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INTRODUCTION

It has been shown' ,  that it is possible to invert the magnetic
field first-derivative equations for a point-magnetic dipole field,
therebv obtaining the bearing and scaled magnetic moments (quantities
related to the magnetic moments) of the field source from a knowledge of

the first field-derivatives at a single point only. This inversion of
the first-derivative dipole equations can be done in closed form and is
greatly facilitated by carrying out the analysis in the principle axis
frame of the first field-derivative tensor. Unfortunately there seem
to be no analogous special reference frames which simplify the analysis
of the higher derivative equations for the corresponding higher multi-
pole sources. However, by using a spherical tensor representation,

wherein only the independent quadrupole moments and field derivatives
appear, it is possible to formulate the inversion of the magnetic field
second-derivative equations for a point quadrupole source in terms of
two simultaneous transcendental equations which appear to be amenable
to numerical solution on a digital computer. These equations have been
solved numerically for several special cases. In each such special case
it was found that there were not more than six solutions and that these

solutions exhibited a certain degree of symmetry about the origin. If
it is assumed that this is true, in general, for the quadrupole inver-
sion problem it would indicate that there are three solutions in each
half space, making a total of five ghost solutions and one physical
solution. This is not substantially worse than the dipole inversion
problem if the half-space in which the source resides is known a priori.

The spherical tensor procedure has also been shown to be applicable
to a monopole source (for heuristic purposes only) and a dipole source.
A recipe for inverting the dipole problem by the spherical tensor pro-
cedure is given in the appendix. The spherical tensor procedure is also

'Naval Ship Research and Development Laboratorv Report 3493, Dipole

Tracking with a Gradiometer, by W. M. Wynn, January 1972,
Unclassified.

((2 Naval Coastal Systems Laboratory Report 135-72, Inversion of the
Magnetic Field Gradient Equations for a Magnetic Dipole Field, by
C. P. Frahm, November 1972, Unclassified.



believed to be applicable to the magnetic field tth-derivative equations
for a point 24-pole source although a complete proof has not yet been
established. In this report the general scheme of the procedure

believed to be applicable to an arbitrary 2k-pole source will be pre-
sented followed by the details of the inversion for a quadrupole source.

MULTIPOLE FIELD DERIVATIVE EOUATIONS

In a static situation the magnetic field H produced by a magnetic
source can be derived from a magnetic scalar potential 0 by the familiar
relation

Furthermore, if one is willing to introduce the fiction of magnetic

poles, the potential can be conveniently expressed in the form

- J P(') d 3 r' (2)

,here p(W') is the magnetic pole density of the source at point ' and
r is the observation point. (See Figure 1).

z

r

y

Magnetic Source Region

x

FIGURE 1. MAGNETIC FIELD SOURCE AND OBSERVATION POINTS



The multipole expansion of the scalar potential is then obtained
by making a Taylor's series exapnsion of the factor

1 1 (3)

This gives

1/R = /r - x3 (l/r) + xx a (1r) + (4a)
i 2. 2r j .

1_ 1: d' 1 (4b
0 1 2 . 2 .

In Equation (4) the summation convention has been employed wherein
repeated lower case subscripts are to be summed from 1 to 3 with the
understanding that

x1 = x, x2 = v, x3 
= z (5a)

and

a1 = 3/3x, 32 = d/3y, 33 = 3/3z. (5b)

The summation convention will be used throughout this report unless
otherwise stated.

Using the expansion (4b) in the expression for the scalar poten-
tial Equation (2) gives

a (1/r) p(r,) xi .. d dr' (6)

The integrals

if (  l' )  x' d 3 r (7)

in Equation (6) are by construction completely symmetric £th-rank ten-
sors and are occasionally referred to as multipole moments( ') . However,

(:')Panofsky, W. K. H. and Phillips, M., Classical Electricity and

Magnetism, p. 15, Addison-Wesley, 1955.
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it is more convenient to efine the 2 i-pole moments in terms of the sym-

metric traceless part of . . Such a symmetric traceless part

can always be extracted from a tensor of rank 2 or higher and has the

following form

(2£)! Q. + a . ..Q . ij... 2£ 1i i 'Qij... iC18I

+ b E E 6iai .,i ... iB ... iu

(8)

where the coefficients ab... are determined by the equations that

result from setting the trace of Qil. it on any two indices equal to

zero. The Greek indices take on the values 1,2... Z and the following

notation has been used to denote traces

A jk A . (9)

The overall factor of (2)t/21ZI has been introduced for later

convenience.,

For the special cases of £ 1, 2, and 3, Equation (8) gives the
dipole moments

Q= =fp() Y 3r (10a)

the quadrupole moments

Q 1 k1)

Qij - 3ij - Si kk)

fP (') (3 xjxj - 5ijr 2 ) d3 r (10b)

and the octupole moments

Qijk - 15[ ijk - 5(6ijpmmk +  ik mjm + 6jkQimm)]

=f (') [15xixjx k - 3(6ijxk + 6ikXj + 6jkxi)r
2] d3r, (10c)

respectively.
4

L A. I



One interesting aspect of Equation (8) is that every term on the
right side except the first involves at least one Kronecker delta which
is to be contracted with the quantities '.. i (1/r) in Equation (6).

These terms will thus result in expressions invoiving derivatives of
7 (l/r) which is zero. Hence, it follows that

0(r) 2i ... r) Q i 

=0

200 1 1

Now by a process of induction it can be shown that

~ -. d.(l/r) = (-1) (2£)!
1111 (2) ! ~j .. ni +(12)

B " 'A 2£ £! r +l

where the n. are the direction cosines of r; i.e.,
1

ni = xi/r (13)

and the missing terms in Equation (12) all involve one or more Kronecker
deltas on the indices ii.. i. Thus, when they are contracted with the
traceless multipole moments in*Equation (11) they give zero. Hence,
Equation (11) reduces to

0 ni .- n ik (14)

£:

For a pure 2 -pole source, only the £th term in the sum contributes
and the potential has the form

nr Q" r "ni (15)

The corresponding magnetic field components have the form

H. -a Q1 i .. nit) (16)Hj~~ ~ (n,. - o,..
Sk



Taking I derivatives of Equation (16) and introducing the notation

D a *a ... ai Hjt+I (17)

results in the field derivative equations for a 2 -pole source

D =q R (18)
i "'Jz+i 1'i 2R .i . . '+l

where the q are the scaled multipole moments defined by

q=Q /Zir 2 ( +l)  (19)1l.. i 1*I  ..iI

and Ri ' " is a (2Z + 1)-rank tensor defined by

=- r2(t+11 ..5. (n. ...n/r +  (20)

It will be convenient to introduce a notation that obviates the
need for recording all of the subscripts. To accomplish this, paren-
theses will be used to denote a set of I subscripted indices while
square brackets will be used to denote a set of Z+l subscripted indices.
Thus,

R R (21)

Using this notation, the 2 -pole field tth-derivative equations take
the form

D[j ]  q(i) R(1)[j] " (22)

GENERAL INVERSION PROCEDURE

In this section a procedure will be outlined which is believed to
be of general applicability for the inversion of Equation (22). Although
a complete proof of the validity of the procedure in general has not been
established, the procedure is successful in inverting Equation (22) for
the special cases of 9 - 0, 1 and 2.

6



The objective is to use Equation (22) to determine the bearing
(-ni) and the scaled moments (q(i)) of a 2 -pole source from a knowledge
of the field derivatives (D[j]) at a single point. That this might be
possible was first suggeste by W. M. Wynn who noticed that the number
of independent Zth derivatives of the field components is 2k+3, while
the number of independent 2k-pole moments is 2 +l, and the number of
independent direction cosines (ni) is 2 (except for a sign ambiguity).
Thus, the number of independent pieces of information contained in the
field derivatives is precisely the same as the number of independent
unknowns. The number of independent components of D[j] and q(i) follow
from the fact that they are both completely svmmetric and traceless
tensors.

The inversion procedure requires that two tensors S(i)[j] and
[j](i) be found with the following properties:

1. q(i) S(i)[j] =0 (23)

2. q(i) N(i)[J] [j](k) = q(k) (24)

where

N(i)[j] R(i)[J] + S(i)[J] (25)

3. N [ N must be symmetric and traceless in the
[j](i) N(i)k separate indices [j] and (k).

4. N[j](i) N (i)[k must be idempotent; i.e.,

Li](i) N(i)([ ] ( (m) N(m)(kI - [J](i ) N(i)[kI " (26)

By definition R(i)[j] is a dimensionless tensor which can only depend
on the direction cosines nj. Hence, R(i)[j] must be expressible as a
sum of terms involving proaucts of direction cosines and Kronecker
eltas. From Equations (23-26) it then follows that S(i[j] and
[j](i) must have similar forms. Thus, one can write the tost general

expressions with arbitrary coefficients and then adjust the coefficients
to satisfy the above four conditions, thereby obtaining S(i)[j] and

Because of Equation (23), the field derivative equations can be
written

D[j] I q(i) N(i)[j] (27)

!7



Then contracting on the right with [j](k) yields by virtue of

Equation (24) Lij](k

q(k)= D[J] R[j](k) (28)

Substituting this back into Equation (27) results in the equation

Di i D[k] R[k](Z) N(£)[i * (29)

Equation (29) determines the direction cosines in terms of the field
derivatives while Equation (28) gives the scaled moments in terms of
the field derivatives and the direction cosines. Thus, the inversion
is complete once Equation (29) is solved.

Relation (29) involves 2Z+3 equations for only two unknowns.
Clearly many of these equations must be redundant if there is to be a
solution. In order to explicitly see the independent equations in (29)- (4) Fo
it is convenient to change to a spherical tensor notation .For any
tensor of rank Z+l it is possible to construct linear combinations of
the components which transform under rotations like objects of definite
spin J and z-component M as follows

T j K(J)Th D (30)
im [i] [i]

The coefficients KHi JM accomplish the transformation from the car-
tesian basis to the spherical basis and involve Clebsch-Gordan coeffi-
cients (4 ' ) . Since the construction of a spin J object with z-
component M from a set of £+l spin 1 objects (vectors) is usually not
unique, the superscript set of £-1 indices (j) is needed to distinguish
the various ways of making the composition().

In the special case where D(i] is completely symmetric and trace-
less (as it is in the current discussion), the construction is unique
so that Equation (30) is identically zero unless

J = J 0 £+l (31a)

(4)Rose, M. E., Theory of Angular Momentum (Wiley, 1957).

(r)Edmonds, A. R., Angular Momentum in Quantum Mechanics (Princeton

University Press, 1957) Chapter 3.

()Racah, G., in Ergebnisse der Exakten Naturwissenschaften, Vol. 37,

p. 56 (Springer-Verlag, 1965).

8



and

() 0jo) (31b)

where (Jo) is the unique set of indices that gives a non-zero result(4

The spherical basis transformation coefficients form an orthonormal
set

i(J)JM K(J')J'M'
[i] (i] (j)(jO) J ' (32)

and a complete set

S (J)J (j) JM ( C33)
(j)m [k) 11

where the bar denotes complex conjugation and

6 l, if (j) = (jI') (34)
(j)(j) o, otherwise

Equations (32) and (33) follow from the completeness and orthonormality
properties of the Clebsch-Gordan coefficients themselves.

Now by contracting with KI]J and inserting Equation (33) on the
right side Equation (29) becomes

D K(J)m = F DJ)JM' K J')J'M' N N K(J)JM

(J')J'M' [k] [((m) m) [i] 

(35)

As pointed out in Equation (31) this is a non-trivial result only when
(j) = (jo) and J-Jo Furthermore, the sum on the right side contrib-
utes only when (J') = (JO) and ' - Jo. Thus the non-trivial part of
Equation (35) can be written

TM - TM, VM,M (36)

,'aIn the usual parlance of quantum theory, the only way to obtain a

total spin of 9t+l by combining X+1 spin I objects is to make all
the spins parallel.

9
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or in matrix notation

T - TV (37)

where

T D K(JO)JOM (38)
M (i] (i]

and
(J )JoM' (j )JoM

VM'M R Ex I (](m) N(m)[i] Kti] (39)

In Equation (36) and subsequent equations, the summation convention is
extended to repeated upper case subscripts. These will be understood to
be summed from 1 to 2Jo+l.

The (2Jo+1) X (2Jo+l) matrix V ,M is idempotent as can be seen from
Equations (39), (33), and (26) and Trom the comments accompanying
Equation (31). Thus

VM,M,, VM,, M  = VMM (40)

In the special cases Z = 0, 1, and 2 the V-matrix is also hermitian

VMM = V (41)

and has a trace given by

VMM = 2J 0 - 1 = 2+l . (42)

Thus, it is possible in these cases to diagonalize the V-matrix by a
similarity transformation with a unitary matrix and obtain diagonal
elements consisting of 2L+i ones and 2 zeroes. Furthermore, it was
found in these special cases that it was always possible to perform an
appropriate coordinate rotation described by Euler angles (a,O,y) and
thereby diagonalize the associated V-matrix. Assuming these results to
be valid for arbitrary k, implies that the unitary matrix that diago-

(3)nalizes the V-matrix is the rotation matrix DMM, (a,8,y) belonging to

the Jth irreducible representation of the rotation group (Chapter 4 of
Reference 5 )(b).

(b)It should also be noted that for the rotation matrices the super-
script symbol (J) denotes only one index and not a set of indices.
This and the two usages of D (compare Equation (17) and (45)) should
cause no confusion.

10
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Performing the similarity transformation on V in Equation (37)

results in the equation

t = tVd  (43)

where %'d is the diagonal form of V

= r(J) ]-Il (J)(V d )%Am, m  C M M , ( , ,y V M "V M '" LDM " '1 M (a 'B Y ) ] (4 4 )

and

tM = TM, DWQM (0,,y) (45)

For the unit diagonal elements in Vd Equation (43) reduces to an iden-
tity. However, the two zero diagonal elements give two non-trivial
complex equations of the form

t = 0 (46a)

S2 = 0, (46b)

where M1 and M2 are defined by

(Vd)MM1 = (Vd)M2M2 = 0 (no sum) (47)

The two equations in Equation (46) are not independent as can be
seen from the fact that the usual choice of phases for the Clebsch-
Gordan coefficients gives

(j)JoM M Jo)Jo-M

i] = (-1) s K i] (48)

so that

TM = (-l)M TM (49)

Furthermore,

DO) (, ) ( -MM (ci,8,y) (50)

11



so that

= (-l) t_M. (51)

Thus, if

ti 4 0 (52a)

it follows that

t =0. (52b)-M 
1

But there are only two zeroes on the diagonal of Vd so that it must be
concluded that

M = -M2  (53)

and only one of the equations in (46) is independent.

Now the two real equations resulting from the complex equation(C)

WM0 (54)

are the two independent equations referred to earlier which can be
solved (at least numerically) for the Euler angles once the field deriva-
tives are known. After the Euler angles are known, the direction
cosines can be written immediately (refer to discussion leading to
Equation (111)).

n- -sina cosy (55a)

n2 - sine siny (55b)

n - cos$ (55c)

(*)The choice of Ml in Equation (54) seems to be arbitrary. However,

at least for 1-2, it is most expedient to choose M1  Jo (see
Equation (89) ff.).

12
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QUADRUPOLE INVERSION

For a point quadrupole source (k=2) the potential is given by

Equation (15)
1

0 = Qi ninj/r (56)

Taking the negative gradient gives the magnetic field

Hk =12 Q n(5ninjnk - 6 ik / r 4 "(57)

Two additional derivatives then yield

DmZk = qij Rijk~m (58)

with

D zk = Mzm Hk (59a)

qij = Qij/2 r6 (59b)

R 5[63 R1 - 2 3

ijkm itm 7(Rijkkm ijktm
4 +R 5  (59c)

ijkm ijktm

and

R I (60a)
ijkim inj lKm

R2  = nin (6 n + + knm) (60b)
ijkm i km I mnk k

R3  f nkn (6 n + 6 i + nknI(6ikn + 6 n)

+ n nm(6 ikn +6 njkn) (60c)

4,+

R 4 n(6 6 + 6 6 + 6 6)
ijkkm i jkm ki jm jk tm

+ n (6 6 kt6m + 6 ik69m) (60d)

13
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R5
R 5 n(6 + 6 + n (66 + 6 )
ijktm k it jm it im I. ik jm jkim

+ nm(6 ik 6 + jk6i) . (60e)

In constructing the tensors S(i)[j] and N[j](i) it is also neces-
sary to consider terms of the form

6 (60f)
ijktm ijnkntnm

i7  f (hi' k - nj 6 ik) n n m+ (ni6j£ - nj 6 i£) nknm

ijk~iu -k 'k t t i

+ (ni6jm - n 6im nkn (60g)

R8jki= 6j (nkl6+m +nt~k + nm'kd) (60h)

Rijk2 m = (ni6jk - nj6ik) 6 m + (n 6 £-nJ~ i£) 6km

+ (ni6J - nj6im) 6kz * (60i)

All of the quantities R U"k are symmetric in (ktm) and either symmetric
or antisymmetric in (iJJ. hese are the only such quantities that can
be constructed as sums of products of Kronecker deltas and direction
cosines. Furthermore these are the only types of quantities that can
occur in S(i)tj] and [j](i) because of condltion 3. Thus, it is rea-
sonable to attempt to construct S(i)[j] and N in the forms

9

Sijkm =E n ijktm (61a)

nal

and

9
kRmiJ _E n RJ k l m  (61b)

n-l

After a lot of algebra one can determine the coefficients an and bn
from the four conditions discussed in the previous section. The results
are

a6  -10 (62a)

14
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a = , for n # 6 (62b)

and

b = 1/8 (63a)

b2 = -1/1500 (63b)

b3 = -1/24 (63c)

b4 = 1/600 (63d)

b5 = 1/60 (63e)

b6 = 1/24 (63f)

b = 0, for n= 7, 8, 9. (63g)n

Contracting kmst with

Nijkkm R ijktm + Sijktm  (64)

gives
1 1 5

N N = (61 6 +6 6 + 6jnsnt -- 6 6 (65)ijk~m ktmst 2 Pis it js it 4 iist 12 ij st

and

9

N N C (66)rstij ijktm = n rstkR~m
n-1

where
Twre = nrnsntnkn~nm 

(67a)
rstk.m r

T 2 nrnn(6 n + 6 n) (67b)
rstkim r s t km Z mflk+ 'kdm

3T
3  = n(nkn6 + n6 +n
rstkim nr a k n tm nknm6 tt + nmn.6 tk)

+ nrnt (nknZ6 sm + nknmlst + nmnZ6sk)

+ ntns(nkn,6rm + nknmr + n n6 (67c)

15 1i



Ttk4 Ur's (6 kki6tm + 6k ti+ 6 mi6 t)

" nrn t(6 kk6 m+ 6 km6 t+ 6 m6 s)

"+ntn a(6 k6 rm+ 6km i +6 mg6 r) (67d)

T 5 n 6tk'sm

+ n (6 6 + 6 6 )3 + n fr. (s 6 + 66)
m sk ti tk at a tr tttn rm tk

+ n (6 6 + 6 6 )n6 ~ +
9. rk tin tk rin + + u tk'rgt

+ n t[nk(st 6 rm+ 6 rd6 ~+ n.(6 sk6ri + 6 k 6  )

+n (6 sk6 r + 6 k 6 9.)] (67e)

T6  0(n 6 + n6 + n 6) rikn~n (67f)
rstktmi r at a rt t rs

T 7 n t + n.6 + n6 )(n 6 + nk.6t +n ) (67g)
rstktin rt art t rs in m in nk9

T9 (6 6 + 6 6 + 6 6 )
ratktmn~k rtin k rkkm at

+ (6at 6km +6 k 6 at+6 s 6+ 6srtk

+ .(S 6L r 6 ft +6 ktme + k6 tm6 r) (671)

cI.c2M-6 6 6 6(+68as

c w C f t km (68b)

16



C = (68c)

C =i1 (68d)

Using Equations (61a), (62a), and (65-68) it is fairly easy to
determine that the four conditions of the previous section are indeed
satisfied by Equations (61-63). As shown in the previous section, these
conditions are sufficient to establish Equations (28) and (29) which for
the quadrupole case become

qij = Dktm Rktmij (69)

and

Dkim = Drst Rrstij Nijkm' (70)

respectively.

The spherical basis transformation coefficients for k = 2 are
given by

= _ Z (mlim 4 iiJM )(lm 2lm3I11im4U iUm Um3 (71)
ik2 3

mi

where (jm J2m2ljlJ 2Jm) is the Clebsch-Gordan coefficient(d) for coup-
ling spin 1and spin J2 to obtain spin j with z-component m; and U is
the unitary matrix which converts the cartesian vector components to
spherical vector components (page 66 of Reference 4).

- -i 0

U -0 0 2(72)

(')Edmonds notations (Reference 5) will be used for the Clebsch-Gordan

coefficients throughout this report.

17



M7

The rows of U are labeled from top to bottom by the spherical index
m - 1, 0, -1 while the columns are labeled from left to right by the
cartesian index i - 1, 2, 3.

Since U is unitary its inverse is given by0 .1
U- U - 0 i (73)

where the rows are now labeled by the cartesian index and the columns
by the spherical index. Furthermore, by inspection of Equation (72)
it is easily seen that

U mi , (-1)m U i (74)

The Clebsch-Gordan coefficients satisfy an orthogonality relation

1E (J lj J2m2 IJ 0J2JM) (J lmlJ 2m2 IJ 0 2J'M') a6 JJ,6M (7a

and a completeness relation

M & , (75b)
1 lJ2m21JlJ2JM)(Jlml'J2m 1ljJ2JM) = 'm ,l , 7b

3mmlm 1 m2 m2

as well as a number of symmetry properties including
(s)

(j 1 -mlJ 2 -m 2 lJlJ2 J-M) - (-1)j i+  j (J l ml J 2 m2 JlJ2JM) (75c)

J 1+j 2 -J(7)

(J 2m2 jml 1J 2 j 1 JM) - (-1) (j i 1 j 2 m2 Jjj 2JM) (75d)

(5 Edmonds, A. R., Angular Momentum In Quantum Mechanics, Princeton
University Press 1957, Chapter 3.
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Using these relations along with Equations (72) and (73), it is straight-
forward to establish a number of useful relations for the spherical basis
transformation coefficients.

-kjjm J'J'M'Ejl K kM 6jj, 6j,6MM, (76a)

KSJm K ~-R 6m 6(76b)
4j iki rst ir ks zt

JJM

jJ-M )J+M+l -JJM

K-) K . (76c)
ik9. ik2.

In addition it can be established that for the special case J=2, J=3 the
spherical basis transformation coefficients are completely symmetric(')
and traceless; i.e.,

23M .23M .23M (77a)
ik = k = Kki(

and

K2 3M 0 (77b)
ikk

As discussed in the previous section the relations (76b) are suf-
ficient to permit rewriting equation (70) in the form

TM = TM,VM,M (78)

where
23M

T D 23mKjtm (79)

and

j-23M' N 23MMM = rst rstij iJkem Kk~m (80)

(e)The establishment of the last equality in Equations (77a) is not
quite so straightforward since it requires a recombination of the
three spins involved; these can best be handled by using Racah's W-
coefficients or Wigner's 6-j symbols. See E. P. Wigner, Group
Theory (Academic Press, 1959), Equation 24.24.
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It is not necessary to explicitly evaluate the right side of Equation
(80) in terms of the direction cosines although this could be done.
Instead it is only necessary to establish a few properties of the V-
matrix from the defining relation (80); namely, that V has a trace of 5,
is hermitian, and is idempotent(t ) .

The hermiticity of V is established as follows

V K23M' N K 23M

M'M [r] [r](i) (i)(s] Is]

9 -23M' n 23M
L Cn K(r] Tr][s] KIs] , from Equation (66)

n-l

-23M' n 23M
= V Cn K r] T r][s] KIs , from Equations (67) and (77).

n=1,3,5

Now by inspection of Equations (67) it is seen that

Tn =T
[rT[s] [s][r] n for n - 1, 3, 5 . (81)

Thus,

23M n -23M'

VM'M CnK[s] T[s][r] K[r] VMM'" (82)

n-1,3,5

The dempotent property is established by using the idempotent char-
acter of N[ri(i) N(i) [s] along with Equation (76b) and the comment
associated with-Equations (31).

(")V has another curious property that follows from Equation (76c).

V-M-M' " (-1) VMM'

However, this relation is of no utility in the present discussion.

20
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V-R23M' NK2"
VHMIVM, M ~ r] Er](i) (i)[s] [s]

-23M' 23M
X t[t] N[r](j) N(i)(u] K[u]jM"

x-23M' .N 2 3 ME~t] Nt ] j ) N(j)[u Iu]
N23M' N K "r [r] i)r](i) N(i)[s] K s]

x Kit] 't](j) N(j)[u] K 23M

-23M' N N K23M= K~r] r](i) N(1)[s] ISM() N(j)[u] (u]

-23M' N K23M
[r] [r](i) (i)[u] Eu]

- VM'M (83)

The trace of V is evaluated in a similar fashion

VMM K 23M N .23M
M Er) Er](i) (i)[s] Es]

E -0 N K2 3M
Emr] [r](i) (i)[s] [s]

6[rl[s] [r)(i) N(i)[s] N Nr](i) N(i)[r]

9
= C T n (84)n [r][r]
n=l

The quantities T n can be evaluated from Equations (67) with the
result Er][r]

VM = 5 . (85)

The hermiticity of V implies that V can be diagonalized by a simi-
larity transformation with a unitary matrix. The resulting diagonal
matrix Vd by virtue of the idempotent property of V can have only ones
and zeroes on the diagonal. Finally, the trace relation (85) requires
that there be exactly five ones and two zeroes on the diagonal of Vd.
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The position of the zeroes on the diagonal can be established by con-
sidering a special case. When the vector r lies along the z-axis; i.e.,

n, = 6 03' (86)

The explicit form of the V-matrix can be determined using Equations (67)
and (68) in the relation

E C K X 3M K(87)
fIn=l,3,5 n rst rstktm CM

which was obtained in arriving at Equation (82). For this special case
one finds that

V = Vd = (0, 1, 1, 1, 1, 1, 0) (88)

where the last equality gives the elements along the diagonal. From
this result one learns not only the order of the elements in Vd, but
also that the unitary matrix that diagonalizes the V-matrix corresponds
to a rotation of coordinates that brings the z-axis into coincidence
with r. This implies that the diagonalizing matrix belongs to a repre-
sentation of the rotation group and hence is one of the rotation
matrices DI) (aB,y) where (c,8,y) are the Euler angles of the desired
rotation. Thus,

[D (3) (ay)] I1 VD( 3)(,,) Vd ff (O,,llllO) (89)

for some choice of (c,8,y).

(NB: When diagonalizing an hermitian matrix by a unitary matrix,
the order of the resulting diagonal elements is usually immaterial.
However, if the positions of the zeroes in Equations (88) and (89) are
altered, it is no longer clear that the diagonalizing matrix is one of
the matrices D(3)(aBy ). Thus, to ensure that the diagonalizing
matrix is one of these matrices and not some other unitary 7X7 matrix,
it is expedient to adopt the order given.)

To determine the appropriate values of the Euler angles the rota-

tion is applied to Equation (78) yielding

t - tVd (90)

where

t- TD (3 )  ,B,y) (91)
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For the components M = 0, +1, and :2, Equation (90) is a trivial iden-
tity. However, for M - +3 it imposes the following conditions on

t o+3 ' 0 (92)

As pointed out in The previous section, only one of these complex equa-
tions is independent since Equations (79) and (76c) imply that

T-M = (-l)M TM (93)

Thus, it is sufficient to consider only

t3 = 0. (94)

Using the notation of Edmonds (Chapter 4 of Reference 5) for the
rotation matrix, Equation (94) becomes

Z TM e iM y  )(8)e13a = 0 " (95)

M

Clearly the value of a is arbitrary so that Equar'on (95) imposes two
real conditions on the two angles 8 and y.

T Te iMy (3) (a) = 0 (96)

M

The two real conditions imposed by Equation (96) can be explicitly
exhibited in a convenient way by using Equation (93) and writing

TM = pMe (97)

with pM and 9M both real. Thus, (suppressing the argument 8)

TMe MY(3)

M 3
Td(3+ EeiMy (3) 1_Me-U'yd (3).

o o3 MWl dM3  -M31

3
(3) , i(M + My) (3) M e-i(C + My),d(3),

- 0d(3 +oMaM d 3 +()

-0. (98)
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Taking the real and imaginary parts of this last equality gives the
desired conditions.

Po (3) +ote (3) (IM d (3)) 0 (9a03 E C M a MY)[ d 3  + () -M3 (99a)
M=l

3o,, sin(e + (3)[ )  -m.(3)(9b
m + MY) - ( -)dM 3 ] = 0 . (99b)

M=1

The () (8) are given in Chapter 4 of Reference 5.

(8) -(-) (3-M)(3M) ! cos 8/2 sin 3-M 8/2 • (100)

Thus,

d(3) () =cos 6 6/2 (101a)33

d(3) (8) = - V cos 5 8/2 sin P/2 (lOb)23

d(3) (8) = -5 Cos4 8/2 sin 2 8/2 (101c)13

d(3) (B) -2V5 cos 3 8/2 sin 3 8/2 (101d)03

d(3) (B)- A-1 Cos 2 8/2 sin 4 8/2 (101.)-13

d(3 ) () - -/6-cos 8/2 sin5 8/2 (101f)-23

d(3) (8) - sin6 8/2 (101g)-33

Defining

- () + (o,)M d (8) (102a)

and

( " 3) (8)- (- 1 )M d(3) (8), (102b)

24
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one finds

1/2 A = = -V_ sin 3 (103a)0 03 in4

=-- -i5 sin3 8 cot 8 (103b)
1 4

A2 = 2- sin 3 8(1 + 2 cot 2 8) (103c)
4

A = sin 3 a cot $(3 + 4 cot 2  (103d)
3 48

B, = - sin 2 8 (103e)
14

B=§ sn2 act0(10 3f)
2 2ji ct

B = i sin 2 5(l + 4 cot8) (103g)

Using Equations (102-103) and defining

x = cot 8, (104)

Equations (99), after some simplification, become

sin 8p 3X(
3 + 4X 2) cos(e 3 + 3y)

- v6 - 2(i + 2x2) cos(e 2 + 2y)

+ ,F-j 1x cos(61 + y) -/-p0] p 0 (105a)

sin28 P3 (1 + 
4X 2) sin(e3 + 

3Y)

-2/6P 2 X sin(e2 + 2y)

+ 1- p1 sin(e1 + y)] - 0 . (105b)

Solution of these two equations for 8(or X) and y then permits the com-
pletion of the inversion process. Unfortunately these equations are
transcendental and do not seem to permit a simple solution. They are
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probably best solved numerically once the values of pM and OM are known.

Only solutions in the ranges

0 < <n (106a)

0 < y < 27 (106b)

need be determined. Once the solutions of Equations (105) are known the
direction cosines nj can be easily determined.

The spherical basis components Ym of nj are given according to
Equations (30) and (71) by

Ym Umini (107)

In the special frame where ni - Si3 (denoted by a prime) this gives

Y' - U - (108)

m m3 mo

By Equation (91) Y' and Y are related by
m m

m M Ym , Dmim- (ca,8,y) (109)

Solving Equations (107-109) for ni gives

ni a U -1om .(00y)- (110)

Explicit evaluation of Equation (130) using Edmond's expression for
D(I)(c,8,y) gives

n- -sin 8 cos y (illa)

n2 - sin 8 sin y (l1b)

n-3 cos • (1llc)

It is now straightforward to evaluate the scaled moments qjj from
Equation (69), thus completing the inversion process for the quadrupole
source.

2 4
NB: It should be noted that the terms involving Rijktm and Ri km

do not contribute to the sum in Equation (69) because of the tracellos
character of Dkkm . Furthermore, the evaluation of the remaining sums
can be greatly simplified by taking advantage of the symmetry of Dktm .
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SUMMARY OF THE QUADRUPOLE INVERSION RECIPE

Once the values of the independent second derivatives (for example
Dill, D11 2 , DII3 , D1 22 , D123, D22 2, D22 3) are known, the spherical com-
ponents can be computed from Equation (79). After considerable simpli-
fication these give

T3 = -/2/2[DII1  3D122 + i(3D1 1 2 - D222)] (l12a)

T12 = 1/2[D13 D 223 + 21 D123' (ll2b)

T1 = 30/4[Dil + D122 + i(Dl12 + D 222) (112c)

T0 = -Vi-/2[D 1 1 3 + D 223' (112d)

The moduli PM and arguments 8M can then be computed from the real and
imaginary parts of TM in the usual way.

2 22
PM [(Re TM) + (Im TM) (113a)

sin eM - IM TM/P.M , cos 6M Re TM/PM . (113b)

These can then be substituted into Equations (105) and the resulting
equations solved for 8 and y in the intervals specified in relations
(106).

For convenience, the pertinent equations are repeated here.

sin3 fp3 X(3 +4X 2 ) cos(e 3 + 
3y)

-V6-P 2 (1 + 2X ) cos(8 2 + 2y)

+ Yi P1Xcos( + y) - Vpo] (105a)

sin 2B[ 3 (l + 4X 2 ) sin(e 3 + 3y)

-2 V6 P2X sin(e2 + 
2Y)

+ i5 pl sin(el + y)] (105b)
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0 < a <  (106a)

0 < y < 2nr (106b)

Finally, the direction cosines are given by Equations (111)

n, = -sin B cos y (llla)

n2 , sin a sin y (llb)

n3 = cos B (111c)

and the scaled quadrupole moments are given by Equations (69), (61b),
(60) and (63). After much simplification the latter give(6)

1 1

qi = L nD - (njnknDki + ninknkj
j 10 m mij 8 + nanD Zk~

+ 4 (ninj + - ij ) nknZmkm (114)

For purposes of checking the results, the field derivatives can be
regenerated using Equations (58) through (60). When combined these can
be simplified to give

Dkm = 5{7( 9nntnm - (6 kmnt + 6mnk + 6ktnm)] njnjq j

+ 2 [(-7nknl + 6kt) njqjm + (-7nknm + 6km) njqj

+ (-7ntnm + m) n qjk]

+ 2(nkqlm I njqkm + nmqkg ) l (115)

See comments following Equation (111).
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APPENDIX A

DIPOLE INVERSION RECIPE
USING THE SPHERICAL TENSOR PROCEDURE

From the independent field derivatives (DII, D1 2, D1 3, D22, D23),
evaluate the spherical components TM.

T 1.
T2 (DII - D22 + 2iD1 2 ) (Ala)

T1 = -(D1 3 + iD2 3) (Alb)

T - -413 (DII + D2 2 ) . (Ale)

The moduli 0M and arguments eM can then be evaluated in the usual way

PM - [(Re M) 2 + (Im TM)2] (A2a)

sin eM = Im M/OM, Cos eM = Re TM/PM . (A2b)

The angles 6 and y are then obtained by solving the following system of
equations

sin 212p2 (l + 
2X 2) cos(e 2 + 2y)

-4piXco&(el + Y) + = Po] = 0 (A3a)

sin 8[p 2 X sin(e 2 + 2) - p1 sin(e1 + y)) 0 (A3b)

with

0< 8 < (A4a)

0 < y < 27 (A4b)

The direction cosines are given by

nI - -sin 8cos y (AS)

n2 a sinBsin y (A5b)

n 3 - co s (A5c)

A-1



The scaled dipole moments are given by

q 9, = I I n njnKj (A6)

For checking purposes the field derivatives are regenerated by

D jk 3[(C-5n jnk + 6jk) n i li + njq~ k k.qi] (A7)

A-2
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