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INTRODUCTION

It has been shown'**®) that it is possible to invert the magnetic
field first-derivative equations for a point-magnetic dipole field,
therebv obtaining the bearing and scaled magnetic moments (quantities
related to the magnetic moments) of the field source from a knowledge of
the first field-derivatives at a single point onlv. This inversion of
the first-derivative dipole equations can be done in closed form and is
greatly facilitated bv carrving out the analvsis in the principle axis
frame of the first field-derivative tensor. Unfortunately there seem
to be no analogous special reference frames which simplifv the analvsis
of the higher derivative equations for the corresponding higher multi-
pole sources. However, bv using a spherical tensor representation,
wherein onlv the independent quadrupole moments and field derivatives
appear, it is possible to formulate the inversion of the magnetic field
second-derivative equations for a point quadrupole source in terms of
two simultaneous transcendental equations which appear to be amenable
to numerical solution on a digital computer. These equations have been
solved numerically for several special cases. In each such special case
it was found that there were not more than six solutions and that these
solutions exhibited a certain degree of symmetry about the origin. If
it is assumed that this is true, in general, for the quadrupole inver-
sion problem it would indicate that there are three solutions in each
half space, making a total of five ghost solutions and one physical
solution. This is not substantially worse than the dipole inversion
problem if the half-space in which the source resides is known a priori.

The spherical tensor procedure has also been shown to be applicable
to a monopole source (for heuristic purposes onlv) and a dipole source.
A recipe for inverting the dipole problem bv the spherical tensor pro-
cedure is given in the appendix. The spherical tensor procedure is also

‘"’ Naval Ship Research and Development Laboratorv Report 3493, Dipole
Tracking with a Gradiometer, by W, M. Wynn, January 1972,
Unclassified.

{2)Naval Coastal Systems Laboratory Report 135-72, Inversion of the
Magnetic Field Gradient Equations for a Magnetic Dipole Field, bv
C. P. Frahm, November 1972, Unclassified.




believed to be applicable to the magnetic field 2th-derivative equations
for a point 21—pole source although a complete proof has not yet been
established. In this report the general scheme of the procedure
believed to be applicable to an arbitrary 22—pole source will be pre-
sented followed by the details of the inversion for a quadrupole source.

MULTIPOLE FIELD DERIVATIVE EQUATIONS

In a static situation the magnetic field H produced by a magnetic

source can be derived from a magnetic scalar potential ¢ by the familiar
relation

H= - )

Furthermore, if one is willing to introduce the fiction of magnetic
poles, the potential can be conveniently expressed in the form

¢(¥)- f _pir_'l__d:’rv 2)

|7 - =

>
where p(;') is the magnetic pole density of the source at point r' and
-5
r 1s the observation point. (See Figure 1).
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Magnetic Source Region

FIGURE 1. MAGNETIC FIELD SOURCE AND OBSERVATION POINTS
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The multipole expansion of the scalar potential is then obtained
by making a Taylor's series exapnsion of the factor

1 1
|—+ >, R ° (3)
r-r
This gives
1/R = 1/r x5, (1/1) + T %X 18 (/) + ... (4a)
- ¢
=E _(_a)_xl S T TR 1/x) . (4b)
— 1 2 S Y g

In Equation (4) the summation convention has been employed wherein
repeated lower case subscripts are to be summed from 1 to 3 with the
understanding that

1= % X, =V, X4 =2z (5a)

and

3, = 3/3x, 3, = 3/3y, 3, = 3/3z. (5b)

The summation convention will be used throughout this report unless
otherwise stated.

Using the expansion (4b) in the expression for the scalar poten-
tial Equation (2) gives

E -1n" l) Ty . . 43,
¢(r) .09, (1/p) p(r*) x; ... x24d°r" . (6)
Ly / ot )

The integrals

*‘ » - 3 -
ail"‘1z=/p(r)x11.”xigdr @)

in Equation (6) are by construction completely svmmetric fth-rank ten-

sors and are occasionally referred to as multipole moments‘“) . However,

(“)Panofsky, W. K. H, and Phillips, M., Classical Electricity and
Magnetism, p. 15, Addison-Wesley, 1955.
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it is more convenient to define the Zl—pole moments in terms of the sym-
metric traceless part of i 1, Such a symmetric traceless part

can always be extracted from a tensor of rank 2 or higher and has the
following form

A
2! B
Q, . =1 Q +az 8 e e s e
ipe.. i, 2111 [ 11... 1, iaiB i ig

o
af A )
+b§ E 5 : 8 i)\Q...ia...iB...iu...i)‘...
aB  u) a H | W | [ SR
o (8

where the coefficients a,b... are determined by the equations that
result from setting the trace of Q11 {, on any two indices equal to
s Q

zero. The Greek indices take on the values 1,2...% and the following
notation has been used to denote traces

A‘&gAjj . (9) '

The overall factor of (22)!/2221 has been introduced for later
convenience..

For the special cases of & = 1, 2, and 3, Equation (8) gives the
dipole moments

Q =& - / o () x (10a)

the quadrupole moments
1
- 2, 3
-fp(r) (ryx, - 6,,r) &x (10b)
and the octupole moments

1 n
Qg = 15[31_& - E(Gijammk + Gikamjm + 841 Q) ]

-4/;(;) [15xixjxk - 3(61jxk + Gikxj + ijxi)rzl d3r, (10¢)

respectively.




One interesting aspect of Equation (8) is that everv term on the
right side except the first involves at least one Kronecker delta which

is to be contracted with the quantities 51 ...&1 (1/r) in Equation (6).
1

These terms will thus result in expressions 1nvoiving derivatives of
2(1/r) which is zero. Hence, it follows that

2
+ nt . \
8 (5) 2 RPN YR 2
z L.t
- CL 2 3, (1/1)
= =) Q . ] (11)
— (22)1 il i2 il...l£

Now by a process of induction it can be shown that

2 R
- 1
ai . 61(1/1') ¢ 1)2 (22)! P, L4 (12)
1 ) 27 g r s
where the n, are the direction cosines of ;; i.e.,
n, = xi/r (13)
and the missing terms in Equation (12) all involve one or more Kronecker
deltas on the indices i,. Thus, when they are contracted with the }

traceless multipole moments %n Equation (11) they give zero. Hence,
Equation (11) reduces to

*® n, ...n

> 1 1 2
o(r) = E: Yo 1 . (14)
220 1 £ r

For a pure 22~pole source, only the tth term in the sum contributes
and the potential has the form

* 1 1 L
G T IR S rs s
1 r

The corresponding magnetic field components have the form

nyoeeeny )
1 1 2
By = =340+ -7 0 1, 33( i+ y (16)

5




Taking % derivatives of Equation (16) and introducing the notation

D =3, ...3, H 17)
Jivedprr 3y
|
i
results in the field derivative equations for a 22-pole source
D =q R . . (18)
jl"'ji+l il"'il 11.-.1131...Jl+1
where the qy ; are the scaled multipole moments defined by
KRREY)
6 4 =0 i/z:rz(“” (19)

poeeig RS
and Ri 13 3 is a (22 + l)-rank tensor defined by
17777217 7 el

= -r2(2+1)a .9 (n, ...n, /

R . .
RRRLYY PEREE FS ] S R PR SR )

) SN . (20)

It will be convenient to introduce a notation that obviates the [
need for recording all of the subscripts. To accomplish this, paren- :
theses will be used to denote a set of £ subscripted indices while
square brackets will be used to denote a set of 2+l subscripted indices.
Thus,

Rt " R gy, (21)

Using this notation, the 22-pole field f2th-derivative equations take
the form

Dry) ") Reaypyy - 22)

GENERAL INVERSION PROCEDURE

In this section a procedure will be outlined which is believed to
be of general applicability for the inversion of Equation (22). Although
a complete proof of the validity of the procedure in general has not been
established, the procedure is successful in inverting Equation (22) for
the special cases of 2 = 0, 1 and 2.




The objective is to use Equation (22) to determine the bearing
(-n;) and the scaled moments (q(i)) of a 2 -pole source from a knowledge
of the field derivatives (D[j]) at a single point. That this might be
possible was first suggested by W. M. Wvan who noticed that the number
of independent {th derivatives of the field components is 2¢+3, while
the number of independent 22—pole moments is 22+1, and the number of
independent direction cosines (n;) is 2 (except for a sign ambiguity).
Thus, the number of independent pieces of information contained in the
field derivatives is precisely the same as the number of independent
unknowns. The number of independent components of D and qj) follow

from the fact that they are both completelv svmmetric~and traceless
tensors.

The inversion procedure requires that two tensors S(i)[j] and
g[j](i) be found with the following properties: ’

1. a4y S(i)[j] =0 (23)
2. 2y Y1 Yta0 T @ (24)

where
Nyt T Ry T Sy (25)

A
3. N N, must be symmetric and traceless in the
[311) ") [k] separate indices [j] and (k).

4, N[j](i) N(i)[k] must be idempotent; i.e.,

N N = N

1@ Y M@ Yo T Naiw Yo 26
By definition R(i)[j} is a dimensionless tensor which can only depend
on the direction cosines n;, Hence, R(i)[j] must be expressible as a
sum of terms involving products of direction cosines and Kronecker
geltas. From Equations (23-26) it then follows that S(i j and

N [3](i) must have similar forms. Thus, one can write tgé &ost general
expressions with arbitrary coefficients and then adjust the coefficients

to satisfy the above four conditions, thereby obtaining S(i)[j] and

(11

Because of Equation (23), the field derivative equations can be
written

D

131 ° Y% Yo 27)




Then contracting on the right with ﬁ[ 1K) yields by virtue of
Equation (24) 3

Y0 = P11 Yo - (28)

Substituting this back into Equation (27) results in the equation

D,y =D, . N . 2
(11 = P Mo Yoy 29
Equation (29) determines the direction cosines in terms of the field
derivatives while Equation (28) gives the scaled moments in terms of
the field derivatives and the direction cosines. Thus, the inversion

is complete once Equation (29) is solved.

Relation (29) involves 2243 equations for only two unknowns.
Clearly many of these equations must be redundant if there is to be a
solution. In order to explicitly see the independent equations in (29)
it is convenient to change to a spherical tensor notation(4). For any
tensor of rank 2+1 it is possible to construct linear combinations of
the components which transform under rotations like objects of definite
spin J and z-component M as follows

(3) _ )M
T 1 Kril® Prag ¢ (30)
h (3

e coefficients K i accomplish the transformation from the car-
tesian basis to the spherical basis and involve Clebsch-Gordan coeffi-
cients‘“°®) | Since the construction of a spin J object with z-
component M from a set of 2+1 spin 1 objects (vectors) is usually not
unique, the superscript set of 2~1 indices (j) is needed to distinguish

the various ways of making the composition(s),

In the special case where D[i] 1s completely symmetric and trace-
less (as it is in the current discussion), the construction is unique
so that Equation (30) 1s ideatically zero unless

J=J =+l (31a)

(4)Rose, M. E., Theory of Angular Momentum (Wiley, 1957).

(5)Edmonds, A. R., Angular Momentum in Quantum Mechanics (Princeton
University Press, 1957) Chapter 3,

(”)Racah, G., in Ergebnisse der Exakten Naturwissenschaften, Vol. 37,
p. 56 (Springer-Verlag, 1965).




and
@ = Q) (31b)

where (j,) is the unique set of indices that gives a non-zero result(*/,

The spherical basis transformation coefficients form an orthonormal
set

(O G

G S Tty Saar e (32)
and a complete set
(M (M _
T K K = 1 (33)
gy Dl IR [k)[2)
where the bar denotes complex conjugation and
1, if (j) = (j') . (34)

Sphran T {o, otherwise

Equations (32) and (33) follow from the completeness and orthonormality
properties of the Clebsch-Gordan coefficients themselves.

Now by contracting with KEi)JM and inserting Equation (33) on the
right side Equation (29) becomes

(HM GDINM' (DI & (3)M™
EINEY A 1 B ) B O ORI R C
(35)

As pointed out in Equation (31) this is a non-trivial result only when
(3) = (3o) and J=J,. Furthermore, the sum on the right side contrib-

utes only when (j') = (j5) and J' = J,. Thus the non-trivial part of

Equation (35) can be written

T, =T

M M! VM'M (36

{27 In the usual parlance of quantum theorv, the only way to obtain a
total spin of 2+1 by combining 241 spin 1 objects is to make all
the sping parallel.




or in matrix notation

T =TV 37)
where
- ()7
Ty n[i] K[i? oMt (38)
and
_Q (3 I M
Yy = Ky Yot Y1) ¥ia) (39

In Equation (36) and subsequent equations, the summation convention is
extended to repeated upper case subscripts. These will be understood to
be summed from 1 to 2J,+1.

The (2J45+1) X (2J,+1) matrix Vy., 1s idempotent as can be seen from
Equations (39), (33), and (26) and from the comments accompanying
Equation (31). Thus

v

M'M" VMH M = V

MM (40)

In the special cases £ = 0, 1, and 2 the V-matrix is also hermitian

VM'M = VMM' (41)
and has a trace given by
Vg = 23, -1 = 2041 . (42)

Thus, it is possible in these cases to diagonalize the V-matrix by a
similarity transformation with a unitary matrix and obtain diagonal
elements consisting of 22+l ones and 2 zerces. Furthermore, it was
found in these special cases that it was always possible to perform an
appropriate coordinate rotation described by Euler angles (a,B8,Y) and
thereby diagonalize the associated V-matrix. Assuming these results to
be valid for arbitrary £, implies that the unitary matrix that diago-

nalizes the V-matrix is the rotation matrix Déﬁ? (a,8,Y) belonging to

the Jth irreducible representation of the rotation group (Chapter 4 of
Reference 5)'°) .,

(®) 1t should also be noted that for the rotation matrices the super-
script symbol (J) denotes only one index and not a set of indices.
This and the two usages of D (compare Equation (17) and (45)) should
cause no confusion. .

10




Performing the similarity transformation on V in Equation (37)
results in the equation

t = tVd (43)

where V4 is the diagonal form of V

(@)

d)W'M = [Dn'p" (G’B,Y)]_l v D(J)

(V M”'M

M M'"[ (&,B,Y)] (44)

and

6 = Ty Dvy (3,87 - 45)

For the unit diagonal elements in V4 Equation (43) reduces to an iden-
tity. However, the two zero diagonal elements give two non-trivial
complex equations of the form

ty = 0 (46a)
1
tMZ =0, (46b)
where Ml and M2 are defined by
(Vd)MlMl B <Vd)M2M2 = 0 (no sum) . (47)

The two equations in Equation (46) are not independent as can be
seen from the fact that the usual choice of phases for the Clebsch-
Gordan coefficients gives

_(jo)JOM M (jo)Jo-M

x[i] = (-1) K[i] (48)
so that

= M

TM = (-1) T-‘M . (49)
Furthermore,

BTy (a,8,m) = DT MDD a,8,m) (50)

11




so that
t o= D% (51)
BVt M
Thus, if
tM = ( (528)
1
it follows that
t—M =0 . (52b)
1

But there are only two zeroes on the diagonal of V4 so that it must be
concluded that

Ml =M, (53)

and only one of the equations in (46) is independent.

Now the two real equations resulting from the complex equation(c)

ty =0 (54)
1

are the two independent equations referred to earlier which can be

solved (at least numerically) for the Euler angles once the field deriva-
tives are known. After the Euler angles are known, the direction

cosines can be written immediately (refer to discussion leading to
Equation (111)).

nl = -sinf cosy (55a)
n, = sinf siny (55b)
n, = cosfB (55¢) |

(¢) The choice of Mj in Equation (54) seems to be arbitrary. However,
at least for £=2, it is most expedient to choose Mj = J, (see
Equation (89) ff.).




QUADRUPOLE INVERSION

For a point quadrupole source (2=2) the potential is given by
Equation (15)

Qij ninj/r3 . (56)

o (r) = %
Taking the negative gradient gives the magnetic field

1 4
B =3 Qij(sninjnk - Sk ng - éjk ni)/r . (57)

Two additional derivatives then yield

Dok = 915 Riguem (58)
with
Dok = etk (59a)
qij = Qij/Zr6 (59bH) !
Ry qiam = 2163 Rijkzm - 7(Rijk£m + Rijklm)
+ R:jklm + Rijklm] (59¢)
and
Rijklm B R b Pl (60a)
Rijklm =nny (8, m, + 8o Sy (60b) j
Rijkzm =R, (80 + 6,0) + mn (8, 0n, + 8ypny)
+ nﬂnm(éiknj + ijni) (60c)
Rijklm = 0%t kebym t Sy
+ nj(duékm + 8 08im t S41Som) (60d)




5

R giam = %6

§,.6, ) +

1229 ¥ 85084m )

B Chdym ¥ 4ilim

+ nm(é ) . (60e)

wlin * Syilys

In constructing the tensors S(i){j] and ﬁ[j](i) it is also neces-
sary to consider terms of the form

6 N (60£)
Rijkim = %13™™ n

szkﬂm = (agdy - nydy) npng + (mydy) -0y, )) oy

+ (niéjm - njdim) nn, (60g)
RSjklm * 0y S * B0 * Tl (60h)
joklm = g8y =08 St 8y~ 850) S

+ (nié -n (601)

im jsim) le ’
All of the quantities RY cin. 8T symmetric in (kfm) and either symmetric
or antisymmetric in (ij*q Phese are the only such quantities that can
be constructed as sums of products of Kronecker deltas and direction
cosines. Furthermore, these are the only types of quantities that can
occur in S¢yyr4) and ﬁ[j](i) because of condjtion 3. Thus, it is rea-
sonable to attempt to construct s(i)[j] and N[j](i) in the forms

9
n
S{ikim ‘Z 3 Rk (61a)
n=1
and
9
n
M omty "Z Pn Rigkim . (61b)
n=1

After a lot of algebra one can determine the coefficients a, and b,
from the four conditions discussed in the previous section. The results
are

ag = ~10 (62a)

14
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1/8
-1/1500
b3 = -1/24
1/600
1/60
1/24

0, forn=17, 8, 9.

Contracting ﬁkl ¢ with

Njrem = Rigrem ¥ Siqkem

gives
Y

) 1
Ny jkem Mkamst T )+ 81400 -

4 “13%s"t

=luw

1
E(Giséjt js it

and
9

N
n
Nrstij Nijklm Z Cn Trstklm

n=1

where

T1 =n n n n
rstkim ')

2
rstkim = nrn n (s

3
Trstklm

ko2 * St Sig

4+ n nlétk)

= (mnd et Ml
+ nrnt(nknlésm + nknmdsl +n nl k)

“gns(“k“gérm + nknmsr

+

+ A0 6rk)

15

2 Gijést

(63a)
(63b)
(63c)
(63d)
(63e)
(63f)

(63g)

(64)

(65)

(66)

(67a)

(67b)

(67¢)




and

4
Trstklm

rstkim

6
Trstklm

7

Trstkzm

8
Trstklm

rstkim

= nn, (8

-(nG

kl tm

ua (ékz sm

n.n (6k2 m

= nr[nk(éslstm + 8

nm(sskatz

n1(5rk5tm

nt[“k('rslarm

n, (¢ k 3 +

r st

= (n_§

By CrsSem *

u,n (drs tk

nkﬂm(crs tR

(6r26km + 3

(Gsldkm + 3

(stkélm + 3

+ 8

+né
s

Ssr + Bsfre * Mefrs? (08

ki rm +

ke sm

+ Sndes * Smefe)

+ 8 8 .)

kaész mf, sk

+ 8 )

kasrl mL rk

sm tk) +n (ésk tm Gtkcsm)

)] + n, [n,fé é

re8tm +6_6_.)

tk -3 rm tf

)+ (5 ", )]

tkdrm t% tk re

sm rz) + ) (6 rm + 6rkssm)

Grkdsl)]

* 0e8rg) MM

re
km + nkdlm + ankz)

§ +6 .6 )

rt sm st rm

6rt‘ssk + Gstsrk)

6ttasl + 6stérl)

8 6rk52m) ést

§ +4, 48

ks lm) 6

rt

+68,,86 )8

ltékm ki tm rs
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(67d)

(67e)

(67£)

67g)

(67h)

(674)

(68a)

(68b)




(68c)

C9 =

1
6
1
60

(68d)

Using Equations (6la), (62a), and (65-68) it is fairly easy to
determine that the four conditions of the previous section are indeed
satisfied by Equations (61-63). As shown in the previous section, these
conditions are sufficient to establish Equations (28) and (29) which for L
the quadrupole case become

94 = Peom ﬁklmij (69)
and
Dyom = Prst ﬁrstijNijkzm’ (70)
respectively.
The spherical basis transformation coefficients for g =2 are {
given by
kI (1m, jm, |133M) (1m, 1m, |114m,)U_ U .U (71)
ik 174 2773 4 mli m2k m3£
m
i
where (jlm jzmzljljzjm) is the Clebsch-Gordan coefficient'!) for coup-
ling spin }1 and spin jj to obtain spin j with z-component m; and U is
the unitary matrix which converts the cartesian vector components to

spherical vector components {page 66 of Reference 4).

1 -4 0
v=2{o o vz} . (72)
/i 1 -1 0

(4) Edmonds notations (Reference 5) will be used for the Clebsch-Gordan
coefficients throughout this report.




The rows of U are labeled from top to bottom by the spherical index
m= 1, 0, -1 while the columns are labeled from left to right by the
cartesian index 1 = 1, 2, 3.

Since U is unitary its inverse is given by

~1 0 1
vlavt=2l 1 o 1 (73)
V2 0o /2 o

where the rows are now labeled by the cartesian index and the columns
by the spherical index. Furthermore, by inspection of Equation (72)
it is easily seen that

n =
Uy = (-1) UL

_m (74)

i

The Clebsch-Gordan coefficients satisfy an orthogonality relation

D Grmdgy 13m0 ey 9353 = 655 (752)

mm

and a completeness relation

Z(jl"‘ljz‘“zfjﬂzm) (3ymydomy (3,3, =6 .6 . (75b3
M 1M1 MM

as well as a number of symmetry properties including(®’

i+

-J
(3ymydpmmy |3,3,0-0) = (-1

3
ECRRIENERES (75)

RIS,
(4,m,3ymy (1,3, = D12 (gymgm, [3,9,70 738)

-

(E)Edmonds, A. R., Angular Momentum in Quantum Mechanics, Princeton
University Press 1957, Chapter 3.




Using these relations along with Equations (72) and (73), it is straight-
forward to establish a number of useful relations for the spherical basis
transformation coefficients.

M NI
Kike Kike 845030 S (76a)
IM =M
Z Kikz Krst 6ir6ksslt (760)
3IM

JIM L JHHL —§IM
Kike = D Kike - (76¢)
In addition it can be established that for the special case j=2, J=3 the
spherical basis transformation coefficients are completely symmetric(e)
and traceless; i.e.,

23M _ . 23M _ _23M

Kike = Kok = Ken (77a) |
and
29M
Moo . (77b)

As discussed in the previous section the relations (76b) are suf-
ficient to permit rewriting equation (70) in the form

Ty = Ty'Vury (78)
where
231
T * Pomktm ° (79)
and
=23M' 23M
Vvn = Kst ﬁrstij Nijkzm Kkzm ' (80)

“*)The establishment of the last equality in Equations (77a) 1is not
quite so straightforward since it requires a recombination of the
three spins involved; these can best be handled by using Racah's W-
coefficients or Wigner's 6~j symbols. See E. P. Wigner, Group
Theory (Academic Press, 1959), Equation 24.24,
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It 1is not necessary to explicitly evaluate the right side of Equation
(80) in terms of the direction cosines although this could be done.
Instead it is only necessary to establish a few properties of the V-
matrix from the defining relation (80); namely, that V has a trace of 5,
is hermitian, and is idempotent(').

The hermiticity of V is established as follows

=23M" 23
Vi = K[r] ﬁ[r](i) N(i)[s] Kis]

, from Equation (66)

9 —23M' _n 23M
2 % %1 Tiersy Kied

n=1

- =23M' .n 23M N
2: Cn K[r] T[r][s] K[s] , from Equations (67) and (77).

n=1,3,5
Now by inspection of Equations (67) it is seen that

n = n =
T[r][s] T[s][r] , forn=1, 3,5, (81)
Thus,
23M n =23M"'_
Vigry = 3 €Kle] Tisitr] el = Ve ¢ (82)

n=1,3,5

The jdempotent property is established by using the idempotent char-
acter of Niry(4) N(q) [s] along with Equation (76b) and the comment
associated with Equations (31).

(f)V has another curious property that follows from Equation (76c).

MM =
v = (-1) VMM'

-M-M'

However, this relation is of no utility in the present discussion.

—————————y




—~23M" 23M "'
Vo Vg = 2 Kie ?‘T[r](i) Neyrs) ¥is)

I‘I"

N
—23M" 23M
Klel Mreres) Mentul ol

—23M"' jm"
= ¥ 5 Morw Yars) M)
jJMn

—3M" 23M
x Kie ﬁ[c](j) Nei) () Xful

_ [}
23M &

23M
Ki1) N

(s1($) Y@ (ul Xl

—23M" 23M
1 Y1y Yo te) Kul

e (1) N(1)[s)

= Vyry - (83)

The trace of V is evaluated in a similar fashion

_ —23M 23M
Y™ ZE My Neote ¥l
- —4IM 23M
?;M ®e) Yirray Yy te] Kre)
ﬁ 4"}

tets] Mrraw) Meodts] T Vel Ny e

9
n
E=1  Tre)e) - (84)

The quantities y e can be evaluated from Equations (67) with the
result (r)(r]

Vg =5 - (85)

The hermiticity of V implies that V can be diagonalized by a simi-
larity transformation with a unitary matrix. The resulting diagonal
matrix Vg by virtue of the idempotent property of V can have only ones
and zeroes on the diagonal. Finally, the trace relation (85) requires
that there be exactly five ones and two zeroes on the diagonal of \FL




The position of the zeroes on the diagonal can be established by con-
sidering a special case. When the vector r lies along the z-axis; i.e.,

n, = 623 . (86)

The explicit form of the V-matrix can be determined using Equations (67)
and (68) in the relation

=23 M
VMM Z: € Krst T:stklm Lm (87)
n=1,3,5

which was obtained in arriving at Equation (82). For this special case
one finds that

Vevy=(0,1,1,1,1,1,0) (88)

where the last equality gives the elements along the diagonal. From
this result one learns not only the order of the elements in V,, but
also that the unitary matrix that diagonalizes the V-matrix corresponds
to a rotation of coordinates that brings the z-axis into coincidence
with r. This implies that the diagonalizing matrix belongs to a repre-
sentation of the rotation group and hence is one of the rotation
matrices (a,B,Y) where (a,B,y) are the Euler angles of the desired
rotation. Thus,

[0(3) (a.s,v)]'l v (a,8,v) =V, = 0,1,1,1,1,1,0) (89)

for some choice of (a,8,y).

(NB: When diagonalizing an hermitian matrix by a unitary matrix,
the order of the resulting diagonal elements is usually immaterial.
However, if the positions of the zeroes in Equations (88) and (89) are
altered, it is ng longer clear that the diagonalizing matrix is one of
the matrices D(3 (a,8,Y ). Thus, to ensure that the diagonalizing
matrix is one of these matrices and not some other unitary 7X7 matrix,
it is expedient to adopt the order given.)

To determine the appropriate values of the Euler angles the rota-
tion is applied to Equation (78) yielding

t =tV (90)

d

where

t = % ,8,y) . (91)




For the components M = 0, +1, and +2, Equation (90) is a trivial iden-
tity. However, for M = +3 it imposes the following conditions on
(2,5,)

=0 . (92)

As pointed out in the previous section, only one of these complex equa-
tions is independent since Equations (79) and (76c) imply that

M —
Ty=CD"T, . (93)

Thus, it is sufficient to consider only

t, =0 . (94)

3

Using the notation of Edmonds (Chapter &4 of Reference 5) for the
rotation matrix, Equation (94) becomes

R dM3 dgyeld® - g . (95)
M

Clearly the value of a is arbitrary so that Equat on (95) imposes two
real conditions on the two angles B and y.

T e P -0 (96)
M

The two real conditions imposed by Equation (96) can be explicitly
exhibited in a convenient way by using Equation (93) and writing

T = p elfM (97)

M- PM

with Py and Oy both real. Thus, (suppressing the argument B)

iMy
ZTdM
" (3) 3 iMy ,(3)
3 Y
= Tod 3 3;1 [TMe dM3 + T,

iMYd(3)]

- (3) i(ey + My) ,(3) M ~1(8y + My),(3)
Podos t 3;19 (e dy3 + (-1) O d_y3)

=0 . (98)
23




Taking the real and imaginary parts of this last equality gives the

desired conditions.
NEIES o + 3) M (3,
Podps * 2 Ay cos(By + M43’ + (-1 d i) =
M=1
3 (3) M, (3)
gz; Pue sin(BM + My) | 3 - (-1) -M3] =0,
3
The dM3

3 61

)(B) are given in Chapter 4 of Reference 5.

%
3 M 34M 3-M
dM3 (8) = -(-1) [TSZESTTE"HYT] cos 8/2 sin g/2 .

Thus,

dgg) 8) = c056 B/2

dgg) (8) = ~ V6 cos® 8/2 sin £/2

d{g) ®) = v15 cosa g/2 sin2 g/2

dég) () = -2/§~cos3 B/2 sin3 8/2

dfi; 8) = ¥15 cos2 8/2 s:l.n4 8/2

dfg; (8) = -6 cos 8/2 sin® 8/2

a2 (8) = s1a® /2 .

Defining

A= aD 8 + (1" a3

and

B, = 43 ® - 1" ¢§) @,

24

(99a)

(99b)

(100)

(101a)

(101b)

(101e)

(1014d)

(101e)

(101f£)

(101g)

(102a)

(102b)



one finds
3 5 3
. 1/2 AO = dé3) = - sin” 8 (103a)
T
A = 71‘2 sin3 8 cot B (103b)
A, = l/% sin’ B(lL + 2 cot2 8) (103c)
1,3, 2
Ay =g sin” 5 cot B(3 + 4 cot” B) (1034)
B, =25 02, (103e)
1 A
B, = 5 sin2 8 cot B (103f£)
2 2
B, = Z sin? 8(1 + 4 cot? B) . (103g)

Using Equations (102-103) and defining
X = cot B, (104)
Equations (99), after some simplification, become

sin3 B[p3x(3 + 4x2) cos(e3 + 3y)
- /g_oz(l + 2x2) cos(e2 + 2y)

+ /15 P1X cos(e1 + v) -/3-00] =0 (105a)

sinZB [93(1 + 4x2) sin(63 + 3v)
-2/g'pzx sin(62 + 2v)
+ /15 p, sin(e; + V)] = 0 . (105b)

Solution of these two equations for S(or x) and y then permits the com-
pletion of the inversion process. Unfortunately these equations are
transcendental and do not seem to permit a simple solution. They are




probably best solved numerically once the values of py and 6, are known.
Only solutions in the ranges

0<B=<m (106a)
0 <y<2n (106b)

need be determined. Once the solutions of Equations (105) are known the
direction cosines ny can be easily determined.

The spherical basis components Y, of ny are given according to
Equations (30) and (71) by

Y =U n, . (107)
In the special frame where n; = §43 (denoted by a prime) this gives
' = =
Ym Um3 Gmo . (108)

Bv Equation (91) Yé and Y are related by

{
3
Y!;‘ = Ymv thl'l)n (a,B,Y) . (109)
Solving Equations (107-109) for n, gives
< u~lrp(1) -1
n, = U D (a,8,¥)] . (110)

Exglicit evaluation of Equation (110) using Edmond's expression for
p ) (a,8,y) gives

n; = -sin B cos v (111a)
|
T
n, = sin B sin v (111b) i
n, = cos g . (1lllc)

It is now straightforward to evaluate the scaled moments q44 from
Equation (69), thus completing the inversion process for the quadrupole
source.

NB: It should be noted that the terms involving Rijklm and Rg Kem
do not contribute to the sum in Equation (69) because of the traceless
character of Dyy,. Furthermore, the evaluation of the remaining sums

can be greatly simplified by taking advantage of the symmetry of Dkzm‘ .
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SUMMARY OF THE QUADRUPOLE INVERSION RECIPE

Once the values of the independent second derivatives (for example
D111, D132, D113 D122, D323, D222, D223) are known, the spherical com-
ponents can be computed from Equation (79). After considerable simpli-
fication these give

T, = —/i/ztnlu =3 ,, + 1(3D;;, - Dyp,)] (112a)
T, = /3—/2[1)113 = Dypq + 21 Dyyal (112b)
T, = /ﬁ/lo[l)u1 +Dy,, + 1(D);, + Dyy))] (112¢)
T, = -v10/2[Dyy4 + Dyp4l - (112d)

The moduli py and arguments 6y can then be computed from the real and
imaginary parts of Ty in the usual way.
L

2
by = [(Re T’ + (1n T (113a)
sin SM = Im TM/CM, cos GM = Re TM/pM . (113b)

These can then be substituted into Equations (105) and the resulting
equations solved for 8 and y in the intervals specified in relatioms
(106) .

For convenience, the pertinent equations are repeated here.

sin36[o3x(3 +-4x2) cos(e3 + 3y)

/6 o, (1 + 2x%) cos (8, + 2)

+ /15 plxcos(e1 +y) - Vg-po] (105a)

s1n28[93(1 + 4x2) sin(e3 + 3y)

-2 Vg_pzx sin(62 + 2v)

+ Y15 p, sin(e, + ) (105b)




t

k
F
1
L

0<B<m (106a)
0 <y<2m, (106b)

Finally, the direction cosines are given by Equations (111)

n, = -sin B cos vy (111a)
n, = sin 8 sin vy (111b)
ng = cos 8 (111e)

and the scaled quadrupole moments are given by Equations (69), (61b),
(60) and (63). After much simplification the latter give'®)

g4 = 1o Pnty ~ (“j“k“znkzi + 00Dy
1
8(“1 3 ¥ 3859 0P - (114)

For purposes of checking the results, the field derivatives can be
regenerated using Equations (58) through (60). When combined these can
be simplified to give

Dkzm = 5{7[9nkn2nm - (ékmnz + 62 n + 6 2t )] n,n jqij
+ 2[(-7nkn2 + ékl) njqjm + (-7nknm + &pm) njqu
+ (-7“2nm + sz) njqjk]

+ 2<nkqlm Rt nmqkz)} ' (115)

(s) See comments following Equation (111).
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APPENDIX A
DIPOLE INVERSION RECIPE
USING THE SPHERICAL TENSOR PROCEDURE

From the independent field derivatives (D,,, D.,,, D,., D.,, D..),
evaluate the spherical components TM' 11 712* 713° "22* 723

1
T2 = E(Dll - D22 + 21D12) (Ala)
T, = =(D5 + D)) (Alb)
TO = “V2/3 (Dll + D22) . (AIC)

The moduli pM and arguments eM can then be evaluated in the usual way

= [(Re T)? + (In T )21% (A2a)
Y ™ M
sin eM = Im TM/pM, cos 8, = Re TM/pM . (A2b)
The angles 8 and vy are then obtained by solving the following system of
equations
2 2
sin 8[292(1 + 2x°) cos(e2 + 2v)
~bp xcoe (8, + v) + /chOJ =0 (A3a)
sin S[DZX sin(92 + 2y) - 0y sin(el +yv)] =0 (A3b)
with
0<B<m (Ada)
0<yc<2n., (A4db)

The direction cosines are given by

n, = -sin 8 cos ¥y (A5a)
n, = sin B sin v (A5b)
n, = cos 8 . (A5¢)

A-1




The scaled dipole moments are given by

-1 D, - L nnnbD
9 "3 ke T2 """k
For checking purposes the field derivatives are regenerated by

Djk = 3[(-5:1.1:1k + ij) n,q, + x'quk + nkqi] .

(A6)

(A7)
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