ON THE ACCURACY OF SIMULATED PERCENTAGE POINTS

OCT 81 J M JURITZ, J W JURITZ, M A STEPHENS

UNCLASSIFIED TR-309

UNCLASSIFIED TR-309
ON THE ACCURACY OF SIMULATED PERCENTAGE POINTS

By

J.M. Juritz, J.W.F. Juritz and M.A. Stephens

TECHNICAL REPORT NO. 309

OCTOBER 7, 1981

Prepared Under Contract
N00014-76-C-0475 (NR-042-267)
For the Office of Naval Research

Herbert Solomon, Project Director

Reproduction in Whole or in Part is Permitted for any Purpose of the United States Government

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
ON THE ACCURACY OF SIMULATED PERCENTAGE POINTS

By

J.M. Juritz, J.W.F. Juritz, and M.A. Stephens

Abstract.

The estimates of percentage points of a distribution, obtained from one large sample of Monte Carlo values, are compared with those obtained by dividing the large sample into several subsamples and taking the average. The single-sample method appears to be preferable.

Key Words. Monte Carlo methods; percentage points; significance points; simulated percentage points; simulations.

Submitted for publication to: JASA
ON THE ACCURACY OF SIMULATED PERCENTAGE POINTS

By

J.M. Juritz, J.W.F. Juritz and M.A. Stephens
University of Cape Town and Simon Fraser University

1. Introduction.

In recent years Monte Carlo simulation methods have been used more and more frequently to produce tables of percentage points of probability distributions when mathematical difficulties prevent an analytic solution to the problem. Schafer (1974) has outlined possible sources of error and presented a method for calculating a confidence interval for a percentile. This is based on several Monte Carlo runs. This note is a revision of a previous manuscript (Juritz, Juritz, and Stephens, 1978). In it we present an alternative method based on the order statistics in one run, which has certain advantages which we discuss below. We illustrate the two methods with simulations for percentage points of the normal distribution.

2. Confidence Intervals Using Order Statistics.

Let \(f(x) \) be the probability density function of a continuous random variable \(X \) and let \(\xi_p \) denote the \(p \)th percentile of \(X \). Suppose a random sample of size \(n \) is drawn from \(f(x) \) and let \(X_{(i)} \) be the \(i \)th order statistic, i.e. the \(i \)th smallest observation. David (1970) shows that for any continuous random variable the random interval \((X_{(r)}, X_{(s)}) \) with \(r < s \) covers \(\xi_p \) with probability \(\pi(r, s, n, p) \) given by

\[
\Pr(X_{(r)} \leq \xi_p \leq X_{(s)}) = \pi(r, s, n, p)
\]

\[= \frac{s-1}{n} \left((1-p)^{(s-r-1)} - p^{(s-r-1)} \right) . \]
This probability does not depend on \(f(x) \), and so is very suitable for use in simulation studies, where \(f(x) \) is always unknown. In this application, \(n \) is the number of repetitions, \(p = \text{Prob}(X \leq \xi_p) \) and \(r \) and \(s \) must be chosen so that the interval \((X_r, X_s)\) has the desired confidence level \(1-\alpha \); i.e. we choose \(r \) and \(s \) so that \(\pi(r,s,n,p) = 1-\alpha \).

Since in a simulation \(n \) is very large indeed the value of \(\pi(r,s,n,p) \) can be evaluated using the normal approximation to the binomial distribution, and \(r \) and \(s \) can then be found. Let \(z_{1-\alpha/2} \) be the \(100(1-\alpha/2) \)th percentile of the standard normal distribution. Then

\[
r = -z_{1-\alpha/2}(np(1-p))^{1/2} + np + 1/2 \quad \text{and} \quad s = z_{1-\alpha/2}(np(1-p))^{1/2} + np + 1/2 .
\]

The expressions for both \(r \) and \(s \) end in \((+1/2)\) because the sum in (2.1) runs from \(r \) to \(s-1 \), not to \(s \). Let \(k = [np]+1 \), where \([np]\) denotes the largest integer less than or equal to \(np \), and define

\[
X_p = X(k);
\]

\(X_p \) is the usual estimate of \(\xi_p \) and the interval \(L = (X_r, X(s)) \) gives the confidence interval for \(\xi_p \), at confidence level \(100(1-\alpha)\% \), since it covers \(\xi_p \) with probability \(1-\alpha \) (approximately, but to high accuracy).

We shall refer to the above as the single-sample method. Schafer (1974)
proposes an alternative method based on the fact that X_p is asymptotically normally distributed with mean ξ_p and variance

$$\sigma^2 = \left(\frac{p(1-p)}{n} \right) (f(\xi_p))^2.$$

Instead of a single run with n repetitions, c runs each with m repetitions ($n = cm$) are made. For each run the sample percentile $X_{(\lfloor mp \rfloor + 1)}$ estimates ξ_p. Denoting these estimates by $X_{p1}, X_{p2}, \ldots, X_{pc}$, the percentile ξ_p is estimated by the average

$$(2.4) \quad \overline{X}_p = \frac{1}{c} \sum_{i=1}^{c} X_{pi}$$

and the sample variance

$$(2.5) \quad s^2 = \frac{c}{c-1} \sum_{i=1}^{c} (X_{pi} - \overline{X}_p)^2$$

estimates σ^2. Then

$$(\overline{X}_p - t_{1-\alpha/2} \cdot s \cdot \sqrt{\frac{1}{c}}, \overline{X}_p + t_{1-\alpha/2} \cdot s \cdot \sqrt{\frac{1}{c}})$$

is a confidence interval for ξ_p with confidence probability $1-\alpha$, where $t_{1-\alpha/2}$ is the upper $100(1-\alpha/2)^{th}$ percentile of Student's t with $c-1$ degrees of freedom. We shall call this the multi-sample method. The number of runs must be chosen to give a good estimate of the standard deviation.
3. **Comparison of the Two Methods.**

3.1. **Value of the estimated percentage point.**

Since in practice everyone who does a Monte Carlo study for a table of percentage points gives a single value \hat{X}_p which is the "best" estimate of ξ_p, the question arises as to how this should be done. Is it best to make c runs and then take the mean \bar{X}_p or make one large run, then take X_p as the point estimate? In both cases the point estimates are biased in finite samples. David (1970, page 65) gives expansions for the expected value and variance of the k^{th} order statistic in a sample of size n in terms of the inverse cumulative distribution function, $Q(x)$, of the parent population and its derivatives.

Let $p_k = k/(n+1)$, $q_k = 1-p_k$, and let $Q^{(i)}(x)$ be the i^{th} derivative of $Q(\cdot)$ evaluated at x. Then

$$E(X^{(k)}) = Q(p_k) + \frac{p_k q_k}{2(n+2)} Q^{(2)}(p_k) + \cdots.$$

(3.1)

For $X^{(k)}$, with $k = [np]+1$, to be an unbiased estimator of ξ_p, we need $E(X^{(k)}) = \xi_p = Q(p)$. For certain values of n and p, $Q(p_k)$ will equal $Q(p)$, and the bias in $X^{(k)}$ is given by the second and subsequent terms in (3.1). This would be so, for example if $n = 99$, $p = .8$; then $k = [np]+1 = 80$ and the first term of (3.1) is $Q(80/100) = Q(.8) = \xi .8$ as required. However, in general this will not be so, and to investigate the bias we expand $Q(p_k)$ about $Q(p)$ and $Q^{(2)}(p_k)$ about $Q^{(2)}(p)$, using Taylor's series. Then (3.1) becomes
\[E(X_{(k)}) = Q(p) + (p_k - p)Q^{(1)}(p) + (p_k - p)^2 Q^{(2)}(p)/2 \ldots \]

\[+ \frac{p_k q_k}{2(n+2)} (Q^{(2)}(p) + (p_k - p)Q^{(3)}(p) \ldots + \ldots \] .

Since \(p_k - p = \frac{[np]+1}{n+1} \), where \(0 \leq c \leq 1 \), we have, to terms of order \(1/n \),

\[(3.2) \quad E(X_{(k)}) = Q(p) + \frac{1-p-\varepsilon}{n+1} Q^{(1)}(p) + \frac{p(1-p)}{2(n+2)} Q^{(2)}(p) \] .

When several samples are used, the estimate of \(\xi_p \) is \(\bar{X}_{(k)} \), the mean of the \(c \) values of \(X_{(k)} \), where \(k \) is \([mp]+1\). Then

\[E(\bar{X}_{(k)}) = E(X_{(k)}) = Q(p) + \frac{1-p-\varepsilon}{n+1} Q^{(1)}(p) + \frac{p(1-p)Q^{(2)}(p)}{2(m+2)} \]

to order \(1/m \), where again \(0 < \varepsilon < 1 \).

The bias in using the single-sample estimate is therefore reduced by a factor of approximately \(c \).

3.2. Variance of estimated percentage points, and length of confidence intervals.

Also from David (1970, page 65) we have, for the single sample of size \(n \):

\[\text{Var}(X_{(k)}) = \frac{p_k q_k}{n+2} \left(Q^{(1)}(p) \right)^2 + \text{terms in } 1/(n+2)^2 \] .
Thus to order \(1/n\),

\[
\text{Var}(X(\ell)) = \frac{p(1-p)}{n^2} \{Q(1)(p)\}^2,
\]

and the variance of \(X(\ell)\) is

\[
\text{Var}(\overline{X}(\ell)) = \frac{p(1-p)}{c(m+2)} \{Q(1)(p)\}^2
\]

to order \(1/m\). For large samples the ratio of these variances is 1.

The expected length of the confidence interval for \(\zeta_p\), given by \(\overline{X}_p\) will be approximately, to order \(n^{-1/2}\),

\[
L_M = 2z_{1-\alpha/2} \left(\frac{p(1-p)}{n}\right)^{1/2} Q(1)(p);
\]

the expected length of \(L = (X(\tau), X(\phi))\), using (3.1) with (2.1) and (2.2) will be approximately

\[
L_S = 2z_{1-\alpha/2} \left(\frac{p(1-p)}{n}\right)^{1/2} Q(1)(p).
\]

Thus the lengths of the confidence intervals given by the two methods can be expected to be roughly the same size, diminishing as \(n^{-1/2}\). There is of course a difference in the nature of the confidence intervals: the interval obtained by the multisample method will have endpoints equally spaced about the estimate \(\overline{X}_p\), while \(L\) is designed so that the endpoints have estimated significance levels equally spaced about \(p\). For many uses of confidence intervals the second property may well be the more desirable.
3.3. Monte Carlo Results.

Some Monte Carlo studies have been made which illustrate the above points. Samples of size n were taken from a standard normal distribution and each sample was used to estimate the 95% and 97.5% percentage point; the sample was then randomly divided into $c = 10$ groups, each with $m = n/c$ observations, and the estimates found by \bar{X} as described above. Results are given in Table 1. Since the same set of n values was used for both methods, the resulting estimates are correlated; nevertheless the larger bias in the multi-sample estimate can be seen for small n. When n increases, each subsample becomes sufficiently large that the individual estimates will become quite accurate and \bar{X} loses its bias.

The approximate expected length of the confidence interval, given by (3.3) is given in the Table. The approximation gives good results for $p = 0.95$, but the estimate appears to be too large for $p = 0.975$. Nevertheless, it can be seen that there is little to choose between the length of the intervals given by the two methods. Table 2 shows the actual probability levels corresponding to the estimates \hat{D}_p given by both methods: again, the smaller bias for the single sample method is shown, for relatively small n. It is this smaller bias which would appear to give an advantage to the single sample method, since point estimates and not confidence intervals are usually what are required for Monte Carlo percentage points.

This research was supported in part by the National Research Council of Canada (now the National Science and Engineering Research Council), and by the U.S. Office of Naval Research, Contract NO0014-76-C-0475, and the authors thank these agencies for their support.
References

TABLE 1. ESTIMATES OF PERCENTILES OF A STANDARD NORMAL DISTRIBUTION.

The table gives estimates of ξ_p, the p-th percentile, upper and lower 95% confidence limits, and the length of the confidence interval. For the single method n variables were used, and for the multi-sample method the same variables were used in ten groups; $m = n/10$.

$p = 0.95$ True value of $\xi_p = 1.6449$.

<table>
<thead>
<tr>
<th>Method</th>
<th>m</th>
<th>n</th>
<th>Estim. point ξ_p</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>Length</th>
<th>Difference in length</th>
<th>Approx. expected length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-sample</td>
<td>50</td>
<td>500</td>
<td>1.726</td>
<td>1.577</td>
<td>1.875</td>
<td>.298</td>
<td></td>
<td>.370</td>
</tr>
<tr>
<td>Single-sample</td>
<td></td>
<td></td>
<td>1.648</td>
<td>1.610</td>
<td>1.686</td>
<td>.076</td>
<td></td>
<td>.083</td>
</tr>
<tr>
<td>Multi-sample</td>
<td>100</td>
<td>1000</td>
<td>1.688</td>
<td>1.595</td>
<td>1.781</td>
<td>.186</td>
<td></td>
<td>.185</td>
</tr>
<tr>
<td>Single-sample</td>
<td></td>
<td></td>
<td>1.677</td>
<td>1.620</td>
<td>1.740</td>
<td>.120</td>
<td></td>
<td>.117</td>
</tr>
<tr>
<td>Multi-sample</td>
<td>500</td>
<td>5000</td>
<td>1.671</td>
<td>1.634</td>
<td>1.708</td>
<td>.074</td>
<td></td>
<td>.098</td>
</tr>
<tr>
<td>Single-sample</td>
<td></td>
<td></td>
<td>1.670</td>
<td>1.633</td>
<td>1.715</td>
<td>.082</td>
<td></td>
<td>.117</td>
</tr>
</tbody>
</table>

$p = 0.975$ True value of $\xi_p = 1.9600$.

<table>
<thead>
<tr>
<th>Method</th>
<th>m</th>
<th>n</th>
<th>Estim. point ξ_p</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>Length</th>
<th>Difference in length</th>
<th>Approx. expected length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-sample</td>
<td>50</td>
<td>500</td>
<td>1.994</td>
<td>1.745</td>
<td>2.243</td>
<td>.498</td>
<td></td>
<td>.468</td>
</tr>
<tr>
<td>Single-sample</td>
<td></td>
<td></td>
<td>1.970</td>
<td>1.824</td>
<td>2.160</td>
<td>.336</td>
<td></td>
<td>-.162</td>
</tr>
<tr>
<td>Multi-sample</td>
<td>100</td>
<td>1000</td>
<td>1.986</td>
<td>1.876</td>
<td>2.096</td>
<td>.220</td>
<td></td>
<td>.331</td>
</tr>
<tr>
<td>Single-sample</td>
<td></td>
<td></td>
<td>1.965</td>
<td>1.875</td>
<td>2.110</td>
<td>.235</td>
<td></td>
<td>.015</td>
</tr>
<tr>
<td>Multi-sample</td>
<td>200</td>
<td>2000</td>
<td>1.972</td>
<td>1.865</td>
<td>2.079</td>
<td>.214</td>
<td></td>
<td>.234</td>
</tr>
<tr>
<td>Single-sample</td>
<td></td>
<td></td>
<td>2.016</td>
<td>1.927</td>
<td>2.078</td>
<td>.151</td>
<td></td>
<td>.063</td>
</tr>
<tr>
<td>Multi-sample</td>
<td>500</td>
<td>5000</td>
<td>2.003</td>
<td>1.946</td>
<td>2.060</td>
<td>.114</td>
<td></td>
<td>.011</td>
</tr>
<tr>
<td>Single-sample</td>
<td></td>
<td></td>
<td>1.998</td>
<td>1.970</td>
<td>2.055</td>
<td>.115</td>
<td></td>
<td>.001</td>
</tr>
<tr>
<td>Multi-sample</td>
<td>1000</td>
<td>10000</td>
<td>1.944</td>
<td>1.926</td>
<td>1.962</td>
<td>.036</td>
<td></td>
<td>.105</td>
</tr>
</tbody>
</table>
TABLE 2.

Actual probability levels of the estimated percentile X_p or \bar{X}_p for a percentile ξ_p of the $N(0,1)$ distribution.

<table>
<thead>
<tr>
<th>Method</th>
<th>n</th>
<th>Multi-sample</th>
<th>Single-sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500</td>
<td>.9769</td>
<td>.9756</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>.9765</td>
<td>.9753</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>.9757</td>
<td>.9786</td>
</tr>
<tr>
<td></td>
<td>5000</td>
<td>.9774</td>
<td>.9771</td>
</tr>
<tr>
<td></td>
<td>10000</td>
<td>.9740</td>
<td>.9740</td>
</tr>
</tbody>
</table>

$p = 0.95$

<table>
<thead>
<tr>
<th>Method</th>
<th>n</th>
<th>Multi-sample</th>
<th>Single-sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500</td>
<td>.9578</td>
<td>.9499</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>.9540</td>
<td>.9520</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>.9543</td>
<td>.9532</td>
</tr>
<tr>
<td></td>
<td>5000</td>
<td>.9526</td>
<td>.9525</td>
</tr>
<tr>
<td></td>
<td>10000</td>
<td>.9503</td>
<td>.9510</td>
</tr>
</tbody>
</table>
The estimates of percentage points of a distribution, obtained from one large sample of Monte Carlo values, are compared with those obtained by dividing the large sample into several subsamples and taking the average. The single-sample method appears to be preferable.