INSTANTANEOUS CONTROL OF BROWNIAN MOTION

by

J. Michael Harrison
Graduate School of Business
Stanford University

and

Michael I. Taksar
Department of Operations Research
Stanford University

TECHNICAL REPORT NO. 199

October 1981

SUPPORTED UNDER CONTRACT N00014-75-C-0561 (NR-047-200)
WITH THE OFFICE OF NAVAL RESEARCH

Gerald J. Lieberman, Project Director

Reproduction in Whole or in Part is Permitted
for any Purpose of the United States Government

Approved for public release; distribution unlimited

DEPARTMENT OF OPERATIONS RESEARCH
AND
DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
Instantaneous Control of Brownian Motion

J. Michael Harrison
Michael I. Taksar
Stanford University

Abstract

A controller continuously monitors a storage system, such as an inventory or bank account, whose content \(Z = \{Z_t, t \geq 0\} \) fluctuates as a \((\mu, \sigma^2)\) Brownian motion in the absence of control. Holding costs are incurred continuously at rate \(h(Z_t) \). At any time, the controller may instantaneously increase the content of the system, incurring a proportional cost of \(r \) times the size of the increase, or decrease the content at a cost of \(\lambda \) times the size of the decrease. We consider the case where \(h \) is convex on a finite interval \([a, R]\) and \(h = \infty\) outside this interval. The objective is to minimize the expected discounted sum of holding costs and control costs over an infinite planning horizon.

It is shown that there exists an optimal control limit policy, characterized by two parameters \(a \) and \(b \) \((a < a < b < R)\). Roughly speaking, this policy exerts the minimum amounts of control sufficient to keep \(Z_t \in [a, b] \) for all \(t \geq 0 \). Put another way, the optimal control limit policy imposes on \(Z \) a lower reflecting barrier at \(a \) and an upper reflecting barrier at \(b \). We do not give a full-blown algorithm for construction of the optimal control limits, but a computational scheme could easily be developed from our constructive proof of existence.
1. Introduction

Consider a controller who continuously monitors the content of a storage system, such as an inventory or bank account. In the absence of any control, the content process $Z = \{Z_t, t \geq 0\}$ fluctuates as a Brownian Motion with drift μ and variance σ^2, and holding costs are continuously incurred at rate $h(Z_t)$. In order to avoid excessive holding costs, the controller may at any time increase the content of the system by any amount desired, incurring a proportional cost of r times the size of the increase. Similarly, he may decrease the content by any amount desired, incurring a proportional cost of l times the size of the decrease. Hereafter we use the term **pushing right** to mean increasing the content of the system, and **pushing left** to mean decreasing the content. Thus r and l are the proportional control costs associated with pushing right and pushing left respectively.

The controller's objective is to find a policy that minimizes the expected discounted sum of holding costs and control costs over an infinite planning horizon, where future costs are continuously
discounted at interest rate $\gamma > 0$. To formulate this problem in precise mathematical terms, we begin with a (μ, σ^2) Brownian motion $X = \{X_t, t \geq 0\}$, denoting by P_x the distribution on the path space of X corresponding to initial state x. A policy is defined as a pair of nonnegative processes $R = \{R_t, t \geq 0\}$ and $L = \{L_t, t \geq 0\}$ that are non-decreasing and non-anticipating with respect to X. Interpret R_t and L_t as the cumulative amounts of rightward movement and leftward movement, respectively, effected by the controller over the time interval $[0, t]$. The content process under policy (R, L) is

$$Z_t = X_t + R_t - L_t, \quad t \geq 0,$$

and we define the associated cost function

$$k(x) = E_x \left[\int_0^\infty e^{-\gamma t} h(Z_t) \, dt + r \int_0^\infty e^{-\gamma t} \, dR_t + \lambda \int_0^\infty e^{-\gamma t} \, dL_t \right],$$

with the Riemann-Stieltjes integrals on the right defined to include the control costs rR_0 and λL_0 incurred at $t = 0$ (see §3). Our objective is to find a policy which minimizes $k(x)$ for every starting state x.

An essential feature of this problem is that the controller can instantaneously change the content (or state) of the storage system. Thus, it is possible to further impose state constraints on the controller's actions, which may be formally expressed by setting $h(x) = 0$ for some states x. In the same way, one of the controller's options may be eliminated by setting $r = 0$ or $\lambda = 0$. The special case where $r = 0$, $\lambda = 0$ and
If $x > 0$
\begin{equation}
(1.1) \quad h(x) = \begin{cases}
 x & \text{if } x \geq 0 \\
 c & \text{if } x < 0
\end{cases}
\end{equation}

was studied by Harrison and Taylor [6]. Defining b as the unique solution of a certain transcendental equation, they proved the optimality of a control limit policy (R^*, L^*) with lower limit zero and upper limit b. The policy (R^*, L^*) and its associated content process $Z^* = X + R^* - L^*$ may be described as follows. If $X_0 < 0$, one takes $R_0^* = -X_0$, so that $Z_0^* = 0$. If $X_0 > b$, one takes $L_0^* = X_0 - b$, so that $Z_0^* = b$. After time zero, one increases R^* and L^* in the minimal amounts sufficient to achieve $0 \leq Z^*_t \leq b$ for all $t \geq 0$. Under this plan, Z^* is a (μ, σ^2) Brownian motion with a lower reflecting barrier at zero and an upper reflecting barrier at b, $R^* - R_0^*$ is the local time of Z^* at zero, and $L^* - L_0^*$ is the local time of Z^* at b. In particular, although R^* and L^* may have jumps at $t = 0$, they are continuous but singular thereafter. The last phrase means that the set of time points at which R^* or L^* increases has zero Lebesgue measure (almost surely). This singularity expresses a bang-bang property of the optimal policy with instantaneous control.

In this paper we consider the instantaneous control problem with $r < \omega$, $\lambda < \omega$ and a holding cost function of the form
where $-\infty < \alpha < \beta < \infty$. It will be shown that there exists an optimal control limit policy with lower limit α and upper limit β, where $\alpha \leq \alpha < \beta \leq \beta$. We do not present a full-blown algorithm for computation of the optimal control limits α and β, but a computational scheme could easily be developed from our constructive proof of existence. Our treatment generalizes the result by Harrison and Taylor [6] described earlier, and the methods used here are also more elegant and more general in their applicability. This improvement in methodology and presentation has itself been a major goal in our study, although the extension to general convex holding costs is potentially important for applications.

It will ultimately be found that the minimal cost function f for our instantaneous control problem satisfies the optimality equation (or Bellman equation)

\[
0 = [\Gamma f(x) - \gamma f(x) + h(x)] \land [f'(x)+1] \land [f'(x)-1].
\]

where

\[
\Gamma = \frac{1}{2} \sigma^2 \frac{\partial^2}{\partial x^2} + \mu \frac{\partial}{\partial x},
\]

is the infinitesimal generator of the Brownian motion X. Note that (1.2) imposes three differential inequalities on f, plus the requirement that at least one of the inequalities be tight in each
state x. For those familiar with standard stochastic control theory, (1.2) has a strange appearance, so we shall begin in §2 with a heuristic derivation of this optimality equation. A precise mathematical formation of the instantaneous control problem is then given in §3. Using the ubiquitous change of variable formula (or generalized Ito Formula) for semimartingales, we show in §4 that any smooth solution f of (1.2) satisfies $f \leq k$ for all cost functions k associated with feasible policies. If one can find a policy whose cost function satisfies the optimality equation, it of course follows that this policy is optimal. The cost function for a general control limit policy is computed in §5, and then in §6 we show how to choose the control limits so that our optimality equation is satisfied by the associated cost function. Finally, §7 discusses applications of the instantaneous control problem and some correlative references.

2. Heuristic Derivation of the Optimality Equation

To simplify discussion, we assume in this section that $h(x) < \infty$ for all $x \in \mathbb{R}$ (the real line), and the letters a and A will be used here with new (temporary) meanings. Suppose that, in the stochastic control problem described in §1, the controller can only push right or left at a rate which is not to exceed $\theta < \infty$. We then have a more or less standard stochastic control problem, which can be stated in the following unconventional form. A policy is a pair of processes (R,L) having the form
(2.1) \(R_t = \int_0^t \alpha_s \, ds \) and \(L_t = \int_0^t \beta_s \, ds \), \(t \geq 0 \),

where \(\alpha \) and \(\beta \) are non-anticipating with respect to \(X \) and satisfy \(0 \leq \alpha, \beta \leq \theta \). The content process under policy \((R,L)\) is \(Z_t = X_t + R_t - L_t \), and we define the associated cost function \(k(x) \) as in §1. Let \(f(x) \) be the pointwise infimum of all such cost functions (the minimal cost function). Under mild assumptions on \(h \) it can be shown that \(f \) is twice continuously differentiable and satisfies the optimality equation

(2.2) \[0 = \inf \{ (r \cdot f) - \gamma f + (\alpha - R)f' + \rho \alpha + \lambda R + h(x) \} \]

\[= \inf \{ (r - \gamma f + h)(x) + \alpha r + f'(x) + \lambda R + h(x) \} \],

where the infimum is taken over all real numbers \(\alpha, \beta \in [0, \theta] \).

Problems of this type, where the controller has the ability to alter the drift of a diffusion process at some cost, have been treated by Mandl [9], Krylov [8], Fleming and Rishel [4], Gihman and Skorohod [5], and a number of others.

Since \(f \in \mathcal{W}^2(\mathbb{R}) \), the infimum in (2.2) is attained, and the minimizing values for \(\alpha \) and \(\beta \) are

\[\alpha^*(x) = \text{sup}_A \alpha \quad \text{where} \quad A = \{ x \in \mathbb{R} : r + f'(x) \leq 0 \} \],

\[\beta^*(x) = \text{sup}_B \beta \quad \text{where} \quad B = \{ x \in \mathbb{R} : \lambda - f'(x) \leq 0 \} \].
This is a **bang-bang policy**. In each state \(x \), each available control mode (pushing right and pushing left) is employed at either the maximum possible intensity \(\Theta \) or else at the minimum intensity of zero. The content process \(Z^* \) associated with the optimal policy satisfies the stochastic differential equation

\[
(2.3) \\
Z_t^* = X_t + \int_0^t a^*(Z_t^*) \, ds - \int_0^t R^*(Z_s^*) \, ds \\
= X_t + \Theta \int_0^t \gamma^*(Z_s^*) \, ds - \Theta \int_0^t \gamma^*(Z_s^*) \, ds ,
\]

the optimal policy \((R^*,L^*)\) being given by the last two terms on the right side of (2.3). Nothing said so far depends on any particular structure of \(h \). Assuming that \(h \) is convex with \(h(x) + \infty \) as \(|x| + \infty \), it can be shown that \(f \) is convex itself, with \(f(x) + \infty \) as \(|x| + \infty \), so that \(A = (-\infty, a] \) and \(B = [b, \infty) \) for some parameters \(a \) and \(b \) \((-\infty < a < b < \infty)\).

Letting \(\Theta \to \infty \) in an attempt to approximate the instantaneous control problem of §1, this suggests the optimality of a control limit policy. Starting from any state \(x \), we should either apply no control at all initially, or push right at the maximum possible rate, or else push left at the maximum rate. In the limiting problem, the latter two actions amount to instantaneous (jump) displacement, either right or left. With this motivation, we now use an infinitesimal argument to derive the optimality equation with instantaneous control, considering infinitesimal elements of space rather than time.
Let f be the minimal cost function for the instantaneous
control problem, fix a starting state x, and consider a small
surrounding interval $[x-\varepsilon, x+\varepsilon]$. The preceding discussion suggests
that we should either jump immediately to $x+\varepsilon$ and proceed optimally
from there, jump immediately to $x-\varepsilon$ and proceed optimally from
there, or else apply no control up to time

$$T(\varepsilon) \equiv \inf \{ t \geq 0: \| X_t - X_0 \| = \varepsilon \},$$

and proceed optimally thereafter. Under the first option, our total
expected discounted cost is

$$(2.4) \quad r\varepsilon + f(x+\varepsilon) = f(x) + [r + f'(x)]\varepsilon + o(\varepsilon),$$

under the second it is

$$(2.5) \quad \varepsilon + f(x-\varepsilon) = f(x) + [1-f'(x)]\varepsilon + o(\varepsilon),$$

and under the last it is

$$(2.6) \quad E_x \left[\int_0^{T(\varepsilon)} e^{-\gamma t} h(X_t) dt + e^{-\gamma T(\varepsilon)} f(X_{T(\varepsilon)}) \right]$$

\[= f(x) + [\gamma f(x) - \gamma f(x) + h(x)] E_x[T(\varepsilon)] + o(E_x[T(\varepsilon)])\]

\[= f(x) + [\gamma f(x) - \gamma f(x) + h(x)] (\varepsilon/\sigma)^2 + o(\varepsilon^2).\]
In writing (2.6), we have used the fact that

\[E_X [f(X_{T(\varepsilon)}) - f(x)]/E_X [T(\varepsilon)] + \gamma f(x) = 0 \text{ as } \varepsilon \to 0, \]

and that \(\sigma^2 E_X [T(\varepsilon)]/\varepsilon^2 + 1 \) as \(\varepsilon \to 0 \). Now to minimize our expected discounted cost starting from \(x \), we want to take the smallest of (2.4) - (2.6), meaning that

(2.7) \[f(x) = \min \{ f(x) + [\gamma f(x) - h(x)] (\varepsilon/\sigma)^2 + o(\varepsilon^2), \]

\[f(x) + [r + f'(x)] \varepsilon + o(\varepsilon), \]

\[f(x) + [l - f'(x)] \varepsilon + o(\varepsilon). \]

Subtracting \(f(x) \) from both sides of (2.7), and letting \(\varepsilon \to 0 \), we conclude that

\[0 = [\gamma f(x) - h(x)] + [r - f'(x)] + [l - f'(x)], \]

which is precisely the optimality equation (1.2).
3. Problem Formulation

The data for our problem are a drift parameter μ, a variance parameter $\sigma^2 > 0$, control cost parameters r and λ, an interest rate $\gamma > 0$, a compact state space $S \equiv [\alpha, \beta]$ and a convex holding cost function $h: S \rightarrow \mathbb{R}$. We assume $r + \lambda > 0$, for otherwise the control problem would make no sense.

Let \mathcal{O} be the space of all continuous functions $\omega: [0, \infty) \rightarrow \mathbb{R}$, which is usually denoted $C[0, \infty)$. Let $X_t: \mathcal{O} \rightarrow \mathbb{R}$ be the coordinate projection mapping $X_t(\omega) = \omega(t)$, $t \geq 0$ and $\omega \in \mathcal{O}$. Then $X = (X_t, t \geq 0)$ is simply the identity map $\mathcal{O} \rightarrow \mathcal{O}$. Let $\mathcal{F}_t = \sigma(X_s, 0 \leq s \leq t)$ denote the smallest σ-field on \mathcal{O} such that X_t is \mathcal{F}_t-measurable for each $t \geq 0$, and similarly let $\mathcal{F} = \sigma(X_t, t \geq 0)$. Finally, for each $x \in S$, let P_x be the unique probability measure on $(\mathcal{O}, \mathcal{F})$ such that X is a Brownian motion with drift μ, variance σ^2 and starting state x under P_x, and let E_x be the associated expectation operator. A policy is defined as a pair of processes $R = (R_t, t \geq 0)$ and $L = (L_t, t \geq 0)$ such that

\begin{align}
\text{(3.1)} & \quad R(\omega) \text{ and } L(\omega) \text{ are right-continuous, non-negative} \\
& \quad \text{and non-decreasing for all } \omega \in \mathcal{O}, \text{ and} \\
\text{(3.2)} & \quad R_t \text{ and } L_t \text{ and } \mathcal{F}_t \text{-measurable for all } t \geq 0.
\end{align}

As usual, we summarize (3.2) by saying that R and L are adapted to (\mathcal{F}_t). We associate with policy (R, L) the controlled process $Z = X + R - L$, and we say that (R, L) is a feasible policy if
(3.3) \[P_x(\mathcal{Z}_t \in S \text{ for all } t \geq 0) = 1 \quad \text{for all } x \in S, \]

(3.4) \[E_x \left[\int_0^\infty e^{-\gamma t} \, dR_t \right] < \infty \quad \text{for all } x \in S, \]

and

(3.5) \[E_x \left[\int_0^\infty e^{-\gamma t} \, dL_t \right] < \infty \quad \text{for all } x \in S. \]

The integrals in (3.4) and (3.5) are defined for each fixed \(\omega \) in the ordinary Lebesgue-Stieltjes sense over \([0,\infty)\), with the convention that \(R_t = L_t = 0 \) for \(t < 0 \). Thus the integral in (3.4), for example, equals the sum of \(R_0 \) and an integral over \([0,\infty)\). This same notational convention will be used later without comment. We associate with a feasible policy \((R,L)\) the cost function

\[k(x) = E_x \left[\int_0^\infty e^{-\gamma t} [h(\mathcal{Z}_t) dt + r dR_t + l dL_t] \right], \quad x \in S, \]

and \((R,L)\) is said to be optimal if \(k(x) \) is minimal (among the cost functions for feasible policies) for each \(x \in S \). By defining feasibility via (3.3)-(3.5) we are implicitly setting \(h = 0 \) outside \(S \) and then restricting attention to policies that have finite expected discounted cost for every starting state \(x \). We could still enrich our definitional system to include all possible starting states \(x \in \mathbb{R} \), but for \(x \) lying outside \(S \), the feasibility restriction (3.5) would obviously require that either \(R \) or \(L \) have a jump at
t = 0 so as to ensure $Z_0 \in S$. By restricting attention to starting states $x \in S$, we avoid some irritating complications without any significant loss of generality.

This is the most concrete possible formulation of the decision problem described informally in §1. By taking $\mathcal{O} = C[0,\omega)$ and $X(\omega) = \omega$, we formally express the fact that our decision-maker observes nothing of relevance other than the sample path of X, and (3.2) expresses the requirement that his actions over the time interval $[0,t]$ depend only on the observed values of X_s, $0 \leq s \leq t$.

4. An Application of the Generalized Ito Formula

Until further notice, let (R,L) be a fixed feasible policy and $x \in S$ a fixed initial state. In the usual way, we denote by $\Delta R_t = R_t - R_{t-}$ the jump of R at time t, recalling that a right-continuous function with finite left limits can have only countably many points of discontinuity. As in §3, we take $R_t = 0$ for $t < 0$, so that $\Delta R_0 = R_0$. The same convention is used in extending the definition of ΔL_t to $t = 0$. It will be convenient to denote by ρ and λ the continuous parts of R and L respectively, meaning that

$$
(4.1) \quad \rho_t = R_t - \sum_{0 < s \leq t} \Delta R_s \quad \text{and} \quad \lambda_t = L_t - \sum_{0 < s \leq t} \Delta L_s,
$$
for $t \geq 0$. Obviously ρ and λ are continuous and non-decreasing with $\rho_0 = \lambda_0 = 0$. As before, let $Z = X + R - L$.

Now fix $f \in \mathcal{C}^2(S)$ and denote by $f(Z)$ the process $(f(Z_t))$, $t \geq 0$. Then $\Delta f(Z)_t = f(Z_t) - f(Z_{t-})$ and we extend this to $t = 0$ with the useful convention

$$\Delta f(Z)_0 \equiv f(Z_0) - f(X_0).$$

Finally, let $\Gamma = 1/2 \sigma^2 \sigma^2 d^2 + \mu \sigma \sigma d$ as in §1, and let $T > 0$ be fixed.

(4.2) **Proposition.** With the assumptions and definitions above,\[E_x[\exp^{-\gamma T}\phi(Z_T)] = f(x) + E_x\left[\int_0^T \exp^{-\gamma T}(\gamma f - \gamma f) (Z_t) dt \right] \]

$$+ E_x\left[\int_0^T \exp^{-\gamma T} f'(Z_t) d(\rho - \lambda)_t \right]$$

$$+ E_x\left[\int_{0 \leq t \leq T} \exp^{-\gamma T} \Delta f(Z)_t \right].$$

Remark. From (3.3) - (3.5) and the fact that $f \in \mathcal{C}^2(S)$ it follows that all of the expectations appearing in (4.2) exist and are finite.

Proof. This is a direct application of the change of variable formula for semimartingales, but to make connection with the literature on that subject we must enrich our set-up slightly. Remembering that
x ∈ S has been fixed, let (Ω, ℋ, Px) be the completion of
(Ω, ℋ, Px), cf. Williams [11, p. 16], and for each t ≥ 0 let ℋ^*
be formed from ℋ_t by adding to it all A ∈ ℋ^* such that
Px(A) = 0. It is well known that the filtration (ℋ^*_t, t ≥ 0) is
right continuous, and hence the filtered probability space (Ω, ℋ^*,
P_x, (ℋ^*_t, t ≥ 0)) satisfies the usual conditions imposed by
Meyer [10] in his treatment of stochastic integration and the change
of variable formula. Our processes X, L, R and Z are all adapted
to (ℋ_t) and thus also to (ℋ^*_t). When we use the terms adapted,
martingale, stopping time, etc., later in this proof, the underlying
filtration is understood to be (ℋ^*_t).

It will be convenient to represent X in the form
X_t = X_0 + σW_t + µt
where W is a standard Wiener process starting at zero. Then

\[Z_t = σW_t + V_t \quad \text{where} \quad V_t = X_0 + R_t - L_t + µt. \]

From the definitive properties of R and L we see that V is a VF
(finite variation) process, and W is of course a martingale, so Z
is a semimartingale. (We follow Meyer [10] in all of our terminology
concerning martingales and related theory.) Then the change of
variable formula (or generalized Ito formula) gives us

\[f(Z_T) = f(Z_0) + \int_0^T f'(Z_{t-})dZ_t + \frac{1}{2} \sigma^2 \int_0^T f''(Z_{t-})dt \]
\[+ \sum_{0 < t < T} \left[\Delta f(Z)_t - f'(Z_{t-})\Delta Z_t \right], \]
\[\equiv f(Z_0) + I_1(T) + I_2(T) + \mathcal{N}(T), \]

14
cf. Meyer [10, p. 301]. Here $I_1(T)$ is a stochastic integral over
$(0,T]$, and we have simplified the general form of $I_2(T)$ by using
the fact that ωW is the so-called continuous martingale part of Z
and $<\omega W, dW>_t = \sigma^2 t$. Using (4.1) and (4.3), we have

\begin{equation}
I_1(T) = \int_0^T f'(Z_{t^-}) (\sigma dW_t + d\mu_t - d\lambda_t + \mu dt)
+ \sum_{0 < t \leq T} f'(Z_{t^-}) \Delta Z_t .
\end{equation}

Now we can replace $f'(Z_{t^-})$ by $f'(Z_t)$ in the integral on the right
side of (4.5), because the integrator is continuous, and a similar
statement holds for $I_2(T)$. Thus, substituting (4.5) into (4.4) and
combining similar terms, we have

\begin{equation}
f(Z_T) = f(Z_0) + \sigma \int_0^T f'(Z_t) dW_t + \int_0^T f'(Z_t) d(p-\lambda)_t
+ \int_0^T r f(Z_t) dt + \sum_{0 < t \leq T} \Delta f(Z_t) .
\end{equation}

Now let $Y_t = \exp(-\gamma t)$, $t \geq 0$. Because Y is a continuous VF
process, the general integration by parts formula stated on page 303
of Meyer [10] simplifies to give us (In this equation, square brackets
denote quadratic variation)

\begin{equation}
\gamma T f(Z_T) = Y_0 f(Z_0) + \int_0^T Y_t df(Z)_t + \int_0^T f(Z_{t^-}) dY_t + [Y, f(Z)]_T
= Y_0 f(Z_0) + \int_0^T Y_t df(Z)_t + \int_0^T f(Z_t) dY_t ,
\end{equation}

15
which is equivalent to

\[(4.8) \quad e^{-\gamma T} f(Z_T) = f(Z_0) + \int_0^T e^{-\gamma t} \, df(Z)_t - \gamma t \int_0^T e^{-\gamma t} f(Z_t) \, dt.\]

Now we calculate \(df(Z)_t \) from (4.4), substitute this into (4.8) and collect similar terms to get

\[(4.9) \quad e^{-\gamma T} f(Z_T) = f(Z_0) + \sigma \int_0^T e^{-\gamma t} \, f'(Z_t) \, dW_t + \int_0^T e^{-\gamma t} f'(Z_t) \, d(\rho - \lambda)_t + \int_0^T e^{-\gamma t} (f - \zeta)(Z_t) \, dt + \int_{0<t<T} e^{-\gamma t} \Delta f(Z)_t.\]

Next, because \(\Delta f(Z)_0 \equiv f(Z_0) - f(X_0) \), we have

\[(4.10) \quad f(Z_0) + \int_{0<t<T} e^{-\gamma t} \Delta f(Z)_t = f(X_0) + \int_{0<t<T} e^{-\gamma t} \Delta f(Z)_t.\]

We now substitute (4.10) into (4.9) and take \(E_x \) of both sides, observing that the Ito integral involving \(dW_t \) has zero expectation because its integrand is bounded. This yields equation (4.2) and thus completes the proof.

Maintaining the set-up for (4.2), we now define the cumulative discounted cost process associated with policy \((R,L) \). Let
(4.11) \[K_t = \int_0^t e^{-yt}(h(Z_s) + r\mathrm{d}R_s + \lambda\mathrm{d}L_s), \quad t \geq 0. \]

the second and third integrals being defined in the Lebesgue-Stieltjes sense over \([0,t]\) with the usual convention at zero (\(\Delta R_0 = R_0\) and \(\Delta L_0 = L_0\)).

(4.12) Corollary. With the assumptions and definitions above,

\[
E_x[K_T + e^{-yt} f(Z_t)]
= f(x) + E_x\left\{ \int_0^T e^{-yt}(r + f'(X_t)) (Z_t) dt \right\}
+ E_x\left\{ \int_0^T e^{-yt} [r + f'(X_t)] dp_t \right\}
+ E_x\left\{ \int_0^T e^{-yt} [x - f'(Z_t)] d\lambda_t \right\}
+ E_x\left\{ \int_{0 \leq t \leq T} e^{-yt} [\Delta f(Z_t) + r\Delta R_t + \lambda\Delta L_t] \right\}.
\]

(4.13) Remark. For future reference, we express the right side of (4.12) as \(f(x) + E_x[I_1(T) + I_2(T) + I_3(T) + \gamma(T)]\).

Proof. This follows immediately from (4.2) and (4.11), using the identities \(\mathrm{d}R = \mathrm{d}p + \Delta R\) and \(\mathrm{d}L = \mathrm{d}\lambda + \Delta L\) in (4.11).
For an interpretation of (4.12), imagine that you have responsibility for operating the storage system described in §1 and have tentatively decided to use the policy (R,L). Further suppose that another person offers to relieve you of this responsibility under either of the following two arrangements.

(a) You may pay $f(x)$ dollars at time zero and avoid all future control and holding costs.

(b) You may employ policy (R,L) up to time T, absorbing the control and holding costs incurred during that period, then make a payment of $f(I_T)$ at time T and be relieved of all control responsibilities thereafter.

Corollary (4.12) gives an expression for your expected discounted cost under plan (b). Now suppose that f satisfies

\[(4.14) \quad \gamma f - \gamma f + h > 0 \quad \text{on } S, \]
\[(4.15) \quad r + f' > 0 \quad \text{on } S, \]
and
\[(4.16) \quad l - f' > 0 \quad \text{on } S. \]

Using the notational convention (4.13), it is clear that (4.14) implies $E_x[I_1(T)] > 0$, (4.15) implies $E_x[I_2(T)] > 0$, and (4.16) implies $E_x[I_3(T)] > 0$. Furthermore, (4.15) and (4.16) together imply $E_x[I_3(T)] > 0$ as follows. Suppose $\Delta R_t > 0$ and $\Delta L_t = 0$. Then $\Delta Z_t = \Delta R_t$ and we have
\[\Delta f(Z_t) + r \Delta R_t + \lambda \Delta L_t = f(Z_t) - f(Z_{t-\Delta R_t}) + r \Delta R_t \]

\[= \int_{Z_t-\Delta R_t}^{Z_t} (f'(y) + r) \, dy \geq 0, \quad \text{by (4.15).} \]

From (4.16) we get a similar inequality for times \(t \) where \(\Delta R_t = 0 \) and \(\Delta L_t > 0 \). Finally, (4.15) and (4.16) together imply a similar inequality for times \(t \) with \(\Delta R_t > 0 \) and \(\Delta L_t > 0 \), because (and only because) we have assumed \(r + \lambda > 0 \). So we find that (4.14) - (4.16) imply

\[E_x[K_T + e^{-\gamma T} f(Z_T)] \geq f(x), \]

which means that plan (b) above is inferior to plan (a) for any choice of \(T \) (and regardless of the starting state \(x \)). Letting \(T \to \infty \) in (4.17) gives \(k(x) \geq f(x) \), since \(f \) is bounded on \(S \). Since \((R,L)\) and \(x \) were arbitrary, we then have the following.

(4.18) Corollary. If \(f \in C^2(S) \) satisfies (4.14) - (4.16), then \(f \leq k \) for any cost function \(k \) associated with a feasible policy.

Corollary (4.18) is the only result from this section that will be used later, but we should say at least a few words to connect our basic identity (4.12) with the optimality equation (1.1) and the
general notion of policy improvement. Suppose that f is the cost function for a feasible policy (R^*,L^*) that we want to test for optimality. The left side of (4.12) gives the expected discounted cost when we use an alternate policy (R,L) up to time T and employ (R^*,L^*) thereafter, with T playing the role of time zero and Z_T viewed as the initial state of the control problem. (To make this last phrase precise, one must introduce shift operators.) For (R^*, L^*) to be an optimal policy, it is necessary and sufficient that all such attempts to improve (R^*, L^*) through hybridization fail, meaning that (4.17) holds for every x, every stopping time T, and every feasible policy (R,L). Combining this with (4.12), it can be shown that (4.14)-(4.16) are necessary and sufficient for the optimality of (R^*,L^*). Finally, from (4.12) and the fact that f is (by assumption) the cost function for a feasible policy, it can be shown that at least one of the inequalities (4.14) - (4.16) is tight at each point $x \in S$, meaning that if satisfies the optimality equation

(4.19) \[0 = \left[(f-f') + (r+f') \right] \right)(x), \quad x \in S, \]

which appeared earlier as (1.1). To repeat, if $f \in C^2(S)$ is the cost function for a feasible policy, then (4.19) is necessary and sufficient for the optimality of that policy, but only the sufficiency has been proved rigorously.
5. Control Limit Policies

Let a and b be fixed throughout this section, with $a < a < b < R$. We want to construct the policy (R, L) that enforces these control limits, and then calculate the associated cost function. These are essentially known results for one-dimensional Brownian motion with reflecting barriers, but we do not know of any textbook treatment that presents them in a form suitable for our purposes.

(5.1) Proposition. For each $\omega \in \Omega$ there exists a unique pair of functions $R(\omega) = \{R_t(\omega), t \geq 0\}$ and $L(\omega) = \{L_t(\omega), t \geq 0\}$ which jointly satisfy

\begin{align}
R_t(\omega) &= \sup_{0 \leq s \leq t} [a - X_s(\omega) + L_s(\omega)]^+, \quad t \geq 0, \\
L_t(\omega) &= \sup_{0 \leq s \leq t} [X_s(\omega) + R_s(\omega) - b]^+, \quad t \geq 0.
\end{align}

Both $R(\omega)$ and $L(\omega)$ are continuous and non-decreasing, with $R_0(\omega) = [a - X_0(\omega)]^+$ and $L_0(\omega) = [X_0(\omega) - b]^+$.

Proof. Let us first prove the last statement, taking R and L to be any two functions which jointly satisfy (5.2) - (5.3). (The dependence on ω will be suppressed throughout this proof.) If R_0 and L_0 were both positive, then we would have $R_0 = a - X_0 + L_0$ by (5.2) and $L_0 = X_0 + R_0 - b$ by (5.3), which implies $a = b$, a contradiction. In exactly the same way, if $\Delta R_t > 0$ and $\Delta L_t > 0$ for some
t > 0, then the suprema in (5.2) and (5.3) would both be achieved at
s = t, implying \(R_t = a - X_t + L_t \) and \(L_t = X_t + R_t - b \), and again we arrive
at the contradiction \(a = b \). So \(R \) and \(L \) cannot jump
simultaneously, and then (5.2)-(5.3) and the continuity of \(X \) imply
that they have no jumps at all.

We now construct a solution of (5.2)-(5.3) by successive approxi-
mations. Beginning with the trial solution \(R_0^0 = L_0^0 = 0 \), \(t > 0 \), let

\[
R_{n+1}^t = \sup_{0 \leq s \leq t} [a - X_s + L_n^t],
\]

and

\[
L_{n+1}^t = \sup_{0 \leq s \leq t} [X_s + R_n^t - b],
\]

for \(n = 0, 1, \ldots \) and \(t > 0 \). Observe that \(R_1^t > R_0^t \) and \(L_1^t > L_0^t \),
and hence (by induction) that \(R_n^t \) and \(L_n^t \) are increasing in \(n \) for
each fixed \(t \). So we have

\[
R_n^t + R_t \text{ and } L_n^t + L_t \text{ as } n \to \infty, \ t > 0, \]

and one can easily verify that the convergence in (5.6) is obtained in
a finite number of iterations for each fixed \(t \). Thus \(R \) and \(L \) are
finite valued and jointly satisfy (5.2)-(5.3).

For uniqueness, let \((R', L')\) be another (distinct) solution of
(5.2)-(5.3). We have already seen that \(R' \) and \(L' \) must both be
continuous with \(R'_0 = R_0 \) and \(L'_0 = L_0 \), and it's obvious from the construction above that \(R' \geq R \) and \(L' \geq L \). Let \(T > 0 \) be the infimum of those \(t > 0 \) at which either \(R'_t > R_t \) or \(L'_t > L_t \). By continuity, we have \(R'_T = R_T \) and \(L'_T = L_T \), and either \(R' \) or \(L' \) must increase at \(T \). If \(T \) were a point of increase for both, then (5.2) and (5.3) would give us \(R_T = a-X_T+L_T \) and \(L_T = X_T+R_T-b \) respectively, which yields the contradiction \(a = b \). So we conclude that exactly one of the pair \((R', L')\) increases at \(T \). Suppose it is \(R' \), implying that \(L' = L \) over \([0, T+\epsilon]\) for sufficiently small \(\epsilon \). But then \(R' = R \) over \([0, T+\epsilon]\) by (5.2), which contradicts the definition of \(T \). In the same way, we cannot have \(R' \) flat and \(L' \) increasing at \(T \), so the proof of uniqueness is complete.

(5.7) Proposition. Let \(R(\omega) \) and \(L(\omega) \) be as in (5.1), and set \(Z = X+R-L \). The processes \(R, L \) and \(Z \) are adapted and satisfy

\[
(5.8) \quad a \leq Z_t \leq b, \quad t \geq 0,
\]

\[
(5.9) \quad \int_0^t (Z_s-a)\,dR_s = 0, \quad t \geq 0,
\]

\[
(5.10) \quad \int_0^t (b-Z_s)\,dL_s = 0, \quad t \geq 0.
\]

Remark. One may paraphrase (5.9) by saying that \(R \) increases only when \(Z = a \). With our usual convention, (5.9) yields \((Z_0-a)R_0 = 0 \) when specialized to \(t = 0 \). Similar statements hold for (5.10).
Proof. The adaptedness is immediate from our construction (5.4)-(5.6) of R and L, while (5.8)-(5.10) follow directly from (5.2)-(5.3).

It can further be shown that the unique pair of functions (R,L) satisfying (5.8)-(5.10), with $Z = X + R - L$, is that constructed in the proof of (5.1). This means that the characterizations of (R,L) given in Propositions (5.1) and (5.7) are completely equivalent. We observed earlier that the convergence (5.6) is obtained in a finite number of iterations for each fixed t, which makes it possible to write out a general (and very messy) recursive formula for R and L in terms of a sequence of stopping times $\{T_n\}$. This was done in [6] for the case $a = 0$, but the only relevant properties of the resulting pair (R,L) are those expressed in (5.7). It can be shown that R (respectively L) is the local time of the diffusion process Z at the boundary a (respectively b), but we shall have no need for this fact.

(5.11) Proposition. Suppose that $k \in C^1(S)$ is twice continuously differentiable on $[a,b]$ and satisfies

\begin{align}
(5.12) \quad \gamma k(x) - \gamma k(x) + h(x) &= 0, \quad a \leq x \leq b, \\
(5.13) \quad k'(x) + r &= 0, \quad a \leq x \leq a,
\end{align}
(5.14) \[k'(x) - x = 0, \quad b \leq x \leq a. \]

Then

\[k(x) = E_x \left\{ \int_0^\infty e^{-\gamma t}[h(Z_t)dt + rdR_t + \lambda dL_t] \right\}, \quad x \in S. \]

Remark. This of course shows that there is at most one \(k \) satisfying the stated hypotheses, and we shall exhibit a solution (or rather the solution) shortly.

Proof. First fix a starting state \(x \in [a,b] \). Defining the cumulative discounted cost \(K_t \) as in (4.11), we need to prove that \(E_x(K_\infty) = k(x) \). Fixing \(T > 0 \), we shall apply Corollary (4.12) with \(k \in \mathcal{C}^2[a,b] \) replacing \(f \in \mathcal{C}^2[a,b] \). Since \(L \) and \(R \) have no jumps when \(X_0 = x \), we have \(\rho = R \) and \(\lambda = L \), and (4.12) yields

\begin{align*}
(5.15) \quad & E_x[K_T + e^{-\gamma T} k(Z_T)] \\
& = k(x) + E_x \left\{ \int_0^T e^{-\gamma t}(\Gamma k - \gamma k + h)(Z_t) \, dt \right\} \\
& \quad + E_x \left\{ \int_0^T e^{-\gamma t}(r + k'(Z_t)) \, dR_t \right\} \\
& \quad + E_x \left\{ \int_0^T e^{-\gamma t}(x - k'(Z_t)) \, dL_t \right\}.
\end{align*}
Since \(P_x(a \leq Z_t \leq b) \) for all \(t \geq 0 \) = 1, the second term on the right side of (5.15) vanishes by (5.12). Next, (5.9) says that \(R \) increases only when \(Z = a \), so the third term on the right side of (5.15) is

\[
\mathbb{E}_x \left\{ \int_0^T e^{-yt} [r + k'(a)] dR_t \right\},
\]

which vanishes by (5.13). Similarly, the final term on the right side of (5.15) vanishes by (5.10) and (5.14). Letting \(T \to \infty \) in (5.15), and using the boundedness of \(k(Z_t) \), we thus obtain \(\mathbb{E}_x (K_a) = k(x) \) as desired.

If \(a = a \) and \(b = b \), there is nothing left to prove. Next suppose \(b < b \) and consider a starting state \(x \in (b, c) \). From the construction of \((R,L) \) we have

\[
(5.16) \quad \mathbb{E}_x (K_a) = \mathbb{E}_x (KL_0) + \mathbb{E}_b (K_a)
= \lambda (x-b) + \mathbb{E}_b (K_a).
\]

The first part of the proof shows that \(\mathbb{E}_b (K_a) = k(b) \), and \(\lambda (x-b) + k(b) = k(x) \) by (5.14), so (5.16) reduces to \(\mathbb{E}_x (K_a) = k(x) \) as desired. A similar argument, using (5.13), gives \(\mathbb{E}_x (K_a) = k(x) \) for \(a \leq x < a \), which completes the proof.

We conclude the section by constructing a solution for the ordinary differential equation (5.12)-(5.14). To emphasize the
dependence of this solution on the control limits \(a \) and \(b \), we denote it \(k_{ab}(x) \). First, let \(g \in \mathscr{C}^2(S) \) be the unique solution of

\[(5.7) \quad rg(x) - \gamma_0(x) + h(x) = 0, \quad a \leq x \leq R,\]

\[(5.8) \quad g(a) = g(R) = 0 . \]

It is well known that exactly one such \(g \) exists, and it can be written explicitly as an integral involving a known Green's function.

Next, setting

\[a_1 = \frac{-\mu + (\mu^2 + 2 \gamma_0^2)^{1/2}}{\sigma^2},\]

\[a_2 = \frac{-\mu + (\mu^2 + 2 \gamma_0^2)^{1/2}}{\sigma^2},\]

\[c_1 = \exp(a_2 \gamma_0)/a_1[\exp(a_1 b + a_2 b) - \exp(a_1 b + a_2 a)],\]

\[c_2 = \exp(a_1 \gamma_0)/a_2[\exp(a_1 b + a_2 b) - \exp(a_1 b + a_2 a)],\]

\[d_1 = \exp(a_2 \gamma_0)/a_1[\exp(a_1 b + a_2 b) - \exp(a_1 b + a_2 a)],\]

\[d_2 = \exp(a_1 \gamma_0)/a_2[\exp(a_1 b + a_2 a) - \exp(a_1 b + a_2 b)],\]

we define
\[\phi_1(x) = c_1 e^{\alpha_1 x} + c_2 e^{\alpha_2 x}, \quad a \leq x \leq b, \]
\[\phi_2(x) = d_1 e^{\beta_1 x} + d_2 e^{\beta_2 x}, \quad a \leq x \leq b, \]
\[\phi(x) = g(x) + \left[1 - g'(b) \right] \phi_1(x) - \left[1 + g'(a) \right] \phi_2(x), \quad a \leq x \leq b, \]

and finally
\[
k_{ab}(x) = \begin{cases}
\phi(a) + (a-x)r, & a \leq x \leq a, \\
\phi(x), & a \leq x \leq b, \\
\phi(b) + (x-b)t, & b \leq x \leq \alpha.
\end{cases}
\]

One can easily verify that
\[\Gamma\phi_1(x) - \gamma\phi_1(x) = \Gamma\phi_2(x) - \gamma\phi_2(x) = 0, \quad a \leq x \leq b, \]
\[\phi_1(a) = \phi_2(b) = 0 \quad \text{and} \quad \phi_1'(b) = \phi_2'(a) = 1. \]

From this and (5.7)-(5.8) it follows directly that \(k_{ab} \) is the desired solution of (5.12)-(5.14). Observe that \(k_{ab}' \) is continuous on all of \([a, \alpha]\) and that \(k_{ab}'' \) is continuous everywhere except possibly at the control limits \(a \) and \(b \).

In this construction of \(k_{ab} \) one can start with any function \(g \in \mathfrak{g}^2(S) \) satisfying the main equation (5.7). For concreteness we have specified one particular solution via the boundary conditions (5.8). For future reference, note that our choice of \(g \) does not depend on the control limits \(a \) and \(b \).
6. Optimal Control Limits

Maintaining the notation of the previous section, let $f = k_{ab}$ be the cost function for a control limit policy with $a < a < b < b$. Recall that f is continuously differentiable on S and twice continuously differentiable except possibly at a and b. We would like to find conditions (on a and b) under which f satisfies the optimality conditions (4.14)-(4.16).

The first thing to note is that f can only satisfy (4.14)-(4.16) if it is twice continuously differentiable, meaning that $f''(x) > 0$ as $x \to a$ if $a < a$, and $f''(x) > 0$ as $x \to b$ if $b < b$. To see this, suppose first that $a < a$ and that $f''(a) > 0$. Since $(\Gamma f - \gamma f + h)(a) = 0$, and f, f' and h are continuous at a while $f''(a) = 0$, we have $(\Gamma f - \gamma f + h)(a) < 0$, which violates (4.14). Now suppose, on the other hand, that $f''(a) < 0$. Since f' is continuous at a with $f'(a) = -r$, this implies $f'(a+\epsilon) < -r$ for $\epsilon > 0$ sufficiently small, which violates (4.15). So continuously of f'' at the lower control limit is necessary if f is to satisfy (4.14)-(4.16), and a similar analysis holds at the upper control limit. We turn now to the matter of sufficiency.

(6.1) Proposition. Suppose that $f = k_{ab}$ is twice continuously differentiable on S with $-r < f' < l$. Then f satisfies the optimality conditions (4.14)-(4.16).
Proof. If \(a = a \) and \(b = R \), the conclusion is automatic. Suppose then that \(a > a \). Defining

\[
\phi(x) \equiv \tau f'(x) - \gamma f(x) + h(x)
\]

we have \(\phi(x) = 0 \) for \(a \leq x \leq b \) and need to prove that \(\phi(x) \geq 0 \) for \(a \leq x \leq a \). (The proof that \(\phi(x) \geq 0 \) for \(b \leq x \leq R \) if \(b < R \) is virtually identical, so we delete it.) Let us define

\[
\phi(x) \equiv [h(x) - h(a)] + \gamma r(x-a),
\]

\[
\theta(x) \equiv [\tau f(a) - \tau f(a)] - \gamma [f(x) - f(a)] + \gamma f'(a) (x-a).
\]

Remembering that \(\phi(a) = 0 \), \(\tau f(x) = \tau f(a) \) for \(a \leq x \leq a \), \(f(x) = f(a) + r(a-x) \) for \(a \leq x \leq a \), and \(f'(a) = -r \), we then have

\[
(6.2) \quad \phi(x) = \begin{cases}
\phi(x), & \text{if } a \leq x \leq a \\
\phi(x) + \theta(x), & \text{if } a \leq x \leq R
\end{cases}
\]

Next, since \(f \in C^2(S) \) by assumption, \(f''(a) = 0 \), \(f'(a) = -r \) and \(f'(x) \geq -r \) for all \(x \) by assumption, it must be that \(f''(a+\epsilon) \geq 0 \) for all \(\epsilon \geq 0 \) sufficiently small. From Taylor's theorem and the definition of \(\theta(\cdot) \), we then have the following: for each \(\delta > 0 \) there exists an \(\epsilon > 0 \) such that
(6.3) \[\theta(x) \geq -(x-a)\delta , \quad \text{for } a \leq x \leq a+\varepsilon . \]

But \(\phi(x) = 0 \) for \(a \leq x \leq b \), so (6.2) and (6.3) together imply

(6.4) \[\phi(x) \leq -(x-a)\delta , \quad \text{for } a \leq x \leq a+\varepsilon . \]

Convexity of \(h \) implies convexity of \(\phi \), and obviously \(\phi(a) = 0 \), so (6.4) implies

(6.5) \[\phi(x) \geq -(a-x)\delta , \quad \text{for } a \leq x \leq a \]

Since \(\delta > 0 \) was arbitrary, this gives \(\phi(x) \geq 0 \) for \(a \leq x \leq a \) and hence \(\phi(x) \geq 0 \) for \(a \leq x \leq a \) by (6.2). This completes the proof of the proposition.

We now construct a control limit policy whose cost function satisfies the hypotheses of Proposition (6.1). For each \(a \in [a,A) \) let

\[b^*(a) = \sup\{b \in (a,\infty): k_{ab}'(x) \leq \ell , \ a \leq x \leq b\} . \]

From the explicit formula for \(k_{ab} \) given in §5, it follows easily that \(b^*(a) > a \). Hereafter let \(k_a \equiv k_{ab}^*(a) \) for \(a \in [a,A) \).

Next define
\[a^* = \inf\{a \in [a, b): k_a'(x) \geq -r, \ a \leq x \leq b^*(a)\} . \]

Again it follows easily from the formulas of §5 that \(a^* < b^*(a) \).

Hereafter we set \(b^* = b^*(a^*) \).

(6.6) **Proposition.** The cost function \(f = k_{a^*b^*} \) satisfies the hypotheses of (6.1), and thus the control limit policy with parameters \(a^* \) and \(b^* \) is optimal.

Proof. The inequality \(-r \leq f' \leq r\) is immediate from our construction. It remains to show that \(f'' \) is continuous, which means simply that

\[f''(x) = 0 \quad \text{as} \quad x + a^* \quad \text{if} \quad a^* > a, \quad (6.7) \]

\[f''(x) = 0 \quad \text{as} \quad x + b^* \quad \text{if} \quad b^* < a. \quad (6.8) \]

From the formulas of §5 it is immediate that \(k_{ab} \) and its first two derivatives vary continuously with the parameters \(a \) and \(b \), and it is this continuity plus the definitions of \(a^* \) and \(b^* \) that one uses in verifying (6.7)-(6.8). The verification is straightforward but tedious, so we leave it as an exercise. Propositions (6.1) and (4.18) give \(f \leq k \) for any cost function \(k \) associated with a feasible policy, which completes the proof of the proposition.
The approach that we have taken to determining an optimal policy does not work directly with the optimality equation (1.2), but the return function for our optimal control limit policy does in fact satisfy this relationship. Defining \(f = k_{a^*b^*} \) as in (6.6), we have seen that \(f \) is the minimal cost function and that it satisfies each of the inequalities (4.14)-(4.16). Furthermore, from the definition and construction of \(k_{ab} \) given in §5, we see that (4.14) holds with equality on \([a^*,b^*]\), (4.15) holds with equality on \([a,a^*]\) and (4.16) holds with equality on \([b^*,b]\). Thus,

\[
0 = [\gamma f(x) - \gamma f(p) + h(x)] \wedge [r + f'(x)] \wedge [l - f'(x)], \quad x \in S,
\]
as claimed. Adding the boundary conditions

\[
r + f'(a) = 0 \quad \text{and} \quad l - f'(b) = 0,
\]
we believe that the unique function \(f \in C^2(S) \) satisfying (6.9)-(6.10) is the minimum cost function, but we have not attempted to prove this. The boundary conditions (6.10) are essential, incidentally, since there may exist \(f \in C^2(S) \) satisfying

\[
\gamma f'(x) + h = 0 \quad \text{on} \quad S \quad \text{with} \quad r + f'(x) > 0 \quad \text{for all} \quad x \in S \quad \text{or} \quad l - f'(x) > 0 \quad \text{for all} \quad x \in S.
\]
Such an \(f \) satisfies (6.9) but lies strictly below the minimum cost function.
7. **Concluding Remarks**

Two potential areas of application for our instantaneous control problem are cash management and production control. See Harrison and Taylor [6] for a discussion of these applications, oriented toward the specific holding cost function (1.1), and further references. For cash management problems, the non-linear (but convex) holding cost function

\[h(x) = \begin{cases}
 hx, & \text{if } x > 0 \ (h > 0) \\
 q|\!|x|\!|, & \text{if } x \leq 0 \ (q > 0)
\end{cases} \tag{7.1} \]

is also of practical importance. This arises when the firm can maintain a negative cash balance through short-term borrowing, and a similar holding cost structure occurs in production control problems where demand can be backlogged at some penalty cost. Motivated by the stochastic cash management problem, Constantinides and Richard [3] have studied the optimal control of Brownian Motion when the holding cost function is (7.1) and there are both fixed and proportional costs of control. This gives a problem of optimal impulse control [2], and they show the existence of an optimal policy characterized by four critical numbers. The applications of instantaneous control in production and inventory theory will be further developed in [7], using the results of this paper.

Two problems of instantaneous control, closely related to ours but much more difficult, have been solved in a beautiful recent paper.
by Benes, Shepp and Witsemhausen [1]. Using our notational system, one of their problems can be stated as follows: Find a pair of controls \((R,L)\) to minimize

\[E \int_{0}^{\infty} e^{-\alpha t} \left(X_t + R_t - L_t \right)^2 dt \]

subject to the constraint that \(R_\infty + L_\infty \leq y < \infty \). Here one has no explicit cost of control, but there is a finite limit on the total amount of control that can be exerted over the infinite planning horizon. The authors take essentially the same approach employed here, using martingale methods (the generalized Ito formula) to verify optimality of a candidate policy arrived at from certain heuristic considerations. Their optimal policy has a much more complex form that ours, however, so the argument is much more intricate. This is the only previous paper we know of, other than [6], which explicitly considers an instantaneous control problem for Brownian motion, as opposed to control at a bounded rate or optimal impulse control.
References

REPORT DOCUMENTATION PAGE

1. REPORT NUMBER 199

2. GOVT ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)
INSTANTANEOUS CONTROL OF BROWNIAN MOTION

5. TYPE OF REPORT & PERIOD COVERED
TECHNICAL REPORT

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(S)
J. MICHAEL HARRISON and MICHAEL I. TAKSAR

8. CONTRACT OR GRANT NUMBER(S)
N00014-75-C-0561

9. PERFORMING ORGANIZATION NAME AND ADDRESS
DEPT'S. OF OPERATIONS RESEARCH & STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305

10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
NR-047-200

11. CONTROLLING OFFICE NAME AND ADDRESS
OPERATIONS RESEARCH, CODE 434
OFFICE OF NAVAL RESEARCH
ARLINGTON, VIRGINIA 22217

12. REPORT DATE OCTOBER 1981

13. NUMBER OF PAGES 36

14. MONITORING AGENCY NAME & ADDRESS (IF different from Controlling Office)

15. SECURITY CLASS. (OF THIS REPORT)

16. DISTRIBUTION STATEMENT (OF THIS REPORT)
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

17. DISTRIBUTION STATEMENT (OF ABSTRACT ENTERED IN BLOCK 20, IF DIFFERENT FROM REPORT)

18. SUPPLEMENTARY NOTES
This research has been partially supported by National Science Foundation
Grant ECS-80-17867, and issued as Technical Report No. 63 - Dept. of
Operations Research, Stanford University.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
 BROWNIAN MOTION, STOCHASTIC CONTROL,
 REFLECTING BARRIERS, DIFFUSION PROCESSES,
 INVENTORY AND PRODUCTION CONTROL, STOCHASTIC CASH MANAGEMENT

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

PLEASE SEE OTHER SIDE
Instantaneous Control of Brownian Motion
J. Michael Harrison
Michael I. Taksar
Stanford University

Abstract

A controller continuously monitors a storage system, such as an inventory or bank account, whose content $Z = \{Z_t, t \geq 0\}$ fluctuates as a (μ, σ^2) Brownian motion in the absence of control. Holding costs are incurred continuously at rate $h(Z_t)$. At any time, the controller may instantaneously increase the content of the system, incurring a proportional cost of r times the size of the increase, or decrease the content at a cost of c times the size of the decrease. We consider the case where h is convex on a finite interval $[a, b]$ and $h = 0$ outside this interval. The objective is to minimize the expected discounted sum of holding costs and control costs over an infinite planning horizon.

It is shown that there exists an optimal control limit policy, characterized by two parameters a and b ($a < a < b < a$). Roughly speaking, this policy exerts the minimum amounts of control sufficient to keep $Z_t \in [a, b]$ for all $t \geq 0$. Put another way, the optimal control limit policy imposes on Z a lower reflecting barrier at a and an upper reflecting barrier at b. We do not give a full-blown algorithm for construction of the optimal control limits, but a computational scheme could easily be developed from our constructive proof of existence.
DATE FILMED 2-8