusions:

(1) Coefficient n = 4 can be used for the 
LY12, 2024, 7075

aluminum alloys and Ti-6A1-4V titanium 
alloy;

(2) The overload retardation period 
N* obtained from the
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calculations of the proposed model used in this paper were

in good agreement with the test results. When considering the

dispersity of the crack propagation speed (da) and the N*(dN)0

test data, we found that using the method in this paper to cal-

culate the retardation period was quite satisfactory;

(3) The crack minimum propagation speed () after over-(dN) min

load calculated by means of this method was generally slightly

greater than the test values. Moreover, when occuring just after

overload, this speed was not in agreement with the test results.

Appendix

The deduction of formula (2):

Based on the concept proposed in reference (8], we have

(see fig. 3):

(20)

.- !

i0

Fig. 3.
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1 (_ K
In the for a, R lm_ 2 - Plastic zone diameter pro-

(d C) duced by overload;
ys

R - (Ka)2 - the plastic zone diameteryap Cf (dys) derived from the added cir-

culation stress peak value
IT of a certain instantan-
ap

eous and hypothetically
caused overload effect loss;

C - the constant of the Irwin
plastic zone

C = 1 is the situation for plane stress;
C = 3 is the situation for plane strain;
C = 3 is the situation for the combined model, s is

1+2s
the proportion occupied by the inclined fracture on
the break fracture (shearing model).

From formula (20):

, , R,, -_(at,_ .)

., (4
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If A a = ai - a is the crack propagation quantity after over-
1 0load, the

1,- 0-VU9 R, -Aa (

or

CFO- K--eg a,Ca_"/R, - aK. ¥ ( a )R "-~ (22)
Y(a)(2)
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A NEW MODEL FOR PREDICTING qVERLOAD

RETARDATION EFFECT IN FATIGUE

CRACK PROPAGATION

He Qingzh

(Beijing Indifule of Aeronaufica and A4sronaulics)

Abstract

The effect of the residual compressive stress in the overload plastic zone

is equivalent to an effective stress O,. and as proposed by Willenborg
! ~a O'= a. - O&

where

o.,.= y(a)

In the present paper it is further assumed that 0, is not constant during

one baseline cycle, but it varies from a, at a ,... to Q0, at o0 ,., Q is a rela-

xation factor. Then
-" (ot .,W), o, -0"- Cyr

~~(a .0, fit -R ( b mi. - c(ta

so the effective stress range (Ao,),, during the baseline cycle is

(A.).,-- (& ..)..- (a, .. A,- ( 1 - a) (a., -,..)

Or alternatively the above equation may be written in the following form

(AK),,, AK,- ( 1 - a) (K.,-K )

It is easy to show that the maximum value of K., during the transient

period following the overload will be

(K.,)~..mK1  at Aa 0. so

(AK,),,, .,AK,( I -(a1 - a)( r -
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where the overload ratio r K o

Many investigators have found that when the overload rate increases to

some critical value r.. the crack will cease to propagate at all after the over-

load. It is reasonable to assume that when r reaches r., (AK,).,, .. will de-
crease to a value (AK&)., .= AK,&, so the crack will cease to propagate.

Using this condition, we get

AK,-( 1 1 a AK,

or 1- AK,,
a = I - -AK

r.-o

If the crack propagation rate is expressed by Paris formula
do -C, (AK)o
dN

then the reduced rate of crack propagation following an overload will be
da ). ,d

where a (AK ., -U. aG
AK.

C,(AK,)O the unretarded rate of crack propagation corresponding

to (AK&).

The retarded number of cycle Ng can be calculated by

N. " dAa

where A4@ is the length o: he retarded zone.
The retarded number of cycle of some specimens of LY12, 2024, 7075 alu-

minium alloys, Ti-6A1-4V titanium alloy and a stiffened plate under diffe-
rent loading conditions are predicted by the present method. By putting the
coefficient R - 4, we find that the agreement between the predicted values

and the tested values is good, as shown in fig. 2 of this paper.
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J-INTEGRAL EXPERIMENTAL CALIBRATION OF SHEET SPECIMENS WITH
SINGLE EDGE NOTCH

Lui Ligeng, Chen Xianxi and Cai Qigong
(Central Iron and Steel Research Institute)

Zheng Minzhung
(Aircraft Strength Research Institute)

Abstract

The J-integral of a sheet notched specimen has a very simple

form when the notched surface has been taken as the integral

contour, i.e.

- f Wdy-. f_3" W()p cosodo

It can be further simplified into:

J=A P W

where

A- 2 0  w(8)dO

68



and

V 0

For two types of specimens with single edge notch (the

notch root curve radius is divided into 20 millimeters and

9 millimeters), this paper determined the strain distribution

E (O) of the notched surface, then after stress-strain curve
was converted to form deformation work density distribution

W (01 there was finally numerical integration and we obtained

coefficient A. The test results were compared with the linear

elasticity fracture mechanics method of Weiss's correction of

the plastic zone.

I. Preface

When analyzing the strength and predicting the lifespan of

the notch specimen, it is necessary for people to determine the

relationship between the outer load, specimen and notch geo-

metrical parameters, and the notch root's maximum strain E

the maximum stress-strain product C 4o and the maximum deforma-
tion work densityRi-3]W 0 5d'de. It is well known that when the

notch root is located in an elastic sphere, o=K E

r = t -a and Wo= EKt = _ _ . In this equation, Eg and

0Y are the distant mean strain and stress, and K is the theor-

etically elastic concentration coefficient. After the notch root

entered into an elastoplastic state, it went through the commonly

used Neuber relationship, that is K K 2 and obtained

d= d= Kt C.

Based on the J-integral full quantity theory, in reference

(4] Cai Qigong proved that, under the conditions of a hardened
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material of an assumed power and when the notch root strain

distribution satisfies the E(Q)= E cosme, the Neuber rela-0

tionship is still established under a type I load. He also cal-
culated the A in J/P=AW when in the 0.8-1.2 range.

0

Therefore, after J-integral direct experimental calibra-

tion of the notch specimen, we measured the E(S) and W(e) and

experimentally determined coefficient A. Thus, we used the

fracture mechanics parameters to describe the maximum deforma-

tion work density W of the notch root.

II. Specimen and Experimental Method

1. Specimen

The specimen was taken from hot rolled sheet of aluminum

alloy LY12 with a 50 millimeter thickness of 0 .2=11.2 kilo-

grams/millimeter 2 . The measurements of the sheet speciment with

a single edge notch was: length 400 millimeters, width 150

millimeters, thickness 30 millimeters. See fig. 1 for the speci-

men number and notch measurements.

1 20 tO

Q201, to 2 0 10

Q9 A0 9 is

Tig. 1. Measurement of Specimen Notch
Key: i. Specimen number
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The following formula can be used to indicate the stress-

strain curve of the measured LY-12.

+ =-E-aa"

~-1
E

In the formula, a=3.537x10 1, n=9.25 and E=7000 kilograms/
2millimeter

2. Test Method

The test was carried out on a 200 ton East German ZDM200TPU

type material test machine. The two ends of the specimen were

each fiated on a plate with 6 bolts and the plate used dowels

to connect the connecting rod to the test machine. In the test,

specimen Q2 0b was directly clamped.

There were 1x1 millimeter and 2x3 millimeter resistance

strain pieces pasted on the inner surface of the specimen notch.

Their model numbers and resistance values were PBJ -A3 (R=60 ohm)

and PBJ -A (R=120 ohm). The resistance strain pieces were sep-
3 3

arately pasted on the 0° , 10° ,20, 30, 45° , 60° , 75 and 90

curvature central arguments of the corresponding notches (see

fig. 2.)
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90* + h (1)

* 45, 15 i5

S 0 -60

"- -"0.. . O-._ . -19"

*44 15* =0.-- -20-
-- 3V . .- 46"

* 60' 90*
b .. 5 . 90"a

J2 J Q210b

Fig. 2. Developed Distribution Chart of the Strain Piece on
the Inner Surface of the Notch

Key: 1. Location of pasted strain piece

At the time of the test, there was gradual loading so as

to maintain the load and measure the strain value up until the

strain piece lost effectiveness when it reached the maximum

strain area at about 9000 microstrain.

III. Test Results

1. The Strain Distribution of the Notch Root

Figs. 3-5 present the distribution of the strain along the

notch surface under different load levels. In two specimens

with relatively large curvature radii, there was a strain dis-

tribution form similar to: a specimen with a curvature radius

of p=9 millimeters had an obvious widening of the strain concen-

tration region.
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12000- ~ 0~~~~ 3x 10
* 20
+ 23

10000- A 2

\2
800o

( 60

(1)4000-

2000

0 10 20 30 45 60 75 90

Fig. 3. The Strain Distribution of Specimen Q20a Under Different

Load Levels

Key: 1. Microstrain (0)
2. Angle 6 (degrees
3. Load (tons)
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12000k

%10

I + * 15
+ 20

8000- , 22

(1)4000"

200

10 20 ZO 45 60 75 90
(2) B( )

Fig. 4. The Strain Distribution of Specimen Q20b Under Different
Load Levels

Key: 1. Microstrain (9)
2. Angle e (degrees)
3. Load (tons)

.,0001 0, *0(0 ( 3)
x 5

+ 18

2000 1

0 10 20 30 15 60 0

Fig. 5.
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Fig. 5. The Strain Distribution of Specimen Qg Under Different
Load Levels

Key: 1. Microstrain (0)
2. Angle 8 (degrees)
3. Load (tons)

The tests also found that when three specimens were in the

6=900 area and the A,B and C areas (see Fig. 1.) on the outer

side of the notch, they all appeared in the compressive stress

region and the strains were all negative values.

2. The Deformation Work Density Distribution of
the Notch Root

The conditions of the plane stress was 0'=C=0. Because ofr z
this, the deformation work density was:

WMO) od

In the formula and afterwards, the o and 9 were separately in-

dicated as ce and 4."

d
The conditions of the plane strains were dr=0, c5= o

r z

6 x =0 and r= - t-aIf the material's equivalent stress and strain

curves can oe approximately indicated by the following formula

a, "" e " (3)
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then

f de (4

S 73 ) 0

The deformation work density under mixed conditions can be

written as:

W(O) f f ( d (5)

Therefore, based on the material's stress-strain relation-

ship, we can convert the strain distribution E(Q) of the notch

root into the equivalent deformation work density distribution

which is W(@)/f(m) (see fig. 6.).
q ~ ~0.14,[%

0o. (3) stWte)
0.12" \  !,5

+ 23

0.10-

(I 0.0

S 0.07.

I 0.06.

0.04 K
0.04

0.03,

0. 0 1!
0 1o 20 30 45 60 75 0

(2) MWMo()

Fig. 6.
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Fig. 6. The Deformation Work Density Distribution of Special
Q20a Under Different Load Levels

Key: 1. Kilograms/millimeter
2

2. Angle 0 (degrees)
3. Load (tons)

In the specimen with a p=20 millimeter notcl,, the W(O) can

be approximately indicated as:

W(e)=W,'x9 (6)

For the specimen with a p=9 millimeter notch, then:

W(8)-WA=cme (7)

3. Determining Coefficient A

Based on the definition and characteristics of the J-inte-

gral, we can take the notch surface as the integral contour at

which time:

J' ,Wdy'x W(O)P Odq-APW(

77



In the formula

A - 2 q( )do

In the formula, ( (0)= W(8) cos 6. When formulas (6) and (7)
Wo

are separately substituted into formula (9) we can analytically

obtain coefficient A.

A=0.91 when p=20 millimeters or a/p=2

A=1.18 when P=9 millimeters or a/p=4.4

Based on fig. 6, we can also convert the W(Q)/f(m) figure into a

e (0) figure (see fig.7.). We can obtain the A value by num-

erical integration (see table 1).

160ti 1.10

6454 0.0l
649S O.J

.:Z30 0.3?

15t? 1.06

93152 0.93
:%930 o 9

1443 1.21
Q 13004 1.20

Table 1 The A Value Obtained by Numerical Integration

Key: 1. Specimen
2. (Microstrain)
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0.9-

0.8- 2 3554
• 6495

.. T + 923o, A -11500
0.6-

0O..

0.1"

Fig. 7. The (e) Function of Sample Q20a Under

Different Load Levels.

Key:O)Angle e (degrees)
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IV. Analysis and Discussion

(1) In the direct ratio of the notch root's maximum deform-

ation work density W0 to parameter J/ p (formula 8), the propor-

tionality coefficient A is approximately 1, for a specimen of

a/P=2,A1l and for a specimen of a/p=4.4, A 21.2.

Specimen 0 20b is directly clamped but because it is not

clamped firmly the specimen slips in the clamp hold. When

measured from the auxiliary strain piece, we can see that the

specimen endures a relatively large bending moment. Even though

this be the case, the T (0) and A values of the Q20b are close to

those of the Q20a

Besides this, tests initially proved that the A value tends

to increase following the increases of the a/p. Further, we can

infer that A is related to the hardening characteristics of the

material. Yet, when applied in engineering, A can be viewed as

a constant approximately equal to 1.

(2) When the specimen notch is still in a small range yield

condition, we can use the calculation of the stress strength

factor to obtain the J-integral value. Thus, when establishing

an external load, the specimen and notch geometrical size are

related to the notch root's maximum deformation work density.

If we assume that this experimental calibration is in a

plane stress situation, then after using Weiss's correction of

the plastic zone in the calculation of K we can obtain con-

sistant results (see table 2).
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90 WO e Trf K

2) ~/~)(3) (evi) (4) (' flQV~) (5) IFti

1.11 897 0.0028 0.054 0.056

2.22 1869 0.011 0.22 0.22

Qzoa3 3554 0.029 0.60 0.58

4.44 6495 0.063 1.31 1.26

5.11 9230 0.097 1.97 1.94

5.56 -11500 0.128 2.54 2.56

1.11 1443 0.007 0.054 0.076

2.22 3004 0.023 0.024 0.25
3.11 5119 0.047 0.53 0.50

QD 3.56 6437 0.062 0.74 0.66

4.00 8334 0.037 1.01 0.94

4.22 9424 0.100 1.16 1.08

4.67 -11400 0.127 1.54 1.37

Table 2.

Key: i. Specimen 2
2. (kilograms/millimeter2 )
3. (Microstrain) 2
4. (Kilograms/millimeter)
5. (Kilograms/millimeter)

L= + 2-)']j= t e_ I .(io)
E E -T-L4;.., )~

In the formula:

Y is the geometrical form factor of the single edge crack
* drawn specimen stress strength factor;

0r ' is the maximum theoretically elastic stress concentra-
tion stress dm=K t of the notch root;

Kt is the actually measured elastic stress concentration
coefficient;

.g is the distant mean stress.
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In this paper, for Q2 0a" Kt=5.66; and for Q9, Kt=
8.18.

By substituting this into formula (10), we can obtain the J-inte-

gral value recorded as J* (table 2). At the same time, from

formula (8) we can obtain the J-integral value recorded as J

(table 2) when A=1.0 is used for 0 20a and A=1.2 is used for 09.

Actually, experimental calibration is not an ideal plane

stress condition as the W in J*=APW should be f(m)y dde .

In this formula, f(m) is in the area of 1.0-1.2. Therefore:

r i  w ° ¢ °= -E P" +- 4' a..

It is also- only an approximate engineering calculation method.
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J-INTEGRAL EXPERIMENTAL CALIBRATION OF

SHEET SPECIMENS WITH SINGLE EDGE NOTCH

Luo Ligeng, Chen Xianx and Cai Qigung

(Central Iron and Steel Research Institute)

Zheng Minzhung
(Aircraft Strength Research Institute)

Abstract

J-integral of sheet notched specimen has the simplest form when the no-
tched surface has been taken as the integral contour, i. e.

J = S Wdy= f ', W( 0 ) p coOdo

it can be still simplified

I -APW.
where

A-2S 2 (P ( 0 )dO
and

( W(6) Cosg

it can be seen that the ratio of J-integral to radius of curvature P is propor-
tional to the maximum deformation work density W, at notch root.

The specimens were cut from hot rolled sheet of aluminium alloy LY12
with yield strength a*.,=11.2 kgf/mm'. The specimen sizes are: thickness B
30mm, width Wl150mm, notch depth a-40mm, and the radiuses of not-h
curvature P-20mm and 9 mm, respectively. The resistance strain gauges of 1
by 1mm were adhibited on the inner surface of notch at angles 0 being 0*,
10", 20". 30", 45, 60, 75" and 90, respectively. And then, the measure-
ment of strain distribution e( 0) at various load levels was made and defor-
mation work density distribution W(6) was derived from stress-strain curve.
The value A, at last, has been determined by means of numerical integration
and the approximation function, and varied in a range of 0.9 to 1.2.

Owing to the limitation of the experimental accuracy and the difficulty
in determining exact degree of plane strain, the agreement of experimental ca-
libration of J-integral in the present work with J converted from equivah-.t

stress intensity factor K,, considering Weiss's correction of plastic zone can
be considered as an approximation for engineering.
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ON THE DESIGN OF TRANSONIC TURBINE CASCADE BY HODOGRAPH METHOD

Ling Zhiguang
(Institute of Engineering Thermophysics Academia Sinica)

Xin Shaokang and Zhu Shican
(Fudan University)

Abstract

The design and realization of a transonic turbine cascade

witn a low energy loss coefficient is one of the crucial pro-

blems for raising the performance of transonic turbines. This

paper deals with the inverse design problem of the transonic

turbine cascade in the hodograph plane by the finite area

method. In the first part of this paper, the governing equa-

tion is transformed into a symmetrical form which can be adopted

to obtain the upstream singular solution. The boundary condi-

tion connected with the existing discontinuity in the hodo-

graph plane is also analyzed and afterwards verified by num-

erical tests. The next part describes in detail the method of

solving the stream function field by means of the finite area

method, including the integral transformation of the governing

equation, the finite area scheme and the particular corner

finite area scheme. The accuracy of the solution is also briefly

analyzed. The worked out equation is quite simple and quick-

acting. Calculation results prove that the solution is quite

stable and it is not necessary to modify the mesh near the sonic

line or other places. Calculations also show that the choice of

the position of the critical point on the sonic line has a

definite effect on the flow field and the blade type molded line

T anslator's Note: Subscript oo should be read as -.
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form should be given careful attention in design.

I. Preface

The transonic turbine has great potential for raising

efficiency and one of the crucial problems is the molding and

designing of a highly efficient tran sonic turbine cascade. Aero-

dynamic flow around body calculation methods such as the time

correlatio nmethod and relaxation method are all forward solu-

tions for various existing transonic turbine cascades. In order

to attain a transonic cascade with a low energy loss coefficient,

if there are only repeated improvements of the blade type molded

lines based on aerodynamic positive calculations, the goal will

still not necessarily be able to be attained. This is because

the sonic line position and its front and rear flow fields are

all able to directly affect the efficiency and performance of

the shock wave component and transonic cascade. Sometimes the

application of artificial viscosity methods such as the time-

correlation method are considered for the calculation of shock

wave discontinuity and the resulting shock wave position is a

region from which it is difficult to more accurately determine

a corrected and improved direction. The test research initially

revealed: if we could cause uniformity in front and behind

the transonic turbine cascade sonic line, especially in the

throat section flow, rationally control the speed gradient and

outlet flow field and rationally design a molding line, then

it is possible to decrease the viscosity shock wave loss,

realize a weak shock wave and even a transonic wing and cascade

without shock wave[1-3l.Because of this, we have reason to be-

lieve that the transonic turbine cascade is not very appropriate

for arbitrary analytical curve modelling resembling the subsonic

turbine cascade but should adopt a general position in accord-

ance with the predetermined profile flow velocity distribution

and sonic line and use the inverse problem method for the mold-

ing design. After obtaining the initial molded lines, the
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direct problem method is then used for further computation

checking. This type of inverse problem is carried out repeat-

edly and hopefully obtains a highly efficient transonic tur-

bine cascade series.

The hydrograph method takes the speed component or speed

molded length and velocity vector direction as the independent

variable whereby we obtain the dominant equation of a linear

partial differential equation which simplifies the solution.

There are already many results[4-7]attained on this aspect of the

transonic wing. In recent years, G.Karadimas and D.E. Hobson[8 ]

have carried out effective work in extending the above results

to the transonic cascade.

As for the inverse p.oblem, the method provided for the pre-

determined profile velocity is directly related to the equation

and solution. If we use the velocity distribution on the given

pressure surface and suction surface along the x axis: 2tp=

f p(x) and A = f s (x), AL is the dimensionless velocity V/A r.

There is also a given distribution along the arc length direction.

This type of supply method is relatively intuitive and seems to

be advantageous to the formulation of the control and load of

the boundary layer loss. Yet, this is also conditioned because
the profile form and curvature are unknown. Therefore, it seems
to be insufficient to guarantee that the gas emission angle for

the transonic turbine cascade be able to regulate the sonic

line location form and a fixed level. The hodograph method

takes V and the velocity vector direction as the independent

variables and supplies the relationship of the profile velocity

and profile inclination. Aside from simplifying the equation and

the other mentioned advantages, when seeking the solution, the

sonic line acts as one of the supplied boundaries. Thus, we

could also prepare beforehand a fixed control for the sonic line

location form. After gaining experience, we could make some

restraints beforehand to guarantee the gas emission angle.

84



AAlIO 28-2 FOREIGN TECHNOLOGY DIV WRI6HT-PATTERSON AF8 OH F/6 1/3
ACTA AERONAUTICA ET ASTRONAUTICA SINICA.(U)

UNLASSIFIED FTD-ID(RS)T-129-81 I

22 
81ff l fff1

I lllElhlllElll
I fl.lllllfffffffEEEEEEEEIilEEEE
l/EEEE//IE/hE//E
I//I//II//II//,llfll~f
EEEEihhElhElhE



- II

1.8

IIIJII25--"IM 25 IICROiCO RlEO L 1T 6

MICROCOPY RESOLUTION" TEST CHART



Yet, the supplied V and 0 distribution on the velocity

surface form a solution region and its geometrical shape has a

certain arbitrariness and complexity. There are two types of

methods used for this: one is to transform this solution region

to another conversion velocity surface causing it to become a

rectangular region (see appendix 1). The other is even more

effective and uses the finite volume method (binary is the

finite area method). At present, the finite volume method has

attained to very good application for solving the winq and

flow around the cascade. For example, Jameson used it to solve

the wing's transonic potential flow[ll and McDonald and Denton

separately used it to solve the time-correlation relation of the

cascade.[12-33 The finite volume method showed the conservation

equation as an integration pattern causing the form to be con-

cise and thus raising the stability of the solution. At the

same time, a small volume unit component mesh could be conven-

iently deployed and divided in a rational smooth solution area

wherein we obtained a relatively good discrete approximation

which was advantageous to the calculation of the complex geo-

metric shape. Because of this, we applied the finite area method

to the transonic turbine cascade and even to solving the in-

verse problem of the sonic line's velocity surface.

II. Dominant Equation and Boundary Conditions

1. Dominant Equation

If the shock wave in the cascade is very weak, the effect

on the boundary layer is also very small. We can write mass

discrete and irrotational equations for the plane, irrotational

and permanent flows:
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(PV.) + . (PV') 0(
ax ay

-y ,---vfi o (2)

Now, the independent variable changes to V and e and introduces

stream function l and potential function

d = V/'dx + V,4y
d(=-pVdx+VP dy

d*=-PVdx+PV~dYv

Held on the physical surface:

dz= -!!(O+ do

After arrangement, the separate derivations of 8 and V on the

velocity s-,face are:

ac_, = V * (:,

ap 0 p aV

av do
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After merging and becoming nondimensionalized, we can obtain:

L(~~)= A )O (~ + t- )q)

In the formula

" (i1

S--BX)" BK +1' =K- I Ni~o

Key: 1. t is the blade pitch

Formula (5) is the linear partial differential equation needed

for the solution.

Formula (5) can be further transformed into a symmetrical

form. Letting ' =p,.r and Q_(-BA 2) = f( n ), after

using the new equivalent independent variable L' to substitute for

A. , we obtain:

'-0 __- _ ( G )

(7)
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In the formula = _arnd J/1 d

which is

+B VI Be:1i1 BV1yl B~-X)~28

Thus, formula (5) becomes:

L(O*)=-" W =0 (8)

2. Boundary Conditions

After utilizing the stream function from figure 1, the

boundary conditions of,?* =0 on the suction surface alonq the
S

blade surface, ) "=1 on the pressure surface and *c=f(e) on the

sonic line can be determined by using the singular solution of

a mixed type equation[6].

C, ca 1.0 At

*:4O 8 C,

Al Mo A.6 Os

Fig. 1.
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Fig. 1.

Key: 1. Velocity surface
2. Physical surface
3. Sonic line

Up to the present, the difference between the various singular

solutions lie in the accuracy of their compression functions.

Other approximate hypotheses were all the same but in the area

of the sonic line the differences of the compressibility func-

tions were very small. When we used Germain's[llsolution, which

shows that there is a critical single point e nozzle on thec
throat part, then

= (o,-A,1 3''- ( -l)l,"

The upstream boundary conditions are the distant overtakinq

flows A. and 00 which forms single point I on the velocity
00 0

surface from the cycling of the flow. Further, after selectinq

the blade's "geometric" stagnation points A and A0, we can then1 o0
determine the solution area IM1 A 1 C1 C0 A0 M 0 10 on the velocity

surface. To sum up, the problem is the solution of "degenerated"

elliptic equation (5) F ' N ' or equation (8).

Because the equation is linear, its solution can be obtained

from a combination of the regular solution and singular solution,

which is *= P + * oo In this equation, tI is the regular

solution and is the singular solution near the upstream I
00*point. Therefore, the solution equation changes to:

* F.N.1: Because it is necessary to directly solve the singularity
sonic line.
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we used an approximationA of W= in formula (8) and

formula (8) changed in the Laplace equation. From this,we could

directly attain the Fenain results:

In the formula

R- / K O~O' tg'(

Now, the solution area is AC 1 Co AoMoM1 A1 and the boundary

conditions are: -T ofor AAC =1- o for AC 1, and

_= - o o for C1 C o . It is necessary to further discuss the

A MiM A line because the MIM area function is non-continuous.

It jumps from the 1 in the M1 area to the *=0 in the M0

area and is also on the A=O line: _=-i for AM = -p0 0

for In order to maintain a continuous t on the solution

area boundary it is necessary to establish IM 1 =fIM° . This
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can be realized. For example, using '"M= *lM° =0 it is then
0

necessary that: *00 M1=1 and * 00IM0=0. To do this, it is

only necessary to use the C value in formula (10):

c ---- ,
21 CO<0

(2)
C-- 25 ( >O

Key: 1. When
2. When

Then the goal can be reached.

11

-0.5 -

Al1 1 4 ~ f,,-o A

Fig. 2.

We can also use reference [1] which takes flMo 'M =1 . At

this time: oo M1=0 and too I M0 =1 and it is necessary to use

C;-2 when a 0A and C=- 2A -1 when w >GA"

Aside from this, we can also use tS)Mo= "t l a n:. 1 as another



arbitrary value such as 0.5 etc.(see fig. 2). From this comes

the corresponding C value and given 61-. Numerical tests proved

that no matter what the value of 9"IM = 1M, the results wereo 1
the same. We could also understand why the final result was

S,= 'P -V . The above result was obtained assuming IM was
00

obtained in a straight line. Actually, IM represents the upstream

flow field and any W origin can be selected along IM.

III. Solution Method

We used the finite area method to solve the boundary value

problem of formula (9).

1. Transformation of Equation

In order to be appropriate for solving the finite area

method, the integral of formula (9) was:

Jj 1 - (Poe) + -- ( O) d dx=f ,( , f)d1 d

D D

In the formula, f (0),ZL)=L(o 0). After applying the Green form-

ula:

S.Q* Ad ) ( + Q( , )dd?. (I)
D

In order to simplify calculations below, Y" is written as Y.

* 2. Treatment of Format

Using a non-equidistant A =const line (actually it is not

. absolutely necessary to use an equal N line, yet because X=O

and AL=1 are boundaries, the use of an equal A line is more con-

venient) and an equally separated point joining line along the
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7const line, we cut up the solution area into an arbitrary
tetrahedron. The stream function 1 was defined in each format

center area. For each tetrahedron mesh in the solution area, the

peripheral integrals in formula (11) can be changed into line

integral sums on the four sides.

40

1 2

Fig. 3.

For example, the 2-3 side in figure 3 has:

IX= f (P4,rr.+Q*kfl)ds-FwV, 5 nods +5 W, 3 n.ds

In the formula, P, Q, 0 @ and I' are all mean values in the

integration area. We took point P and Q values in the area as

P and 0. Because t was only defined in the format center areas,

it was necessary to provide the expression of derivatives e 6

' Using the directional derivative:

If for point of the 2-3 side in fiq. 3 we take the 1 direction as
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the eeI direction and 2-3 direction, then:

, - ,,,OQ ~f4

---2 "- = .unlcos- + 'F, si.-,

In the formula, AS32 is the distance between the two adjoining
points;and re 1 is the distance between the two adjoining

format centers. 1  is the point ( area In and Ve is the

point 0 area 'f (see fig. 4). When a =0 (using the equal A line

to divide the mesh), we can obtain

__-- ___t___ (12)

, I

Fig. 4.

Taking 3 4(e + le 1
+  e 5 + *e 2 ) and V2=4 (Ye+ te1 

+ ' e4

+ e )V then

8
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$tS*~1$64$6p - Ctgpa
4A83 1 sin~j "

Therefore, the 2-3 side can be written as:

Per, A3' 3' A2 adeiare the A and e values of points 3 and 2,
and P (IL e) and Q (AL 2 ) are the P and Qvalues of the 7L=XL
area.

Similarly, point of the 1-2 side has:

Arsn4 ctgo,(' 4 1070

Because 1' 2 1' therefore
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2 A X r, i 3 4 ASi

and I are analagous. When the four sides are added to-

gether we obtain:

I 4 4 '. \s,:

I i

In the- formula, a is the coefficient of 'e and *e;

, lCO
(04 5,

Fig. 5.
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The boundary infinitesimal has eight types of different

situations (Fig. 5) wherein it is necessary to treat and write

out their integration formulas. For example, for situationGs

from Fig. 6, *=-Ion the 1-4 side, and Y='f,()-4
00 ,C0 00

on the 3-4 side. Therefore

MOO~-4..- # 'J
A834

4'. -4 -4. _ ___ ___ ___ ____ctgPIA-3

* Fig. 6.
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Thus

r *'1.(0.)-*--. ___________-_-_- __)

I.-Q( 1 )(03-01) Lto (A+SA*.I-'.?

and

4"

,,-( - _

Therefore

1, -(X. (X ) WCX)

(A!~4 (04-01)

- c ,,*- ( 1 -*l,. 1 (O4O- -

(A$ 4 + As- 1.
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Finally, the related simultaneity of the infinitesimal mesh

defines the linear algebraic system of first order equations

in each format center tand then the solution is carried out.

3. Annotation of Several Points

(1) For the most part, the finite area method is carried

out for a system of first order equations. For example: equa-

tion (5) can also be written to form a system of first order

equations

~ -=0

a5-+PA±4 0

After integration

- *u.ds= 0(13)

(In.4-P*NI)dt 0

At this time, the mean values of the two adjoining mesh format

centers are used for the value on the infinitesimal area bound-

ary. The presently used equation (5) has direct integration and

utilizes the derivative value on the boundary. The coordinates

of the four angle nodal points use the mean values of the four
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mesh format center . The accuracy is raised and some are similar

to the Lax format. The use of the 4 point means is also advant-

ageous to stability. Aside from this, the use of a system of

first order equations can also save on the machine's storage

quantity.

(2) In the solution, the first order derivative 4Pa. approx-

imation uses the difference quotient alternate approximation of

the 3. and G-rdirections and the accuracy is in the first to

second order range. When the mesh degenerates to a square it

has second order accuracy equal to the central difference.

From Fig. 3, when B.=900,

1 /

+f Z ,~/2

(3) we can also use the weighted residue method of taking

the weight function as 1 for the integration of formula (8).

If the weight function acts as the form function, mathematic-

ally speaking, this corresponds to the finite element method.

(4 *0 is the singular solution "near" the upstream
infinity area. .We continued the use of the method in ref er-

ence [1) and employed it for the whole solution area; although

this method was much more convenient to use than the hyper-

geometric function for seeking the effects of the upstream

single point, yet the approximation was larger. Therefore, in

P the next step, we calculated the problem of the first category
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boundary value conditions in carrying out a direct solution of

formula (8) or (5) on a fractured surface.

v. calculations and Discussion

Based on the above mentioned method worked out on a computer

program, we obtained the I field in the solution's linear

algebraic series of equations. After obtain the )P field we

used numerical integration to directly calculate the s surface,

p surface, and x and y sonic line coordinates. The coordinate

origin was taken on the intersecting point of the s surface and

sonic line. For the supersonic part we continued the use of the

characteristic line solution method.

0.

0.0

0.1

-46- 0 -4 -0 20 g o aw

Pig. 7 (a) The Relationship of the A-0 Distribution System



S.72.3

-0. -0.,4 -0.2 0.4 0.6 -

0.-70.0

\ 1.0

Fig. 7(b) Profile Calculation Example

* Fig. 7 is the calculation results. The cascade nodal dis-

tance tis taken as 1, the upstream overtaking flow is M =0.15,
the axis gas intake is a =900 and the gas emission angle is

a1 .0 ;150. Fig. 7(a) gives the X -0 distribution and Fig. 7(b)

is the sought transonic turbine guide blade profile.

(1) In the relationship of the given velocity distributions,

at the sonic line A. =1 area, # =72.30 and @ =68.70. The calcula-p s
tions practically proved that the selection of the critical
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single point 0 was not only related to the performance of
C

the supersonic part form but the effect on the profile of the

front surface of the sonic line and the form and position of

the sonic line was rather great and quite sensitive. Fig. 7(b)

shows the results created by three types of 0 values wherein
c

0 =68.80 is taken as relatively good. It can be seen from thisc
that when we want to obtain a uniform flow in the throat area,

the subsonic line form is very important. After providing pres-

sure surface p and the A-0 relationship of the suction surface,

following adjustment the 0 can obtain a relatively good value.
c

Concrete calculation examples have also showed that in a certain

overtaking flow M number sphere, the *c point near the back arc

will cause the sonic line to become even more level and straight.

This is equal to causing the exit back arc to approach a straight

line shape.

(2) After the + * field is known, the return physical sur-

faces x and y require separate integration formulas for the

p and s surfaces:

, o [P+Q(- w cosOd% (14)

0 dX O

Y- l , .' sin 0 d% (15)
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For the sonic line

xl-x.i.-' I-:- -9-- sine (16)

i sin 0 + cos 9 )do (17)0 Am 00-o

Poo
In the formulas, the C= P cr A CoSs00 is obtained from the

given overtaking flow conditions. In order to satisfy the profile

seal condition there should be

(x.- .)I, + (x.- xo)I. =(-x.-x 0 ,°)1,

In the formula,n indicates the integration end points of the

p and s surfaces, m is the end point' of the sonic line, xop

and yop are the coordinates of the p surface integration begin-

ning points and xop=xmo. If i is used to indicate the flow

points on the p or s surfaces, then the blade thickness distri-

_* bution can be shown as:

b,- I +(y,-y.),- (y,-Y.,),- (y.-yO)I.

During the actual calculation procedure, it was necessary

to repeatedly adjust and modify the original data (the A -8

distribution of pressure surface p and suction surface s) or

consider the relationship of the profile's form velocity and
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inclination changes so as to obtain a relatively good seal and

to satisfy the thickness distribution of the profile. After

gaining a certain amount of experience, this was not difficult.

Because the function P value had singularity, when there was

actual integration, we could try to shift to the upper half of

the mesh. Although this caused the leading edge to have a small

number of breaks, this problem did not have a very large effect

when there were many mesh nodal points.

(3) When using the finite area method for solution, it

was necessary to divide the mesh for the solution area and

solve the mesh's central values. The mesh was divided in detail

and solut _,n accuracy was raised. As regards the solution re-

sults, if a relatively rough mesh was used, the results were

complpto-ly stable near the A~ =1 area. The same holds true

for the A- =0 area. In this way, it was not necessary to have

relaat:L.. difference solution in some places. For example,

with the ust of under-meshing near the sonic line, the mesh

was fltner in the AL direction or a mesh with an undetermined

value was used. This also used the special characteristics of

the finite area method and was one of the advantag~es.

V Brief Summary

(1) This paper presented the use of the finite area method

on the velocity surface for the solution of the transonic tur-
bine cascade as well as the inverse problem results of the

sonic line, a concrete description of the treatment of the equa-

tion, the solution method steps and the-handling of the format.

It also discussed the accuracy of the solution. After using

* this method for numerical calculation and analysis, the program

was concise and calculation time was short which could be

appropriate for a complex area form. Moreover, it was not nec-

essary to have more meticulous treatment near the sonic line.

This point is an improvement over the method found in

reference [11.
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(2) Calculations showed that the selection of critical

single points of the throat's sonic line which have a rather

great effect on the sonic line form and profile form should be

given careful attention in modelling desiqn calculations.

Appendix The Transformation of the Solution Area on the
Velocity Surface

In taking 9-0, and n=y as the transformation of

the coordinates on the velocity surface (Fig. 8), we had:

e ,0 .'a aX ax ay

Letting g= --- , we obtained from the relationship in the coordin-

ates:

_ ,_ 0,- ( - 0,) O
g --- (0,-B,) -

in the formula e'p and e' are the * and 0 s partial deriva-, sP pspatadei-

* tives for A-. In the same way, we can obtain:
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o . •
-ev + 0+ 00 ( OO+., + 0,0 -O

- - l~pqQ, +0 9 po -

+ - z0+ ,) + 2 0,) + 20;'(B -e)(O,--o,)

Letting g= y and 0y= , on the converted velocity surface,

equation (5) becomes:

Lf~Q2 ~___ +(9DQ+9,Q~gQY 1

+C, Co 1.0 C1 tO

0 A.
S.4.1 o A& 40

Fi1. 8.
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THREE DIMENSIONAL STRESS ANALYSIS FOR A SHROUDED AIR-COOLED
TURBINE BLADE

Shung Changbing and Ziao Junxiang
(Beijing Institute of Aeronautics and Astronautics)

Abstract

Up to now, there are still no accurate and reliable methods

for computing the stress field of a shrouded air-cooled turbine

blade because the cooled blade with a complex figuration works

under high temperatures and centrifugal loads; moreover, the

distribution of aerodynamic loads is rather non-uniform. Gener-

ally, such problems which occur in practice are handled by

means of experiments of statistics.

In attempting to solve these problems, we applied the high

order three dimensional isoparametric elements for describing the

complex configurations of blades. In order to solve the high

order linear system of equations, we have used the frontal method

with high accuracy and considerable economy of main memory space.

The high order bicubic Coons interpolation function is also used

to fit the space curved surface. In order to verify the present

method and the reliability of the given program, we have compared

the results of numerical computations with those obtained from

experiments on the revolution of the real blades at high speeds,

and the comparison confirms the adaptability and the satisfactory

accuracy of the present method.

This method is appropriate for various blades such as solid
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or hollow blades, shrouded or unshrouded blades, blades with or

without a shank root, and at high or normal temperatures.

I. Preface

The analysis and calculation of the high temperature fields

and stress fields of shrouded air-cooled hollow blades is a

major research topic brought forth by related departments in

China. When used by an engine, it can improve the performance

parameter greatly and raise its lifespan. At present, there are

already many types of advanced engines making use of it. After

the appearance of the finite element method, references [11 and

[4] had calculated the temperature field and thermal stress for

the shrouded hollow blade. Yet, the three dimensional blade was

simplified into the handling of the problem of the plane. Natur-

ally, there is a great difference between this and the real

situation.

A few of the major characteristics of this type of blade

*are: firstly, it is composed of an irregularly shaped shroud,

possesses a special profile and a warped blade body as well as

* various special types of cooling holes and shank roots. Because

of this, is is very difficult to disperse on the curve side

element, to fit on the special form and to automatically pro-

duce on the nodal point coordinates. Secondly, the blade works

* under a complex load. Its tangent velocity generally reaches to

250-300 meters/second and therefore the centrifugal load is

very great. Moreover, the barycentric shifts of each tangent

surface produce added moment. When the unevenly distributed

aerodynamic load is along the arc direction and radial direc-

tion, it is extremely difficult to simulate the boundary condi-

tions. The working temperature of the air-cooled blade (in front

* of the turbine) reaches to over 1500K, there is very great

thermal stress produced on the side of the cooling hole and the

high temperature area often has burning. Thirdly, testing and
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measuring are difficult. When the blade works under high tempera-

ture and high rotational speed, it is impossible to directly

measure the required temperature and stress distribution of each

point. Moreover, it is even more difficult to simulate the

engine's various working conditions in a laboratory. Fourth,

theoretical calculations are difficult. There are many load

types that require calculation for the blade and this is very

difficult. For example, at present, the temperature boundaries

and aerodynamic boundary conditions are being studied, yet the

calculation of the temperature field and stress field depend on

the accuracy of giving these conditions. Furthermore, the order

of the series of equations is also an outstanding problem.

II. Basic Method

At present, the three dimensional curved side isoparametric

element method is one effective method that can solve the cal-

culation of the complex blade's temperature and stress. We sel-

ected a high order 20 nodal point three dimensional element. The

external form of the blade is shown in fig. I., and fig. 2. is

the employed element.

dsKIt (2)

tJW(3 1

(4)
itL

(5)

Fig. 1.
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Fig. 1. External Form of the Shrouded Air-Cooled Blade

Key: 1. Shroud
2. Gas emission hole
3. Tangent plane
4. Gas intake hole
5. Root

3 2 T
4

6 ol

11 1

g4 t

20
17 is 19

W (b)

a2

(a) 60i(,y, z), (b) %B# (t,' , 0-

Fig. 2

Key: (a) Integral coordinate (x,y,z);
(b) Local coordinate (, ,, , )

The form function of the 20 nodal points on the indicated

element is:
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N,--(L)( 1 +)( no +w.) O.+t+e.- 2)

(i I , 3, 6, 7,13, 15, 17, 19)

Ni1 -E)( 1 +11,( 1 +to)
4

(i-2, 6, 18, 14) (1)

N,-( 10 -T1) 0 +t,)( 1 -t.,)
4

(i - 4, 8, 20, 16)

Ni-T( 1 -l)( 1 -- ,)( 1 +T1.)

i - 9,10, 11, 12)

In the formulas, t 0= 0 ' = O -  n i and

i i and i are local coordinate values of the i nodal

points.

We know from the elastic theory that for the geometric

equation of the three dimensional problem the matrix is used

to indicate it as:

(2)

In the formula

Key: (B) is the matrix of the relationship
of the strain and displacement;

fg) is the displacement vector;

fE is the strain vector

* Its physical equation, when there is initial strain

is:
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(0) ({ £ }- ( e .}) (3

In the formula

Key: f} is the stress vector:

R£,? = aT (,11000) ;

T is the temperature:

a is the material's linear expansion
coefficient;

(D) is the elastic matrix.

The element has volume force and surface force in simultan-

eous action and the initial load functional equation caused by

the temperature difference is:

l(u a, W)= (4)

For the whole area, then we have

[1= = - )((5)

In the formula

F= FO)*+(F°+ (Fil°  is the element's external load (5a)
vector:

{F,}=fSfCBIr(D(e}dV"  is the element's initial load (5b)
vector;

{FW}=fff(N)Y(P~dV
VC is the element's volume force: (5c)

{F.)"=ff(NT{qdv is the element's surface force: (5d)

(K)='fff(BY(D)(B)dV is the element's stiffness matrix: (5e)

VI4

124



(S is the nodal point shift vector;

(N) = Ni, ... INn) etc.

When functional rT uses an extreme value of Sg =0, then we obtain

the series of equations required for solution.

III. Temperature Field

In order to calculate the element's thermal load and

thermal stress, it is necessary to calculate the three dimensional

temperature field on the blade. Based on the experimental data

found in reference (12] concerning geometrical correction along

the arc length and mathematical interpolation along the blade

height for a certain type of blade we obtained its boundary

value. When the boundary conditions were of the first category

and third category, the temperature field's elliptic equation and

boundary conditions were:

+zT a2T a-T
ax2 + O,2 + az (in volume V)

=T(x, y, z) (on surface A1 ) (6)

C)T
+ (x, y,z)=q(x, yz) (on surface A2 )

In the formula

A=A +A2  is the entire boundary condition;

T is the known temperature distribution;
T 0

S-n is the external normal derivative;

and q are boundary parameters.

Using the Gauss divergence theorem, we can transform the

elliptic equation into a functional extreme value condition:
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{bT)((K)({T) - {F)) 0 (7)

In the formula

(K.,)-=fffCC)r(()',)r( )-,[C)dV is the volume element con-
V, tribution to "total stiff-

ness";

(Ks'3='f{N) {N)r7dA is the surface element con-
tribution to "total stiff-
ness";

(F)-=f N qdA is the surface element con-
A tribution to the right end.

Due to the arbitrariness of gT1 , formula (7) is equivalent to

(K3{T}- {F = (8)

This then is an algebraic system of equations for the element's

nodal point temperature.

IV. Frontal Solution Method

This is a variation of the Gauss method and its greatest ad-

vantages are that its solution accuracy is high and its time is

fixed. Moreover, its programming is ingenious so that it can de-

crease internal memory and make full use of external memory.

Its special characteristics in operation are that it both accum-

ulates and eliminates, it does not require the formation of total

stiffness and the results after elimination are sent to the ex-

ternal memory and does not occupy internal memory space.

By using fig. 3, it is even easier to explain its solution

process. In the fig., when elements are already accumulated,
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element ® is in the process of being carried out and elements
®- @ have not yet accumulated; nodal points with a "*" symbol

have already been eliminated, nodal points with a "01 symbol are

in internal memory which is equivalen't to the tape width, and

nodal points with a "A- symbol have still not begun action.

Therefore, the activity variable "0" in the solution procedure

forms a "wave surface" that continuously advances forward. This

is the origin of the frontal method.

$ 9 3 17

- (Ditij. @ is

Fig. 3. Schematic Diagram of the Frontal Method

o is a nodal point in the internal memory

x is a nodal point already eliminated element

A is a nodal point which still has not begun
action
is an element being produced

Uis an element which has already been produced
Sis an element which has not yet been produced

It is easy to prove that the internal memory of the frontal

method mainly depends on the width of the wave surface and be-

cause of this it can economize the internal memory better than

the band width method and divided piece tape width method.

Tests have proven its obvious advantages for high order systems

of equations and high order elements. Its shortcomings are that

the program is too complex and when operating, the repetition
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I
of internal and external memory exchange wastes time.

V. Fitting and Automatic Mesh Division of the Profile's Curved
Surface

1. Fitting of the Profile's Curved Surface

The body of the blade is surrounded by two skewed space curved

surfaces. The contour of the curved surface must be accurate

otherwise this will affect aerodynamic performance and engine

efficiency.

The divided three dimensional curved surface element must not

only have the curved surface strictly coincide with the profile

but the element's nodal point coordinate must also accurately

fall on the curved surface.

We have test tried a new method proposed in recent years by

Coons and Forest [13] using a type of structured curved surface

for the fitting of the space curved surface. If the profile is
composed of many small curved surface pieces and the interpola-

tion function's second order derivative is continuous in each

of the curved surface pieces (as shown in fiq. 4), the domain

of the bivariable interpolation funqtion x(u,w) is: 0 < u ,<1

and 0 \ w 1 1. If we now fix a certain parameter in the x(u,w)

then we obtain the common single variant interpolation function.

at)I .,(j+) (#+1).(i+l)

-(b

Fig. 4.
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Fig. 4. Curved Surface Pieces

When formulating the partial derivative of the second order

continuity in the boundary, we write the matrix as:

x(u, w)-(F.(u) G,(u) Fj(u) G,(u))

x(o, 0) x.,(O, o):x(o, 1) x.(O, 1) F(w)

X .o , 0 ) XN_( o , o) X ( o , 1 ) = _C o , 1 ) G ( ,w )
(9)

X .................................................................... ............................... 9

x ( 1 , ) .( I , O ) x ( 1 , ) x ( 1 , 1 ) IF ( W )
X.(0 , 0) X..(1, 0):x.J1, I) X..(1, I) G:(to)

In the formula, the variable in the 0-1 area is second order con-

tinuity and the related symbols are:

F(o)=F.(1)- 1
= ~~~FJ(1 ) =F,(0) =F,'( 0),F( 1 )=F;,( 0) F,(o0) = 0

G'(o) =G()= i1 (10)
o)=G0 ( i)fG,(0)fiG,( i)-fG( i )=G'(0)= o

Key: 1. Etc.

We further define the x(u,w) in the rectangular area as:

O U 4 n, 0<w < m, and n~m is the positive integer. Further-

more, taking the ui and u. values in formula (9) wherein i=0,1,

n,J=0,1,-,m, then

Uw P()B.q'(W) (12)
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In the formula:

00. 00., 01. 01. . ...... io . Om.

10 10. 11 11.- ...... Im Ira.

10. 10.1, 11. 1 1.. •...... lm. Ira_

B. -- (13)

nO no. nnm nrm,

nO. n..., rn. rn.

F.,(ag), (k b , ) ( F.(b,), (1 = i)
Go (at), (k - + 1) G°(bj), ( I + i )

P,(u)= F,(a), (k-i+2) q,(w)= F1 (b;), (1 =I + 2) (14)

G, (a#), (k= i +3) G(b;), (=j+ 3)
0, 0{ i , Xf' k C21

Key: 1. Other
2. Other

Moreover, there is:

k - 1, 2,'"-,2" + 2, i '1, 2,'"-,2m + 2,

i-2( )+ 1, at to -(u),S- 2 (t)+ 1, by- ,z- ( ),

Formula (12) is then the divariant interpolation function de-

fined on the rectangular area of the unit square mesh. Each
order of the partial derivative in the Bx matrix is very dif-

ficult to give. Here, we use the smallest second power method

to seek B (141.
x

2. Automatic Mesh Division

The form and nodal point coordinate of the element both
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utilize automatic mesh division (this only requires the input

of a small amount of information). Its process is divided into

two steps: first is to determine any transverse tangent plane

and divide it into tetrahedrons according to any type of stand-

ard, and second is to join the vertical direction to make

hexahedron elements.

The cutting up of the transverse tangent plane depends on

the shape and position of the cooling holes; for a solid blade,

we can cut equally or according to proportion along the arc

length; for a hollow circular holed profile, we can use the

center of the circle as the basic standard to cut along the cir-

cumference; for a specially shaped holed profile, we can make

a curved surface fitting similar to that of the outer form be-

cause the inner walls of the holes also have curved surfaces.

Fig. 5. contains examples of various types of transverse

tangent planes.

2f~* (2)

MI( 3(3

(4)

v Fig. 5.
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Fig. 5. Cut on Profile's Transverse Tangent Plane

Key: 1. Solid blade
2. Hollow blade
3. Circular holes
4. Specially shaped holes

VI. Calculation Results

1. Assessment of Examples

(1) Using a trapezoidal sheet with varying thickness as the

example, we calculated its centrifugal force and aerodynamic

distribution load; using a hollow cylinder as the example, we

calculated its temperature field and thermal stress; they all

had analytical solutions. When we compared it with the calcula-

tion results of this method the patterns and data all tallied

and satisfied the engineering requirements.

(2) When comparing the calculations of the large twisted

blade with the tests, using the semi-solution analytic method of

reference (51, this method's error for the large twisted (>200)

blade was relatively large. When tested at n=17000 revolutions/

minute, we used the direct measurement method yet the surface

measured point was not the same as the principal stress dir-

ection and thus there was also an error.

As shown in fig. 6., the calculation results of this paper

basically fall within the tests and semi-analytic method.

Moreover, this method's curve is smooth and is therefore con-sidered believeable.
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Fig. 6. Test and Calculation Curve of a Large Twisted Blade

Key: (a) Blade
(b) Data on measured points
1. Measured point
2. Method
3. Test point
4. Finite element method

5. Kilograms/millimeter
2

2. Shrouded Hollow Air-Cooled Blade

(1) Calculation of centrifugal force

For the calculated objects shown in fig. 1., in order to

economize on the internal memory, we used a four holed tangent

plane to carry out research. For the stress distribution on this

* blade's I- and WT tangent planes see fig. 7. The high stress area

is on the tail edge of the tangent plane and here, besides having

a centrifugal force, there is also added a centrifugal bending

moment. The stress distribution of the 2,3,4 points on each

transverse tangent plane along the blade's high speed direction,

as shown in fig. 8., coincides with the results of most
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calculation methods. The stress gradients along the sides of

each hole are not large. This is because the axis line of the

cooling holes are basically the same as the direction of the

centrifugal force and the added bending moment is very small.

Naturally, the stress value near the small holes is greater than

that of the large holes. The stress value on the shroud is then

very small and the shroud is equivalent to adding a concentrated

mass load on the wingtip.

(3)

(2)

Fig. 8. Stress Distribution Along Blade Height

Key: 1. Tangent plane R

2. (Kilograms/millimeter2
3. Center of gravity

L(2) Aerodynamic force
The blade's stress distribution caused by aerodynamic force

K is basically identical to the stress distribution pattern on a

varying thickness blade. Yet, in an actual turbine cascade, the

aerodynamic force changes the blade's leading and trailing edges

as well as the blade height direction. It requires the use of a

three dimensional flow field for calculation because it is dif-

ficalt to accurately give the aerodynamic boundary value. This,

then, effects the accuracy of stress calculations.

(3) Here, we will only give the temperature field for the
Nf and fiV tangent planes as shown in fig. 9. As regards the
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temperature distribution of each cooling hole side, the cooling

effect of the large holes is better than that of the small holes.

The temperature changes along the periphery of each hole is

not large, yet the normal temperature gradient changes on the
side of the holes is large. The temperature difference between

the side of the holes and the profile's outer surface is about

300°C. The high temperature area is on the leading edge of the

profile and the tail edge location because the leading edge

comes in direct contact with the gas flow and the tail edge's

dissipation of heat is difficult; the heart shape of the blade

becomes a low temperature area, the temperature on the outer sur-

face is relatively high, the temperature field along the height

of the blade is related to the temperature and flow quantity of

the air-cooled gas flow, and the temperature on the side of the

blade hole is close to the temperature of the air-cooling gas

flow. The curves in fig. 10. are the temperature changes of

points 1,3,2 from the blade root to the blade tip. Their temper-

ature changes are all about 2500C and the shape of each line is

similar; the temperature on the blade tip's tail edge is very

high and this seems true for most turbine blades. Cracks and

excessive thermal burning are often produced in this local

position.

(4) Thermal stress

The changes of the thermal stress field are basically

identical to the change patterns of the temperature differences.

The thermal stress on each tangent plane in the side edqe of the

air-cooling holes and outer surface is very high. Although the

temperature on the side of the hole is not high yet it very

easily produces cracks. The temperature on the tail edge of the

blade which is very high lowered the material's permissable

stress value. In brief, a relatively high temperature gradient

area causes the thermal stress gradient to also be relatively

high.
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A STUDY OF THE METHODS FOR MEASURING RADAR'S ECCM PERFORMANCE

Li Nengjing
(PLA Air Force Laboratory)

Abstract

This article reviews the methods for measuring radar's

ECCM capabilities and points out a set of commonly used measur-

ing formulas. The basic parts of these formulas which are com-

posed from the radar's principal technical parameters repre-

sent the radar's potential ECCM capabilities. The supplementary

parts of the formulas which are composed from the indices of

the radar's various ECCM technical measures represent the quality

level of these ECCM measures. The use of this set of formulas

can calculate the expressed numerical values of the radar's
anti-passive jamming capabilities, anti-active jamming capabil-

ities and integrated ECCM capabilities. This paper gives ex-

amples and discusses the application of the calculation results

for radar systems analysis and overall design.

I. Preface

Radar's ECCM capability is one of the most important func-

*tions of radar yet up to the present there is still not a com-

monly used measuring method.

In the past, there were two commonly used means of express-

ing radar's ECCM capabilities. One was the listing of the radar's

various ECCM technical measures and their performance indices.

For example, whether the radar could quickly convert its
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frequency, how wide is its frequency conversion band, whether

the radar has moving target indication (MTI) and how much is

its visible coefficient in the complex waves (SCV) etc. This

type of expressed formula is not only overelaborate but the

ECCM measure items and index itself are not able to accurately

measure the radar's real ECCM capabilities. Taking the radar's

anti-passive jamming capabilities as an example, it is related

to the SCV value as well as the radar's resolution or pulse

volume.

The second type of formula is the use of the level of the

radar's check or measurement performance decline under specific

interference backgrounds to show the radar's ECCM capabilities.

For example, under a specific interference power spectrum

density, how far the radar's defense was, how much the radar's

tracking precision of a certain target decreased, etc. The

numerical values obtained from this type of formula which are

connected to the interference conditions and target character-

istics cannot independently evaluate the radar's ECCM capabil-

ities.

J. L. Johnston suggested the use of the ECCM improved

factor EIF to indicate the radar's ECCM performance 111. The

definition of the EIF is

EIF- (S/J)k(S/J) (1)

In the formula, (S/J) is the radar's output signal interference
0 power ratio before adopting ECCM measures;

(S/J) is the radar's output signal interference
k power ratio after adopting ECCM measures.

This formula is suitable for various types of interference

and ECCM measures and its universality is relatively strong. Yet,

it is only suitable for measuring the above type of radar ECCM
measures on the integrated ECCM performances of several types
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of ECCM measures but cannot measure the entire radar system's

ECCM capabilities. Because of certain technical parameters of

radar, for example the transmission power and antenna gain, they

are obviously not able to belong to the radar 's ECCM measures

yet they determine the fundamental factors of the entire radar's

ECCM capabilities.

Because of this, we attempted to find a new method to meas-

ure the radar's ECCM capabilities. The demands for this were:

first, to only rely on the radar's technical parameters: second,

having universality, it could measure the radar's capabilities

to counter various major types of interference. Based on these

demands, in 1978 for the first time I proposed an expression

formula for radar integrated ECCM capabilities, that is:

PT B IGF AF S[2) (2)

In the formula

P is the radar's mean emission power;
T 0is the radar's observation time of the target;

Bis the radar system 's instantaneous band
width;

G is the radar antenna's gain;

F A is the radar antenna's quality factor;

F Sis the radar signal's quality factor.

This paper will further prove and investigate this method.

II. An Analysis of the Interference Type and the Fundamental
Measures of Radar's ECCM to Bring Forth an Expression
Method for Radar's ECCM Capabilities

in order to bring forth an expression method for radar's

ECCM capabilities, we first observed the radar's fundamental

ECCM measures. See table 1.
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Table 1.

Type of Interference Radar's Fundamental ECCM Measures

1. Emission type interference (a) Increase the radar's signal
(active jamming) power.

(1) Inhibition such as (b) Cause a difference between
noise interference the radar's signal carrier
or other modulation frequency and interference -
wave form interfer- resolved from the frequency.
ence.

(c) Raise the radar antenna's
orientation - resolved from

the space direction angle.

(d) Have the generally best filter
so as to find the greatest
output signal interference
power. Use a matching filter
for white noise interference;
then join the most effective

filter of this type of in-
terference wave form for the
non-white noise interference-
resolved from the signal wave
form.

(2) Deceiving such as (a) Design a complex radar signal
response jamming. so that the jammer finds it

difficult to duplicate -
K resolved from signal wave.

(b) Design a radar operations
system so that the inter-
relation between the radar
signal wave and space direction
angle are smallest (dealing
with angle deception response
interference).

2. Reflection interference (a) Use different speeds for the
(passive jamming) such radar target and interference
as interference tinsel complex wave (the Doppler fre-
cord and non-man made quency), signal selected from
surface features, clouds complex waves -resolved from
and rain, and ocean waves, frequency.
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Pop-|

Type of Interference Radar's Fundamental ECCM Measures

(b) Raise the radar antenna
orientation and reduce the
radar signal time width so
as to decrease the strength
of the received complex wave,
- that is, raising the
resolution for the space
direction angle and time.

3. Absorbing interference (a) Enlarge the radar signal

such as electromagnetic power.
absorption coating.

From an analysis of the above brief table, besides the spec-

ial demands for dealing with angle deception response interfer-

ence with signal wave form and space direction angle, there are

two basic radar measures for ECCM: one is power and the other

is resolution. Because of this, it can be inferred that by using

the radar's power parameter and resolution parameter, we can

indicate the radar's fundamental ECCM capabilities.

To represent the radar power's technical parameters, we

should use the radar's mean transmission power P.

The radar's resolutions, for example those mentioned in
table 1, have the aspects of frequency, space directional

angle, time and signal wave form. From the signal analysis

theory it can be known that, in essence, the wave forms resol-

ution is the resolve of the signal in the time domain and fre-

quency domain. Because of this, the radar's resolution is

mainly concerned with four areas of overall resolution: the

time domain, frequency domain, space directional anqle and

angle of elevation.

Without the simple parameters, we can still express the
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radar's integrated resolution. Yet, we know that the radar four

dimension blur function brought forth by H. Urkowitz [31 can

describe, on a relatively wide foundation, the integrated resol-

ution of radar in space, time domain and frequency domain.

The function is:

A (1. ,. 0. 4) =fffU-(f )U(f -f,)F°( 0, 4)F ( 0 -0,)
-01

X ($ -))e-'",dfdod4 (3)

In the formula,

U(f) is the radar signal's envelope complex frequency
spectrum;

F(0,4) is the radar antenna's direction figure;

td and fd are the time difference and frequency difference;
d=sin a is the sine value of directional angle a;

4-sin 6 is the sine value of elevation angle ;

ed and #d are the difference of @ and the difference of .

When the antenna band width is far greater than the signal

band width so that there is no apparent interaction between the

antenna and signal,

A (f,. ,. ,. O ,) - A (,. f) A (0, 4,) ( 4 )

This is the product of the four dimensional blur function which

can be expressed as the signal blur function and the antenna

direction blur function. Formula (4) is applicable for most
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radar.

The signal blur function A(td fd) is:

LT(f )U(f -f,)e'1 'd

u (t)u( (5)

In the formula, u(t) is the signal's envelope time function.

The antenna direction blur function A(@d. 4d)is:

=f F-(9, 0 FU -0 )( -¢ of (6)

-00

This function is the self correlation function of the antenna

direction figure. Because most of the radar antenna direction

figure is close to the sinc function, the self correlation func-

tion of the sinc function is still the sin function. Because of
c c

this, the antenna direction figure is clo,'e to its self correl-

ation function. We can use the antenna direction figure to sub-

stitute for the antenna direction blur function.

In order for the resolution to be able to be expressed by

a parameter, we used the main peak of blur function modular

value IAI when it decreased to a specified range. For example,

when it decreased to the main peak and the highest value (after

normalizing this value was 1) was -6 decibels, the width of

the main peak (when the blur function is one dimensional), or

the sectional area (when the blur function was two dimensional),
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or sectioned volume (when the blur function is even more multi-

dimensional) acts as the parameter. This parameter can be called

the resolution unit.

We call the sectional area of the two dimensional blur
function 1A(t d'f d)A whose main peak decreased 6 decibels the radar

signals distance and frequency integrated resolution unit. The

sectional area of the antenna direction figure ) F(9,401I whose

peak decreased 6 decibels is called the radar antenna's space

angle resolution unit.

It is inferred from this that the four dimensional volume

obtained when the four dimensional blur function

IA(t d'f d'0 d,+d)l main peak decreased 6 decibels can be defined

as the radar's integrated resolution unit. When R T is used to

represent this value, the larger the RTV the more error shown

for the radar's integrated resolution. Therefore, the precise

description of the radar resolution parameter is RT1

Radar's basic measure for anti-passive jamming is raising

the radar's resolution. Therefore, the description of the para-

meter of the radar's integrated resolution (A) can be used toR
T)

express the radar's basic anti-jamminr capabilities.

Radar's basic methods for anti-inhibitory active jamming

are to increase the energy of the target echo as much as possible,

decrease the interference power coming in from the antenna as

much as possible and filter out the interference that has already

been transmitted in so that the power ratio of the output signal

and interference will be maximal. To realize these, we must

rely on radar with great emission power and at the same time

depend on radar with high resolution. If the latter's emission

power can be concentrated on the target, then both the
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interference input and output will decrease. Therefore, the

product of the power parameter and resolution parameter which is

(P/R T) can be used to express the radar's basic anti-active

jamming capabilities.

As regards the response type interference, besides having

specially interrelated demands, we can also depend on the radar's

high resolution. As regards absorption interference, it is also

necessary for the emission power to be concentrated on the

target. This is identical to dealing with active jamming. From

a wide general perspective, the product of the power and resol-

ution parameter (P/R T) can be used to express the radar's funda-

mental integrated ECCM capabilities in dealing with various types

of interference.

Yet, the calculation of the R T numerical value is complex

and an inferred simplified formula should be substituted.

Firstly, we established formula (4) for most radar and

because of this,

I A U&. f . N~. 4 A (1,, fe) I IA(M, 4)I(7)

In this way, R T is then equal to the four dimensional volume

formed from the 3 decibel modular value sectional surface of the

signal's blur function and the 3 decibel modular value secti'-nal

surface of the antenna direction blur function.

There are three types of radar signal blur function modular

value forms (abbreviated as the three dimensional blur figure):

nail board form, thumbtack form and knife-edge form E4-51.

Of When the radar signal is a pulse train, the three dimensional
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blur figure of the signal is a nail board form. If this pulse

train includes N pulses, the width during each pulse is r, fre-

quency width is B s , pulse repetition period is T and the pulse

train's sustained time is T =NT.

There are two forms of this type of signal blur function

modular value with a 3 decibel sectional surface (abbreviated

as the blur plane figure):

(1) The pulse itself is a simple pulse or phase coded pulse

and signal plane blur figure as shown in fig. 1.

/,

A
- -4114,

Fig. 1. Simple Pulse Train and Plane Blur Figure of Phase Coded
Pulse Train

(2) The pulse itself is a linear frequency modulation pulse

and signal plane blur figure as shown in fig. 2.
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i

Fig. 2. Plane Blur Figure of Linear rrequency Modulation Pulse
Train

We know from figures 1 and 2 that the approximate value of

this type of signal blur function modular value main peak with

a 3 decibel sectional area is:

3! I 
I 

li 
_ _

4 NT - 4 TB

When the radar signal is formed by a single relatively long

pseudohatted code, then the three dimensional blur function of

this type of signal is a thumbtack form. Its plane blur figure

is shown in fig. 3.

I'

11

Fig. 3.
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Fig. 3. Plane Blur Figure of a Single Pseudohatted Code Signal;
r 0 is the Total Length of the Signal

From fig. 3 we know that the approximate value of this type

of signal blur function modular value main peak with a 3 decibel

sectional area is:

3 I 1 3
4 t, 13s 4 T0/U,

Given that at this time the signal's sustained time is T , then
0

the total length of the code is IC0

When the radar signal is a single linear frequency modula-

tion pulse, the three dimensional blur figure of the signal is

a knife-edge form. See fig. 4 for its plane blur figure.

Fig. 4 Plane Blur Figure of a Single Linear Frequency Modulation
Pulse

This type of signal can only accurately determine the com-

bined value of an unknown target's distance and speed. This com-

bined value is the oblique axis in the plane blur figure. Yet,

153



we -:annot precisely know what the distance and speed are. There-

fore, at the least, during actual application we must transmit a

pair of linear frequency modulation signals. This pair of

signals have opposite linear frequency modulation slopes as

shown in fig. 5.

Id

Frequency Pulses

At this time, a target will produce two echos on the indicator;

the intermediate value of the two echos is the accurate dis-

tance and the interval of the two echos represents the target's

speed. The equivalent plane blur figure of the radar signal

composed by this pair of linear frequency modulation pulses is

the overlapping part of the two directional slope ellipse which

is the oblique line part in fig. 5. This area is approximately

equal to -x( 1 ), When considering To=2t, then this area is

equal t6 T
TOs

We know from the above analysis that the value of the com-

monly used radar signal blur function modular value main peak

with a 3 decibel sectional area is:
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In the formula, kA is the coefficient and its approximate value

is 3/4 - 1.

The antenna direction blur function can use the antenna

direction figure for an approximation. Therefore, the approximate

value of the antenna direction blur function modular value main

peak with a 3 decibel sectional area is:

4~ae (9).

In the formula, a and 0 are the 3 decibel widths of the antenna

direction figure's directional angle and elevation angle.

Thus, we can now obtain the approximate value of RT:

1 4RT(k--3~)(aeO)= FT 0D (10)

Because the antenna gain G can be approximately expressed as:

~G=- (11)a 0 E0

Therefore

T (12)

Because the constant coefficient is of no importance it can

be eliminated in normalization and therefore the radar's inte-

grated resolution parameter (R -can be simplified and expressed
T

as T B sG.
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p
Using (RT), the expressed radar fundamental integrated ECCM

capabilities can be simplified as:

PT,BsG (13)

III. The Expression of Radar Fundamental ECCM Capabilities
Derived From the Signal's Interference Power

The expression of radar's fundamental ECCM capabilities ob-

tained in the last section can also use another method which is

derived from the radar's transmitted signal interference power

ratio.

if (Q) represents the power ratio of a radar tarqet signal
and passive jamming in a radar input area and ( o represents the
power ratio of +-he radar's output signal and passive jamming, then

In the formula

d is the target's radar sectional area:
t

cfc is the radar sectional area of the passive
jamming.

In the formula,

c is the electric wave propaqation speed:

R is the distance from the passive jamming
area center to the radar station;

is the three dimensional angle value of
the radar antenna direction figure:

10 is the reflex coefficient of the passive
jamming.
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Because

4x
G

Therefore

( / 2 acBI, (l

and

In the formula, I is the modified factor.

If the speed distribution of the interference object is

basically uniform, its Doppler frequency band width is B , its

signal frequency band width is Bs I B S B and the two are

overlapping, then the theoretical value of I is c . In
B

real situations, if the interfering frequency band and signal band

are possibly not overlapping or not completely overlapping then

we can define B as the equivalent interference band width which
c

is:
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B.=I~sa()

We already know that

(19)

and therefore

BI . T. (20)
Bs

T,

Because of this

In the formula,

k, - 2aB.oR " (22)

It is composed by the constant coefficient 2 ? c and target

F paramentert as well as the interference conditions Po and R2"

When deciding the size of the radar output signal-interfer-

ence ratio in passive jamming, we also decided that the radar's

technical parameter for the anti-passive Jamming capabilities
size is ToBsG. This is a simplification of the radar integrated

V0 S
resolution parameter --derived in the last section.

K7
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Let us take a further look at the situation of anti-inhib-

ition active jamming.

Letting (S) represent the output signal interference power
ratio when the radar receives active jamming and if the inter-

ference power spectrum is basically uniform (this is a relatively

common interference condition), then the radar selected and

signal matched receiver at this time is:

(4) _E s " EsB

In the formula,

E is the energy of the target's echo signal;s

P JR is the received interference power.

Therefore

E=PTOG VcI.

In the formula,

A is the radar's wavelength;

Rt is the distance between the target and the
radar station.

pR- J' ___-r _. L (2 -
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In the formula,

P j is the jammer's reflection power;

G j is the jammer's antenna gain;

A (@) is the radar antenna's equivalent receiv-
r ing area for the interference direction;

YJ is the polarization cc ficient;

R is the distance between the jammer and the
radar.

If the jammer's location direction is basically the same as

the target, then

GM 4X- (26)

After substituting in formula (25):

PJ.PtGjY XIr (27)
P'I= (4 %)'R1-

When formulas (24)and (27) are substituted into formula (23):

S . a, .. ..... =k.(PT,B.,G) (28)
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In the formula,

4 (29)4 RI -)PG7

It is composed of target parameters dt and Rt , and inter-

ference conditions PJGj, Y J and R .

Therefore, when deciding the size of the radar output signal

interference ratio under active jamming, we also decided that the

radar's technical parameter for anti-active jamming capabilities

size is PT B G. This is a simplification of the radar power and

resolution parameter product (4) derived in the previous

section. T

Now we will take a further look at the radar output signal-

interference ratio condition when two types of interference exist

simultaneously. Let +C) represent the output signal-jamming

ratio.

S I S ( ~)o{~)o kIT0BSG APTBSG

(PTBG) (30)

if

(31)
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Then

(I + CA 32

which is the same as when there is only active jamming.

When we employed a representative technical parameter to

calculate the value of (k' 2 we could prove that formula (32)

1

is established in a rather wide range. Therefore, formula

PT 0B sG not only expressed the radar's fundamental anti-active

jamming capabilities but it was also able to express the radar's

integrated fundamental ECCM capabilities for anti-passive jam-

ming and anti-active jamming.

IV. Supplementary Factors for the Fundamental Expression

The already derived radar fundamental ECCM capabilities ex-

pression measures the radar's fundamental or potential ECCM

capabilities. If we want to measure the radar's ECCM capabilities

more completely it is also necessary to have the usefulness or

quality level of the radar's various ECCM measures act as

supplements. Below we will mention a group of supplementary

factors.

1. Quick Changing Carrier Frequency

Because the radar's integrated four dimensional blur function

only takes into consideration the signal's complex envelope and

has not yet considered the radar's carrier frequency, it only

expresses the resolution of the signal carrier frequency when in

a static state. The changes of the carrier frequency are often

used in the radar ECCM measures to resolve the signal and active

jamming. Yet, these changes must be quick changes within the

pulse or within a small group of pulses to be able to shake off
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an enemy location's track jamming and force the enemy to use

wide frequency band jamming. Because the total power of an

enemy's jammer is fixed or limited, the jamming power spectrum

enlarges k J times, the jamming power density then drops k J
times and the radar's output signal jamming power ratio then

rises k J times. Because of this, the quick change measures of

the carrier frequency are equal to raising the radar's trans-

mission power to k 1times.

The radar allows the maximum range of its carrier frequency

quick changes to be the radar system's instantaneous band width
B Naturally, radar designers have made every effort to reach:
1*

B

Therefore, after the radar has quick changing frequency

measures, the expression of the radar's anti-active jamming cap-

abilities should add a supplementary k I factor.

2. Side Lobes

When we defined the radar's integrated resolution parameters

- I we only considered the sectional volume when the integrated blur

function main peak decreased 6 decibels. Because of this, the

corresponding signal blur function and antenna direction figure

4 also only considered its main peak 3 decibel area. Yet, there

are many side peaks around the main peak and they influence the

* ECCM capabilities within a fixed range. This will be discussed

* below.

When the present microwave radar antenna direction figure

main peak (commonly called the antenna beam main lobe) is very

sharp-pointed, the active jamming carried out from the side

peak (commonly called side lobe or secondary lobe) is already

the principal jamming method of the radar against the enemy.
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The side lobe level has already become a technical index for

measuring the radar's ECCM capabilities. Therefore, in the ex-

pression of our measuring the radar's anti-active jamming cap-

abilities, it is necessary to introduce the supplement factory

G to represent the radar antenna's side lobe level.
s

We defined factor G as:
s

(antenna power direction figure
(main lobe peak value

Gs (decibel)=10lg (antenna power direction figure )-25 (34)

Gmaximum secondary lobe peak valuei

Defining it in this way takes into consideration the present radar

technical level. The antenna's main side lobe power ratio of 25

decibels can be viewed as a medium level representative value.

When it is higher than 25 decibels this represents the antenna's

high grade design which causes the G to have a positive value.s

On the contrary, when it is lower than 25 decibels this represents

a poor design causing the Gs to have a negative value. This type

of method is used to cause the G factor to influence the numer-

ical value of the original anti-active jamming capabilities

fundamental expression.

The G only has one value for the needle-shaped beam. The
5

G should include two factors for the fan-shaped beam, that is,

a horizontal side lobe factor GSH and a vertical side lobe factor

G These two factors are separately added after calculating
sv

formula (34).

Gs =GSH Gsv (35)

When the radar has an offsetting device, the offsettina

benefits should be added into Gs . Sometimes when the radar

signal's blur function is in a relatively distant area of its
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main peak there exist many relatively high branch peaks (also

called grating lobes) and side peaks (also called side lobes)

near the main lobe.

The branch lobes or grating lobes usually lie in the time

domain of the radar's sustained interference and outside of the

frequency domain. Here, we will put off discussion on this

temporarily.

The signal side lobe is a signal processing circuit
which must be inhibited. Its disadvantage lies in a weak signal

producing interference near a strong signal. Yet, it is differ-

ent from the antenna beam side lobe in that it does not belong

to a hostile interference entrance. The demands for the inhib-

ited signal side lobes also do not resemble the antenna side

lobes direct columns which are the radar's ECCM performance.

Because of this, we do not take the signal side lobe inhibi-

tion as an ECCM factor for calculations.

3. Signal Processing

The radar resolution described by the radar blur function

indicates the potential abilities of the radar's resolve -signal

and if the potential abilities are realized it is still necessary

to adopt measures in signal processing. Firstly, the radar re-

ceiver should be a matching wave filter because the radar

signal's blur function is essentially formed from a group of

different Doppler frequency target echos which pass through the

output wave combination of a matching wave filter within the

r same period of time [4,51. Yet, the radar does not necessarily

use an integrated matching wave filter. For example, generally

in dealing with passive jamming the radar does not use a

Doppler frequency shunt circuit matching wave filter but after
it is in a single circuit matching wave filter it connects the

MTI circuit. Further, in order to deal with non-white noise

type active jamming it is also necessary to connect special
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filters. The quality and anti-jamming usefulness of these signal

processing circuits are supplementary factors which we must con-

sider.

Firstly, we will consider the quality of the MTI. B.D.

Steinberg has already defined quality factor I for measuring the

quality of the MTI's technical measures [6],

MTI output signal stray
= wave power ratio (36)

MTI input signal stray
wave power ratio

SCV is often used in a radar technical performance expression

to substitute for I. The value of SCV is 6 decibels lower than I.

In the anti-passive jamming capabilities expression, we

defined a moving target to indicate quality factor PM:

PM (decibels)=SCV-25 (37)

Taking the constant 25 decibels, we first consider that it

is able to represent the canonical level of the modern radar MTI

visibility coefficient SCV and at the same time cause it to be

convenient for memory and use with the previous side lobe

factor constant.

Second, the signal processing factor which must be considered

is a constant false alarm processing quality factor.

The derivation of the radar's integrated resolution formula

takes the radar's receiving system linearity as a basis. If the

strength of the signal, interference or both surpasses the dynamic

range of the radar's receiving system, this causes the receiving

system to be saturated or obstructed and the radar's resolution
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to decrease drastically. Because of this, the constant false

alarm is a necessary radar measure for various types of anti-

jamming.

Therefore, the action of the constant false alarm process-

ing in the anti-jamming is anti-saturation and after constant

false alarm processing the signal interference ratio has a loss.

Because of this, we defined the constant false alarm processing

supplementary factor in the radar's ECCM capabilities expression

as:

(-) (38)

Key: 1. (Decibels)

In the formula,

d M represents the allowable increased
multiple in the radar receiving system's
dynamic range after adding in the con-
stant false alarm processing device;

LCF represents the constant fale alarm loss;

The selected theorem of constant 25 decibels
is from the same previous formula.

Noise frequency modulation jamming is the often encountered

wide band noise type active jamming. In order to deal with this

type of interference, modern radar has already made wide use of

Dicke-Fix (i.e. wide-limited-narrow circuit). We defined the

Dicke-Fix supplementary factors for the anti-active jamming

capabilities as:
U

PM0 u ..- 8 (393)

Key: 1. (Decibels)

4. Antenna Polarization

The radar's comprehensive resolution discussed previously
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did not include the influence of antenna polarization. There-

fore, it is necessary to further analyze the polarized resol-

ution. Theoretically speaking, because the radar target's

scattered echo and outside interference are completely independ-

ent, the polarization states can never be the same. Because of

this, they can be used to cause the antenna to, as best as pos-

sible, have polarization matching for the useful echo signals

and exert the mismatched method for the interference to obtain

ECCM results. Yet, in reality, it has good results for rain and

cloud interference.

Because raindrops are nearly circular, most of its reverse

scattering for the circular polarized waves are reverse rota-

tional circular polarized waves but aircraft and other complex

man-made targets are not like this. Therefore, the use of a

circular polarized antenna or an antenna whose polarization can

be randomly adjusted can benefit a signal-interference ratio of

10-20 decibels. Yet, complex structured natural objects which

produce interfering complex waves, for example surface object

complex waves, are not able to obtain this benefit.

As regards man-made interference, if active jamming comes

from a jamnmer or passive jamming object which possesses rela-

tively uniform scattered polarization characteristics (for ex-
ample, interference tinsel cords hanging down all assume a hor-

izontal state), then the use of a polarized adjustable antenna

* or the polarization offset method can have very good ECCM re-

sults. Yet, in an electronic war, the enemy actually takes pre-

cautions against these measures. Its jamimer is usually a pair

of simultaneously started machines which separately transmit

two types of opposite polarized waves. Its put in interference

wire is also designed to hang down with one half horizontal

and the other half vertical. Because of this, under actual

countermeasure conditions, the radar antenna feed polarization
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which can be adjusted can only benefit 3 decibels. If the radar

does not have this changeable polarization measure, the W svalue

is 0.

5. Dealing with Response Type-Interference

There are several different types of situations in which

response type interference disturbs radar.

Repetitious entering from the secondary lobes is usually

used for search radar. This causes response pulses, disturbance

and useful hidden target signals. on many locations and at dif-

ferent distances on the indicator frame. The measures for deal-

ing with this type of interference are mainly inhibiting the

antenna side lobes and causing the radar to have repeated fre-

quency chatter.

For tracking radar, the response type interference mainly

has gate pulling and counter-modulation angle deception. The

counter measures for the former are wave form differentiation

and repeated frequency chatter. The basic measures for the

latter are using a signal wave form and space direction angle

non-interrelated operating system; for example, the single

pulse goniometer system.

We have already discussed wave form resolve and antenna

*side lobe isotopes previously.

The repetition frequency chatter measure is already being

widely used in modern radar. Besides counter response type in-

terference, it is also able to inhibit a nearby station's

synchronic interference and is also able to overcome the blind

speed of the MTI technique. As regards the signal's three dimen-

r sional blur figure, its action causes the branch peak of the

nail board form blur function to lower and the lowered multiple
r
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is equal to the numeral J of the chatter changes. Shown on the

radar's reception terminal, it also surpasses the periodic

response signal's lowered output power J times. For this, we

defined the repetition frequency chatter measure's supplementary

factor for the radar's ECCM capabilitiels as:

PI(OR!01g I - 8 (40)

Key: 1. (Decibels)

By taking a constant 8 decibels, because the modern radar J

is commonly 5 to 7, 8 decibels represents all levels. At the same

time, it is also identical to formula (39) and is thus easy to

remember.

The reason that the counter modulation angle deception inter-

ference can start operating is that the radar's useful signals are

interrelated on the wave form and antenna space direction angle.

Previously, when we deduced the radar's integrated resolution

parameter, it was assumed that the signal wave form and antenna

directional angle were not interrelated. Because of this, the

obtained radar ECCM capabilities expression did not include this

element and thus awaits further research.

V.Summary and Calculation Examples

We will sum up in table 2 the radar's ECCM capabilities

expression proven above.
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AIi ATIl a P AfW h (AC 0 )0V~~) (.1) ML. RT 1 Mh AJC

(5) ?,g v4 T
(6) q).Lt il% i T_, k#(L(lqA (16 krol~ ] 1 )

(8) ," 11 - ,i.jt14 r- i PuC,(37)A) (14 P
(9) k4m w. *1f ViA . (38) i) (15) rP

11 ")k ta f 4-r tW Ws(1 2 ) o a ks, A 11 -.-,r-.: PI 4o) (1 9 ) P1

TGP.N(;W.1PUPp P I'T~k, GGq WsPpPNP 1'rk T I BG;VSPUwP ,Pq
(13)9: A (20)ATvai;icF.a (21) APToB,GFAFsJ (22) ,PTQBjGFAFq

(Fjc-1WqP F~w-Pu;P) (FA=GgVqs Fs, PpP7 P, (FA Ggff'ss Fs - VuPPN0)

Table 2

Key: 1. Anti-passive jamming capabilities (AC)
2. Anti-active jamming capabilities (AJ)
3. Integrated anti-jamming capabilities (AJC)
4. Fundamental expression
5. Supplementary factor
6. Quick changing frequency factor
7. Side lobe factor
8. Moving target quality factor
9. Constant false alarm factor

10. Wide-limited-narrow circuit factor
11. Antenna polarization factor
12. Repetition frequency chatter factor
13. Whole expression
14. See formula (37)
15. See formula (38)
16. See formula (23)
17. See formula (34)
18. See formula (39)
19. See formula (40)
20. Or
21. Or
22. Or

It can be seen that the radar's ECCM capabilities expression
has two parts. The first is the fundamental part. This part
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measures a radar's fundamental or potential ECCM capabilities

determined by its major technical parameters. Its significance

is similar to other radar fundamental measurement formulas in

wide use at the present. For example, the fundamental measure-

ment formula of search radar force is the power and antenna

aperture product PA; further, the fundamental measurement form-

ula for the accurate tracking radar's goniometric angle pre-

cision is the power, antenna aperture and (antenna gain)[ 2]

product PAG[2] [7].

The second is the supplementary factors part. This part shows

the radar's ECCM measures and their quality level. Within this

part those factors belonging to the antenna aspect can be jointly

called antenna quality factor F A (only the part that acts on the

passive jamming is F AC). Those belonging to the signal aspect
are jointly called signal quality factor F (those that act on

passive jamming are Fsc and those that act on active jamming are

FsJ

By combining the fundamental part and supplementary factors

part we can obtain: anti-passive jamming capabilities expression

AC=ToBsGFAcF sc; anti-active jamming capabilities expression
AJ=PT B GFA F s. These two formulas form an approximately direct

ratio with the radar's corresponding output signal interference

power ratio. In the formulas, each factor cannot compensate for

- the other.
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Finally we have the combined anti-jamming capability expression

AJC -PTO0B 1GF AF S, This formula can broadly and generally indicate

the overall capability of radar to resist various types of jamming

but is is not directly proportional to the radar signal and overall

jamming power ratio. In the formula, the various factors cannot

compensate for each other.

Now, we will discuss the measuring method for a multichan-

neled radar's ECCM capabilities.

Many radar systems consist of multiple channels and they are

divided into several different categories:

(1) Each channel has a different carrier frequency, yet the

space beams are the same or overlapping; for example, frequency

diversity system radar.
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(2) Each channel's carrier frequency is identical, yet

the space beam positions are different or only have partial
overlapping. For example, pulse system radar and some three

coordinate radar.

(3) Each channel's carrier frequency is different and the

space beam positions are also different or only have partial

overlapping; for example, some three coordinate radar.

For each channel's ECCM capability measurement formula, as

was already shown above, we calculate the whole radar system's

ECCM capability and consider them separately according to three

categories of conditions.

For the frequency diversity radar which belong to category

(1), one channel receives interference while the other channels

still operate normally. If all the channels receive interfer-

ence then the whole system is inhibited. Because of this, the

system's anti-active jamming capacity is:

(A)= A),01

In the formula, n is the channel's total. If each channel's

carrier frequency differs greatly and do not belong to the same

frequency band then the systems anti-passive jamming capability

is:

Yet, in all situations, each channel carrier frequency still be-

longed to the same frequency band. At this time:
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(AC)s-(AC)#.(3

In the formula, (AC) imxrepresents the largest one in each

channel (AC). Using the system' s integrated ECCM capability

calculation method, the above analysis should be the same as

the anti-active jamming capability. Therefore it is defined as:

(,41C),= (AJC), (44)

For the category (2) multiple beam radar system, when one

space beam receives interference the other independent beams

still operate. Because of this, the system's anti-active jam-

ming capability is:

In the formula, k R represents the overlapping coefficient of the
partial overlapping condition in the beam. If each beam has an

independent kR=l and if there is a partial overlapping of

k ( <1 then when we previously defined the radar's space dir-

ectional angle resolution and took the antenna beam's 3

decibel angle width as the resolved unit, if the space two beams

are overlapping below 3 decibels this can be viewed as the fund-

amental independence, taking k R= . With the same reasoning, the

system's anti-passive jamming capability is:
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(AC) 3 -=k,, (A'), (Cm)
i-(

The system's integrated ECCM capability is:

n

(AJC)Skh (AIC), (.17)
,=1

For the category (3) systems, the anti-active jamming capa-

bilities are the same as formula (41). As regards the anti-

passive jamming capabilities, we observe whether or not each
channel's carrier frequency belongs to the same frequency band

and use formula (42) or (46). The system's integrated ECCM

capabilities are still based on formula (44).

Below we will calculate and compare four types of radar

ECCM capabilities according to each of the above mentioned form-

ulas. They are: two new models, the three coordinate radar

AN/TPS-43E (manufactured by Westinghouse Company of the U.S.)

and AR-3D (manufactured by Bendix Company of the U.S.); two

older search radar A and B types (see table 3).
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(1) !p _ I AK

A' TPS-43F 5)AR 3D (6)IF i (7 r-. (8) Y X R

( ).0, "t v 5 10 4 1.6 (3 5 )

10INaa-1 38.5 41.5 42. 5 39 3 fqE1 1Ms-AA

(12 , ~(0 up a 1 P fa fie7)

124 6 2 4

( 1 4 ) * i ltmTo(f) 0.03 0 . 0.0 0301.

(15ToBsG .(01) 83.3 96.0 85.5 34.1

(16)PTrB1 G(0sqi) 109.8 124.7 112.5 s' 1f.1Peim~ f (38)
(1 7 ) *XWT k,(ikrD 23 0 0 0 J nIi

; (39)
(18- 0 -5 -3

(19 -2 -2 -5 -5

(21 )vv,(c l) o 0 0 0 0 Ampiftiqgms (40)
(22 )U(3f .) -2 -4 -25 -7 q grMTI (41)

(23 N(o) -8 -8 - J4J.cke-Fjr (42)
( 2 4 1F(? 0l 0 -25 -- , W l-1', L

(43)
2 O)0 0 -8 -S d.

(2 61 t * 3 L TA it.1 -2 -4 -50 -32 (44)

(27 S -t* tI TAt 9 1-10 -51 -49

28kt-Tit( 1) 7 - 14 -76 -56

)-81 92 35.5 52.1
(AC), (*J1) ,

(30) 8- ttat l 114.7 61.5 s7.1

(31)~ss~g j 116.8 1 110.7 30.5 50.1
. (AIC), (MAX)

86.5 92.1 41.3 52.1

(AC)s(O, W)

(33) mjttt :T,&M 123.4 119.5 67.3 63.1

(34) A m*& - & Jt j 121.4 115.5 42.3 56.1
(AC)t(ff hJ ID

Table 3
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Table 3.

Key: 1. Radar system
2. Remarks
3. Type
4. Multiple beam 6 channel three coordinate

radar AN/TpS-43E
5. Frequency scanning system 8 channel three

coordinate radar AR-3D
6. Multiple beam 5 channel two coordinate

radar A type
7. Frequency diversity system 4 channel two

coordinate radar B type
8. Radar system with each channel's power

and antenna gain (see table 4)
9. Total emission power (kilowatts)

10. The first channel's antenna gainG
(decibels)

11. The first channel's emission power P1I(kilowatts)
12. Emission loss (decibels)
13. Radar signal band width B s(megahertz)

14. Signal's continuous time T 0(seconds)

15. T oB sGI(decibels)

16. P1To B sG I(decibel watts)

17. Supplementary factors: k (decibels)
18. (decibels)J
19. (decibels)
20. (decibels)
21. (decibels)
22. (decibels)
23. (decibels)
24. (decibels)
25. (decibels)
26. Anti-passive jamming supplementary factors

total (decibels)
27. Anti-passive jamming supplementary factors

total (decibels)
28. Supplementary factors total (decibels)
29. First channel's anti-passive jamming capa-

bility (AC) (decibels)
30. First channel's anti-active jamming capa-

bility WA) , (decibel watts)
31. First chann~ls integrated ECCM capability

WAC), (decibel watts)
32. System's anti-passive jamming capability

(AC) s(decibels)
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33. System's anti-active jamming capability
(AJ) s (decibel watts)

34. System's integrated ECCM capability
(AJC) s (decibel watts)

35. The first channels of the first three types
of systems are the beam's lowest elevated
angle channel

36. The first two types are estimated values
37. Estimated value
38. Emission loss already deducted
39. The latter three types of radar systems

do not have quick changing frequencies
40. All are non-polarized adjustable measures
41. B type without MTI
42. All without Dicke-Fix
43. The first two types are estimated values of

the A and B types which are without CFAR
44. The first two types are estimated values

of the A and B types which are without
repetition frequency chatter measures

(1) '" W TPS 43F" AR-3D " (2) V - (3)
.4j

(5) a R,... G P Aft R... C " .. G P Ad_ 1) .R- (16)

(4) , t I It III,

8 )\IT 111
. 9 0. b I 1 . (9) J el * '+( P

3 0.6 0 64 1 1 1 1
c*, ,0 3 ,0 1110.6(1@ * 1 i (19)

It " 1G. E - _ - !- -I----- - -_ - _

V. P 0.7 0.5 1 1 (
o 0. A-25 0 4 0.5 , o.o,(1l. 1o-

6 0.3 o .250.1, 0.45I 0.04 it (13)Y

_________17! _______ 4 10.025- 154)

Table 4 The General Characteristics of Each Channel for Four
Types of Radar

Key: 1. Name of radar
2. A type
3. B type
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4. The operational distance for each

channel is Rmax , the antenna gain

is G, the reflection power is P and
there is a mutual proportion rela-
tionship

5. Channel number
6. Other
7. Other
8. With MTI
9. Without

10. Without
11. Without
12. Without
13. Without
14. Without
15. Without
16. Other
17. With MTI
18. Without
19. Without
20. Without
21. Other

It can be seen from the calculation results that because the

AR-3D signal band width is large and its antenna gain is high,

its anti-passive jamming capability is about 6 decibels higher

than that of the TPS-43E. Yet, because the AR-3D does not have

quick changing frequency capability, its anti-active jamming

capability is actually about 4 decibels lower than the latter.

It is worth noting that the AR-3D systems anti-passive jamming

capability only increases 0.1 decibels as compared to the first

channel. Besides the first channel, this is due to the other

channels not having MTI circuits.

As regards the two older types of search radar, the numer-

ical values calculated from their fundamental ECCM abilities

expression are not low and are actually close to those of the

first two types of three coordinate radar. This shows that their

ECCM potential capabilities are strong. Yet, because they bas-

ically do not add any ECCM technical measures or only have very

few measures, the supplementary factors are all relatively

high negative values and the final calculated ECCM capability
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expressed numerical values are much lower than those of the

three coordinate radar. Their performance in an interference

environment drops drastically and their difference from modern-

ized radar is very obvious. On the other hand, in view of their

possessing very strong ECCM potential capabilities, if we carry

out technological innovations and add necessary ECCM technical

measures then we can remake it so that it possesses ECCM

capabilities close to those of modernized radar. we can adopt

formula calculations to obtain the increased numerical value

index of their ECCM capabilities.

Now we can sum up the major uses of the radar's ECCM capa-

bilities measurement formula which we obtained as follows:

(1) We can use the radar's own technical parameters to

mteasure the numerical value indices of the radar's anti-passive

jamming capabilities, anti-active jamming capabilities and in-

tegrated ECCM capabilities. This is convenient for making com-

parisons between various types of radar or between various types

of design plans for certain radar.

(2) Because the anti-passive jammring capability expression

and anti-active jamming capability expression are approximately

in direct ratio to the output signal's interference power ratio

under corresponding interference conditions, we can take their

calculated numerical values and directly use them to compare

and calculate the levels of surveyed location performance

decreases for the various plans of various types of radar or

one type of radar in an interference environment.

(3) The radar's ECCM capabilities expression includes the

fundamental and supplementary factors parts. Because of this,

we can separately calculate the radar's potential ECCM capabil-

ities and the effects of the radar's ECCM technical measures.

For certain radar we can use this analysis in design or in

techn~ological innovation to increase the investment-result

ratio of certain complex ECCM measures.
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Finally, it should be pointed out that when the same radar

is in different operational conditions (for example, search or

tracking conditions), if its technical parameters or channel

numbers are different then the ECCM capabilities numerical

values calculated according to the formulas will be different.
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Abstract

This article reviews the commonly used methods for expression of radar's
ECCM performance, points out their disadvantages and proposes that it is re-

quired to establish the formulae which consist only of the radar' s technical

parameters in order to measure the radar's ECCM capabilities.

By means of logical argumentation and ambiguity function theory we can

derive the followings, (1) The radar's 4-dimensional generalized resolution

parameter can be used to express the radar's basis anti-clutter capability. The

simplified expression of this parameter is T (the dwelling time at a radar' s

target, or the integration time of a echo signal of the radar) x Bs (the radar

signal bandwidth) X G (the radar antenna gain), (2) The product of an avt--

rage radar's transmitting power and its generalized resolution parameter PT, x

?sG can be used to express the radar's anti-jamming capability, and the sa-

me formula may also be used to express the total interference rejection capa-

bility in gross.

By another approach. i.e. by calculation of the radar's output signal to

interference power ratio under various interference conditions, the given for-

mulae have further been proven.

The giveii forinlie co.isisting of the radar's fundamental parameters are

the fundiLmental parts of the measuring formula of the radar's ECCM capabi-

lities. They represent the radar basic or potential ECCNI performance. The

supplementary factors for the ECCM capability formulae are composed of the

technical specifications of the radar's ECCM devices. The general rule of con--
position is to take the typical quality level (or the middle level) specifica-

tion (in db) as the base figure. If the quality level of some devices is higher,

a positive factor will be got, and if lower-a negative. For example, the

equation for NMTI supplementary factor Pu is

Pm(db) = SCV -25(db)
where 25 db is the middle level specification for SCV of modern MTI radar.

As many radar systems consist of multiple channels, in this article we
propose a set of equations for the multichannel radar system's ECCM capa-
bilities in terms of the ECCM capabilities of the individual channel.

In the last part of this article, 4 radar systems are taken as examples,
their ECCM capabilities are calculated by means of the given formulae. Appli-
cation of obtained results to radar's system analysis and system design are

discussed.



BRIEF REPORT ON THE FIRST FLIGHT TEST RESEARCH ACADEMIC

EXCHANGE MEETING

* The Chinese Aeronautics arnd Astronautics Institute con-

vened China's first flight test research academic exchange

* meeting from December 16-21, 1980 at Yentai in Shandong

Province. The conference was prepared and managed by the Test

* I Flight Institute. Attending the conference were 28 representa-

tives from related units and 77 authors of papers from China.

Among these, besides the engineers and technicians, there

were also pilots with long term test flight experience.

At the conference, 74 papers were exchanged. The contents

were concerned with the flight test theories, methods, test

techniques, flying techniques and testing techniques of air-

craft, dynamic devices, electronics, special designed air con-

ditioning and aviation armaments. The conference was divided

into three stages. The first stage was a general meeting ex-

change and besides exchanging seven papers, two special reports

were given. The second stage was divided into three sets of

exchanges: aircraft, dynamic devices, and electronic, special

designs and test instruments. Altogether, 44 papers were read

(another 23 written papers were exchanged). The third stage

consisted of specialized discussions of problems dealing with

the advance of flight test research, promoting academic

exchange and establishing related academic organizations. From

beginning to end the conference was very conscientious, enthus-

iatic and pervaded with a friendly atmosphere.
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The conference had abundant content, wide specialized

fields and strong real practice whlich caused everyone to

broaden their outlook, increase their knowledge and attain to

great gains. Everyone considered that this indicated China's

flight test research enterprises were going from the stage of

having studied and comprehended foreign test flight theory and

methods and were beginning to enter a stage in which China

was initiating its own independent new creative research. The

representatives each requested that this type of academic

meeting be convened in the future.

During the conference, they discussed existing problems in

China's present test flight research, proposed establishing

corresponding academic organizations and chose a name list for

the preparatory group of the academic organizations. The con-

vening of the second academic exchange meeting during the third

quarter of next year by the Flight Mechanics Alliance was also

decided at the conference.
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AIMING COMPUTATION FOR FIGHTER WEAPON AIMING SYSTEM

Zhang Sen
(Optic Machinery Research Institute)

Abstract

This paper presents several derivations of the aiming

computing equations for the "Non-Director" (also called "Dis-

turbed Recticle") system in the aiming computer systems of the

air-to-air gunsight and head-up display weapon. This paper

deals with four situations: the fighter attacks a non-maneuver-

able target which is considered as moving in a straight line

at a constant speed; the fighter attacks a maneuvering target

and the corrections for the maneuvering of the target are taken

into account in the aiming computation; the fighter attacks a

maneuvering target and the corrections for the maneuvering of

the target and the effect of the fighter's own roll rate are

also taken into account in the aiming computation; during the

attack of the fighter on a maneuvering target the historical

tracer line (hot line) and a version of the damped tracer line

based on multiple Lcos computations are adapted in tht com-

putation for air-to-air gun snap-shot.

Symbols

M target point
My target leading point

Sbullet's oblique firing length
ballistic lowering quantity

6 target distance
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D,D distance change rate and distance chanae
acceleration

V commencing speed of muzzle0

V1 fighter's speed

V0 1 bullet's composite velocity (VoIV=O + V1)

VC unit vector of VO101 0

VM target velocity
V bullet's mean velocity
cp

0M target's relative angle velocity

Ai fighter's rotational angle velocity

O-X lYlZ is the fighter's body coordinate system

which are separately the unit

vectors on three axes

a,O fighter's attack angle and slip angle

e fighter's pitching angle

f fighter's slope angle

Vg, (-LA) pitching total correction angle (or
pitching total leading angle)

.v(-v ) azimuth total correction angle (or
azimuth total leading angle); when u and v
are in air-to-air gun snap-shot, this also
indicates the fighter's pitching and
azimuth angles of the tracer point on the
tracer line.

W Mx1. S)My, WMz 1  indicate the projection of the tarqet's
relative angle velocity on the three axes
of the fighter body's coordinate system

4 1x2 , lyI, WIiz1 indicate the projection of the fighter's
rotational angle velocity on the three
axes of the fighter body's coordinate
system

TJ computation time (Tj=aTj)

Ty the flight time required from after the
bullet is shot until it hits the target

v the rate of change for the pitching and
azimuth total correction angles
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ipitching' gazimuth the fighter's pitching and azimuth
aiming angle components

n fighter's normal overload

lift fighter's lift acceleration

a tangential the fighter's tangential and centripal
acentipal accelerationsacentripal

S Laplace operator

I time constant

g gravitational acceleration

ab, K1, K2# K3, F, the constants related to the ballistic
and fighter flight parameters

All of the vectors have the following relationship with the

fighter body's coordinate system:

B-D(cosgcosv sing -coslsinv J
DD (cos tAcos v sin 4 -Co L i

j -,* 1 0 {11]
-q c-sine -o 0 1oYesOsn39

Key: 1. Lift
2. Lift
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YRi YR1

DD

o X,

Fig. 1. The Relationship of All of the Vectors and the Fighter's
Fuselage Coordinate System

In the fighter's fuselage coordinate system oR11'1

0 is the point of origin in the fighter's gravi-
tational center; the ox1 points straight toward
the nose along the aircraft's longitudinal axis
direction; the 677, points straight toward the
cockpit along the Iaircraft's mechanical axis

direction; Mand 1'and U-form a right angle
right hand coordinate system relationship.

Key: 1. Lift

The total design of the fighter weapon aiming system has a

multifaceted content and the determining of the aiming computer

equations is one of its important functions. Below we will dis-

cuss this problem under four types of different conditions.

1. The aiming computation of a non-maneuverable (or rela-

tively lacking maneuverability) air target.
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Fig. 2 Aiming Vector Diagram

Fig. 2 is the aiming vector diagram under this type of

condition and from this we can arrange a deviation vector aiming

equation:

Because

therefore

N- D+4,T,+ D,+ (@(ux)T-VL-
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Because

therefore we obtain

1=( +- - ) +( xb) T+( -,. , -.- -- A.vo-i
VP Vol

Given that the gun axis and fuselage axis coincide, we use

the relationship of all of the vectors and the fuselage coordinate

system and project it toward the fighter's fuselage coodinate

system. TheZefore, a, ,, u, v, ' and sin e are all small and
relatively small quantities and because of this we can consider

sin a-a, sin 0, sin L.jA, sin vzv, cos 4(cos DzcosA4tcos v

1. If we overlook the quadratic or above quadratic small

quantity then we can obtain the computing equations for (N=O)

pitching channel total correction angle (*iLu) and azimuth

channel total correction angle (I, ) under aiming conditions:

'1 Cos Cos Y.=-~ ~ W. -= .,, ( f,--g

, - Vcos 9 sin Y

D

In the equations, Tj= Vc_--D is the smoothing of the aiming line
cp1

during track aiming and this causes the return of the peorle and

aircraft to be steady. Damping coefficient x is introduced into

the aiming computing equation; to obtain the target's relative

angle velocity, we introduce the relationship of the angular

velocity and the target's relative angle velocity when the fighter

is track aiming: A) = AiM + i;to decrease the dynamic error during

track aiming we take T*=WTj (r is smaller than the coeffient of

1). In this way we obtain the following equations:
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il ('osA ( n. Y

+ x))T*?

ii cos 0 sin Y

= + Z ) z. 77-

For the sake of simplification and convenience, if we can

consider that during an attack the fighter makes equal overload

circles, then the second item (aiming angle item) on the right

end of the equation can obtain the following form:

71 em 0 sin Y TICosO VCo CosY

Azimuth aiming angle a - ocosO

Key: 1. Azimuth DWV1 1, ,1 V,, V.AqV,
= (V.,-V,)DgD, -D,g[l/ 1 1,T 1

Pitch aiming angle qCoso" VI*; ) V.- V )'/, = -D, - os 0 COSY¥
Key: 1. Pitch (V.,-Vd)T 7bD;

To correct the azimuth aiming angle then we use the method
of multiplying T* times a coefficient K2 smaller than 1 to

i.i

approximate the correction and obtain:

The total correction angle of the pitching channel also changes

because of this:

+ W& ( + T-K.I7OK,+ -V Vlo t C 0 CosT

It is simplified into: o OCi)-(I+ )T-K,+-D.-(M0OSY+--
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Because Vj 1 3, (1) V
*cos 0 cog Y + A DD.(aTi+ b)

Key: 1. and take

we then obtain: z. -Cw,.-(- +z))TK,+(aT+ b)n

Naturally, in accordance with the difference of the selec-

tion and simplification methods for the aiming system plan, we

can also obtain other forms of the aiming computing equation.

For example:

Oz. 'C0,( + 2Y )iz)T +(a T7j+ b)
, ~'z =C( ,-( I + x ) ,.jT"K 1

Whether it is the aiming computing accuracy or decreasing

the system's complex equations both are satisfactory.

During the previous derivation and simplification process

for the aiming computing equations, we overlooked the influence

of the trailing angle item when shooting; further, because the

attack is against a non-maneuverable (moving in a straight line

at a constant speed) target, the roll rate (the angular rate
projected on the fuselage coordinate system x axis) generally

0 1
does not exceed 3 /second and the error caused by it is usually

within 2-3 milliradian. Thus, we do not have to consider it.

2. The approximate aiming computing correction for a

maneuvering target

This type of aiming computing correction is for improving

the original sight (non-head-up display) weapon aiming system

for use. Its aiming vector diagram is shown in figure 3.
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'0

Fig. 3. Aiming Vector Diagram

The arrangement of its deviation vector aiminq equation is:

When the bullet flight time is relatively short (close to

the range of fire), we take V M as a constant (equal to V M when

opening fire).

Further, + . ++ ( x

Overlooking the angle and second derivative item and second small

quantity of the distance, we then obtain:

R-B+VT,+T,+ (Cam x ) T,+-0T1,2 + (6. x -)T-,

192



When the fighter is in attack flight, V =tangent +1 tangentvector'

yet atangent has a very small influence on the aiming computation.

Therefore, we can take V i ; take j gT2 (from this, the

caused error is generally within 1%); when the fighter is in equal

overload circles, there is the following relation in the accelera-

tion: alift=atangent + (-5). Thus we can obtain:

Key: 1. Lift

Projected on the fighter's fuselage coordinate system, under aim-

ing conditions, after N=O simplification, we obtain:
• T I a*(1) r€ - . - + x ) * ) T , + - ---. . . .(_, ,1 - + E) ,),+K 3 .T,

Key: 1. Lift
In the formula, a =ng

K 2 (V.p-V,)

*Z.=C Oyt(1 + X~tvT'

Key 1: Lift

This aiming computing equation took into account the

correction of the maneuvering target but did not take into account

the influence of the roll rate. This is because most sight com-

puters are electromechanical or electronically simulated wherein

it is difficult to realize the correction of the roll rate

influence. Yet, it must be pointed out that when there is a
relatively large roll rate (over 1O°/second) the caused error

Lcannot be overlooked. For example, when a fighter carries out

aiming attack on a target with equal overload circles, the

application of this formula group for aiming computing will be

very accurate. Furthermore, this set of equations can also

realize the computing of the reticle snap-shots which does not

require a central spot of the reticle. It does, however, require
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that before the reticle's central spot goes on the target we

use the method of advancing the flight time firing of a shell

and only then will the target be brought down.

3. Weapon aiming computing taking into account the correc-

tions for the maneuvering of a target and the influence of

the fighter's roll rate.

Its relationship within the aiming vector can be seen in

fig. 3. The deviation vector aiming equation is:

R=b+iuT3,+ f f ' V.dt - i-

With the same principle as was mentioned previously in the second
part, VM is viewed as a constant and when the relation of VM and

VM is substituted into the equation and we overlook the angle

and second derivation item of the distance, then we obtain:

rv-1+iv, r,4-D7',+ (ca. xj) T,+!+VLT,+(oiAxD-) T,2+

X (aUX 6 )T2-&VO,-j

With the same rationale we took

(1) (2) (3)

Key: 1. Tangent
2. Lift
3. Tangent

and then we obtained
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N=-5+ iVT,+-DT,+ (&u x )T, la. r+ (ra, x r) T,

+ -1 & (im x 5) T1,- :2

Key: 1. Lift

In the formula

When this formula is substituted into the N relation, we obtain:

ND-+VTP+T+()xUB)T, +j* T,+(@,x-D)T;,

Key: 1. Lift

When each vector is projected toward the fuselage coordinate

system and simplified, we can obtain the aiming computing

equations under aiming conditions:

* '- I (Co'.,-( 1 + x );,.)T,+ T +-(- Q18 v7 ',2 2
--w=((,,,-( 1 + .)(V.]T- o,-V 1 ) T

Key: 1. Lift

In the equations, alift=ng.

This takes into account the correction for the maneuvering

of the target as well as the fuselage's roll rate influence on

the corrected aiming computing equation. It is generally applied

for use in the numerical computer's weapon aiming system.
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4. Its application in the head-up display aiming system can

carry out snap-shot tracer line aiming computing for air-supported

maneuvering targets.

The typical display of this type of aiming attack method

developed during the 1970's is shown in fig. 4.

(3 ,,, .50 (2)

YO , ()b;V()

. (8)

(6)

Fig. 4. Typical Display Diagram of Tracer Line

Key: 1. Gun cross line
2. 0.5 seconds
3. Tracer line
4. Reticle
5. Distance octagon
6. 1.5 seconds
7. 1 second
8. Central spot
9. Target aircraft

In principle, the'snap-shot tracer line can be divided into

two types: one type is the past historical tracer line (also

* called the hot line) and the other type is the damped calculated

tracer line. The so-called historical tracer line indicates the

connecting line of the real time calculation and each different
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time a hypothetical bullet is fired within a past period of time

opposite a fighter's bullet tracing point. Its principle-vector

relation diagram is shown in fig. 5.

"( 2)
""LA

Fig.c5.lricpetoRlationDag

to.

Fig. 5. rinple-Vulle2 ulit oito
3. Fighter's realized position
4. Fighter's locus

In the figure, o is the reference point, xoy is the se-

lected coordinate system; A(t) is the target's nianeuvering

acceleration.

The realized bullet point position is

The realized fighter position is
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* ~Because R=-,Ris the vector of the realized bullet position

opposite the fighter's realized position. Therefore, we obtain

R~~ T, fi

AK(t) is the fighter's motion acceleration.

When there are projection calculations of all of the

vectors in this vector equation within the realized fuselage

coordinate system we can then obtain the aiming computing

equation of the past historical tracer line. Using the equation,

we can calculate the bullet's tracer point each time a hypo-

thetical bullet is fired opposite the fighter's realized position.

The connecting line of these points is displayed on the head-up

display which is the past historical tracer line.

* - The damped calculated tracer line is sometimes also called

the damped tracer line. Because of the differences of the com-

puting method and damped lead-in method, it has many different

types. The most commonly used among them is the type of tracer

line obtained after repeated calculations using the total

correction angle aiming computing equations derived in part

three above. The damping in the equation can set up a composi-

tion that is changeable. The total correction angle aiming

computing equation mentioned previously can also be rewritten

in the following form:
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1+S1 2 (V, - V 2+,r [ 1
1 t - I.'~ - j- 1 JT

In the equations, a and v separately indicate each different

Ty time tracer point on the tracer line opposite the fighter's

pitching angle and azimuth angle;

is the damping time constant which can
1 change within 0.5 T,-1.20 T,;

S is the Laplace operator.

The above can be used for the tracer line of air-to-air

gun snap-shot and has often been applied to antiaircraft guns

(such as the American six barrel gun). Furthermore, if this

type of attack method is used for most single barrel aerial guns

with relatively low firing speeds, the shooting down probability

of air-supported targets cannot be very high. Naturally, if

several more simultaneous volleys are installed on the aircraft,

in principle, this is also a type of remedy method yet this is

further limited by other conditions.

This paper only analyzed and discussed several specific

problems regarding the fighter weapon aiming system. It did not,
• .however, mention the director type weapon aiming system or the

MRGS system which is now being developed abroad.
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Abstract

This paper presents several derivations of the aiming computing equations

for the "Non-Director" or the "Disturbed Reticle" system in the aiming compu-

ter systems of the air-to-air gunsight and head-up display weapon. The paper

deals with four cases: the fighter attacks the non-maneuverable target which

is considered as moving in a straight line at a constant speed, the fighter attacks

a maneuvering target and the corrections for the maneuvering of the target

are taken into account in the aiming computation; the fighter attacks a ma-

neuvering target and the corrections for the maneuvering of the target and the

effect of fighter's own roll rate are taken into account in the aiming compu-

tation; during the attack of the fighter on a maneuvering target the historical

tracer line (hot line) and a version of the damped tracer line based on mul-

tiple Lcos computations are adapted in the computation for air-to-air gun

snap-shot.
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THE OPTIMUM DESIGN OF NON-MOMENT LAMINATED COMPOSITE PLATE

-According to static failure strength condition-

Ma Zukang
(Northwestern Polytechnical University)

Abstract

When the upper and/or lower panels of the loading box of

the aircraft wing surface is made of the fiber reinforced com-

posite laminates, they can frequently be simplified as a non-

moment plate. This paper introduces an optimum design method

of the laminated plate according to static failure strength

condition. The mathematical tool used in the measure is the

Lagrangian multiplier method and the static failure strength

condition is adopted as Hill-Tsai criteria and Norris criteria.

The formulas for optimum design have not only been derived,

but also reformed to be convenient for application in the computer.

How to establish the ultimate strength of luminates is also dis-

cussed in detail. An example, illustrating the solution procedure

and how to select the optimum scheme of lamination design, is

presented in this paper. Some technical problems are briefly

At the stage of the preliminary structural design, this pro-

cedure can be considered as an engineering method of lamination

optimum design for the loading panel of laminated composite

which works under tension or compression (assuming that the

buckling failure would not occur).
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I. Preface
The total bearing action of the upper and/or lower panelsI of the loading box of the aircraft wing surface is mainly the

axial load and shear load in the bearing plate plane. Even the

aerodynamic load of the vertical plate plane is a local bearing

problem which cannot be overlooked in the preliminary structural

design when calculating the total strength. Aside from this, to

avoid the coupling effects of the laminated composite plate, the

lamination should be designed into a symmetrical mirror surface.

Furthermore, because the curve of the wing's stressed panel is

very small and is close to a flat plate, the wing's stressed

panel can be taken as a non-moment laminated plate. That is,

moments without internal or external force. Further, the lamin-

ated plate is in a plane stress condition. Frequently, a

0O/t450/900 lamination is used by this type of loading laminated

plate (the principle of this method is still appropriate for

other lamination angles).

Because the lamination of the laminated plate mainly

affects the layer's normal stress and shear stress but has a very

small effect on the bearing capability, the main content of this

paper concerning the optimum design of non-moment laminated

plate is the determination of the number of layers needed by

each directional layer based on the size of the external load

so that the laminated plate will have the lightest weight under

certain constraint conditions. These constraint conditions are

under the action of the design load and in accordance with the

static failure strength criteria, the laminated plate's safety

tolerance is zero (or the remaining strength coefficient is 1).

Mathematically, this is the problem of finding the conditional

extreme value which can be solved by using the Lagrangian

multiplier method.

II. Constraint Conditions

We can select suitable failure criteria based on the type
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reinforced fiber. For example, we can use the Norris criteria

(generalized divalent interaction law)

(_D; D. JJ.D, \D,/

or the Hill-Tsai criteria

(_)_ (/).( _.N, A f N,. 
D LD, -D2 D,

In the formulas, the N ,N and N are the design loads (service
xy s

loads) of the unit lengths on the x,y and s axes defined in

figure 1. The unit is pounds/inch or kilograms/centimeter.

!_o

Fig. 1. The Plane Stress Action on the Laminated Plate

In Nk=fkt=fk(tx+t y=t s), (k is the service stress of the

k direction and k=x,ys.

Dx,Dy and Ds are the ultimate loads (permissable loadsl of

the unit lengths on the y and s directions. The unit is also
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pounds/inch or kilograms/centimeter.

In D k=F kt=F k(t x+t y+t s), Fk is the ultimate stress (ultim-

ate strength) of the k direction and k=x,y,s.

III. Determining the Ultimate Strength of the Laminated Plate

When we take into account that the ultimate strength of the

laminated plate along a certain axis direction is obtained

from the ultimate strength of each directional layer provided in

the corresponding direction according to the linear weighted

average rule, it is

F.-FJF~,+Fr,~ I. F, 1,

- (a..L + a.,M + a.,N) F.

In the formula,

F is the ultimate strength of the lamin-
X ated plate along the x axis (the unit

is kilograms/centimeter or 1000
2

pounds/inch2);
F xx' Fxy Fxs are the ultimate strengths able to be

provided along the x axis by each dir-
ectional layer under plane stress
conditions;

F a  is the longitudinal tensile ultimate
stress of the single direction compos-

ite material;
tx 'y 's are the thicknesses of each directional

layer;

t is the total thickness of the laminated
plate;

L,M,N are the thickness ratios of each dir-
ectional layer;

akj is the stress coefficient (kjfx,y,s).
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Based on the definitions of figure 1, we know that F =F a

and therefore a =1.
xx

' ,,

e -F' P. \\

Fig. 2. Schematic Drawing of Ultimate Strength for the
Laminated Plate in Each Direction.

In the same way, we can obtain:

F, = (a,,L + aYiAl a,,,V) F.
F', (a.L t a,11! . a,,.V) F.

Based on the definitions of figures 3(a) and (b) we know

that a=l, a=axy a xs=ay s , asx=a sy, and a and a' are not

necessarily equal yet to simplify we consider that a =a,'
ss ss.

Fig. 3. Schematic Drawing 
of Ultimate Strength 

f'or the
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Written in a matrix form, it is:

[ i'a., o3, a., 1 LF
F, INS a, a a,, MF.

F, a,, a,, a. NF J

If we use the ultimate load of the unit width then it is:

D, s =1 a a , a,, t, F.

A,. a,3 a,, a,, 1,Fe

IV. The Method of Lamination Optimum Design Method

1. Method and Steps

Because it is necessary that the determined variables are

t I ty, ts, the weight function of the non-moment plate is

f(tX,t ,t )=(t +ty+t )AY. In the formula, A is the plate surface

area and Y is material's specific gravity

The constraint condition is a certain strength criterion.

For example, using the Norris criteria,_

v (IS,,,.) D + N( O N + D , D 1 0

In the formula, D ,D and D are all functions of t ,t and ts Ix y s x y s
and then Nx ,Ny and Ns are related to txty and ts -

206



Applying the Lagrangian multiplier method:

W = f (.. G, 11) + Aq'(I., 4, f,)

, +)' !_, D.- D' , D, '

separa elt =0 - =0 and aW =0, we can attain the fol-Separately let t x 2ty S

lowing three formulas:

,YD D. D.D
' '~~~yD .. v ~V+a.N,( D- )S -0.N,,(G(Do.)+G, ( D,. )] +at..N'(-- , )

2ki (1)" T3 a..,+ aN'5.N, + a, DD .

2DF2 D,_\ D, + D. RT

-" .I D. D' D

-.- a.,N + a, N(P- - 0. N N a. + a,, - -- _)J+a1,N
(3)

* When formula (1) is reduced into formula (2) and the asxasy

relation is applied, we obtain:

(,..-.0 ,)Na,, ..- a.,,,( ')S o. N.. , ..- n.-) D.(,l)' ] 0

(4)
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When formula (1) is reduced into formula (3), we obtain:

(a. - a,)N .+ (o,.- ci,) N(L -0. 5NN( 8  ,) + (a,,

+ (a,.- a,,) N -j7) 0 (5)

The selected strength criteria can be rewritten as:

D~~-N~+N3  A'- N( ) N D.
D( N3, +, D ,' (6)

The X) found in formula (4) is substituted into formula (5)

and then the found () is substituted into formula (6) and we
(of D

x
proceed to find Dx . The positive and negative signs, are identical

to those of N.x

We have already obtained from the last section that:
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D' - a- a. o"It =F.(A) t,

D, a,. a,, a,, J j L

(./. (7)

(D./D,)

Dx  D
When the found D x , - and are substituted into formulaxD D

y s

(7), if (A) -1 7nd Fa are already known, then we can find the
values of tx t and ts . When tk is divided by the thickness of

xy
a single Layer plate then we obtain the layer number nk of

each directional layer. However, in most situations the nk is

not n.ces.s1ly a positive integer so that at this time we can

take the closest positive integer as the feasible scheme value.

In this say, we have several sets of feasible schemes and its
safety tolerance for each set of calculations is

1

M. S. i V S
kD./kD,) --.D D,)

The selection of M.S. is the largest positive value as the

optimum design scheme.

2. Calculation Examples

A cylindrical structure having a radius of R=10 inches, a
02

maximum pressure inside the cylinder of P 1000 pounds/inch 2 also

sustains a maximum torque of 2 million inch pounds. The material

used is boron/epoxy composite material,
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its single direction permissable strength is Fa=173,000 pounds/
2

inch , and the single layer thickness of each type of lamination

(0', 900, ±450) is to=0.0075 inches. After arranging the test

data, the stress coefficient matrix which is

a,, a,, a,, ] 1 -0.1266 0.2133 ]
a,. a., a,, -0.12 6 6 (-L) 1 0.2133

a,. a,, a,, 0.2133 0.2133 0.4266 .1

finds the lamination optimum design scheme of this strv.ctured

cylinder.

N..

'\ lift
N,

Fig. 4. Example Figure

The solution of the external load is

Nx=PR=1 x 10=10,000 pounds/inch
Ny=pR=5,000 pounds/inch

N = =-3.183 pounds/inch

N N
therefore gY-o .5, S.0.3183

Nx 9X

210



F1 -0.1266 0.13 1 1.202 0.304 -0.735CA)- -0.0316 1 0.2133 (AY' = 0.181 1.166 -0.674

0.2133 0.2133 0.4266 .. [-0.674 -0.735 3.049

When already known data is substituted into formulas (4), (5)
and (6), we can obtain 23=1.772, 2=2.362 and DX=12,100 pounds/

D 'D
inch. Further, when the 6btained results are substituted into

formula (7), we can obtain

f 1  1.202 0.304 -0.735 1 0 07431

,2 0 181 1.166 -0.674 0 0387

1 -0.674 -0.735 3.049 2.362 0.01411"1 , ,. " 0r.0743 r,,.,,
1,j .,.i F0.0141. .1.8

Key: 1. Inch
2. Layer

Because In=16.9 layer, therefore we take the Xn=17 layer. In

this way we have the following three types of feasible schemes

and separately calculate their safety tolerances.
D.- F.(a.,4+ a,1,+ a,,,) -. 2983- 0. 164n,+ 0.277.,

D,- F.(a,.t.+a,.1,+a,,1,) - -O.041I*+ 1. 298.n,+0.277x,
D,- F(aI. +a,vt+a,t,) -0.277(n.+n,+2,)

(1J. .. .. I 1
*&I jy Na ,y ,, 0. l, D, M.S.

1 g 6 2 11.252 51273 .263 +0.008
2 16 2 12.714 1 634263 0.4416

3 10 6 1 12.273 1.655 4.666 40,0352

, Key: 1. Design scheme
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Based on the M.S. values, we should select scheme 2 as the

lamination optimum design scheme.

3. Improvement of Method

During actual operation, the calculation of the structural

design is a step-by-step approximation process. In addition, the

external loads and stressed panels often require partitioned

calculations and thus in order to decrease the amount of work

and make it convenient for using an electronic computer, we can

use the above mentioned calculation measures to make the

following changes. According to the matrix formula we know

A A. Ax A,.

A., A,, A,

In the formula, A.,a,,-a,,a,, A,-,,a,.-q"a,, etc. Formula

(7) can be rewritten as:

r A,,v A.a As. D
D,

A As, A, A,, I -.
A ,, Av.As A

Therefore, we obtain

S, "+A-- D,+A D,

4.w+Aw + A"

UA, __v + As.
D. -~ D..
-'+A' +A,
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r1

Furthermore, formulas (4), (5) and (6) can separately be re-

written as:

(a..-a..)+(,°..- 1),( )'( )- .,( !)f o..-a). (, , o.-a,., (fl- )2]- -N=o- ,(, o

(ass. a, + 0 -0. -as, (+.-,)(D J(0

- (ff". y 0.fO?

(D)DI

( ).. a the (a,,) o f m I(1) izs e s t e ( 0ubstituted ,
.~0 1N Ys/D \

fo,,ulas ,8) (and r . At-he=a mt,

whe (~ aD (N are sus+ue iNfrua(2,wa

find
Letin tNe D, DR(12

Weth e D, from formula (i0) is substituted into formula

!(11) and the of formula (11) is then substituted intoformulas (8) an8 (9), we can find r 1 and r 2 . At the same time,

n are substituted into formula (12), we can

find Dx .
Nx "

i<. ' Leting x=R, then DX=RN x

0. 1 r1  (13)
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SNy N

Only if we give the values of f- and 9s, based on the
X x

known (A) and the F in accordance with formulas (8)-(15), we
a

can find the corresponding numerical values of L and N, and
F t N N
asNa . If we take a series of N and N based on a certian specific

value then we can use hand computation or an electronic computer

to calculate the following table for the approximate step-by-

step calculation during the preliminary desiqn.

--N._N, N. L N

1.00 0
0.25

00.50
0.75

,..001.00

___ .________I 05_____

0.25

4. Special Circumstances

(1) If there is only the action of Nk

The optimum design of lamination is naturally accomplished

by the lamination along the k direction,

SX (k= ..

I,

(2) If there is only the action of N and N then V,- 0
x s

This type of loaded situation has practical significance for the

stress panel of the wing surface and therefore we will discuss

this in greater detail.
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From formula (11) we can obtain:

-D, 3 a., -,, 1 (16)

Because

Dz a,,, a.: F.l
D, a,, a,, JIF. :,J

we therefore obtain

a,,- a ( D-r D.

From formula (12) we can obtain

R V/ 1 Y. 77 (18)

From formula (13)

FL R(1-v) (19)

F, +

From formula (14)
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(20)
i+ r

and from formula (15)

r

Formulas (16)-(20) are very easily arranged into computer pro-

grams. For example, if the stress coefficient and F are takena

to be the numerical values of the above examples after going

through an electronic computer we can obtain the following

table

N, 0 1 0 .1 . o.$ o.4 0.5 . 0.7e 0.8 0.9 1.e

Fj 1 1.043 1.370 1.667 1.947 2.217 2.41 2.736 2.992 3.242 3.489

L 1.229 0.979 0.826 0.718 0.636 0.571 0.SIT 0,472 0.433 0.399

If the data in the table are drawn into figure lines then it is

as shown in fig. 5.
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L

1.0

.3.0

.0

0o. . . .4 0.5 .6o0.70.0910

Fig. 5. The Ns/Nx-Fat/Nx-L Relation Curve

N D
S. x

When -2 is very small, we know from formula (16) that xx N D s
will be very large and especially when s=0, -L will become

N D
N X S

infinite. In reality, however, when -2=0, that is it becomes the
N

x Ft
single load of N =N =0 and N 40 then there should be Na =1and

s y Ns xN
NN

N

x

the transformations within two types (single load and double load)

of minimum weight designs. Because of the selection of the dotted

line area's curve form and stopping point there is a certain

randomness and therefore its error can be relatively large.
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V. Discussion of Technique

1. Can we differentiate and determine the number of layers

of each directional layer based on the external load of each

direction?

Also, is it possible to carry out a lamination design based

N
on the tk(k=x,y,s) formula. When we still take the abovekk a

example's data, we can obtain:

10 (2)
i t.= -0.0578k4 , .007173 007

5- 0.0289. ()
S,---'0 28 t."0.075-

-_.4(6)3.183 -oo- ...s
1 '0.266173 .043iW't, n,=-* -5.74-69'0.4266 x 173 -0.---0- -5 74 6

Key: 1. Inch
2. Layer
3. Inch
4. Layer
5. Inch
6. Layer

We know that the differences of the optimum schemes in the

contrasting examples are relatively large and it appears that

the main reason for these differences is, as regards the

laminated plate, causing the external load to be single direction-

al. The stress conditions of each directional layer are still

complex stress conditions (if we do not calculate the stress

in the layer then they are plane stress conditions) and the

interaction within each directional layer cannot be overlooked.

2. Stress coefficient a and single direction composite

P.
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longitudinal tensile strength Fa

We can see from the numerical examples that the influence

of the numerical value of ak on the calculation results is

quite large. The value of aj is obtained from special single

load tests based on the different percentages of each layer of

the composite on the x, y and s axes. In the same way, F a is

also determined from the tests.

3. Strength Data

We must take into account that this paper used the laminated

plate's strength criteria and that this was for a non-singular

laminated plate. Therefore, each of its data items should use

the laminated plate. The above mentioned formulas were based on

the Norris criteria yet if we use the Hill-Tsai criteria then

the formulas can have fewer differences and yet its results can

also have some dissimilarities. However, the two formulas are

not dissimilar for the N-Oand AOsituations. If we use theN xN

Tsai-Wu tensor multinomial criteria, the derived formula is
quite complex and inconvenient to use because there are very

many number items and also because it is necessary to use the

tensile and compression limit strength. Therefore, it is more
convenient to use the previous two types of criteria during the

preliminary design.
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Abstract

When the upper and/or lower panels of the loading box of the aircraft

wing or tail are made of the fiber reinforced composite laminates, they can

frequently be simplified as a non-moment plate. This paper introduces an

optimum design (i. e. minimum weight design) procedure of the laminated plate

on static failure strength condition. The mathematical tool used in the proce-
dure is Lagrangian Multiplier method, and the static failure strengt' condition

is adopted as Hill-Tsai criteria or Norris criteria.

The formulae for optimum design have been not only derived, but also

ref ormed to be convenient for the computer. How to establish the ultimate

strength of laminates is discussed in detail. An example, illustrating the

solution procedure and how to select the optimum scheme of lamination design.

is presented in the paper. Some technical problems are briefly discussed in the

last part.

At the stage of the preliminary structural design. this procedure can be

considered as an engineering method of lamination optimum design for the loa-

ding panel of laminated composite, which works under tension or compression

(assuming that the buckling failure would not occur).
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