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Fourier sense. This paper presents a general purpose numerical treatment
formulated to overcome these difficulties. The numerical approach is based
on finite difference schemes applied in conjunction with powerful numerical
ordinary differential equation methods. The theory is examined with respect
to consistency, stability, and convergence of these numerical procedures.

A numerical example is included to demonstrate the validity of the treatment.
Although an explicit boundary condition is absent from this study, a derived
boundary condition is demonstrated to be adequate.
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A NUMERICAL TREATMENT OF THE DYNAMIC MOTION OF A
ZERO BENDING RIGIDITY CYLINDER IN A VISCOUS STREAM

1. INTRODUCTION

1

Paidoussis™ worked out a solution to the dynamic motion problem.

Ortloff and Ives2

studied a special case of the same problem and expressed
their solution in the form of an infinite series involving Gamma and Bessel

functions. Both the orders and the arguments of Bessel functions are

generally complex and can be large in magnitude. Furthermore, evaluation of a
Bessel function of complex order is laborious and time-consuming, and accuracy
cannot be assured. When the solution proposed by Ortloff and Ives is applied
to the nonhomogenous problem where the "upstream" end of the cylinder is
forced, a harmonic time dependence is assumed; this means that "forcing" the

system by an arbitrary time function will require multiple solutions combined

in the Fourier sense.

To overcome these difficulties, a general purpose numerical approach is
introduced. This approach discretizes Mg g o and g by backward and
central differences. This discretization brings the dynamic motion equation
into a system of second order ordinary differential equations. This system is

decomposed into a system of first order ordinary differential equations. A

feasible numerical ordinary differential equation method is then used to solve

this system with optimal efficiency.

There are many advantages to using a numerical method to solve the problem
of dynamic motion. The theory is well developed with respect to consistency,

stability, and convergence. Numerical methods are systematic to implement,
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and effective techniques can be used to accurately accelerate computations.
When a numerical approach is used, the laborious evaluation of special

functions is bypassed, maximizing accuracy and efficiency.

; This report begins with a description of the dynamic motion problem and
the associated initial and boundary conditions. A numerical approach is
introduced and the supporting theory and mathematical formulation are
discussed. An example is given to demonstrate the validity of our numerical
solution to a well posed dynamic motion problem. The computer programs are i.

included in the appendix.
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2. POSED PROBLEMS

The motion of a wire suspended in a fluid stream, considered by Ortloff

and Ives,2 can be described mathematically by the partial differential

equation,
4 2 2 2
£1 3_% + (M +m) 3_% + Myl i_% + oMy Y
3% st ax atax
.._a_& MUZ(L-X)_LY.
ax }2 D ax
Le My a¥sgdy |
*7 CN D U at * U X 0, (2.1)
where
El = bending rigidity,
M = lateral virtual mass of fluid per unit length of wire accelerated by

the accelerating wire,
m = mass of the wire per unit length,
U = velocity of the free stream,
CT = drag coefficient due to pressure acting on the wire surface,
D = wire diameter,
L = total wire length, and

CN = drag coefficient due to shear forces acting on the wire surface.
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The special case of a zero bending rigidity (or an infinitely flexible)
cylinder is realized by setting EI = 0. To express the above equation in

dimensionless terms, use

r = (/LU , B = M/(M+m) , €=x/L,
e= L/D, n=ylL.
The above equation becomes
2 2 (C; + Cy)
3dn,3n [ 1 an T N
~— 8 {1 - C e(l—§ﬂ‘+—-—————— €8
;:? ag2 2 T FY3 2
+ 3n,l an _
28 —— i CNeB T 0. (2.2)

agar

The associated initial boundary conditions are described by

n=20 €= 0 (fixed end condition); (2.3)a

[n| is finite, €= 1 (bounded free end deflection); (2.3)b

n=ny (§) r= 0 (prescribed initial deflection); (2.3)c
and

Peeo =05 7= 0 (zero initial velocity). (2.3)d

Ortloff and Ives solved the problem posed by equation (2.2) using
conditions described in equation (2.3). Their solution is expressed in terms

of Bessel functions.

i i iy -
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The initial boundary value problem, equation (2.3), for the partial
differentia) equation (2.2) is said to be well posed in the sense of
Hadamard3 if and only if its solution exists, is unique, and depends
continuously on the data assigned. After the problem is formulated using
finite difference and ordinary differential equations, it will be seen that
the problem is well posed. We will seek a unique solution by means of the
numerical techniques presented in the next section. When the boundary
conditions become uncertain, there is not enough information available to
solve equation (2.2); we term this problem i1l posed. However, a derived

boundary condition is developed, which is shown to be adequate for our problem.
3. THE NUMERICAL TREATMENT

In search for a general purpose, accurate solution to the well posed
problem (2.2), subject to conditions described in equation (2.3), the method
by central and backward finite

of attack is to discretize n , and n

g¢° "gr 3
differences and then to transform equation (2.2) into a system of second order
ordinary differential equations (known as the method of linesq). We
discovered that Generalized Adams Bashforth (GAB) met:hodss’6 can be used to
solve this system efficiently.

Expressing equation (2.2) in short form and writing u as n gives

re* alk) ugg + bug * 28(uy), + cup =0, (3.1)
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where

a(k) = 8 [1 -3Cre(1-6)],
b = (CT + CN)eB, and

C 8C

[ V] [ NY15N

Te.

3.1 FINITE DIFFERENCE DISCRETIZATION
Applying the second order central and backward finite difference

discretization to equation (3.1) in the & direction, we obtain

u
m+1 b
(um)rr * a(Em) he Y (um um-l)
+ 28y _y ) +clu) =0
h m m-1'7 my — O (3.2)

where h = of for indexm =1, 2, ...

A simplification of equation (3.2) gives

(u )f' + (23 + C>(um)r - %E (um-l)r . aém) u

m h

Slo
|
n
[+Y]
o 2 —
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Equation (3.3) is a difference equation, representing a system of second
order ordinary differential equations and is an approximate equation to

equation (2.2).

3.1.1 Consistency
Before we apply the GAB method to equation (3.3), let us examine the

consistency of our finite difference operator £h [u;h]. First, expressing

equation (2.2) in true operator form, we obtain

2 2
] 3 3
£ [u] = =z +a(£)—a£2+ba—i
+ 28 L2 u=0
agar aT -V (3.4)

Next, expanding u ., and Up_1 in powers of h and keeping the first two

principal terms, we obtain

2
h
Upty = Up * h (um)' * 5 (um)" + ..., and

h2
U1 = Upy - h(um)' * 5 (um)" - e e e
Therefore,
u -2u_*u
m+1 1 L1 .2
n2 * Unlge * T2 P Ul (3.5)

i




TR 6343A

and

u -u 2

m -1 = (u) - h(u) .

L T R L (3.6)
Substituting the power expansions of Uty @nd up ; into equation (3.2)

and using equations (3.5) and (3.6), we find that equation (3.2) is then

expressed in a difference operator form,

2 2 2.4
3 3 h™ 3
e fush] = |5+ a(t) |+ —1
h <“2 g2 12 48
2 2 .2
3 h 3 I I h™ 3 3 -
i s i ﬁ’?‘;¢‘+°?¥>“'0 (3.7)

Llu] - £, [ush]

2 4 2 2 2
= <—a(£)!1‘-237+%b3__2+ 28 g—-a——-z-> Ue
[t is seen that

Tim .
h>0 (£fu]) - L [ush]) » 0.
Therefore, the difference operator is consistent with the true operator in the

sense of Ke]]er7. Thus, the consistency requirement is established.
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Now that we have a consistent difference operator, we seek stable

numerical ordinary differential equation methods to solve equation (3.2).

3.2 ORDINARY DIFFERENTIAL EQUATION SOLUTION

To seek the solution to equation (3.2), refer to equation (3.3).

it
Write aum _

T

a(g ) b 2a(g ) b a(am)
v e I 2 up FAR” he Um-1 (3.8)

Equation (3.8) is a set of equations that represent equation (3.3) as a
system of first order ordinary differential equations. For illustration,

usingm =1, 2, we can obtain

du

1 =w
i
dw a(g:) 2a(8,) alg,)

1 28 28 1 b 1 b 5
T =" h T MR Y- 2 Y2 IR “1*<h Wz )Y
du2=w2
I

9
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oy o L, 26 b )|y algy)
Ir="\F "Y MR M T TRz Y27 n 2 )
In matrix form, the equation becomes |
rdul_ _ 0 1 0 0 T MYy i
dr
_d_"_l o 2a(§,) ) (2_3 . c) ) a(g;) 0 Wy
T - h h2 h2 + [9]
fﬂg 0 0 0 1 u,
dr
i L R e TP X
where S
l
T
28 b alep) a(€,)
[g] = {0, F" wo <h h2 Uo ’ y - hz U3 ’
|
which is in the form
u' = A(€)u + g(§, 7, u). (3.10)

The elements contained in the components of the g-vector have the following

meanings.

10
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ug = top boundary fixed end condition: ug = 0, £€=0;
wg = initial condition: u, =0, r=0; and
us = bottom boundary bounded free-end deflextion condition:

lugl is finite at g= 1.

The matrix elements, Aij’ of matrix A can be determined by the following

setups in which we define Ai j= 0 if i-j<0forj=1,2, 3.
*

i-

1. When index i is even,

When index i is odd, Ai,i+1

_.
»
-
|
w
[}
o
)
’\%
w

_ 28
Aii2=h
A .. - 2alg) b
i,i-1 2 h?

28
Aii = ‘(F‘ * %)

where a(§) is evaluated at a(§,), £=1
>

Now, the problem is to select an effective numerical ordinary differential
equation method to solve equation (3.8). A close examination suggests that

the Generalized Adams-Bashforth (GAB) method offers an efficient solution. In

11
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the present application, because a low order GAB method can do the job, high
order GAB methods are not necessary; hence, first order GAB methods were
developed into computer programs in FORTRAN language. However, the program
package is flexible so that high order GAB methods can be incorporated when
required.

We introduce the first order GAB

n+l Ah n
u = e u + h¢1,0(Ah) gn (3.11)

to solve equation (3.10), where

61 olAn) = —(am)7 (1 - M. (3.12)

The theory with respect to consistency, stability, and convergence has
been very well developed for Nonlinear Multistep (NLMS) methods.8 The GAB
method is a member of the NLMS family. We summarize the theory below.

NLMS methods take the expression.

k k
Ah(k=1)

z =

i=0 %i® Unei = N 520 i (AN) Gpaye

3.2.1 Stability
The characteristic polynomial of NLMS is defined by

p(x,!) = QXAh

12
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Using the GAB method, the selection of aj js such that

a =1, ;= -1. We see that the root of o(a,s) has unity and is
simple; therefure, method (3.11) is stable.
3.2.2 Consisteacy

The GAB method, equation (3.14) satisfies the consistency

condition

K k

i Ah(k-i
lim ”; e ( 1)u .-hi’__;oék‘.(Ah)gnH

h>0 i=0 %i n+j =0

(3.15)

for k = 1, a =1 and o _; = -1. Therefore, GAB method is consistent. !
3.2.3 Convergence %

According to the convergence theorem of NLMS methods, "A stable and |
consistent NLMS method is convergent." Therefore the GAB method applied to
problem (3.10) is a convergent method.

4. BOUNDARY CONDITIONS

In real applications, at &€= 1, the bounded free end deflexion boundary
condition is expected to be such that n(l,7r) 1is finite. However, the
appropriate function n(1,7) to be used for the boundary condition appears
uncertain in reality. This lack of information defines problem (2.2) as an
i1l posed problem. For general partial differential equations, it is always
difficult to formulate correct conditions leading to a well posed problem.

3

Problems may look reasonable, yet cannot be solved.” It is hoped that the

13
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bounded free end deflexion boundary condition may be obtained through
experimentation, but the exact mathematical expression for n(l,r) must still
be worked out. We will attempt to change the i11 posed problem to a well
posed one so that a solution exists and can be solved by the numerical

techniques we ha 2 developed.

In the theory of second order partial differential equations there exists
a class of well posed problems, such as the Cauchy problem for wave equations,
the Dirichlet condition for Laplace equations, and the mixed initial boundary
value problem for heat equations. OQur first step is to examine the most
general boundary conditions. Let uy denote the normal derivative. The

first boundary value problem of the Dirichlet type indicates

u=fF (4.1)

on the boundary. The second boundary value problem of the Neumann type

indicates

u, = f (4.2)

on the boundary. The third boundary value problem of the mixed type indicates

uN + au = f (4-3)
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on the boundary. Note that the third boundary value problem is well posed
only for the restricted choice of a. We will assume that the free end

deflexion boundary conditior takes the expression

)\UN + au = f. (4.4)

When

»=0, a =1, (4.4) reduces to (4.1);

0, (4.4) reduces to {(4.2); and

>
]
[
-
=3
[}

A =1, a arbitrary, (4.4) reduces to (4.3).

In our application, as given by the numerical example in the next section,

n(€.,7)y = n(€,7) , A =0, a =1 gives

n(g,7) = f(§, ) and |f(1, 7 ﬂ is finite. This gives Ortloff's and Ives'
bounded free end deflexion boundary condition.

The procedure to be followed here for determining a free end boundary
condition is to derive an approximate boundary condition and then to use that
boundary condition to compare the solution with a direct application of the
Ortloff and Ives solution.2 We develop a form of the boundary condition for

the second order partial differential equation by following the approach used

15
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by Paidoussis for his fourth order partial differential equation; that is, by
integrating the transverse momentum equation over a short tapered end which is
attached to the free end in order to generate the required boundary

condition. Paidoussis assumed that the cross sectional area tapers smooihly
from S to zero in a distance (2) sufficiently short that the forces acting on
the tapered end can be lumped and considered in appropriate boundary

conditions. For our present problem the boundary condition is obtained from

L L L
ff (-:—t— + U-:—x> [M(x)v] dx +/ FNdx - / -:—x <T(x)%-§> dx :
! i

L~ L-1 L-2
L
+ m(x dx = 0
at
L-1 {4.5)

where the parts of the equation express rate of change of fluid momentum,
hydrodynamic forces, and cylinder inertia, respectively, and where f is a
factor introduced by Paidoussis to account for the intractable flow conditions
at the free end and V is the transverse velocity of the fluid relative to the

cylinder. Therefore, ‘

at ax’ (4.6)

16
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Fy = > (%) UcyVs (4.7)

Tx) = T(L) * 5 (ﬂ) vPe, (L=x);

) (4.8)

and T(L) is a consequence of form drag at the free end.
An important assumption necessary to perform the integration is that the
length of the tapered section (2) is small enough that the lateral velocity

(V) may be considered constant over 1. we find

2 2
2 13y ay 3y y
™ 2 <3t2 v axa;) * fum (at + a;)

uc
N M 3 3 1 (M 2 3
7ot (?%*“s‘?f) 3 @ et @
- T(L) ! 33% + My 33% +0 (%) =0 |
ax z at (4.9)

for x = L, all t.
After nondimension of this equation as before and neglecting terms of

order (22) and % , we have

C C C

N (2 3 N /2 T /(2 3
[f*r(ﬁ)] 'a"l*[“r(ﬁ)*r(ﬁ)] 2~ 0 (4.10)

forg =1, a1 7

17
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On physical grounds it is reasonable to neglect Cy relative to

CN/4,9 making the final boundary condition

M+ _pgfore=l, allT,

) (4.11)

which amounts to a "radiation condition"; that is, no reflected energy

exists. In the following sections, we refer to boundary condition (4.11) as

Kennedy boundary condition.

5. A NUMERICAL EXAMPLE

The test example is obtained through linearization of a fourth order

nonlinear cable equation,10 which is given by

2 2
3 3 3 3 3 3 3
SRR R
at at 3x ax ( ax) N iat ax (5.1)
where m, M, U take the same definitions as given in section 2. T, f& are
defined as
Ty
T:r(L-X), (5.2)
T, =T a0 U2 L
1 T ’ (5.3)
18
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o111,
CT =2 02 T, and (5.4)
1M
=270 (5.5)

where CN and C; satisfy the definitions given in section 2.

Assuming 3 and

a_ commute, expanding equation (5.1) gives
ax at

2 2 2 2 2
mdY ey dayiudy 23yl _pay,alay F (3,
st tax ax2 2 N

2 2 ax IX X at ax) (5.6)

Performing aT and using definitions (5.2) through (5.6), we get

ax

2 2 2 2 by

2°y Mtm 3 2 1 u ay U 2 ’ 52

at T+ax [U -7CTD_(L'X)] +-ki%'Z'D'(CT+CN)+2U axat+7cNU§%=o'
(5.7)

Equation (5.7) is the same as Ortloff's equation (2.1) before

nondimensiona]ization.2

Select

D = l"’
2

M =ma= 0.00273

U = 15 ft/sec
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L = 2000 ft

Cr=1.8
35

Cy = 1.1259.

Then,

e = 48,000

8 =1
2.

The solution to equation (5.7) is expressed by
y(t, x) = ™3 (x),

where v is approximately 21.89 and Jy(x) initial values are calculated using a
UNIVAC 1108 Bessel function subroutine.l®

The fixed end boundary condition initially is zero. The free end boundary
condition uses n(l,r) = eiWTJT(l).

This problem was tested again using Kennedy's free end boundary
condition. Results are surprisingly in agreement with the known solution.
The test results seem to show that the Kennedy free end boundary condition is
adequate. Results are presented in graphic form. Two sets of graphs are

given: one displays [n(§,7)| versus T, the other displays the real {n(§,7)}

versus T. Both plots are constructed at € = 0.2, 0.8.

20
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Figure 1: Solution magnitude vs time Figure 2: Real part solution vs time
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Figure 3: Solution magnitude vs time Figure 4: Real part solution vs time
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6. CONCLUSIONS

A numerical solution to the dynamic motion of a zero bending rigidity
cylinder in a viscous stream has been introduced. The numerical procedures
developed to obtain the solution are thegretically convergent and
computationally accurate.

For given appropriate boundary conditions and accurate initial values,
this model will produce an accurate unique solution. For uncertain boundary
conditions, this model can be used as a tool to study the boundary effects and

possible to construct the ad hoc boundary conditions.
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APPENDIX
COMPUTER PROGRAMS STRUCTURE AND COMPUTER LISTING
COMPUTER PROGRAM STRUCTURE
MAIN
—— START
| DIFEQ
NLMS
CGJR
f—— GFN
[__ BC
___ _PADE
INVERT
DGJR
25
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ACRONYMS

MAIN

START
DIFEQ
NLMS
INVER
CGJR
GFN

8C
PADE
INVERT
DGJR

The

be concerned with DIFEQ, NLMS, INVER, INVERT, CGJR, and DGJR.

26

A

main program which controls the setup of inputs and the preparation of
outputs

supplies the initial values

controls the present T-step and calls for NLMS(GAB) method
1st order Generalized Adéms-Bashforth method

calls for complex matrix inversion

complex matrix inversion using Gauss-Jorden reduction
calculates the g-vector

fixed end and free end boundary conditions

a rational function approximation for matrix exponentials
calls for double precision matrix inversion

double precision matrix inversion using Gauss-Jorden reduction

user needs to deal with MAIN, START, GFN, and BC. The user need not

JS: TS _- ...
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COMPUTER PROGRAM LISTING

MAIN

COMMON FERPGyFOToFONSFRETAFRQoFAYFRoFOCyFIeDZy TRND
COMMON AC18,18)T(3)
DIMENSTON Y(218) s YZERD (1) » YNEWCL18) v EXACT(18)
COMPLEX AsY»YZERD» YNEW » XX s OMEA « SAVE yEXACT
Cokkok THIS FACKAGE SOLVED A 2ND ORDER PLTLE. RY THE METHOD OF LLINES AN

T
r BENERALTZED ADAMG-RASHENRTH METHONG
Rk REFERENCES DRTLOFF AND TUES
©okkkkk INPUT FARAMETERS HAVE THE SOLLOWING DEFTNTTTIONGS
P ORKKKK N = NUMEER OF 2N ORDER ODE
" OKK¥KK TMAX = MAXTMUM TaQ J
D o¥k¥kk TINT = EVERY TAD INTERUAL TO RE FRINTED QUT
it kKKK BXT = AT THTS XTe THE OUTEUT T8 REQUESTED
i RKKKK D = FREQUENCYs NONIDIMENGTONAL OMEGA
[ kkkkk TEND = ROUNDARY CONDITION INDTCATOR
o = 1 RUILT-IN KENNEDY ROUNDARY CONDITION
o = 2 USER-SUFFLTED KOUNDARY CONDITION i
i kkkkX FEFS = EFSILON
C RkkKK PCT = C GUE T

r
o0 kokokokk FON C SUR N
Cokkkkk FRETA RETA
r
»

o

T OKNOKKK M = TAN STEPF SIZE

KIokkk READ INPUTS HERE
REATI(S %) Ny TMAX» TINToFPXT«FQe IEND
REATNI(S o X) FEPSsPOCTFONYFRETAYH
Nz=2K(N~-1)
NZ=1.0/(FLOAT(N/241))
FPR=0,5XKPRETAXFCTXFERS
FA=FRETAX(1.0-FR)
FL=0, SXFONXFPEFSKFRETA
FC=FR+ED

Cokkxxkx TO SET-UF MATRIX A

Do 20 I=1¢N
o 20 J=1sN

20 ATy I=CMPLX(0.00,0)
EH=FC/0Z
TRH=2 . XFRETA/DZ
NG=-(TRH+FER)
o0 28 I=1eN
IF(T ,GE. 4) GQ TD 26
IF(I EQ, 2) GO TO 25
A(T» TH+1)I=CMPLX(1.0+0.0)
GO TO 28

25 J=1/2
X=FRETAX (1~ SXFCTRFEFSX (L s ~JdxNIZ))
A(T sy T-1)=CMPLX (2. XX/ (D1ZXDZ)~BH»0Q,0)
ACT» I)=CMPLX(DG0.0)
ACT s I+1)=CMPLX(~X/(DZXDZ) »0.0) +
GO TO 28

26 IF(MODC(IL2) LEQ., O) GO TO 27
ACT s I+1)=CHMFLX(1.:.0+0.0)
GO TO 28
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-
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CONTINUE

IF
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GO T4 16

END
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NLMS

SUBROLITINE NLMS(Hs Yy Ne YNy IS SAVED
COMMON FEFSeFCT o PONSFRETASFQeFAsFRsFCeFNDZy TRND
FARAMETER KM=18
COMMON AKMeRKMY e T(3)
DIMENSTION AH{KMyKMY sEAMH (KM KM ¢ B(KM)
DIMENSTION PLORMe KM o LINIT{RKMKM)
DIMENSTON Y{(2:KM) v YNIKM)
DIMENSTION FE(RKMyRM) e AL (KMyKM)
COMPLEX AvAMyEAHyGoFleFPHeUNITYy YN+ SAVE
COMFLEX FEvyAlL
UATA INDAO/
TF(IND GT. O GO TO 14
00 2 I=leN
G0 2 d=1sN
AHC Ly J3=HXAT 9 )
TFIN=1Y 7v8¢7
AL{Le Y=l  Z8HT 1)
nnoTn oW
Call, INUVER(AMsNeAL)
TRION=-TY 10ef7¢1Q
FEAHOL o 1 )=CEXF AL 1))
GO TO 14
Coll FATE (Aale AN
ITNT = UNDE 4 )
IFOFS 067, 4 Rt T 1460
OO+ T=j N
G0 A d=1eN
FreTe N=CMPL X006 0.0)
UNIT (T e D2aOMPLX(0,0»0,0)
CONTINLE
UNTITCT o T =0MPLX (L Qe 0,00
CONTINLIE
KKK OKOK KOK K 3K K K K 3K KK 3K K KK K K 3K K KK 3K KK K 35 K K 3K 3K ook 3K K 2K K 2K K 3K K K 3K 3K K K 3 oK 3K KK oK K K K 3K OK K oK K K
X NONLTINEAR MULTISTER STARTS HERE . X
* BEGINNTNG SECTION DOES INTTIALIZATION %
S K KK KNSR OKOK K KK K KK 3 3OK 5K KK KK 3 KK 5K 0K 3 3K 3K K K 3K K 3K 3K K 5K K K K 3K KK KK K KK K K K HOK K KK ¥ K
Lih 1782 T=1eN
YNOTY=UMPLACC QoL 0)
TFOIS.BT.1) GO TO 1.3
DO 10X I=1eN
M 30% =1 «N
FilTe Jiam-FAH{T « DHUNTT Ly D
KK K0 AOKOK KKK OK R K KK Kk 3K KK 3K KK KK 0K KK K K 5K R K K K KK K 3K K 3K KK K 3K 5K 5K 3K 3K K K 5OKOK XK 3 KK % K
* 15T ORIER GAR X
X ng GQ0F 105 CALTH ATES FHT(10) X
X |nnf 108 OR 110 COMPUTES FINAL Y(N+1) X
***#*****ﬂ*************************************X******************
T 10A (=1 eN
N 104 f=1eN
FiH=0MEL XD 0 0.0
N 105 KeieN
PHAFEH-AT (T oK YRFT (K 1)
FEOT e 15 minp
CONT TN
Cail GFN(GaleNaY el o ToAeSAYY
Tt 1R Y o N
(0 v 08 g o N
YNCT =YNCTYHEAR(T e 1VRY (1. DHHRFF () o DRECD)
RETURN

29
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29
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32

36
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DO ? I=1sN
no 10 J=1,sN

C(IeI)=AA(Is» J)%KH/2.0
PF(Is.0)=0.100
CONTINUE

C(IsI)=C(I+IX+1.D0

CONTINUE

0o 12 I=19N

DO 13 J=1sN

N0 14 K=1+N

FF(Is D)=FPF(I» D+B(ISKIXC(KsJ)

CONTINUE

CONTINUE

CONTINUE

IF(M .EQ. 0) GO TO 40

003005030 2K 24K 00K K 000K 3 K 0K 2 3K 3K 3K K oK oK 2K K 3K 3K 38 3K K K K K K 2K K K K oK 0 K 3 oK K 3 3K 3K oK KK K 3 oK 2K KK K oK oK %K
=EXF (A/2XKKM) XK (2KKM)
0K K 5K 2K B K K K K 3K 8K 3K K K K K 0 0K K 3 3K 30K K KK 2K 2K 3K KK KK K 3K 2K 3 KK oK K XK KK 3K K XK K K ok 5K

X NORM(AH) .GT.(.,1})y EXF(A)

DO 24 I=1sN
0 25 J=1sN
B(Iy»J)=0.000
CONTINUE
CONTINUE
00 36 K=1+M
Do 27 I=1sN
ng 28 J=1sN
DO 29 L=1sN
B(I» D=B(Isy D+FPFP(IsLIXFF(LyJ)
CONTINUE
CONTINUE
CONTINUE
no 31 I=1sN
D0 32 J=1sN
BE=R(Is»J)
P(Is )=CMPLX(RE»0.,0)
BR(I»))=0.100
CONTINUE
CONTINUE
CONTINUE
H=HAVE
RETURN
H=H/2.0
M=M+1
N0 54 I=1eN
no S5 J=1isN
PF(TIs.J)=0,10

S CONTINUE

CONTINUE
GO TO 30
H=HAVE
RETURN
END

X




oO0un

RETURN
END
SUFRDGUTINE 7?4'5!H7H7Y!J77:ﬂ759¥€3
L Kx¥dpr THIZ HANDLES THE O VECZTO
Akkek G VECTOR CONTAINE BUUNUHn{ INFORMATION
COMMON FEFSsFCTFONYFEETAsFRyFAsFEsFCsFOs DI IBND
COMFLEX A(L1E221iB8) Y {29182 »06{18)sSURFEOTT»XA»XE»3AVE s Wl
i1
Oy

TR 6343A

START

SUBROUTINE START(N»T»YZERO)
COMMON FEFSsFCTyFCNsFRETAsFQsFAsFEsPCyPDDZy IEND
COMFLEX YZERO(1)

DIMENSION T(1)
KKKKkXK USER SHALL REVISE THIS FORTION TO INCORFORATE HIS INITIAL VALUE

cessssrsrsssessee YZEROCI) CONTAINS THE FUNCTION
ssevssesessssrsss YZEROCI+1) CONTAINS THE DERIVATIVE
no 29 LP=1sNs2
DLZ=DZX(L.F+1)/2
IF(LF.EQ.1) YZERO(LF)=CEXF(CMFLX(0,0sFQXT(1)))

% KCMFLX( 995467395 -.73021506E~01)
IF(LP.EQ.3) YZERQ(LF)=CEXF(CMFLX(0,0yFRXT(1)))

x KCMFLX (., 98602435,—-,14547502)
IF(LP.EQR.S) YZERQ(LF)=CEXF(CMFLX(0.,0,FQXT(1)))

x KCMPLX(.97172089y-.217035468)
IF(LF.EQ.7) YZERO(LF)=CEXF(CMFLX(0.0sFQAXT(1)))

] KCMPLLX( . 962624279~ ,28745766)

YZEROC(LF+1)=YZERO(L.P)XCMFLX(0.0sFQ)
29 CONTINUE

3
1
DIMENZICN T
DATA FI.ZER
q0 1 I=1sN
I G Iy =CHFLLQ0 020,00
AKEKK FIRST ARBUMENT O CALLS FOR FIXED END CONDITION
Al BECCCrNsHsTyY s SAVEsWZySURF)
ﬁi"‘*FBETHl(l.U-“.SKFCTKF:FS*\io ~LzZ)
3¢ ‘?-.U#rq:tﬁld-fﬂgf FCOADZ-G5(2)/LZX%2%¥5URF

#i#kk FIR:T ARGUMENT 1y CALLS FOR FRZE-END CONDITION
Call BC{1lsNeHsToyY»SAVE,WZyBOTT?
Ku-FRETARCL o= SAFCTRFEFRSK(L = INAZYKRGZ )y /(UZRDZT)
GIN)=CHMFLE (X G, OYXBOTT
WRITE(S»k:0(N)

RETURN
Fan
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-
38 el

fy
O

—

INVERT

SURRQUTINE INVERT(A»NyANS)

SR K K 3K KKK KK KKK KK KKK KKK K KK o 3K K KKK KK O 3K K KK KKK KKK KK K K K K KK K

MATRIX INVERSION SURROUTINE, CALLED RY FADE OR NLMS

A CONTAINS THE ORIGINAL ELEMENTS AND REMAINS UNALTERED

ANS CONTAINS THE AXXx(-1)

THIS SET-UF IS USING UNIVAC 1108 MATHFK EXISTING DOUELE
PRECISION GAUSS—-JORDAN REDUCTION

THIS FROGRAM IS REFLACEARLE BY THE USER

KKK KKK KKK KKK 0 K K 3 K K K K 3 K KK K K 3K 3K K K K K K 3 K 3K K oK 33K oK KK 3K KKK K KK K 3K K Kok ok

DOUBLE FRECISION A(18+18)sANS(18+18),V(2)

DIMENSION JC(18)

DATA NR/18/sNC/18/

veir=1.00

no 1 I=1isN

no 1 J=1sN

ANS(Ty I=A(I».))

CALL DGJR(ANSsNRyNCyNsNyMDEX, JC»V)

IF(MDEX .EQ., 1) GO TO 10

RETURN

WRITE (4:2)

FORMAT (3Xs 22HMATRIX INVERSION ERROR)

RETURN

END

I 3 I I ¥
I I I I K A }*

INVER

SURROUTINE INVER(AsNyANS)
FARAMETER NDIM=18

COMFLEX A(NDIMyNDIM) yANS(NOIMyNIDIM) sU(2)
DIMENSTION JC(NDIM)

DATA NR/NDIM/sNC/NDIM/

VL) =CMPLX(1,0,0.,0)

DO 1 I=1¢N

nn 1 J=1sN

ANS(TIy J)=A(Is.))

CALL CGJR(ANSyNCyNRyNsNyMOEXy JCrV)
TF(MOEX JEQ. 1) GO TO 10

RETURN

WRITE (4+2)

FORMAT(3X» 1 1HMAT INV ERR)

RETURN

END




10
20

21
oy

e &

35
40
50

60

70
71

80

DGJR

SUBRROUTINE DGJR(A»NCsNRyNsMCsMDEXy JCsV)
DIMENSION JC(N)Y»V(2)
DIMENSION A(NRsNC)

DOUERLE PRECISION A»VsX,ynlL0OG
IW=V(1)

M=1

S=1,

L=N+ (MC~NYX*(IW/4)

KD=2- MODCIW/2s2)
IF(KI.EQ.1) V(2)=0,

KI=2- MOD(IWs2)

GO TO (S5920)sKI

0 10 1I=1sN

JC(I)=I

D0 91 I=1sN

GO TO (22+21) K]

M=I

IF (I.EQ.N) GO T0 60

Xz=—=1 .

no 30 J=IsN

IF (X.GT.ARS(ACJII))) GO TO 30
X=ABS(A(JyI))

K=J

CONTINUE

IF(K,EQR.I) GO TO 60

S=-9

Y{1)=-Y(1)

GO TO (35s40)¢KI

MU=JC<(I)

JCCIH)=JC(K)

JCOR 3 =Ml)

no 50 J=MsL

X=A(Is.))

ACTy J)=A(KsJ)

A(Ky . J)=X

IF (ARS(A(IyI)).GT.0.,) GO TO 70
TF(RD.EQ. L) V(1)=0.
JC(1LY=I-1

RETURN

GO TO (71+72)sKD

TF¢ACI»TY LT,0.) S§=-§
V2Y=0(2) + DLOG(ARS(A(I»I)))
X=A(Tl»T)

A(T»I)=1.

ng 80 Js=MsL

ACTy D)=A(TsJ)/X

CAl.l. ERRTST(72,MDEX)
IF(MDEX.EQ.1) GO TO 150
CONTINUE

TR 6343A
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po 91 K=1sN
IF (K.EQ.,IY GO TO 91 ;
X=A(Ks1)
A(Ky I)=0.
no 90 J =MsL
ALKy JI=AIKy D) =XXA(T s }) !
CALL ERRTST(72sMDEX) =
IF(MDEX.EQ.1) GO TO 150
90 CONTINUE
?1 CONTINUE
GO TO (959140)»KI
95 N0 130 J=1¢N
IFCJC(D JEQL)Y GO TO 130
JJ=J+1
no 100 I=JJdsN
IF(JCCIY . EQ.) GO TO 110
100 CONTINUE
110 JC(1)=.JCD)
00 120 K=1sN
X=A(Ks 1)
A(KyI)=A(KsJ)
120 A(KeJ)=X
130 CONTINUE
140 JC(1)=N
IF(KD.EQ.1) V(1)=8
RETURN
150 JC(1)=1-1
IF(KD.EQ.,1) v(1)=8
RETURN
END
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CGJR

SUBROUTINE CGJR(AYNCyNRsNsMCyIFL»JC»V)
LIMENSION JC(1)

COMFLEX CLOGsV¢XCrA(18518)

COMFLEEX Z

INTEGERX2 NERR

NERR=72

IFL=0

W=y

VU=(04sv0.4)

IBIT=0 r
M=1
L=N+(MC~N)%X(IW/4)
KD=2-MOD(IW/2+2) r

KI=2-MOD(IW,2)
GO TO (5520)sKI
] 5 DO 10 I=1sN
JCCI) =T
DO 91 I=1sN
GO TO (22921)sKI
M=1
IF (I.EQ.N) GO T0 60
X==1.
00 30 J=IsN
ANORM=ABS(REAL (A(JsI)))+ABRS(AIMAG(A(J»I)))
IF(X.GT.ANORM) GO TO 30
X=ANORM
K=.J
30 CONTINUE
IF(K.EQ.I) GO TO 40
IRIT=IRIT+1
GO TO (35540)sKI
35 MU=JC(TI)
JCCIY=JCIK)
JC IR Y =ML
40 na S0 JU=MeL
XC=A(Is.))
AlT s )=A(Ks.J)
50 ACKY JY=XC
60 ANORM=ARS (REAL (A(I+I)))+ARS(AIMAG(A(I»I)))
IF (ANORM.GT.0) GO TO 70
V=(0.+90.4)
JC(1)Y=T~1
RETURN

(SRS P =
[0 R <O O
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70 GO TO (71»72)sKIi
71 V=U+CLOGC(A{I»I))
2=CLOGCACTI»I))
72 XC=A(Is1)
AlI+I)=(1.90.)
Do 80 J=Msl
ATy )=a(TvJ)/XC
CALL ERRTST(NERRsIFL)
IFC(IFL.EQ.1) GO TO 150
80 CONTINUE
DO 91 K=1sN
IF (K.EQ.I)> GO TD 91
XC=a(KyI)
ARy I)=(04+20,)
ng 90 J =MsL
ARy D=A(K» J)~XCRA(I» J)
CALL ERRTST(NERR»IFL)
IFCIFL.ER.1) GD TO 150
90 CONTINUE
?1 CONTINUE
GO TO (95+140)sKI
95 DO 130 J=1sN
IF (JCCJ).ER.J) GO TO 130
Jd=J+1
D0 100 T=JJsN
IF (JC(IY.EQ.J) 6O TO 110
100 CONTINUE
110 JCCIH)=JC D)
3 Lo 120 K=1sN
XC=A(KyI)
AKyI)=A(K D)
120 AlKy ))=X0
130 CONTINUE
140 JCC1 )y =N
VU4 (0. 93141592653 KCHMPLX(FLOAT(MODC(IRITY2)) ¢ 04)
RETURN
150 JC(1)=1-1
RETURN
END

36
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DIFEQ

SUBRROUTINE DRIFEQ(HsN»TMAX»Yr»YZEROsANORMy YNsSAVE)
COMMON FEFS»FCTsPCNsFERETAYFQsFAYyFPERsFCyFDsDZy IBND
COMMON A(18+18)»T(3)
COMFLEX Y(2,18)»¥YN(18)yYOLN(2,18)yYZERO(18)sA»SAVE
00 40 I=1+N
40 Y(1,I)=YZERO(I)
IH=0
TZERO=T(1)
60 TEA=T(1)+H
IF(TEA.GT.TMAX) H=TMAX~T(1l)
TF(TEA.GT,TMAX) IH=0
IF(TEA.GT.TMAX) GD TO 640
TH=IH+1
IF(IH .GE. 32767) IH=2
T2)=T(1)+H
IMFP=2
DO 462 J=1,IMF
D0 62 I=1sN
62 YOLOC(Y»I)=Y(JsI)
CALL NLMS(HsYOLDIsNs YNy IHsSAVE)
59 D0 66 I=1sN
Y(2yI)=YNCI)
66 YOLD(2,T)=YNC(I)
K0 33K 5K K 3K 30K oK 3 3K 2Kk 3 oK 3K 3K K oK 3 K K 3 00 38K 30K oK 2 K 3K K K K 3K K 3 3K 3K 3K 3 3K K ok ok 3 K ok ok ok ok sk

X RESULTS Y(TEA) IN YN(I) AND Y(2,I) %
3KOK KK 30 K oK K 3 3K K KK K oK 3 3K S 2K K K 3 2 K 3K K 3K 3K 3 30K 3 3K K 3K 3K K oK 3 K oK 3 3K 3k 3K K 3k e 3K ok ok oK oK K K K oK ok
ANORM=TEA

DO 85 I=1sN

Y1, I)=Y(2s1)

YZEROQCII=Y(1s1)
85 CONTINUE
TCLY=T2)
TZERO=T (1)
IF(ARS(TEA-TMAX) JLLE. (,1E~-5)) RETURN
GO TO 60
END
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PADE

SUBROUTINE FPADE(ArHyFsN)

C xx%kkx A RATIONAL AFPROXIMATION OF MATRIX EXFPONENTIALS
C kkkk DOURLE PRECISTON IS NEEDED FOR REQUIRED ACCURACY

000

GO0

Py~

16

17

18

30

FARAMETER NM=18
COMFLEX A(NMsNM) sF (NMsNM)

NOURLE FRECISION AA(NMsNM) s FF(NMsNM) s BCNMsNM) » C(NMy NM) » HAVE
NOURLE FRECISION CC(NM)»COL» XNORM

HAVE =H
DO 2 I=1+sN
no 1 J=1sN

B(Is.))=0,.100

C(Is H=0.010

FFE(I»=0.D0

AA(T » D=DRLE(REAL(ACI»J)))

CONTINUE

CONTINUE

DO 17 I=1sN

COL=0. 110

DO 16 J=1sN

COL=DMAX1 (COL » DARS (DRLE (REAL(A(T»J)2)))

CONTINUE

CC(I)=COL

CONTINUE

XNORM=CC( 1)

N0 18 I=1sN

IF(XNORM .GT. CC(I)) GO TO 18

XNORM=CC (1)

CONTINUE

AR KKIHORIR IR IR KK KKK IR IR KKK KK KKK AR IR KK KKK KKK KK
X COLUMN NORM IS USED TO SEE WHETHER EXF(A) NEEDS REDUCTION X
KHAORAOKKIORAK AR IR KIKIOKKK KKK KKK I KKK KKK KKK AR KKK I KKK KKK KK
M0

IF (XNORMAH — 0.98) 3520520

KRR IR KKK HOK KKK IR I AR AR A AR KRR AR IR AR KKK
X EXF(AY=(T-SKAIKKC=1)KCI+, 5KA) X
KRR KKK AR KKK KK IKOK ORI KAK KKK KK KKK AR KA AR RAA R KK AR K KKK KK
D0 & T=1ysN

no 5 Jd=1sN
N 4 K=1sN
FRCT e I)=FPP(Ts DH+AACT+KIXAA(K, 1D
CONTINUE
C(Iry DN=~-AACT» JIXKH/2.0
CONTINUE
CCI»D)=CCIsI)+1.00
CONTINUE

CALL INVERT(CsNsR)

39/40
Reverse Blank
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