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INTRODUCTION 

The palladium-hydrogen system has been studied extensively, but 

superconductivity in this system was not discovered until 1972 when 

Skoskiewicz1 found a maximum transition temperature Tc max = 6.6 K for an atom 

ratio H/Pd ■ 0.94.  Since then superconductivity has also been reported^ in 

the Pd-D and the Pd-M-H(D) system where M is one of the noble metals copper, 

silver, or gold.  The highest transition temperature Tc max  = 16.6 K was 

observed by Strikzker3 for an alloy with the composition H/Pd55Cu45 = 0.7. 

EXPERIMENTAL METHODS 

A number of methods have been used to achieve the high H-concentration 

required for superconductivity in Pd and its alloys.2 For PdHx, these include 

(a) electrolytic charging at room and dry ice temperature,^-6 (b) high 

pressure charging using several kbar,7 (c) precharging to H/Pd a 0.7 at 4 bar 

and 300°C with additional implantation of H at liquid helium temperature,8 (d) 

H implantation only at 4 K into thin evaporated Pd films,9 and (e) 

codeposition of H and Pd at 4 K.10 Of these, electrolysis at dry ice 

temperature appears to be most widely used for PdHx because of its relative 

ease for reaching H/Pd ■ 1.0 with the attendant Tc>max = 9 K.  The higher 

transition temperatures for the Pd alloys, on the other hand, have only been 

achieved with the precharging-implantation method.3 Of the other methods, 

only high pressure charging has been reported for the Pd alloys.11 However, 

the high pressure experiments fail to reproduce the higher transition 

temperatures achieved with the implantation method. 

^References are listed at the end of this report. 



Hydrogen solubility in Pd^ and Pd-Ag alloys^ has been studied in some 

detail.  PdHx forms an isotropically expanded fee host lattice of Pd in which 

the H atoms occupy a fraction of the octahedral sites.  Below the critical 

point at Tcr » 565 K, PdHx exists in the form of a mixture of low H 

concentration a phase and high H concentration 3 phase separated by a 

miscibility gap.  At room temperature the maximum concentration of the a phase 

and the minimum concentration of the 6 phase are o^x = 0.008 and fVLii = 6.07, 

respectively.12 For Pd-Ag alloys, on the other hand, Tcr and g^n become 

progressively smaller with increasing Ag concentration, and the miscibility 

gap narrows.^ xhe decreased H solubility in Pd-Ag alloys,^ and probably 

other Pd alloys as well, may be a contributing factor for the lack of success 

in achieving high transition temperatures in uniform alloys using high 

pressure charging.1-1 

In this report we discuss a new method for producing superconducting 

Pd-Cu alloys which requires only electrolytic charging at dry ice temperature. 

Singly charged Cu ions were implanted at 100 keV into 38 pm thick Pd foil 

(nominal purity 99.99%, Fe content < 10 ppm) to a dose of 8 x 1016 at./cm2. 

The range and range straggling of 100 keV Gu ions in Pd are expected to be 

<x> «• 0.023 pm and a  = 0.013 ym, respectively.1^ Because of sputtering1^ the 

surface will recede during the implantation by several Cu ion ranges and the 

implant profile will be given approximately by a complementary error function 

erfc[(x-<x>)//2a], where x is the depth into the sample.  The relative 

fraction of Cu atoms at the surface under such steady-state conditions is 

given by the inverse of the Cu self-sputtering yield Scu*  For Scu ■ 4.3 ± 

0.8,16 a maximum Cu concentration (atom fraction) of 0.23 ± 0.04 is obtained 



at the surface corresponding to a Cu atom density of (1.6 ± 0.3) x 1022 

at./cm3 since Cu can be assumed to be substitutional.17 The total remaining 

Cu implant dose calculated from Scu and the range parameters is (3.7 ± 0.7) x 

10  at./cm2. An independent determination of the implant dose using 

Rutherford backscattering (RBS) yielded (2.5 ± 0.5) x 1016 at./cm2, a 

reasonably close value in view of the uncertainities of the experiments, the 

sputtering yield, and the range parameters.  The Cu-implanted foils were 

epoxied onto a hollow plexiglas tube which held the thermocouple and other 

needed connections with the implant facing out.  Charging with H was performed 

in an electrolytic bath at dry ice temperature using using the method of van 

Dongen and Mydosh.6 Samples charged in this way to H/Pd ■ 1 were immediately 

placed in liquid nitrogen upon removal from the electrolyte.  During the 

subsequent transfer to liquid helium the temperature of the samples never 

exceeded 77 K. 

Four probe dc resistance measurements were made with currents^ varying 

from 40 mA to 2 A.  Temperature control to about 0.5 K was accomplished by 

means of a thermal link to the liquid helium bath.  Stable temperatures were 

measured with a thermocouple calibrated at 4.2 K and at the superconducting 

transitions of Nb, Pb, and V.  Tc was defined as the average of the 

temperataures at 10 and 90 percent of the normal state resistance. 



RESULTS 

After electrolysis and transfer to the liquid helium bath, the 

superconducting transition curve was measured.  Following this initial 

measurement the sample was warmed up to increasingly higher temperatures and 

the transition curves were remeasured.  The warming procedure involved 

withdrawing the sample from the liquid helium bath until it reached a given 

temperature, then quickly returning it.  Figure 1 shows results obtained on a 

sample following this procedure.  Starting with an initial value of 11.1 K, Tc 

increases to 12.4 K after the sample is warmed to 113 K.  Subsequent warmup 

steps reduce Tc until, after warming to 193 K, Tc begins to increase again, 

from 10.9 K to 12.4 K. The remaining warmup steps above 203 K all produce a 

decrease in Tc.  The normal state resistance of the sample above the critical 

temperature remains fairly constant for warmup steps up to 213 K indicating a 

small loss of H from bulk up to this point.I*11 Above 213 K, H is released 

from bulk as indicated by the increase in normal state resistance.19 After 

warmup to 273 K the onset of the superconducting transition is just visible at 

4.2 K. 

In pure PdHx, the maximum observed transition temperature is about 9 K 

for H/Pd = l.O.2 Indeed, pure Pd samples studied by us under experimental 

conditions identical to those for the Cu implanted samples did not exceed Tc " 

9 K. Thus, the elevated Tc values observed in our experiment must be due to 

the Cu-implanted region.  The changes in Tc above 9 K induced by warming up 

the sample must then be caused changes in H concentration in the implant 

region since no other atomic species is sufficiently mobile below 273 K. 
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Figure 1.  Superconducting transitions measured on a Cu implanted Pd sample 
immediately after electrolysis at dry ice temperature and transfer 
to the liquid helium bath (1). Transition curves measured after 
letting the sample warm up to 113 and 143 K and quickly cooling it 
again are labeled (2) and (3), respectively.  Transition curves 
measured after warmup to 193, 203, 213, 253, 263, and 273 K are 
labeled (4) through (9), respectively. 



Measurements of the H concentration and depth distribution by nuclear 

reaction analysis20 in similar samples following the same warmup procedure 

reveal a strong correlation between H concentration in the implant region and 

Tc.  The fact that both the H and Cu distributions are depth dependent may 

account for the broadness in some of the higher Tc transition curves. 

Our theoretical analysis of the Cu concentration in the implant region 

suggests an alloy with a maximum concentration of ~ 23 at. percent Cu in Pd 

occurring at the surface.  For a bulk alloy of similar composition, Stritzker3 

reports Tc>max = 13 K, in good agreement with our value.  However, our 

transition curves are broader than his, having onset temperatures as high as 

~ 16 K.  This is a value which in bulk alloys is reached only for 

concentrations of ~ 40 at. percent Cu.  It is unlikely that our concentration 

is higher than ~ 23 at. percent Cu since the sputtering yield chosen in our 

analysis16 is already at the low range of reported values.15 Furthermore, our 

RBS data also indicate lower concentrations.  A more complete characterization 

of the samples from both our and Stritzker's3 experiment is clearly desirable. 

It has been reported that Pd films condensed onto a cool substrate can be 

made superconducting by irradiation with He+ ions at low temperature without H 

implantation.21 Other authors have not succeeded in confirming these 

results22 but rather have found that the defects produced during irradiation 

tend to increase the H concentration required for a given value of Tc.
9 In 

order to investigate whether damage resulting from the Cu implantation had an 

effect on Tc, an implanted sample was annealed at 773 K in Ar gas flow for one 

hour.  Using Pd-Cu interdiffusion coefficients extrapolated from the 

temperature range 1104 - 1334 K,23 the diffusion length is estimated to be 



~ 10 A , sufficient to anneal defects but not so large as to modify 

substantially the implanted Gu profile.  Tc max ■ 11.6 K was observed for this 

sample with an onset of the transition curve at ~ 15 K.  Subsequent warmup 

steps eventually decreased Tc to below 4.2 K.  Thus, it would seem that 

defects produced during Cu implantation have no significant effect on the 

observed Tc. 

As an additional check, another Cu implanted sample was annealed at 973 K 

for one hour.  Since Cu and Pd will interdiffuse by ~ 0.1 u under these 

conditions, the maximum Cu concentration in the implant profile will be 

reduced to less than five percent.  Indeed, the maximum transition temperature 

observed on this sample was 8.8 K, reflecting superconductivity in essentially 

pure PdHx.3 

CONCLUSIONS 

The results reported here indicate that the high transition temperatures 

in the Pd-noble metal system can be achieved with considerably simpler means 

than used previously.^ It appears that the pure Pd backing behind the 

Cu-implanted surface can act as a high concentration H reservoir for the low H 

solubility Pd-Cu alloy region.  This opens up exciting new possibilities for 

the study and modification of this important system.  It will be of interest 

to extend these measurements to higher Cu concentrations as well as to other 

implant species.  Samples prepared as described in this report are 

particularly suited for H profiling using nuclear reaction analysis.^0 

Measurements of the H concentration and distribution in superconducting 

Pd-noble metal-H systems should be extremely helpful in advancing our 

understanding of these systems. 
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