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BINDING OF PENTACHLOROIRIDITE Tu PLASMA POLYMERIZED VINYLPYRIDINE FILMS
AND ELECTROCATALYTIC OXIDATION OF ASCORBIC ACID

J. Facci and Royce W. Murray
Kenan Laboratories of Chemistry
University of North Carolina
Chapel Hil1, N.C. 27514

ABSTRACT

Coordination of [IrCls(acetonato)lz' in acetone/methylene chloride
to a film of vinylpyridine RF plasma polymerized on a carbon electrode
results in an electrode surface wave at +0.40 volt vs. S.C.E. in 1 M
H,S04 . This potential is more negative than expected for -PyIrC152'
coordiration. Charge transport in the film is very fast and the film
catalyzes the oxidation of ascorbic acid at a diffusion controlled rate,
The film electrochemistry is sensitive to the choice of supporting elec-

trolyte cation but not anion.
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BINDING OF PENTACHLOROIRIDITE TO PLASMA POLYMERIZED VINYLPYRIDINE FILMS
AND ELECTROCATALYTIC OXIDATION OF ASCORBIC ACID

J. Facci and Royce W. Murray
Kenan Laboratories of Chemistry
University of North Carolina
Chapel Hill, N.C. 27514

BRIEF

Electrochemistry and electrocatalytic reactivity of carbon electrodes
coated with films of pentachloroiridite-metallated plasma polymerized
vinylpyridine are described.
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Investigations of electron transfer-mediated electrocatalytic

reactions evoked by electrodes coated with molecularly designed redox-

active films have been of considerable recent interest (1-11). Efforts
have been directed at theoretical anu quantitative kinetic descriptions of
such reactions (9, 12-16). The electrocatalysis described here grew out of 3
our investigations of electrodes coated using RF plasma polymerization
reactions (15,17,18) and our interest in dinding iridium complexes to elec-
trode surfaces (19). Vinylferrocene, for instance, can be plasma polymerized
to form stable films with expectable ferrocene-ferricenium electrochemical
reactivity (15,17,18). Having used the solventocomplex [IrClS(acetonato)]z'
for coordination reactions to pyridine and to vinylpyridine monomers, a L

natural extension was the use of plasma polymerization to prepare "polyvinyl-

pyridine” films from vinylpyridine and the reaction of the solven® iridium

complex with this film (in a manner akin to that of Oyama and Anson {20)).

S LA e it

As described here the plasma film chemistry proves to be not simply that of

a8, A

pyridine and the ligand site binding the iridium is unknown. The iridium

metallated film is, however, excepticnally stable and also catalyzes the

axidation of ascorbic acid at a diffusion controlled rate.

EXPERIMENTAL

Electrodes. Teflon shrouded glassy carbon disk eiectrodes (0.071 cmz) were
constructed as described elsewhere (21) except that conductive silver epoxy
was used to seal the glassy carbon rod (Atomergic) concentrically within

the brass holder, and the heat shrunk Teflon shroud was made concentric with
the brass holder by yentie latheing. Electrodes were mirror polished witn

1 um diamond paste (Buehler) and washed with distilled water prior to use.

Equipment. Cyclic voltammetry was done with a PAR Model 175 Signal Generator

o, it meia o, s REaEe b Lo et e sl st Hamaoss Sdian o e i gh o S
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and a locally designed potentiostat, rotated disk voltammetry with a PIR
Rotator (Pine Instrument Co., Grove City, PA), and potential step chrono-

- amperometry with a PAR Model 173 Potentiostat/Galvanostat in conjunction

with a Tektronix oscilloscope. Except for rotated disk experiments which }
were done in a 50 ml beaker under Nz. electrochemical experiments were per- |
formed in a small volume (1.5 m)) three electrode cell with Pt auxiliary
electrode and Luggin probe connection to a sodium chloride saturated calomel
electrode (SSCE).

Plasma polymerization was effected with a Harrick Scientific (Ossining,
N.Y.) inductively coupled RF plasma unit (17).
Chemicals. Lic1o, , Nac10, , CsC10, (G. Frederick Smith), tetraethylammonium :
chloride (Et4NCI, Eastman), tetra-n-butylammonium bromide (Bu4NBr. MCB) and ?
KC1 (Fisher) supporting electrolytes and 3-hydroxytyramine hydrochloride

{dopamine, Aldrich) and L-ascorbic acid were used as received. D-{-)-epine- {

phrine (Eastman), used as received, was stored in a freezer. 4-vinyl-

pyridine (Aldrich) was purified by passing over neutral alumina (Fisher,

Brockman Activity 1) and stored in a freezer.

Folymer Films. Plasma polymerized 4-vinylpyridine (PPVPy) films were depos-

L L i e Al et o i el 2 Lk

ited on glassy carbon electrodes as follows. The plasma chamber was cleaned

e+ st

prior to each deposition by successive rinses with dimethylsulfoxide, water
and acetone and followed by pumping of the chamber to 60 mtorr and igniting the

Ar plasma (lowest radiofrequency power setting, ~ 10 watts) for 20 minutes

e et et a3l

\ under a 200 millitorr argon leak. A brief exposure of the chamber to the
atmosphere occurs next, during placement of the electrodes in the chamber.
Since prior work with vinylferrocene had revealed substantial sensitivity of p
the plasma reaction to reactor geometry (17), the carbon electrodes were
reproducibly positioned in wells number 1, 2, and 3 of a glass flute (Fig- i

ure 1) piaced at a marked position on the central axis of the cylindrical

P T N S T IR i s i ook~ il




| plasma chamber. The chamber was alternately evacuated and flushed with

Ar at 1 torr, then 10-20 ul of purified 4-vinylpyridine was quickly added

| to well number 4 (closest to the chamber gas inlet). Following a further
30 second Ar flush at 1 torr, the plasma was ignited (~ 10 watts) under 350 i
mtorr Ar for 180 seconds, after which the electrodes were removed. Shorter

plasma reaction times gave films which dissolved in dichloromethane and

acetone,

e a8 o o

The plasma polymerized vinylpyridine (PPVPy) films were visibly colored.
This is apparently an interference effect. Electrodes in well 1 tended to
be deep red to orange, those in well 2, yellowish, while those in well 3,
| just inside the plasma, were blue to deep purple. Electrodes at positions
i beyond well 1 were rust colored and these films were apparently too thick
E for electrochemical study. The quantity of PPVPy present was such that it %
i was scrapeable in palpable amounts and this was subjected tc elemental ana- 3
| lysis, indictating an empirical formula of C7H8.3N] 0].8 . Only those elec-
trodes which were visibly colored as in wells 1-3 were found to be electro-
chemically useful, PPVPy coatings prepared on platinum electrodes were not
celored and dissolved in dichloromethane and acetone, solvents used for the
introduction of —IrClsz' groups.

Metallation of Polymer. Pentachloroiridite centers were introduced into

the plasma polymerized vinylpyridine films by modifying the procedure of
Bottomley (22). Sodium nitrosylpentachloroiridite(IIl), NaIrCls(NO) , Syn-
thesized by a literature preparation (22), was precipitated from concentrated
HC1 by the addition of tetraphenylarsonium chloride (AsPh4C1) . This golden
brown solid 15 soluble in CHZCl2 (1ea-brown solution). Tetraphenylarsonium
azide was prepared by precipitatior from a mixture of AsPh461 and NaN3

aqueous solutions, collected and dried in vacuo.

?
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A glassv ~arbon electrode ceoated wilii PFYPy was contacted with a N,
l ' degassed 75% CH,C1,/25¢ acetone solution of AsPh4IrC15(N0) in a serum
’ capped vial under subdued 1ight t¢ which was added, via syringe, a stoi-

chiometric quantity of AsPh4N3 in A degassed 75% CH,C 2/25% acetone. The

mixture immediately turned deep grewn indicative of the acetonato complex,

IrCls(acetone)Z' . The acetone of the solvent complex is easily displaced

by strong n-acid ligands presert in the plasma polymer film resulting in a

pendant IrClsz' mofety. The Ir modified electrode, designated C/PPVPy - ,

IrC]SZ' » was rinsed with methanol and water and air dried prior to use. :4

The overall reaction scheme is j

j CH2C12 j
AsPh4Ir(215(N0) + AsPh4N3 —_— (AsPh4)21rC15(N20) + Nyt (1) ‘
CH,C1, g
‘ !
(2) ]
| |
PPYPy PPVPy %

2- 3

C. + (AsPn,),IrCl (acetone)—— Cp~Irtls (3) !

2-

~IrC15 %

|

}

i
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RESULTS AND DISCUSSION
Electrochemical Reactions of C/PPVPy ~ IrClsg' Films. In aqueous 1 M

H2504 » unmetallated plasma polymerized vinylpyridine films exhibit cyclic

gk

voltammograms which, between 0 and +1.0 volt vs. S.C.E., demonstrate large but
otherwise featureless background currents. The large background currents
suggest that the microscopic surface area is quite large ; nevertheless ;
the film surface has a glossy, reflecting appearance. i
Reaction of PPVPy¥ with IrClS(CH3COCH3)2' » Rxn. 3, results in C/PPVPy
" IrC]sz' voltammograms in 1 M HZSO4 which display (Figure 2) a somewhat

broad (typical Eq .y ~ 240 mv.) wave at E2/ .

chargesunder the oxidation and reduction peaks are equal and correspond in

this sample to a coverage of electroactive sites of 5.7 x 1077 mol./cm.2 ' 3

+0.40 volt vs. S.C.E. The

of geometric area, assuming n = 1. This electrochemical surface wave is :
remarkably stable. Cycling the electrode potential between C and +1.0 i
volt vs. S.C.E. for 1.5 days (12 hours at 200 mv./s. and 24 hours at 10
v./s.) in1 M HZSO4 caused the peak currents at +0.40 volts to decrease by
less than 3%. During these potential scans the electrode spent the equiva-
lent of 18 hours in the oxidized state and the electroactive sites under-
went ca. 440,000 turnovers.
The predicted chemistry in Rxn. 3 is coordination of pyridire groups

2-

in the polymer matrix to the —JrCls moiety, forming pendant ~ PyIrC]SZ'

units. We have prepared unattached analog complexes by literature methods

2

(22,23), and in 1 ¥ H,50, the 111/ IV veactions of PyIrCls"" and of (iso-

nic)IrClsz' occur at respectively E;éln = +0,99 and +1.00 volt vs. S.C.E.
IrC163' itself reacts at +0.69 volt in 1 M HC1. Clearly, the +0.40 volt
potential for the C/PPVPy ~ IrClsz' electrode wave in Figure 2 is not com-
patibie with an Ir'"““/Iv reaction in either of these coordination states.

Potential excursions to +1.0 volt on C/PPVPy ~ IrC152' electrodes

F
IF‘f
:
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i reveal no other more positive waves than that at +0.40 volt.

; In the scheme of Rxns. 1-3 above, only the no* ligand is expectably
| .

displaced and the form of the pundant iridium complex in the electrode is
2 .

If the +0.40 volt wave for the iridium-
I1I/1v

thus thuught to be ~ LIrCl5

metallatzd fiilm is indeed due to an Ir reaction as opposed to reaction ?

PR

of a different redox site in the film (somehow activated by jridium coordin-

L _—

ation), then the very negative +0.40 volt redox potential (as compared to

Sy

IrC163' and PyIrClSZ' and by analogy with the coordination properties of
ruthenium complexes (24)) implies that the ligand coordinated to iridium
is strongly electron donating. Elemental analysis of unmetallated plasma
polymerized vinylpyridine indicates significant oxygen incorporation into j
the film, the empirical formula being C;Hg 3Ny 0y g as compared to C;H,N ;
ideally expected for polyvinylpyridine. The chemical nature of the oxygen-

|

}

| . . .

i ated sites is unknown. It is unlikely that a hydroxylated pyridine coordinating

the iridium would shift E° , as compared to unsubstituted pyridine, by 0.6

volt. The most likely basis for the +0.40 volt wave of Figure 2 would seem
to be the Irl1/IV eaction of a ~ AnO—IrC]S' complex, or  a quinone-
type moiety whose electron transfer chemistry is activated by iridium coor-

dination.

et o AT Pt et TR Kl TR M O Y
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In previous studies of piasma poiymerized vinylferrocene films on
electrodes, plasma damaae and oxygen incorporation were noticed via elemental
analyses and XPS (17,18), but the dominant chemical and electrochemical char-
acteristics of the film remained those of the ferrocene group. The above
results contrast with this; chemical damage effects associated with the vinyl-
pyridine plasma polymerization are more profound and obscure understanding
of the film's coordination chemistry. In the course of these studies, however,

]
1
we discovered that the iridium metallated film is a potent catalyst for the i
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oxidation of ascorbic acid {vide infra’ and so some additional charac-
terization of the C/PPVPy ~ er152° electrode properties was deemed

worthwhile.

2-

Charge Transport in C/PPVPy ~ IrC1." Films. The coverage of electro-

active centers measured from the Figure 2 surface wave is the equivalent

2- groups (not accounting for surface rough-

of 25-30 monolayers of ~ IrCls
ness), and so the rate at which the elzctroactive centers in the ¥ilm can
become oxidized and reduced is of interest. On the cyclic voitammetric time
scale, the rate at which electrochemical charge is transported through the
filmin 1 M HZSO4 is very fast, as shown by the linear proportionality measured

between peak current, i_, and potential scan rcte, v , from v = (.02 to

5 v./s. This means tha: the ratio of oxidized and reduced sites in the
filn remains in Nernstian equilibrium with the electrode potential during
the potential scan.

Given the Nernstian behavior, the number of electrons n transferred

per electroactive site can be estimated from the i - v slope and the sur-

p
face activity relationships for interacting sites (25)

L 2.2 i |
1p n“F AFTv/RT[4 ZrPT] (4)
where the interaction parameter rFT = -0.28 is estimated from EFNHM =
240 mv. using a working plot (26). Tnis calculation gives n ~ 0.86 or a
one electron reaction.

The current-time curve resulting from a -0.3 to +0.8 volt vs. SSCE

potential step at a C/PPVPy - IrClsz'

electrode in 1 M H,50, is shown in
Figure 3, Curve A. On the short time scale achieved in this experiment,
the rate of oxidative charging of the film controls the current-time decay.

After subtracting background current as approximated with a -0.3 to +0.3
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volt step (Curve B), Curve C shows a Cottrel) plot of e]ectroactivé site
oxidation current vs t-l/z. At short times the plot is satisfactorily
Tinear and demcnstrates 2 diffusion controlled charge transport through

the film where the concer ration distunce profile of oxidized and reduced
sites in the fiim does no* exceed the film thickness at short times. The
charge transport rate can be obtained from the Cottrell equation as we have

previously shown (18) fo- fixed site redox polymer films
i = ko, /2 ot fB]/2 (5)

where C is the concentration of electroactive sites in the film. The data

172 . Assum-

of Figure 3, Curve C, give Dct]/zc = 5.8 x 1078 mol./cm.zsec.
ing (27) a 300 nm film thickness, (i.e., ¢ ~ 0.2 M) gives D, ~ & x 1078
cm.zlsec. That the value of C and thus D¢ are apprcximate stiil leaves
obvious the fact that Dct in this film is as large or larger than other
known charge transport diffusion constants (28,29).

At Tonger times in Figure 3, Curve C, the current fal s below the
Cottrell (dashed) line as expected (in fact required) when \he concentration
distance profiles intersect the film/solution boundary. At thece times,
finite diffusion theory applies (18), from which currents were calculated
(-0~) in Figure 3 for Dct]/zc = 5.8 x 10"8 . The theoretical currents fall
s1iahtly bolow the experimental ones (—0—) (Curve C) which could mean, among
other things, that all sites in the film do not exhibit the same effective

charge transport rate,

Electrolyte Effects. The cyclic voltammetry of C/PPVPy v IrClsz' films 1is
sensitive to the nature and con.antration of the supporting alectrolyte cat-
ion, but not the anion. Voltammetry in 1 M HC1 and in 1 _M__HC]O4 is indis-

tinguishable from that in Figure 2 sxcept for a minor (10-20 mv.) potential

i




B T

shift in Egﬁrf . Changing the supporting electrolyte cation, on the other
hand, from H+ to Lit (same as Cs+) to Nat to k* to Bu4N+ produces the
effects shown in Figure 4, broadening and attenuating the wave and shift-
ing it to more negative potentials. Also, starting with 0.5 M Et4NC1. in
which the C/PPVPy ~ Ir0152° wave is shifted and attenuated, Figure 5 shows
that incrementally adding H* as HC1 increases the quantity of reacting sites
in the film and shifts the wave back to more positive potentials.

Attaching a molecular interpretation to these effects is difficult
given the uncertainty in film composition. It may well be that the action
of small electrolyte cations is to break up internal ion associations (e.g.,
electrostatic cross-linking) between anionic iridium sites and cationic
sites like pyridinium, which othewise impede charge transport (e.g., re-
duce the size of the wave) and shift E;drf negatively. Note in this connec-
tion that the order of the supporting electrolyte cation effects in Figure 4
is also the order of the hydrated ion sizes, including the similarity be-

tween Li+ and Cs+ .

Catalytic Oxidation With C/PPVP ~ IrClvz' Films. The irreversible oxidation
of ascorbic acid in 1 M H,S0, on a naked carbon electrcde occurs at Ep,a =
+0.76 volt vs. S.C.E. (Figure 6, Curve C) at an overpotential of 860 mv.
compared to its thermodynamic potential of -0.1 volt. Ascorbic acid is also
oxidized at +0.76 volt on a carbon electrode coated with {(unmetallated)
plasma polymerized vinylpyridine. The jatter result means that o-quinone
groups, known (30-32) to oxidize ascorbic acid, are probably not an import-
ant component of the polymer film, and also implies that the film is suffi-
ciently solvent swollen that ascorbic acid can diffuse tnhrough it to underge
electron transfer at the carbon/film interface.

That ascorbic acid gains access-to the carbon/fiim interface by diffu-
sion through the film rather than through pinholes in the film (33) can be

A
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i
3

T S L e

e P xR

: ; : zqulllllllnunn--l‘i
R T o ST W RN PR A e POV RN d®



10

r,_,,,,.wr_,w, S T T e mm e s e e e
!
i
|
|

inferred from rotated disk electrode voltammetry. Voltammograms of %
ascorbic acid at rotated electrodes bearing unmetallated films (Figure 7,
Curve B) were determined as a function of electrode rotation rate, w .

In contrast to those at naked carbon (which occur at the same potential} .
the Levich 1lim - “}/2 plots for voltammograms at film covered electrodes . ?
are non-linear as shown in Figure 8, Curve B. This non-linearity
is consistent with partial control of current by the rate ¢i diffusion

through a membrane, the appropriate relationship (34) for which is

) 1 1
7— = == + (6)
Wim  MFADg 0qPCs7d 0.62nFADS~/% =1/ /e
" ‘where DS pol and P are the diffusion and partition coefficients for ascor-

bic acid in the film, respectively, Cs is its solution concentration, and
the right hand term is the Levich relation. The inset in Figure 8 shows
the data from Curve B plotted according to equation 6; the linear relation
is evident. Extrapolation to I/a}/Z ; 0 givés from'the interéepf a flux
Dg o1PCs/d = 1 x 1078 mol./cm.%sec. in the film. Approximating film thick-

=4 x 10/

S,po
ness as 300 nm as above (27), and assuming P = 1, gives D

S,pol
cm.z/sec. This value is only ebout an order of :nagnitude smaller than that :

for ascorbic acid diffusing in solution (35), DS = 5.7 x 10"6 cm.zlsec..
indicating that the unmetallated film has a fairly open structure.

When the film is metallated with iridium, oxidation of ascorbic acid on

Bt s o M A s e YR

the C/PPVPy ~ IrClsz' electrode becomes in cyclic voltammetry,voltage cata-
lyzed by about 230 mv. as shown by Figure 6, Curve B. The electrocatalytic

oxidation is rapid and, by the criterion of proportionality of the peak
1/2

[ 2 TSt

current, i , tov (v = potential scah rate, Figure 9), controlled by

p.,a
diffusion of ascorbic acid to the electrode. The slope of Figure 9 agrees
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o . o ConSumption of ascorbic acid We estimate from this result that the effect. ‘ﬁ”;; X
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within a factor of 1.4 with that calculated from the irreversible potential
sweep relation (36) using the known diffusion coefficient for ascorbic acid . -
(25) and o = 0.5 . K

The electrocatalytic oxidation of ascorbic acid by rotated disk ~ | '4;
C/PPVPy ~ IrClsz' electrode voltammetry gives voltammograms like Figure 7,
Curve C.. The voltage catalysis is not as striking as in cycIic'voltammetry;‘“au
out is cleariy evident. The limiting current for Curve C is greaief than

J/2

'thét‘for the unmetallated film (Curve B). A plot of 1 )in ¥s- for Curve |

C (shown in Figure 8, Curve C) shows that within the T1imits of expe*imental

error_the currents follow the Levich equation. Thus. in the EC cata1ysas f (RS

" equation (7)

: B R ._______:75‘_17. ,‘ L
. im  "PARTCs g 62nFAD § '72 S o

¥ o the maxﬂnun attained Levich (soluticn mass transport) flux 2 x 10'8 aal./cm.

;‘Asec ntmains less than that allowed by the cata1yt1c reaction kch ' for ghe '

.ive heterogeneous rate constant for ascqrblc acid at the C/PPVPy . irCls

f'J" - o surface..kchr » must exceed 0.1 cm./sec. From thws. the rate constlﬂt fOr‘ :
“o f' X .-‘.reaction between ascorbic acid and oxidized catalyst smtes is kep > § X 105_ ?A
::L p; f " N ]sec ‘.or-» 2 x 104 M ]sec L depending on whether one assumespiﬁot only " '-ZZE
'toe outermost monomolecular layer (I~ 2. x 10'10 mol./cm,z) is active in. . ‘ éu ;5

the reaction, or that all of the catalyst sites.in. the film (I ':Efv- 5-5-\ . 3:i*i

,710'9 moi./ch.z). This is among the fastest modified electrode cotoiyticf i ‘-.'Tufé

" rates known (1,2,4,10,11). : T _'-FAa‘io';t;

The phenomenon of membrane limited diffusion (Figure 8 1nso§) is not. - .-x;f;

2-

seen in the C/PPVPy ~ IrC1.“" catalyzed electrochemistry, which further dgMOn-f 512

strates that the locus of ascorbic acid oxidation is now catalytic sites.{h:ﬂ"f~g$
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the film rather than the carbon/film interfuce. It is not plausible that
the metallation reaction has in addition to a catalytic effect rendered the

film even more permeable to ascorbic acid (e.g., that Ds.po]P should in-
crease). The metallated f:Im in fact {s now poorly permeable; the cyclic ﬂ
voltammetry of methylviologen in 1 M HZSO4 is completely suppressed on

2-

C/PPVpy ~ IrCl electrodes. Methyl viologen reacts at a potential inappro-
5

priate for electrocatalysis by redox sites in the film so in order to react,

it is obligated te diffuse thr-ough the film to the carbon/film interface.

S

Finally, the ordering of rate processes (excluding the Levich mass

transport) can be estimated in the following way. As noted above, the flux

7 2

due to the chemical consumption of ascorbic acid exceeds 1 x 10”/ mol./cm.“sec. i

From the charge transport rate measurement, the effective steady state flux
of electrochemical charge through the film cannot exceed (Dct]/zc)zll‘T =

Doy C/d ~ 6 x 1077 mol./ém.zsec. Lastly, the flux of ascorbic acid diffus-

ing entirely through the film is as an upper boundary, 1 x 10'8 mol./cm.zsec. ;

(vide supra, Figure 8). From this comparison, it is clear that the available

chemical and charge transport fiuxes both exceed the flux capability for as-

corbic acid diffusion in the film and so the reaction zone for the electro-

© Eior et R M e o o AT

catalytic process must be localized to a few layers of catalyst sites at the
film/solution boundary. We have previously discussed flux comparisons of
this sort (9,15,16). ;
In preliminary experiments, we have ascertained that the C/PPVPy ~ %
IrClsz' electrode also cataly.2s oxidation of dopamine and similar substrates, é
but the extent of voltage catalysis is variable and differs from that for as-
corbic acid. Figure 10 shows that at naked carbon (Curve A), dopamine and
ascorbic acid are oxidized at identical potentials, but on a C/PPVpy ~

IrC]SZ' electrode, £ a for oxidation of the two substrates occurs at differ-

P
ent potentials (Curves B,C). Resolution of the voltammetric waves of dopamine ;

¥
iy
e
£
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and ascorbic acid is of interest relative to neurochemizal and analytical
studies (32,37,38). The voltage resolution in Figure 10 is analytically
useful. It would, nevertheless, be more desirable analytically that dopa-
mine be more strongly catalyzed than ascorbic acid (the reverse of Figure 10).

Lastly, we call attention to thc anomalous difference between the oxi-

dation'potentials of dopamine and ascorbic acid and for the redox sites in

the iridium metallated film. In an uncomplicated EC electrocatalytic reac-
tion mechanism, the dopamine and ascorbic acid reactions should occur at
potentials clase to that for the ostensible cata]jst wave. Again, uncertaihty

in the chemical makeup of the film obviates a molecular interpretation of

this problem. We should note that one way the film could remnain inactive . §
until nearly all of the catalyst sitec become oxidized would be a reactivity ’ Af
| strongly dependent on the degree of electrostatic cross-linking within the
i film. Oxidation of the anionic catalyst sites would relieve the electrostatic

1‘nteur'act;l'ch'ts by lowering the charge on those sites.
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

ke emant DL, 00 Rt S0 Sk i

FIGURE LEGENDS

Schematic of electrode hoider (glass flute) used in plasma polymeri-

~zation of 4-vinylpyridine. Side and front vice. Wells 1-3 contain

electrodes, well &4 contains 10-20 ul. VPy.

2

Cyclic voltanmetry of C/PPVPy ~ IrClg T film in 1 M H,S0, at 0.1 v./s.

Qox * Qeg - S = 150 wa./em.?. T =57 x 107 mol.sem.? .

Chronoamperometric current-time response (Curve A), background current
(Curve B), and plot of corrected current vs. v 1/2 (Curve C) for C/PPVPy
v IrC1% in 1 M H,50, . Slope of Curve C = 0.223 A.sec.'/? which

/2 . Circles are experi-

gives Dct‘/zc = 5.8 x 10" mol./cm.%sec.
mental points, squares are currents calculated from Dctl/zc = 5.8x 10'8

and eq. 5 of ref, 18,

Effect of electrolyte cation in cyclic voltammetry of C/PPVPy ~ IrClsz' .

Aqueous solutions 1 M HC10, (Curve A), 1 M LiC10, or 0.1 M CsCl0,
(Curve B), 1 M NaC10, (Curve C), 1 M KCl or 1 M Et,NC1 (Curve D), and
1 M BuyNBr (Curve E), 0.2 v./s., S = 300 ua./cm.? .

2 cyclic voltammetry. 0.5 M HC

Effect of [H'] on C/PPVPy ~ IrCl,
(Curve A), 0.5 M Et,NC1 + 0.1 M HCT (Curve B), 0.5 M Et,NC1 + 0.01 M
HC1 (Curve C), 0.5 M Et,NCI + 0.001 M HC1 (Curve D), 0.5 M Et,NC]

(Curve E), 0.2 v./s., 300 ua./cm.2
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Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure Legends, page 2

Electrocatalytic oxidatior of ascorbic acid in 1 !.H2504 . Curve A:
C/PPVRy«»IrC]sz' electrode alone, S = 140 na./cm.z;‘Curve B: C/PPVPy
~ IrCISZ‘ with 10 mM ascorbic acid, S = 700 ua./cm.z; furve C: 10 mM

ascorbic acid at naked glassy carbon, S = 700 ua./cm.z; 0.1 v./s,

Rotated disk electrode voltammetry at 3600 rpm in 1 M H,S0, of (Curve
A) C/PPVPy ~ IrClsz' electrode, (Curve B) unmetallated C/PPVPy electrode
2-

in 1 mM ascorbic acid, and (Curve C) C/PPVPy ~ IrCl;"" electrode in |

mM ascorbic acid. S = 140 (Curve A) and 700 (Curves B,C) ua./‘cm.2

Levich plots for limiting currents for oxidation of 1 mM ascorbic acid
on (Curve A) naked glassy carbon, (Curve B) unmetallated C/PPVPy elec-
2-

trode, and (Curve C) C/PPVPy ~ IrC15 electrode. Inset is plot of

equation 6 for data of Curve B. All in 1 M H,50,.

Relationship of potential sweep rate and peak current for Curve B of

Figure 6.

Curve A: oxidation of a mixture of ascorbic acid and dopamine at naked
glassy carbon , §$ = 1.4 ma./cm.z, v = 0.2 v./s.; Curve B: oxidation cf
dopamine at C/PPVPy n erlsz' , S = 280 ua./cm.z, v = 0.1 v./s.; Curve

C: oxidation of ascorbic acid at C/PPVPymIrC152°. S = 280 ua./cm.z, v

0.1 v./s. Al 4n 1 M HS0, .
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