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RATIONAL CONTROL OF ELECTRONIC STRUCTURE AND LATTICE ARCHITECTURE IN
ELECTRICALLY CONDUCTING MOLECULAR/MACROMOLECULAR ASSEMBLIES

Tobin J, Marks, Carl W. Dirk, and Karl F. Schoch, Jr.
Department of Chemistry and the Materials Research Center,
Northwestern University, Evanston, Illinois 60201

Joseph W, Lyding
Department of Electrical Engineering and Computer Science, and the
Materials Research Center, Northwestern University, Evanston, Illinois 60201

INTRODUCT ION

The past several years have witnessed the advent of advanced new types of
organic, metal-organic, and inorganic materials with unusual, highly anisotro-
pic, and potentially tailorable electrical, optical, and magnetic properties
(1-5). Such materials have stimulated much activity in the chemistry and
physics communities. As a result, there have been advances in chemical
synthetic strategy and methodology, in spectroscopic and charge transport
measurement techniques, and in condensed matter theory. Furthermore, applica-
tions of this new knowledge to sensors (6), rectifiers (7), switching devices
(8), photoresists (9), fuel cells (10), chemoselective electrodes (11), solar
energy conversion elements (12), and electrophotographic devices (13) have been
the subject of much discussion. Of course, to develop such technology there
must be an intimate understanding at the molecular level of those structural
and electronic variables which govern collective properties. A refined
synthetic chemistry for constructing desired molecular assemblies and
optimizing performance charcteristics is also required. Despite the advances
which have been achieved, our understanding of and our ability to exert
chemical control over the above factors is at a primitive level, thus repre-
senting a major barrier to progress.

h Research in this Laboratory has focused on the evolution of rational,

. ‘ flexible syntheses of new low-dimensionai electronic materials and on

' ) understanding the physical properties of the products which result (14,15).

In this article we review our recent work on constructing molecular arrays
composed of cofacially linked, partially oxidized metallomacrocycles. By
beginning with chemically-versatile and well-characterized molecular precur-
sors, this strategy capitalizes upon a great deal of accumulated chemical and
physical information about the component subunits. Our strategy offers the
possibility of constructing robust new conductive assemblies with well~defined




and easily-manipulated microstructures. The covalent bonds which hold such
arrays together are far stronger than packing, van der Waals, and band for-
mation forces. As a result, it has been possible to delve into those factors
which stabilize the metallic state without fear of a breakdown in stacking, to
control lattice microstructure, and to deliberately perturb bandwidth and

phonon dynamics.

REQUIREMENTS FOR HIGHLY CONDUCTIVE MOLECULAR SOLIDS

Two features are now generally recognized as necessary for transforming an
unorganized collection of molecules into an electrically conductive molecular
array. First, the component molecules must be positioned in close spatial
proximity, and in crystallographically similar environments, with sufficient
intermolecular orbital overlap to provide a continuous electronic pathway for
carrier delocalization.” With the molecules positioned in this manner, the
conduction pathway has a minimum of energetic "hills" and ''valleys." Second,
the arrayed molecules must be in formal fractional oxidation states ("mixed
valence," "partial oxidation," "incomplete charge transfer'"). That is, the
molecular entities to be connected in series must have fractionally occupied
electronic valence shells. Within the framework of a simple one-dimensional
Hubbard model, this prerequisite reflects the relatively narrow bandwidths
(4t) and large on-site coulomb repulsions (U) in such systems (16). A
simplified, valence bond picture of this situation is depicted in Figure 1;

Unexidized Partially Oxidized
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U = electron correlation energy

t = transfer integral = bandwidth/4

Fig. 1. Schematic diagram of how partial oxidation enhances charge transport
in a simple molecular stack.




partial oxidation enhances charge mobility by creating numerous electronic
vacancies. An analogous description can be generated for partial reductionm.

Our initial approach to synthesizing low-dimensional mixed-valent arrays
was to cocrystallize planar, conjugated metallomacrocyclic donor molecules
such as glyoximates (A,B) (17-19), phthalocyanines (C) (20,21), and tetraazan-
nulenes (D) (22) having an MN, core structure, with Dromine or iodine oxi-

dants (A), as shown in eq. (1). When successful, the result is a crystal |
composed of segregated (i.e., donors and acceptors in separate columns), par-
tially oxidized metallomacrocyclic stacks and parallel arrays of halide or

<>l
<>ii

polyhalide counterions. We also demonstrated that the form of the halogen
(even if disordered) could be determined in a straightforward fashion by reso-
t nance Raman and iodine Mossbauer spectroscopic techniques (15,19,23,24). The
' degree of partial oxidation (8+) follows from this 1nfotmat10n and the
stoichiometry. As an example, nickel phthalocxanlne iodide, [N1(Pc)]11 0*
crystallizes in stacks of staggered Ni(Pc)*0 units arrayed at 3. 264(2) A
intervals and surrounded by parallel chains of I3” counterions. The 300°K

! conduct1v1ty of this material in the molecular stacking direction is 300-700
: 7% em ' and the temperature dependence is "metal-like" (p =~ 11+9) down to

' 60°K (21). The conductivity is predominantly a ligand-centered phenomenon,
and carrier mean free paths are comparable to some of the most conductive
"molecular metals."

The molecule/halogen cocrystallization approach to the synthesis of mixed
valent, low-dimensional, metal-like materials is often effective.
Nevertheless, all strategies that rely upon molecular stacking suffer from the
weakness that the lattice architecture is totally dependent upon the unpredic-
table and largely uncontrollable forces that dictate the stacking pattern, the




donor-acceptor orientations, and the stacking repeat distances. There are

numerous conceivable donor-acceptor crystallization patterns which do not

involve segregated stacking of the components (25-28). Indeed, a common pit=~

fall in the design of new materials is that segregated stacks do not form,

and that the elegant effort expended in donor or acceptor design is for naught.

This problem severely limits the ability to design and tailor microstructures

which lead reliably to electroactive molecular assemblies. ;

THE COFACIAL ASSEMBLY APPROACH

Our approach to controlling molecular stacking involves the assembly of macro-
molecules in which arrays of metallomacrocycles are rigidly locked into a
"face-to-face" configuration by strong, covalent bonds (eq.(2)) (29-31). The

C‘P—"’C}(&)‘L'—’Q‘«) (2)

architecture of the stack can be varied by suitable modification of the macro-
cycle, the metal (M), and the connecting linkage (X). Our first studies have
capitalized on pioneering chemistry of Kenney (32) and involve phthalocyanine
systems where M = Si, Ge, Sn and X = 0. Thus, Si(Pc)(OH);, Ge(Pc)(OH),, and
Sn(Pc)(OH), can be condensed at 300-400°C/1077 torr to form "face-to~face"
phthalocyanine polymers (Figure 2}, As a prelude to doping and transport
measurements, we first investigated the properties of these compounds as poly-
mers. The [M(Pc)O]n materials have high chemical and thermal stability;
moreover, they are not significantly degraded by oxygen or moisture. We find
+ that the polysiloxane polymer can be recovered unchanged from concentrated
sulfuric acid (typical of phthalocyanines containing non-electropositive
s metals (33)). A rough estimate of the minimum average chain length of
i (si(Pc)O], produced in the condensation polymerization can be obtained by
’ Fourier transform infrared spectrophotometric analysis of the Si-0 stretching
region. For a typical sample, the degree of polymerization is estimated to be
on the order of ca. 100 subunits or more (31). This result is in agreement
with preliminary light scattering data from sulfuric acid solutions (34) and
measurements of the amount of water evolved during polymerizatiom (35).
Infrared analyses of the germanium and tin analogues (considerably more dif-
ficult measurements) yield minimum average chain lengths on the order of 30 or
more subunits (36).




M © 8, Ge, Sn

Fig. 2. Polymerization reaction to produce cofacial arrays of Group 1IVA
metallophthalocyanines.

Structural information on the face-to-face polymers has been derived from
several lines of evidence. X-ray powder diffraction data can be indexed in the
tetragonal crystal system using iterative computer techniques. Data are very
similar to those from the columnar crystal structures of [Ni(Pc)]Il.o (21) and
Ni(dpg)ql g (17). The interplanar spacings (c/2) in these latter tetragonal
structures, determined in single crystal studies, are 3.244(2) A and 3.271(1) A,
respectively. The corresponding separations derived for the [M(Pc)O], materials
from the powder diffraction data are a function of the metal ionic radius and
vary from 3.32(2) A (Si-0-Si) to 3.51(2) A (Ge-0-Ge) to 3.95(2) A (Sn-0-Sn).
The reliability of these metrical parameters is further supported by single
crystal diffraction results on the model trimer
[(CH3)3Si0]2(CH3)Si0[Si(Pc)0]3Si(CH3)[OSi(CH3)312 which contains three cofa-
cial Si(Pc)0 units linked by linear Si-0-Si connections at a distance of
3.324(2) A (37). Furthermore, the [Ge(Pc)O], and {sn(Pc)0],, interplanar spa-

k ' : cings obtained from diffraction data agree with values estimated from standard
ionic radii (38) assuming linear Ge-0-Ge and Sn-0-Sn vectors, i.e., 3.58 A for
[Ge(Pc)O], and 3.90 A for [Sn(Pc)O]n. There is good precedent for molecules
with linear Si-0-Si, Ge-O-Ge, and Sn-0-Sn linkages (39). Importantly, then,
we have achieved a means to manipulate the interplanar spacings of electri-

3 cally conductive subunits in a metallomacrocyclic system where the transport

- : ] properties are relatively insensitive to the identity of the metal ion.

PARTIAL OXIDATION WITH HALOGENS

Following assembly of the metallophthalocyanines into cofacial arrays,
doping experiments were conducted using the halogenation procedure (14,15)
developed in this Laboratory for simple, stacked metallomacrocyclic systems.
Stirring the powdered polymers with solutions of iodine in organic solvents




1
or exposing the powders to iodine vapor results in substantial iodine uptake.
Alternatively, [Si(Pc)0], can be doped by dissolving in sulfuric acid and
precipitating with an aqueous I3~ solution. The stoichiometries which can be
obtained depend upon the reaction conditions; examples of these materials are
listed in Table 1. A survey experiment also indicated that bromine-doped
materials could be prepared. That oxidation of the cofacial array has indeed
occurred was confirmed by resonance Raman scattering spectroscopy in the
polyiodide region. Powder ESR data confirm that the oxidation is ligand cen-
tered, producing arrays of m cation radicals (g = 2,002) (31).

Table 1. Physical Properties of Polycrystalline Samples of Halogen-Doped
(M(Pc)0],, Polymers and [Ni(Pc)]I, .
Activation Interplanar
Compound o(@~lem™1)300°K Energy (eV) Spacing (R)
- 3.3
[si(Pc)O], 3 x 1078 3(2)
{[8i(Pc)0]1g 50} 2 x 1072
{[si(pe)O]1; 55}, 1.4 0.04%0,001 3.33(2)
{{si(Pc)0l1, goln 1 x 1072
{[Si(PC)O]BrI.oo]n 6 x 10-2
(Ge(Pc)O], <10-8 3.51(2)
{(Ge(Pc)O]1g, 31} q 7 x 1074 0.08%0.001
{(Ge(Pc)O)1g g2}y 1 x 1072 0.05%0.001
{[Ge(Pc)O]1] g4}y 6 x 10~2 0.05£0.007
% ' {({Ge(Pc)O}14 o}y 1 x 107!
fsa(Pc)o], <10~8 3.95(2)
. {[sn(Pc)O]1y 5}, 1 x 1076 3.95(2)
{[sn(Pc)O)15, s}, 2 x 1074 0.68%0.01
(Ni(Pe))I], o® 7 x 1071 0.036£0.001 3.244(2)
a
Reference 20.
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Four-probe van der Pauw (40) electrical conductivity measurements on
compacted [M(Pc)O], powders show them to be insulators. However, iodine or
bromine doping results in substantial increases in electrical conductivity
(Table 1). The general trend in conductivity as a function of metal is
%si > Oge Og,- Since it is known that the transport characteristics of
iodine-oxidized metallophthalocyanines are largely ligand-dominated and rela-
tively insensitive to the identity of the metal (20,21), the metal dependence
of the conductivity observed in the face-to-face polymers is logically
ascribed to microstructural differences such as how the interplanar separation
is influenced by metal ionic radius. 1Indeed, the {[Si(Pc)0]I,}, interplanar
separation is within 0.1 A of that in the aforementioned "molecular metal"
(Ni(Pe)]; o and the room temperature powder conductivities of the two
materials are quite comparable (Table 1). Variable temperature studies iandi-
cate that the {IM(Pc)O]Ix}n powder conductivities are thermally activated
(Figure 3) and least-squares fits to eq.(3) yield the activation energies com-
piled in Table 1. Powder conductivity measurements are, of course, influenced

o = gg exp (~8/kT) (3)

00}
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Fig. 3. Variable temperature, four-probe electrical conductivity data for
compacted powders of A. {[Si(Pc)O]1, $}n B. {{Ge(Pc)OlI, o},
c. {Isn(Pc)0lIg g},. The straight ?lnes indicate least~squares fits
to eq.(3).




by interparticle contact resistance and random crystallographic orientations.
For low-dimensional compounds such as [Ni(Pc)]I| o, powder conductivities are
typically 102-103 1ess than single crystal conductivities in the stacking
direction and exhibit thermally activated temperature dependences. Thus,
"metal~like" temperature dependence (do/dT < 0) is usually masked. However,
from the magnitudes of the powder conductivities of the {[M(Pc)O]Ix}n materials
it is possible to anticipate that "metal-like" charge transport will be
observed in. the chain direction for the M = Si and perhaps M = Ge materials.
Further information on this question is provided by voltage shorted compaction
{(VSC) measurements (41). This technique offers a qualitative means to ascer-
tain anisotropic transport properties in pressed powder samples by delibera-
tely shorting out sources of intecparticle resistance. As can be seen in
Figure 4, this measurement (4?) reveals metal-like (do/dT < 0) behavior at
higher temperatures, a relatively broad maximum, and a transition to a less
conducting state at low temperatures. The results of the variable temperature
conductivity measurements also underscore the robust thermal character of the
cofacially arrayed polymers. {[Si(Pc)0)I,}, samples could be cycled to 300°C
with only minor deterioration in room temperature conductivity (apparently due
to vaporization of the iodine).

2.0 {[5itP)O)\ a5}
VOLTAGE SHORTED COMPACTION

CONDUCTIVITY

: ..\“ *'p‘ A )
$ N

. .
1.0 . wvﬂ .

o
&

]

.

CONCUCTIVITY RATIO

046 700 1100 1500 " 190.0 230.0 270.0 310.0
TEMPERATURE (K)

Fig. 4. Voltage shorted compaction conductivity measurement on
{[Si(PC)OIII.55}n.




Weak, relatively temperature independent paramagnetism is another charac-
teristic of highly conductive materials with appreciable bandwidths (1-5).
Static susceptibility measurements on the {[Si(Pc)0]I,}, and {[Ge(Pc)O]I,},
materials by the Faraday method reveal weak (x, = 300-500 x 107®  emu after
corrections for diamagnetism) paramagnetism which varies only modestly with
temperature from 300-77°K. Again, there is evidence for a '"metal-like"
material. '

WHAT CONSTITUTES AN EFFECTIVE DOPANT?

Halogens are known to be especially effective acceptors for stabilizing
low-dimensional mixed valent arrays of a great many organic and metal-organic
donors (15), with the present systems being only a small subset. In
attempting to understand why halogens are so effective at partially oxidizing
metallomacrocycles, it is first instructive to consider those factors which
stabilize a donor-acceptor lattice. For a charge-transferred material, the
crystal binding energy (EcP) can be expressed approximately as in eq.(4),

2 (4)

- 2 2
Ec 3 P(I7A) + %y + 0%Egy + P Epop * EgP + Eyquw’ + Eci®

where ¢ is the degree of incomplete charge transfer, I is the gas-phase ioni-
zation potential of the neutral donor molecule, A is the gas phase electron
affinity of the neutral acceptor, Ey is the Madelung energy, E,,  is the
exchange energy, E, i is the polarization energy gained by interaction with
dipoles induced on neighboring sites, EgP is the energy gained by band for-
mation, E,qyP is the van der Waals energy, and Egg® is the core repulsion
energy (ABg. Although such a relationship at first appears intractable for
predicting which systems will form low-dimensional mixed valent lattices,
holding the acceptor constant leads to an interesting empirical result. In
Table 2 are collected gas phase ionization potentials (44) of molecular

Table 2. Gas Phase Ionization Potentials of Molecular Donors Forming Mixed
Valent Salts with Iodine.?

Donor Ionization Potential (eV)
f Perylene 6.97

TMPD 6.84

TTF 6.83

TMTTF 6.40

TTT 6.50

M(Pc) 6.36-6.41

M(OEP) 6.31-6.39

4TMPD = N,N,N',N'-tetramethylphenylenediamine; TTF = tetrathiafulvalene: TMTTF
= tetramethyltetrathiafulvalene; TIT = tetrathiatetracene; M(QEP) =
2,3,7,8,12,13,17,18~-octaethylporphyrin,




donor systems known to form low-dimensional mixed valent solids with iodine.
The surprising observation is that for a wide spectrum of donors, including
phthalocyanines and porphyrins, the ionization potentials fall within a

narrow range (especially when the perylene complex, which is marginally
stable, is excluded). Conjugated donors with higher or lower ionization
potentials generally appear not to form mixed valent salts (15). These obser-
vations suggest that the I-A term in eq.(4) plays a dominant role, and that
the other terms remain nearly constant for the classes of donors presently

under consideration.

Halogens are not the only acceptors that form mixed valent materials with
organic donors. Organic oxidants such as the high potential quinones shown
below form a wide range of partially oxidized conductive salts (1-5). For

NC, CN o 0
F F C | |
o
N N

TCNQ fluoranil chloranil
0
Br Br NC Cl1 OH
B Br N Cl  on |
o
bromanil DDQ DHB

this reason, it was of interest to explore the response of molecular metallo-
macrocycles (e.g., metallophthalocyanines) to quinone oxidants. 1In all cases
investigated to date, and in striking contrast to halogen dopants, only poorly
conductive materials were produced (42). This result raises the interesting
question of whether, in addition to electron affinity (I-A in eq.(4)), halo-
gens may play some other role, e.g., structure-forming, in stabilizing the
mixed valent lattice. There is some evidence that quinones may promote the
formation of integrated stack crystal structures (28).

0




The availability of the face-to-face polymer system with enforced metallo-
macrocycle stacking suggests an intriguing experiment to begin to differen-
tiate the redox and structure-forming properties of the dopants. Would
conductive, mixed valent metallomacrocyclic arrays be produced by quinone oxi-
dants if segregated stacking were inviolably guaranteed? Doping experiments
with the [Si(Pc)0], polymers were thus carried out by stirring these materials
with solutions of the above quinones. The products were characterized by ele-
mental analysis and vibrational specroscopy. That reduction of the quinone
occurs, with concurrent oxidation of the metallomacrocyclic array, is
demonstrated by infrared specroscopy. As exemplified by Figure 5, the reduced
quinone anions (45) (along with neutral quinone) can be readily detected.

As can be seen in Table 3, large increases in elecrical conductivity accompany
quinone doping of the face-to-face phthalocyanine polymers (but not the mole-
cular phthalocyanine) (42). 1Indeed, the DDQ-doped materials are nearly as
conductive as those doped with halogens. Variable temperature transport data
are shown in Figure 6 for several samples. The temperature dependences are
thermally activated and activation energies derived from least-squares fits to
eq.(3) are compiled in Table 3. Clearly, if the stacked donor microstructure

INFRARED SPECTRA

TCNQ el

{[SilPc)O] TCNQg s} M

\
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2500 2000 1600 1500 900 800
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Fig. 5. Solid state infrared spectra of TCNQ and [Si(Pc)0], doped with TCNQ.
The arrows indicate normal modes assignahle to TCNQ™.




Table 3. Charge Transport for Polycrystalline Samples of Molecular
Phthalocyanines and Cofacial Phthalocyanine Polymers with Various

Dopants

Empirical Activation
Dopant® Formula c@! cmn1)300°k Energy(eV)
none . [si(pe)Ol, 3 x 1078
I {Isi(Pc)O)I; 55}, 1.4 0.04%.001
Br {[si(Pc)O)Bry goln 6 x 1072
K {{si(Pc)O]K] ply 2 x 1073
DDQ {{5i(Pc)O]DDQ} g0} n 2.1 x 1072
pDQ {{si(Pc)0]DDQy, 35} 6.2 x 1072 0.05%.001
TCNQ {{si(Pc)O]TCNQq 50} 4 2.8 x 1073
ClA {{si(Pc)O]ClAg 14} 0 1.8 x 1073 0.11%.001
Flr {[5i(Pc)O)F1rg, 23}, 7.2 x 107% 0.13%.001
Chl {[si(Pc)olchl o379}, 6.9 x 1074 0.13£.002
Brl {{si(Pc)O]Brlg, g4ty " 5.8 x 1074 0.15%.001
DHB {[si(Pc)O)DHBy 13}, 3.8 x 1072 0.19%.005
DDQ Ni(Pc)DDQg, ) 2.5 x 1077 0.43£0.004
ClA Ni(Pc)ClAg g} 8.4 x 1077 0.16£0.002

a
Filr = fluoranil; Chl = chloranil; Brl = bromanil; DDQ =
dichlorodicyanoquinone; ClA = chloranilic acid; DHB = dihydroxy-
benzoquinone,

can be preserved, mixed valent conductive assemblies can in fact be produced
with quinone or probably many other oxidants. This adds a new dimension to
the types of conductive materials which can be fabricated and the range of
properties which can be incorporated.

It would also seem possible to produce conductive materials by donor
rather than acceptor doping. A number of attempts have been made in this
Lahoratory to partially reduce metallophthalocyanines using alkali metals
(36). In all cases, the resulting materials were insulators, and it was con-
jectured that nonstacked materials were being produced. A preliminary
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Fig. 6. Variable temperature powder conductivity data for A. i
{[si(Pc)olDDQg 35}, B. {(I[Si(Pc)O]JTCNQqy 509}, C. {[Si(Pc)O]ClAg 14}, |

experiment was conducted in which [Si(Pc)0], was reacted with potassium vapor
in a sealed tube. The product was collected and handled at all times under an
inert atmosphere. As can be seen in Table 3, a significant increase in
electrical conductivity accompanies the potassium doping. Further efforts to
refine the reductive doping procedure are in progress.

wCONCLUSIONS_
The cofacial metallomacrocycle assembly strategy represents what is likely

the most powerful approach yet devised for controlling molecular microstructure

in low dimensional, electroactive materials. 1In regard to fundamental

understanding, we already have learned a great deal about bandwidth-

conductivity and donor-acceptor relationships in conductive materials composed '

of molecular stacks. However, the surface has only been barely scratched in

terms of the opportunities which await exploitation in this area. Further i

synthetic work offers the opportunity to make drastic changes in metallomacro- i

cycle identity and electronic structure, stacking distance and bandwidth, :
{
1
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interplanar relationships and phonon dynamics, and to correlate these chemical f
and structural modifications with physical observables. Already, new macro-
cycles (46), metal ions (47,48) and bridging functionalities (49) have been
introduced. We have also learned that it is possible to produce films of
[si(Pc)0], and that halogen doping results in substantial increases in
electrical conductivity (50),
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